Sample records for powder diffraction revealed

  1. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  2. X-ray investigations related to the shock history of the Shergotty achondrite

    NASA Technical Reports Server (NTRS)

    Horz, F.; Hanss, R.; Serna, C.

    1986-01-01

    The shock stress suffered by naturally shocked materials from the Shergotty achondrite was studied using X-ray diffraction techniques and experimentally shocked augite and enstatite as standards. The Shergotty pyroxenes revealed the formation of continuous diffraction rings, line broadening, preferred orientation of small scale diffraction domains, and other evidence of substantial lattice disorders. As disclosed by the application of Debye-Scherrer techniques, they are hybrids between single crystals and fine-grained random powders. The pyroxene lattice is very resistant to shock damage on smaller scales. While measurable lattice disaggregation and progressive fragmentation occur below 25 GPa, little additional damage is suffered from application of pressures between 30 to 60 GPa, making pressure calibration of naturally shocked pyroxenes via X-ray methods difficult. Powder diffractometer scans on pure maskelynite fractions of Shergotty revealed small amounts of still coherently diffracting plagioclase, which may contribute to the high refractive indices of the diaplectic feldspar glasses of Shergotty.

  3. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  4. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  5. Effect of titanium on the structural and optical property of NiO nano powders

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya

    2018-05-01

    Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.

  6. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  7. Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations

    NASA Astrophysics Data System (ADS)

    Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar

    2017-01-01

    Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.

  8. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.

    2017-08-01

    Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

  9. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.

    PubMed

    Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc

    2018-09-15

    Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.

  11. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    PubMed

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  12. Macroscopic X-ray Powder Diffraction Scanning: Possibilities for Quantitative and Depth-Selective Parchment Analysis.

    PubMed

    Vanmeert, Frederik; De Nolf, Wout; Dik, Joris; Janssens, Koen

    2018-06-05

    At or below the surface of painted works of art, valuable information is present that provides insights into an object's past, such as the artist's technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm 2 ). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.

  13. Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis.

    PubMed

    Moorhouse, Saul J; Wu, Yue; Buckley, Hannah C; O'Hare, Dermot

    2016-11-24

    We report the first use of high-energy monochromatic in situ X-ray powder diffraction to gain unprecedented insights into the chemical processes occurring during high temperature, lab-scale metal oxide syntheses. During the flux synthesis of the n = 4 Aurivillius phase, Bi 5 Ti 3 Fe 0.5 Cr 0.5 O 15 at 950 °C in molten Na 2 SO 4 we observe the progression of numerous metastable phases. Using sequential multiphase Rietveld refinement of the time-dependent in situ XRD data, we are able to obtain mechanistic understanding of this reaction under a range of conditions.

  14. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  15. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  16. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders.

    PubMed

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-08-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  17. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  18. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less

  19. Synthesis and characterization of graphene oxide using modified Hummer's method

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak

    2018-05-01

    In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, James D.; Womick, Jordan M.; Rosmus, Kimberly A.

    Novel quaternary lanthanide-substituted oxides of stoichiometry LnxY2-xTi2O7 (where Ln is lanthanum, neodymium, samarium, gadolinium, or ytterbium) were prepared by traditional high-temperature, solid-state techniques and characterized by X-ray powder diffraction. Samples with nominal values of x up to 1.0 were attempted. The well-studied ternary cubic pyrochlore compound yttrium titanium oxide (Y2Ti2O7, space group Fd-3m, Z = 8), served as a parent structural framework in which Ln3+ cations were substituted on the Y3+ site. Laboratory-grade X-ray powder diffraction data revealed pure quaternary pyrochlore phases for LnxY2-xTi2O7 with x ≤ 0.2. Pyrochlore phase purity was verified by Rietveld analysis using high-resolution synchrotron X-raymore » powder diffraction data when x ≤ 0.2, however, for La3+ substitution specifically, pure quaternary pyrochlore formed at x<0.1. Band gap energies on selected samples were determined using optical diffuse reflectance spectroscopy and showed that these materials can be classified as electrical insulators with indirect band gap energies around 3.7 eV.« less

  1. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  2. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  3. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE PAGES

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...

    2017-06-15

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  4. Crystal structure and europium luminescence of NaMgH3-xFx

    NASA Astrophysics Data System (ADS)

    Pflug, Christian; Franz, Alexandra; Kohlmann, Holger

    2018-02-01

    The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.

  5. Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai

    2013-09-01

    Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).

  6. Probing hydrogen positions in hydrous compounds: information from parametric neutron powder diffraction studies.

    PubMed

    Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T

    2012-05-21

    We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.

  7. The Powder Diffraction File: Past, Present, and Future

    PubMed Central

    Smith, Deane K.; Jenkins, Ron

    1996-01-01

    The Powder Diffraction file has been the primary reference for Powder Diffraction Data for more than half a century. The file is a collection of about 65 000 reduced powder patterns stored as sets of d/I data along with the appropriate crystallographic, physical and experimental information. This paper reviews the development and growth of the PDF and discusses the role of the ICDD in the maintenance and dissemination of the file. PMID:27805163

  8. Determination of cellulose crystallinity from powder diffraction diagrams: Powder Diffraction Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Benjamin; Petridis, Loukas; Langan, Paul

    2014-10-01

    Commonly one-dimensional (1D) (spherically averaged) powder diffraction diagrams are used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. Moreover, this leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrilsmore » with crystalline segments as amorphous. Finally, the reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation.« less

  9. Effect of organic fuels on surface area and photocatalytic activity of scheelite CaWO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjunath, Kusuma; Gujjarahalli Thimmanna, Chandrappa

    2018-03-01

    Discrete nanoscale calcium tungstate (CaWO4) nanoparticles with exquisite photocatalytic activities were synthesized through ultra-rapid solution combustion route. Here, we aim to study the effect of different fuels on the synthesis of CaWO4 nanoparticles which lead to improve the characteristic properties and morphological evolution of the powders. From BET surface area measurement, it is observed that CaWO4 nanoparticles synthesized by using citric acid as fuel exhibits relatively large surface area (31.78 m2 g‑1) as compared to other fuels. The powder x-ray diffraction (PXRD) studies reveal that CaWO4 nanoparticles belong to scheelite type tetragonal system. The morphology of CaWO4 nanoparticles investigated using scanning electron microscopy (SEM) reveals that the powders are highly porous and agglomerated. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the CaWO4 nanoparticles show that a well-dispersed nearly oval-shaped nanoparticles with variable dimensions and lattice spacing that depends on the type of fuels used in the synthesis. The selected area electron diffraction (SAED) patterns of CaWO4 nanoparticles exhibit several concentric rings with bright spots indicating the polycrystalline nature of the powders. Investigation on photocatalytic activity of CaWO4 nanoparticles synthesized using citric acid shows highest (∼93%) degradation of methylene blue (MB).

  10. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang

    The fundamental mechanical properties of a dense metal–organic framework material, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02−1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge–strut structural motif. - Graphical abstract: The structure of framework, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}], and its indicatrix of thermal expansion. - Highlights: • The elastic modulus, hardness, and yieldmore » stress properties of a rare earth metal–organic framework material were studied via nanoindentation technique. • Variable-temperature powder X-ray diffraction experiments reveal that this framework shows significant negative thermal expansion along its b axis. • Based on variable-temperature single-crystal X-ray diffraction experiments, the mechanism of negative thermal expansion can be explained by a hinge–strut structural motif.« less

  11. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.

  12. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  13. JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST)

    PubMed Central

    Wong-Ng, W.; McMurdie, H. F.; Hubbard, C. R.; Mighell, A. D.

    2001-01-01

    The Research Associateship program of the Joint Committee on Powder Diffraction-International Centre for Diffraction Data (JCPDS-ICDD, now known as the ICDD) at NBS/NIST was a long standing (over 35 years) successful industry-government cooperation. The main mission of the Associateship was to publish high quality x-ray reference patterns to be included in the Powder Diffraction File (PDF). The PDF is a continuing compilation of patterns gathered from many sources, compiled and published by the ICDD. As a result of this collaboration, more than 1500 high quality powder diffraction patterns, which have had a significant impact on the scientific community, were reported. In addition, various research collaborations with NBS/NIST also led to the development of several standard reference materials (SRMs) for instrument calibration and quantitative analyses, and computer software for data collection, calibration, reduction, for the editorial process of powder pattern publication, analysis of powder data, and for quantitative analyses. This article summarizes information concerning the JCPDS-ICDD organization, the Powder Diffraction File (PDF), history and accomplishments of the JCPDS-ICDD Research Associateship. PMID:27500061

  14. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  15. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James; Gindhart, Amy; Blanton, Thomas

    The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

  16. Yttria catalyzed microstructural modifications in oxide dispersion strengthened V-4Cr-4Ti alloys synthesized by field assisted sintering technique

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan

    2017-08-01

    The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.

  17. New Powder Diffraction File (PDF-4) in relational database format: advantages and data-mining capabilities.

    PubMed

    Kabekkodu, Soorya N; Faber, John; Fawcett, Tim

    2002-06-01

    The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures.

  18. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  19. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  20. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  1. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  2. Growth, crystalline perfection, spectral, thermal and theoretical studies on imidazolium L-tartrate crystals.

    PubMed

    Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P

    2014-04-24

    Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The Influence of Duration of Mechanical Activation of Titanium Powder on its Morphology, Microstructure, and Microhardness

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Korchagin, M. A.; Pinzhin, Yu. P.; Melnikov, V. V.; Tyumentsev, A. N.; Grinyaev, K. V.; Smirnov, I. V.; Radishevskii, V. L.; Tsverova, A. S.; Sukhanov, I. I.

    2017-10-01

    Using the methods of X-ray diffraction analysis and scanning and transmission electron microscopy, an investigation of the influence of duration of mechanical activation on morphology and structure of titanium powder is performed. In the course of processing the following stages of material transformation are revealed: fragmentation of the initial powder, conglomeration, and ovalization of the conglomerates. It is found that when the duration of mechanical activation increases, the characteristic size of coherent scattering regions is significantly decreased, which is accompanied by an increase in the value of microdistortions and intensive fragmentation of the crystal lattice inside powder particles followed by the formation of highly defective nanostructured states. The transformation of microstructure is accompanied by a considerable increase in microhardness.

  4. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  5. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.

    PubMed

    Calta, Nicholas P; Wang, Jenny; Kiss, Andrew M; Martin, Aiden A; Depond, Philip J; Guss, Gabriel M; Thampy, Vivek; Fong, Anthony Y; Weker, Johanna Nelson; Stone, Kevin H; Tassone, Christopher J; Kramer, Matthew J; Toney, Michael F; Van Buuren, Anthony; Matthews, Manyalibo J

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  6. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  7. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    DOE PAGES

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; ...

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at themore » Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ~1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ~50 × 100 μm area. In conclusion, we also discuss the utility of these measurements for model validation and process improvement.« less

  8. Understanding microstrain anisotropy in yttrium oxide synthesized by sol-gel route

    NASA Astrophysics Data System (ADS)

    Murugesan, S.; Thirumurugesan, R.; Parameswaran, P.

    2018-04-01

    Yttrium oxide was synthesized by wet chemical route and calcined at various temperatures. On x-ray diffraction analysis of the material using Williamson-Hall analysis followed by Rietveld analysis indicates that the powder exists in nano crystallite size with lattice strain. The spherical harmonics analysis model of microstrain indicates the presence of strain anisotropy. The change in crystal structure lattice parameter, atomic coordinates of Y, O in yttria and the bond length analysis of the calcined powder reveals the presence of oxygen vacancies in the system.

  9. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge

    NASA Astrophysics Data System (ADS)

    M. Ulanov, I.; V. Isupov, M.; Yu Litvinsev, A.; A. Mischenko, P.

    2013-04-01

    An experimental investigation of transformer-coupled discharge in an Ar-O2 mixture with the addition of SiCl4, TiCl4 and ZrCl4 has been carried out under the atmospheric pressure of plasma-forming gases. Discharge power and discharge heat losses have been determined, and the dispersion and phase composition of reaction products (oxide powders) has been analyzed with SEM and X-ray diffraction analysis. Investigations reveal the formation of ultrafine oxide powders in the case of vaporized chloride (SiCl4 and TiCl4) injecting into the transformer coupled discharge. In the case of fine powder (ZrCl4) injection, full oxidation was not observed and reaction products consisted of a mixture of ZrO2 and ZrOCl2. A conclusion has been made regarding the perspectives of using transformer-coupled discharge to produce ultrafine oxide powders.

  10. First-principles prediction of low-energy structures for AlH3

    NASA Astrophysics Data System (ADS)

    Sun, Shoutian; Ke, Xuezhi; Chen, Changfeng; Tanaka, Isao

    2009-01-01

    We report density-functional calculations that predict ten different low-energy structures for aluminum hydride AlH3 with space groups Pnma , P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , P21/c , Pbcm , and P4/n . Phonon calculations within harmonic approximation reveal unstable modes in the P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , and P21/c structures, indicating that they are unstable at low temperatures. The calculations show that the thermodynamic stabilities for AlH3 with space groups Pnma , Pbcm , and P4/n are overall close to the existing α - and γ-AlH3 . From x-ray powder-diffraction patterns, the simulated main-peak positions for AlH3 (P4/n) are in good agreement with experimental δ-AlH3 . A full Rietveld analysis reveals that the fitting space groups R3¯c , Pbcm , and Pnma to the experimental x-ray powder-diffraction pattern of α-AlH3 gives almost the same satisfactory result.

  11. An alternative gas sensor material: Synthesis and electrical characterization of SmCoO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Carlos Rafael; Delgado, Emilio; Santillan, Gloria

    2007-01-18

    Single-phase perovskite SmCoO{sub 3} was prepared by a wet-chemical synthesis technique using metal-nitrates and citric acid; after its characterization by thermal analyses and X-ray diffraction, sintering at 900 deg. C in air, gave single phase and well crystallized powders. The powders were mixed with an organic solvent to prepare a slurry, which was deposited on alumina substrates as thick films, using the screen-printing technique. Electrical and gas sensing properties of sintered SmCoO{sub 3} films were investigated in air, O{sub 2} and CO{sub 2}, the results show that sensitivity reached a maximum value at 420 deg. C, for both gases. Dynamicmore » tests revealed a better behavior of SmCoO{sub 3} in CO{sub 2} than O{sub 2}, due to a fast response and a larger electrical resistance change to this gas. X-ray diffraction made on powders after electrical characterization in gases, showed that perovskite-type structure was preserved.« less

  12. Process Parameters on the Crystallization and Morphology of Hydroxyapatite Powders Prepared by a Hydrolysis Method

    NASA Astrophysics Data System (ADS)

    Wang, Moo-Chin; Hon, Min-Hsiung; Chen, Hui-Ting; Yen, Feng-Lin; Hung, I.-Ming; Ko, Horng-Huey; Shih, Wei-Jen

    2013-07-01

    The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca10(PO4)6(OH)2, HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na(aq)) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH(aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH(aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca8H2(PO4)6·5H2O) occurred when hydrolysis happened in 10 M NaOH(aq). FT-IR spectra analysis revealed that some carbonated HA (Ca10(PO4)6(CO3), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH(aq) at 348 K (75 °C) for 1 hour.

  13. Crystal structure of human tooth enamel studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  14. Synthesis and characterization of (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Dwivedi, Saurabh; Pandey, Rishikesh

    2016-05-23

    We present here the comprehensive x-ray diffraction and polarization-electric field hysteresis studies on (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics with x = 0.52, 0.56 and 0.60. The powder x-ray diffraction data reveals the presence of tetragonal phase for all the compositions. The saturation of hysteresis loop is observed for x ≤ 0.56.

  15. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less

  16. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  17. Investigations on synthesis, growth and physicochemical properties of semi-organic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion

    NASA Astrophysics Data System (ADS)

    Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.

    2017-10-01

    Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.

  18. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  19. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  20. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öztürk, Hande; Noyan, I. Cevdet

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  1. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE PAGES

    Öztürk, Hande; Noyan, I. Cevdet

    2017-08-24

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  2. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    PubMed

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  3. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  4. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  5. Synthesis of nanostructured vanadium powder by high-energy ball milling: X-ray diffraction and high-resolution electron microscopy characterization

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran

    2016-10-01

    Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.

  6. Sucrose lyophiles: a semi-quantitative study of residual water content by total X-ray diffraction analysis.

    PubMed

    Bates, S; Jonaitis, D; Nail, S

    2013-10-01

    Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; hide

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  8. A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiko; Inoue, Katsuaki; Goto, Shunji

    2004-05-12

    A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.

  9. Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1

    PubMed Central

    Mühlbauer, Martin J.

    2018-01-01

    The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055

  10. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less

  11. Synthesis, structural and vibrational studies on mixed alkali metal gadolinium double tungstate, K1-xNaxGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.

    2013-02-01

    Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.

  12. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  13. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    NASA Astrophysics Data System (ADS)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  14. Development of a Novel Ni-Fe-Cr-B-Si Interlayer Material for Transient Liquid Phase Bonding of Inconel 718

    NASA Astrophysics Data System (ADS)

    Tarai, U. K.; Robi, P. S.; Pal, Sukhomay

    2018-04-01

    A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.

  15. High-resolution neutron diffraction study of microstructural changes in nanocrystalline ball-milled niobium carbide NbC{sub 0.93}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.

    2015-11-15

    High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less

  16. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  17. A new theory for X-ray diffraction.

    PubMed

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  18. Buckskin Drill Hole and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271

  19. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    NASA Astrophysics Data System (ADS)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  20. CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2012-01-01

    Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.

  1. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  2. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): a new organic nonlinear optical single crystal.

    PubMed

    Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S

    2012-11-01

    4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  4. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE PAGES

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...

    2016-11-02

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  5. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl(6) and other alloys are twinned cubic crystals.

    PubMed

    Pauling, L

    1987-06-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).

  6. Evidence from x-ray and neutron powder diffraction patterns that the so-called icosahedral and decagonal quasicrystals of MnAl6 and other alloys are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1987-01-01

    It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841

  7. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  8. Room temperature luminescence and ferromagnetism of AlN:Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn

    2016-06-15

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  9. Improved camera for better X-ray powder photographs

    NASA Technical Reports Server (NTRS)

    Parrish, W.; Vajda, I. E.

    1969-01-01

    Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.

  10. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  11. Thermal expansion of monogermanides of 3d-metals

    NASA Astrophysics Data System (ADS)

    Valkovskiy, G. A.; Altynbaev, E. V.; Kuchugura, M. D.; Yashina, E. G.; Sukhanov, A. S.; Dyadkin, V. A.; Tsvyashchenko, A. V.; Sidorov, V. A.; Fomicheva, L. N.; Bykova, E.; Ovsyannikov, S. V.; Chernyshov, D. Yu; Grigoriev, S. V.

    2016-09-01

    Temperature dependent powder and single-crystal synchrotron diffraction, specific heat, magnetic susceptibility and small-angle neutron scattering experiments have revealed an anomalous response of MnGe. The anomaly becomes smeared out with decreasing Mn content in Mn1-x Co x Ge and Mn1-x Fe x Ge solid solutions. Mn spin state instability is discussed as a possible candidate for the observed effects.

  12. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  13. A new theory for X-ray diffraction

    PubMed Central

    Fewster, Paul F.

    2014-01-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975

  14. The devitrification of a LAS glass matrix studied by X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Rocherullé, Jean; Bénard-Rocherullé, Patricia

    2002-06-01

    The crystallisation kinetics of a Li 0.6Al 0.1Si 0.6O 1.65 glass matrix has been performed by means of X-ray powder diffraction. Data diffraction have shown the simultaneous formation of two crystalline phases Li 2SiO 3 and Li 0.6Al 0.6Si 2.4O 6 (so-called virgilite) for heat treatments conducted at 700 and 750 °C. The kinetic parameters of crystallisation have been determined for each phase from several time-dependent X-ray diffraction studies. The two values of the Avrami exponent, close to 1.5, suggest that crystallisation is controlled by a diffusion process, the nucleation being non-existent in the temperature range from 700 to 750 °C. With regard to the activation energy of the overall crystallisation phenomenon, the values obtained, close to 175 kJ mol -1, provide to this glass a relative ability to crystallise compared to others glasses from MSiAlO systems, where M is an alkaline-earth or a rare-earth element. With respect to the Li 0.6Al 0.6Si 2.4O 6 phase, long time heat treatments at 750 °C have revealed a phase transition from the hexagonal symmetry to the tetragonal one. The corresponding value of the Avrami exponent (i.e., 1) suggests a diffusionless transformation with a one-dimensional growth.

  15. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  16. Silica in Opal at Buckskin and Greenhorn on Mount Sharp

    NASA Image and Video Library

    2015-12-17

    This graph presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" and "Greenhorn" target locations on lower Mount Sharp. Buckskin, in the "Marias Pass" area, and Greenhorn, in the "Bridger Basin" area, both contain high concentrations of silica. X-ray diffraction analysis of powered samples inside Curiosity's Chemistry and Mineralogy (CheMin) instrument revealed that each of them contains silica in the form of noncrystalline opal. The broad hump in the two X-ray diffraction patterns is diagnostic of opaline silica. Some of the silica in Buckskin is in the form of tridymite. http://photojournal.jpl.nasa.gov/catalog/PIA20273

  17. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  18. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  19. Spin-liquid ground state in the frustrated J 1 - J 2 zigzag chain system BaTb 2 O 4

    DOE PAGES

    Aczel, A. A.; Li, L.; Garlea, V. O.; ...

    2015-07-13

    We have investigated polycrystalline samples of the zigzag chain system BaTb 2O 4 with magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation measurements. No magnetic transitions are observed in the bulk measurements, while neutron diffraction reveals low-temperature, short-range, intrachain magnetic correlations between Tb 3+ ions. Muon spin relaxation measurements indicate that these correlations are dynamic, as the technique detects no signatures of static magnetism down to 0.095 K. Altogether these findings provide strong evidence for a spin liquid ground state in BaTb 2O 4.

  20. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.

    PubMed

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude

    2014-11-28

    Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.

  1. Observations on online educational materials for powder diffraction crystallography software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toby, B. H.

    2010-10-01

    This article presents a series of approaches used to educate potential users of crystallographic software for powder diffraction. The approach that has been most successful in the author's opinion is the web lecture, where an audio presentation is coupled to a video-like record of the contents of the presenter's computer screen.

  2. Magnetic properties and microstructure of gas atomized MRE2(Fe, Co)14B powder with ZrC addition (MRE=Nd + Y + Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, W.; Wu, Y. Q.; Dennis, K.

    2009-05-12

    Gas atomization powder with Zr substitutions for the MRE and ZrC additions were systematically studied. The results show that the partial substitutions of Zr and the ZrC additions effectively improved glass formability in the alloys. Scanning electron microscopy (SEM) revealed that the as-atomized powder with a particle size of less than 32 {micro}m is predominately uniform equiaxed grains with an average grain size of 1.5 {micro}m. X-ray diffraction and differential thermal analysis measurements detected very tiny amounts of amorphous phase. After annealing at 700 C for 15 min, the SEM grain microstructure exhibits a minor change, but magnetic properties aremore » substantially improved. M versus T measurements reveal that the phase composition evolved from 2:14:1 plus a small amount of 2:17 phases to a single 2:14:1 phase during the annealing process. The sieve analysis of the powders showed a particle size distribution with 90 wt % of the powder less than 45 {micro}m. The magnetic properties of the annealed powder varied with particle size. (BH){sub max} first increases with increasing particle size from 5 {micro}m, reaches the peak value in the size range of 20-25 {micro}m, and then decreases with increasing particle size. For the 20-25 {micro}m powder sample annealed at 700 C for 15 min, the (BH){sub max} of 9.6 MG Oe at room temperature and 5.6 MG Oe at 200 C were obtained, respectively.« less

  3. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.

    PubMed

    Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K

    2012-03-01

    Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.

  4. Frequency analysis for modulation-enhanced powder diffraction.

    PubMed

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  5. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  6. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  7. Structure and electrical properties of intergrowth bismuth layer-structured Bi4Ti3O12-CaBi4Ti4O15 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Choi, Gi Ppeum; Cho, Sam Yeon; Bu, Sang Don

    2016-09-01

    Pb-free ferroelectric Bi4Ti3O12-CaBi4Ti4O15 (BIT-CBT) ceramics were manufactured using a solid-state reaction method. Structural analysis by using X-ray diffraction confirmed the presence of a second phase of Bi2Ti2O7, and the surface depth X-ray diffraction analysis revealed that this phase existed only on the surface. This second phase appears to have been caused by the volatilization of Bi ions at high sintering temperatures. For resolution of the issue of volatilization of Bi ions and manufacture of BIT-CBT ceramics with a single phase, Bi2O3 powder was added to the BIT-CBT mixture, and a powder-bed method, in which pellets were covered with BIT-CBT powder, was used to manufacture the ceramic. The piezoelectric coefficient of the single-phase BIT-CBT ceramics was 12.4 pC/N while the residual polarization and the coercive electric field were 11.3 μC/cm2, and 125 kV/cm, respectively. The results suggest that single-phase BIT-CBT ceramics are suitable for the manufacture of elements incorporating these electrical characteristics.

  8. The High Resolution Powder Diffraction Beam Line at ESRF.

    PubMed

    Fitch, A N

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.

  9. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    PubMed

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  10. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  11. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    ERIC Educational Resources Information Center

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  12. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  13. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  14. Synthesis of Multimetal-Graphene Composite by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan

    2016-10-01

    Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.

  15. Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs

    NASA Astrophysics Data System (ADS)

    Biswas, P.; Kumar, Vinay; Sharma, Vishal; Bedyal, A. K.; Padha, Naresh; Swart, H. C.

    2018-04-01

    The LiSrVO4:Sm3+ phosphor powders were synthesized by the combustion method by varying the concentration of the Sm3+ ions from 0.25 mol% to 2.5 mol%. The powder X-ray diffraction (XRD) studies confirmed that the phosphors were crystallized as monoclinic structure belonging to space group P2/m and the transmission electron microscopy (TEM) revealed nanosized grains of the powders. The Fourier transform infrared studies (FTIR) established the formation of non-hygroscopic vanadate powders. The photoluminescence (PL) and diffused reflectance studies (DRS) were also carried out and discussed. Under 401 nm excitation, the optimized phosphor exhibited the characteristic 568, 600, 646 and 704 nm emissions of Sm3+ which corresponded to the orange-red (amber) color with (0.59, 0.41) Commission Internationale de' Eclairage (CIE) chromaticity coordinates. Concentration quenching of phosphor intensity on account of non-radiative energy transfer was ascribed to dipole-dipole interaction between activators. DRS study reveals that the host of the phosphor is a wide bandgap material which accommodates the dopant successfully. The present results signify that the LiSrVO4:Sm3+ phosphor can suitably be excited by the GaN family of UV-LEDs chips for efficient amber LEDs applications.

  16. Asbestos in commercial cosmetic talcum powder as a cause of mesothelioma in women

    PubMed Central

    Gordon, Ronald E; Fitzgerald, Sean; Millette, James

    2014-01-01

    Background: Cosmetic talcum powder products have been used for decades. The inhalation of talc may cause lung fibrosis in the form of granulomatose nodules called talcosis. Exposure to talc has also been suggested as a causative factor in the development of ovarian carcinomas, gynecological tumors, and mesothelioma. Purpose: To investigate one historic brand of cosmetic talcum powder associated with mesothelioma in women. Methods: Transmission electron microscope (TEM) formvar-coated grids were prepared with concentrations of one brand of talcum powder directly, on filters, from air collections on filters in glovebox and simulated bathroom exposures and human fiber burden analyses. The grids were analyzed on an analytic TEM using energy-dispersive spectrometer (EDS) and selected-area electron diffraction (SAED) to determine asbestos fiber number and type. Results: This brand of talcum powder contained asbestos and the application of talcum powder released inhalable asbestos fibers. Lung and lymph node tissues removed at autopsy revealed pleural mesothelioma. Digestions of the tissues were found to contain anthophyllite and tremolite asbestos. Discussion: Through many applications of this particular brand of talcum powder, the deceased inhaled asbestos fibers, which then accumulated in her lungs and likely caused or contributed to her mesothelioma as well as other women with the same scenario. PMID:25185462

  17. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment.

    PubMed

    Wauthoz, Nathalie; Deleuze, Philippe; Saumet, Amandine; Duret, Christophe; Kiss, Robert; Amighi, Karim

    2011-04-01

    Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated. The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively. The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations. Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.

  18. Multidataset Refinement Resonant Diffraction, and Magnetic Structures

    PubMed Central

    Attfield, J. Paul

    2004-01-01

    The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599

  19. Structural Transitions in Nanosized Zn0.97Al0.03O Powders under High Pressure Analyzed by in Situ Angle-Dispersive X-ray Diffraction

    PubMed Central

    Lin, Chih-Ming; Liu, Hsin-Tzu; Zhong, Shi-Yao; Hsu, Chia-Hung; Chiu, Yi-Te; Tai, Ming-Fong; Juang, Jenh-Yih; Chuang, Yu-Chun; Liao, Yen-Fa

    2016-01-01

    Nanosized aluminum-doped zinc oxide Zn1−xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near 250 °C, which were then heated to 500 °C for subsequent thermal processes to obtain preliminary powders. The obtained preliminary powders were then calcined at 500 °C for three hours. The structure and morphology of the products were measured and characterized by angle-dispersive X-ray diffraction (ADXRD) and scanning electron microscopy (SEM). ADXRD results showed that AZO-NPs with Al content less than 11% exhibited würtzite zinc oxide structure and there was no other impurity phase in the AZO-NPs, suggesting substitutional doping of Al on Zn sites. The Zn0.97Al0.03O powders (A3ZO-NPs) with grain size of about 21.4 nm were used for high-pressure measurements. The in situ ADXRD measurements revealed that, for loading run, the pressure-induced würtzite (B4)-to-rocksalt (B1) structural phase transition began at 9.0(1) GPa. Compared to the predicted phase-transition pressure of ~12.7 GPa for pristine ZnO nanocrystals of similar grain size (~21.4 nm), the transition pressure for the present A3ZO-NPs exhibited a reduction of ~3.7 GPa. The significant reduction in phase-transition pressure is attributed to the effects of highly selective site occupation, namely Zn2+ and Al3+, were mainly found in tetrahedral and octahedral sites, respectively. PMID:28773683

  20. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  1. Syntheses, structures and luminescent properties of two novel Zn (II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Ru; Gao, Ling-Ling; Wang, Xiao-Qing; Fan, Li-Ming; Hu, Tuo-Ping

    2018-02-01

    Two new coordination polymers, namely [Zn(TZMB)]n (1) and {[Zn(TZMB)](H2TZMB)]·(C2H5OH)0.5(H2O)2.5}n (2), (H2TZMB = 4,4‧-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analysis, elemental analysis (EA), IR spectrum analysis (IR), powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Single X-ray diffraction analysis reveals that complex 1 is a 3D 3,6-connected net with the point symbol of (6110.84)(63)2 and complex 2 is a 2D 3-connected net with the point symbol of (63). Furthermore, luminescent properties of complexes 1 and 2 were also investigated in detail.

  2. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frølich, S.; Leemreize, H.; Jakus, A.

    A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less

  4. NMR crystallography of α-poly(L-lactide).

    PubMed

    Pawlak, Tomasz; Jaworska, Magdalena; Potrzebowski, Marek J

    2013-03-07

    A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.

  5. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide.

    PubMed

    Wang, Jian-Rong; Yu, Xueping; Zhou, Chun; Lin, Yunfei; Chen, Chen; Pan, Guoyu; Mei, Xuefeng

    2015-03-01

    6-Mercaptopurine (6-MP) is a clinically important antitumor drug. The commercially available form was provided as monohydrate and belongs to BCS class II category. Co-crystallization screening by reaction crystallization method (RCM) and monitored by powder X-ray diffraction led to the discovery of a new co-crystal formed between 6-MP and isonicotinamide (co-crystal 1). Co-crystal 1 was thoroughly characterized by X-ray diffraction, FT-IR and Raman spectroscopy, and thermal analysis. Noticeably, the in vitro and in vivo studies revealed that co-crystal 1 possesses improved dissolution rate and superior bioavailability on animal model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Superconductivity of ternary silicide with the AlB(2)-type structure Sr(Ga(0.37),Si(0.63))(2).

    PubMed

    Imai, M; Abe, E; Ye, J; Nishida, K; Kimura, T; Honma, K; Abe, H; Kitazawa, H

    2001-08-13

    A ternary silicide Sr(Ga(0.37),Si(0.63))(2) was synthesized by a floating zone method. Electron diffraction and powder x-ray diffraction measurements indicate that the silicide has the AlB(2)-type structure with the lattice constants of a = 4.1427(6) A and c = 4.7998(9) A, where Si and Ga atoms are arranged in a chemically disordered honeycomb lattice and Sr atoms are inercalated between them. The silicide is isostructural with the high-temperature superconductor MgB(2) reported recently. Electrical resistivity and dc magnetization measurements revealed that it is a type-II superconductor with onset temperature of 3.5 K.

  7. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  8. Entrainment of lactose inhalation powders: a study using laser diffraction.

    PubMed

    Watling, C P; Elliott, J A; Cameron, R E

    2010-07-11

    We have investigated the mechanism of entrainment of lactose inhalation blends released from a dry powder inhaler using a diffraction particle size analyser (Malvern Spraytec). Whether a powder blend entrains as a constant stream of powder (the "erosion" mechanism) or as a few coarse plugs (the "fracture" mechanism) was found by comparing transmission data with particle size information. This technique was then applied to a lactose grade with 0, 5 and 10wt% added fine particles. As the wt% fines increased, the entrainment mechanism was found to change from a mild fracture, consisting of multiple small plugs, to more severe fracture with fewer plugs. The most severe fracture mechanism consisted of either the powder reservoir emptying as a single plug, or of the reservoir emptying after a delay of the order of 0.1s due to the powder sticking to its surroundings. Further to this, three different inhalation grades were compared, and the severity of the fracture was found to be inversely proportional to the flowability of the powder (measured using an annular ring shear tester). By considering the volume of aerosolised fine particles in different blends it was determined that the greater the volume of fines added to a powder, the smaller the fraction of fines that were aerosolised. This was attributed to different behaviour when fines disperse from carrier particles compared with when they disperse from agglomerates of fines. In summary, this paper demonstrates how laser diffraction can provide a more detailed analysis of an inhalation powder than just its size distribution. 2010. Published by Elsevier B.V. All rights reserved.

  9. Real-time powder diffraction studies of energy materials under non-equilibrium conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Vanessa K.; Auckett, Josie E.; Pang, Wei-Kong

    Energy materials form the central part of energy devices. An essential part of their function is the ability to reversibly host charge or energy carriers, and analysis of their phase composition and structure in real time under non-equilibrium conditions is mandatory for a full understanding of their atomic-scale functional mechanism. Real-time powder diffraction is increasingly being applied for this purpose, forming a critical step in the strategic chemical engineering of materials with improved behaviour. This topical review gives examples of real-time analysis using powder diffraction of rechargeable battery electrodes and porous sorbent materials used for the separation and storage ofmore » energy-relevant gases to demonstrate advances in the insights which can be gained into their atomic-scale function.« less

  10. Real-time powder diffraction studies of energy materials under non-equilibrium conditions

    PubMed Central

    Peterson, Vanessa K.; Auckett, Josie E.; Pang, Wei-Kong

    2017-01-01

    Energy materials form the central part of energy devices. An essential part of their function is the ability to reversibly host charge or energy carriers, and analysis of their phase composition and structure in real time under non-equilibrium conditions is mandatory for a full understanding of their atomic-scale functional mechanism. Real-time powder diffraction is increasingly being applied for this purpose, forming a critical step in the strategic chemical engineering of materials with improved behaviour. This topical review gives examples of real-time analysis using powder diffraction of rechargeable battery electrodes and porous sorbent materials used for the separation and storage of energy-relevant gases to demonstrate advances in the insights which can be gained into their atomic-scale function. PMID:28989711

  11. Structural phase transition in d-benzil characterised by capacitance measurements and neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Wu, Xiaodong; Prior, M.

    2005-12-01

    The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.

  12. Synthesis and characterization of Mn-Bi alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.

    2012-06-01

    High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.

  13. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction.

    PubMed

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-12-01

    Mixed holmium cobaltite-chromite HoCo 0.5 Cr 0.5 O 3 with orthorhombic perovskite structure (structure type GdFeO 3 , space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo 0.5 Cr 0.5 O 3 , which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO 6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co 3+ ions and insulator-metal transition occurring in HoCo 0.5 Cr 0.5 O 3 .

  14. Absence of bacterial imprints on struvite-containing kidney stones: a structural investigation at the mesoscopic and atomic scale.

    PubMed

    Bazin, Dominique; André, Gilles; Weil, Raphael; Matzen, Guy; Emmanuel, Veron; Carpentier, Xavier; Daudon, M

    2012-04-01

    Bacterial imprints are always observed on highly carbonated apatite kidney stones but not struvite kidney stones. Struvite and carbonated apatite stones with a high CO(3)(2-)/PO(4)(3-) rate are believed to develop from infections, but their structural differences at the mesoscopic scale lack explanation. We investigated 17 urinary calculi composed mainly of struvite or carbonated apatite by Fourier transform infrared, scanning electron microscopy, and powder neutron diffraction techniques. Carbonated apatite but not struvite stones showed bacterial imprints. If the same stone contained both carbonated apatite and struvite components, bacterial imprints were observed on the carbonated apatite but not the struvite part. Moreover, neutron powder diffraction experiments revealed the crystal size of struvite stones were larger than that of carbonated apatite stones (250 ± 50 vs 50 nm). Bacterial imprints may appear more easily on kidney stones with small nanocrystals, such as carbonated apatite than with large nanocrystals, such as struvite. This approach may help identify bacteria contributing to stone formation, perhaps with negative results of urine culture. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-07-01

    Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.

  16. Optical, Magnetic and Photocatalytic Activity Studies of Li, Mg and Sr Doped and Undoped Zinc Oxide Nanoparticles.

    PubMed

    Shanthi, S I; Poovaragan, S; Arularasu, M V; Nithya, S; Sundaram, R; Magdalane, C Maria; Kaviyarasu, K; Maaza, M

    2018-08-01

    Nanoparticles of Li, Mg and Sr doped and undoped zinc oxide was prepared by simple precipitation method. The structural, optical, and magnetic properties of the samples were investigated by the Powder X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Ultra-violet Visible spectroscopy (UV-vis) spectra, Photoluminescence (PL) and Vibrational Sample Magnetometer (VSM). The Powder X-ray diffraction data confirm the formation of hexagonal wurtzite structure of all doped and undoped ZnO. The SEM photograph reveals that the pores availability and particles size in the range of 10 nm-50 nm. FTIR and UV-Visible spectra results confirm the incorporation of the dopant into the ZnO lattice nanostructure. The UV-Visible spectra indicate that the shift of blue region (lower wavelength) due to bandgap widening. Photoluminescence intensity varies with doping due to the increase of oxygen vacancies in prepared ZnO. The pure ZnO exist paramagnetic while doped (Li, Mg and Sr) ZnO exist ferromagnetic property. The photocatalytic activity of the prepared sample also carried out in detail.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.

    The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less

  18. Properties of pure single crystals of actinide compounds

    NASA Astrophysics Data System (ADS)

    Vogt, O.

    1989-07-01

    Actinide research started with substances of poor quality and a multitude of "unexplainable" results mostly found on powder samples of doubtful quality exerted some pressure on the crystal growers. As an example we may mention the measurements on UP. Type I antiferromagnetism was found below 123 K by neutron diffraction experiments on powdered samples. At 23 K another transition becomes apparent in susceptibility measurements. The change of the magnetic moments associated with this transition remained unexplained. It was only after the discovery of multi k structures in other actinide compounds that the need was seen to perform even inelastic neutron diffraction experiments on single crystals so that finally the true nature of the transition in UP could be revealed. NpAs is another illustrative example for the fact that sometimes it takes decades to get a clear understanding for things even so simple as macroscopic magnetic properties. The main reason for the need of single crystals is certainly the anisotropy of the magnetic moment encountered in all actinide compounds. Self-heating effects may prevent research on big crystals or might call for isotopic purity of certain samples.

  19. Influence of ammonium hydroxide solution on LiMn2O4 nanostructures prepared by modified chemical bath method

    NASA Astrophysics Data System (ADS)

    Koao, Lehlohonolo F.; Motloung, Setumo V.; Motaung, Tshwafo E.; Kebede, Mesfin A.

    2018-04-01

    LiMn2O4 (LMO) powders were prepared by modified chemical bath deposition (CBD) method by varying ammonium hydroxide solution (AHS). The volume of the AHS was varied from 5 to 120 mL in order to determine the optimum volume that is needed for preparation of LMO powders. The effect of AHS volume on the structure, morphology, and electrochemical properties of LMO powders was investigated. The X-ray diffraction (XRD) patterns of the LMO powders correspond to the cubic spinel LMO phase. It was found that the XRD peaks increased in intensity with increasing volume of the AHS up to 20 mL. The estimated average grain sizes calculated using the XRD patterns were found to be in the order of 66 ± 1 nm. It was observed that the estimated average grain sizes increased up to 20 mL of AHS. The scanning electron microscopy (SEM) results revealed that the AHS volume does not influence the surface morphology of the prepared nano-powders. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Mn and O for the sample synthesized with 120 mL of AHS. The UV-Vis spectra showed a red shift with an increase in AHS up 20 mL. The cyclic voltammetry and galvanostatic charge/discharge cycle testing confirmed that 20 mL of AHS has superior lithium ion kinetics and electrochemical performance.

  20. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  1. Structural and Spectral Characterization of Co2+- and Ni2+-DOPED CdO Powder Prepared From Solution at Room Temperature

    NASA Astrophysics Data System (ADS)

    Reddy, C. V.; Rao, L. V. Krishna; Satish, D. V.; Shim, J.; Ravikumar, R. V. S. S. N.

    2015-11-01

    The mild and simple solution method was used for the synthesis of Co2+- and Ni2+-doped CdO powders at room temperature. The prepared powders were characterized using powder X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), optical absorption, and Fourier transform infrared spectroscopy (FTIR). From the powder X-ray diffraction patterns, it has been observed that the prepared Co2+ and Ni2+ ion-doped CdO powders belong to the cubic phase, and the evaluated average crystalline sizes of the powders are 20 and 14 nm, respectively. The SEM images and the EDS spectra show that the prepared powders are distributed over different sizes in the grain boundaries. Optical absorption studies allow determination of site symmetry of the metal ion with its ligands. The crystal field (Dq) and inter-electronic repulsion (B and C) parameters have been evaluated from the optical absorption spectra. The FTIR spectra show the characteristic fundamental vibrations of the metal oxide and CdO.

  2. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  3. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, S.; Susanti, L.; Insany, Y. A. S.

    Simple coprecipitation method has been used to produce nanoparticles of MgO (magnesia), MgO{center_dot}Al{sub 2}O{sub 3}(spinel), Y{sub 2}O{sub 3}(yttria) and Fe{sub 3}O{sub 4}(ferrite). The raw materials were, in respective, magnesium powder, magnesium and aluminium powders, ytrria powder, and natural sand. The coprecipitation included the use of suitable acid and base to dissolve the powders or sand and to produce precipitates, as well as the use of water to wash and purify the precipitates, and drying at relatively low temperatures, namely lower than 100 deg. C, followed by heating at 450 deg. C, 750 deg. C, 600 deg. C and 200 deg.more » C to produce magnesia, spinel, yttria and ferrite nanopowders, respectively. X-ray diffractometry was used to characterise the purity and nanocrystallinity of the final powders. It was found qualitatively that the powders were of high purity. Further line-broadening analysis using single-line and Rietveld-based softwares was performed to reveal the nanocrystallinity of the powders. Different line breadth values were found for the powders, indicating different crystallite sizes. It was also found that, particularly for spinel and yttria, the diffraction peaks exhibited 'longer' tails, indicating broader crystallite size distribution. The average crystallite size for the powders ranged from 3 to 70 nm. The results could then be used as 'fingerprints' for nanocrystallinity using x-ray diffractometry. The XRD crystallite sizes for yttria and ferrite nanocrystals are in fair agreement with their counterparts from electron microscopy observation.« less

  5. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  6. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.

    PubMed

    Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications.

  7. In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder

    PubMed Central

    Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.

    2014-01-01

    Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

  8. On the possibility of using polycrystalline material in the development of structure-based generic assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.

    The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less

  9. Symposium U: Thermoelectric Power Generation. Held in Boston, Massachusetts on November 26-29, 2007

    DTIC Science & Technology

    2008-04-01

    including X - ray /electron diffraction, TGA analysis, Raman / Fourier Transform Infrared Spectroscopy, electron microscopy, Rutherford back-scattering and...Energy dispersive X - ray analysis were performed on the treated sample. The results revealed that a surface layer (from 10 nm to up to micron in...nanoparticles into a matrix of bulk Bi2Te 3 material via a hot pressing process. These nanocomposites have been examined by SEM and X - ray powder

  10. Synthesis, nucleation, growth, structural, spectral, thermal, linear and nonlinear optical studies of novel organic NLO crystal: 4-fluoro 4-nitrostilbene (FONS).

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-03-15

    A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.

    PubMed

    Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B

    2012-04-04

    Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd

  12. Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272

  13. Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a.

    PubMed

    Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.

  14. Morphology and structural development of reduced anatase-TiO{sub 2} by pure Ti powder upon annealing and nitridation: Synthesis of TiO{sub x} and TiO{sub x}N{sub y} powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolokang, A.S., E-mail: Sylvester.Bolokang@transnet.net; DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001; Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark 0127

    2015-02-15

    It is well known that nitriding of titanium is suitable for surface coating of biomaterials and in other applications such as anti-reflective coating, while oxygen-rich titanium oxynitride has been applied in thin film resistors and photocatalysis. Thus in this work anatase was reduced with pure titanium powder during annealing in argon. This was done to avoid any metallic contamination and unwanted residual metal doping. As a result, interesting and different types of particle morphology were synthesized when the pre-milled elemental anatase and titanium powders were mixed. The formation of metastable face centred cubic and monoclinic titanium monoxide was detected bymore » the X-ray diffraction technique. The phases were confirmed by energy dispersive X-ray spectroscopy analysis. Raman analysis revealed weak intensity peaks for samples annealed in argon as compared to those annealed under nitrogen. - Graphical abstract: Display Omitted - Highlights: • Reaction of TiO{sub 2} and Ti induced metastable FCC and monoclinic TiO{sub x}. • Compositions of mixed powder were prepared from the unmilled and pre-milled powders. • Nitridation of TiO{sub x} yielded TiO{sub x}N{sub y} phase. • Mixed morphology was observed on all three powder samples.« less

  15. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material 4-(ammonium methyl) pipyridinium hexachloro stanate (II) trihydrate

    NASA Astrophysics Data System (ADS)

    Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Ammar, Salah; Gadri, Abdellatif; Ben Salah, Abdelhamid; García-Granda, Santiago

    2018-03-01

    The present paper undertakes the study of (C6H16N2) SnCl6·3H2O which is a new hybrid compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. The single crystal X-ray diffraction studies revealed that the compound crystallizes in monoclinic Cc space group with cell parameters a = 8.3309(9) Å, b = 22.956(2) Å, c = 9.8381(9) Å, β = 101.334(9) ° and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via Nsbnd H⋯Cl, Nsbnd H⋯O, Osbnd H⋯Cl and Osbnd H⋯O hydrogen bonding to form a three-dimensional network. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electron microscope (SEM) was carried out. Furthermore, the room temperature infrared (IR) spectrum of the title compound was recorded and analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows four signals, confirming the solid state structure determined by X-ray diffraction. Besides, the thermal analysis studies were performed, but no phase transition was found in the temperature range between 30 and 450 °C. The optical and PL properties of the compound were investigated in the solid state at room temperature and exhibited three bands at 348 and 401 cm-1 and a strong fluorescence at 480 nm.

  16. High-resolution synchrotron x-ray powder diffraction study of the incommensurate modulation in the martensite phase of Ni2MnGa: Evidence for nearly 7M modulation and phason broadening

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Petricek, V.; Rajput, Parasmani; Hill, Adrian H.; Suard, E.; Barman, S. R.; Pandey, Dhananjai

    2014-07-01

    The modulated structure of the martensite phase of Ni2MnGa is revisited using high-resolution synchrotron x-ray powder diffraction measurements, which reveal higher-order satellite reflections up to the third order and phason broadening of the satellite peaks. The structure refinement, using the (3+1) dimensional superspace group approach, shows that the modulated structure of Ni2MnGa can be described by orthorhombic superspace group Immm(00γ)s00 with lattice parameters a=4.218 61(2)Å,b=5.546 96(3)Å, and c=4.187 63(2) Å, and an incommensurate modulation wave vector q =0.43160(3)c*=(3/7+δ)c*, where δ =0.00303(3) is the degree of incommensuration of the modulated structure. Additional satellite peak broadening, which could not be accounted for in terms of the anisotropic strain broadening based on a lattice parameter distribution, has been modeled in terms of phasons using fourth-rank covariant strain-tensor representation for incommensurate structures. The simulation of single-crystal diffraction patterns from the refined structural parameters unambiguously reveals a rational approximant structure with 7M modulation. The inhomogeneous displacement of different atomic sites on account of incommensurate modulation and the presence of phason broadening clearly rule out the adaptive phase model proposed recently by Kaufmann et al. [S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, Phys. Rev. Lett. 104, 145702 (2010), 10.1103/PhysRevLett.104.145702] and suggest that the modulation in Ni2MnGa originates from soft-mode phonons.

  17. Effect of the Chemical State of the Surface on the Relaxation of the Surface Shell Atoms in SiC and GaN Nanocrystals

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H. P.; Janik, J. F.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The effect of the chemical state of the surface of nanoparticles on the relaxation in the near-surface layer was examined using the concept of the apparent lattice parameter (alp) determined for different diffraction vectors Q. The apparent lattice parameter is a lattice parameter determined either from an individual Bragg reflection, or from a selected region of the diffraction pattern. At low diffraction vectors the Bragg peak positions are affected mainly by the structure of the near-surface layer, while at high Q-values only the interior of the nano-grain contributes to the diffraction pattern. Following the measurements on raw (as prepared) powders we investigated powders cleaned by annealing at 400C under vacuum, and the same powders wetted with water. Theoretical alp-Q plots showed that the structure of the surface layer depends on the sample treatment. Semi-quantitative analysis based on the comparison of the experimental and theoretical alp-Q plots was performed. Theoretical alp-Q relations were obtained from the diffraction patterns calculated for models of nanocrystals with a strained surface layer using the Debye functions.

  18. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  19. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  20. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  1. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  2. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  3. Mg(1 + x)Ir(1 - x) (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction.

    PubMed

    Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer

    2004-06-01

    The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.

  4. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study

    DOE PAGES

    Caliandro, Rocco; Sibillano, Teresa; Belviso, B. Danilo; ...

    2016-02-02

    In this study, we have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO 3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO 3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtlemore » stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO 3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO 3-x NC lattice, rather than a variation in stoichiometry. Finally, the time behavior of such structural change is identified on the basis of multivariate analysis.« less

  5. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    NASA Astrophysics Data System (ADS)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  6. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.

    PubMed

    Hadzović, Ervina; Betz, Gabriele; Hadzidedić, Seherzada; El-Arini, Silvia Kocova; Leuenberger, Hans

    2010-08-30

    The effect of roller compaction on disintegration time, dissolution rate and compressibility of tablets prepared from theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate was studied. In addition, the influence of adding microcrystalline cellulose, a commonly used excipient, in mixtures with these materials was investigated. Theophylline anhydrate powder was used as a model drug to investigate the influence of different compaction pressures on the tablet properties. Tablets with same porosity were prepared by direct compaction and by roller compaction/re-compaction. Compressibility was characterized by Heckel and modified Heckel equations. Due to the property of polymorphic materials to change their form during milling and compression, X-ray diffraction analysis of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate powders and granules was carried out. After roller compaction the disintegration time and the dissolution rate of the tablets were significantly improved. Compressibility of theophylline anhydrate powder and theophylline anhydrate fine powder was decreased, while theophylline monohydrate showed higher compressibility after roller compaction. Microcrystalline cellulose affected compressibility of theophylline anhydrate powder, theophylline anhydrate fine powder and theophylline monohydrate whereby the binary mixtures showed higher compressibility than the individual materials. X-ray diffraction analyses confirmed that there were no polymorphic/pseudopolymorphic changes after roller compaction. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.

    The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less

  8. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  9. A Novel Coordination Polymer Based on Trinuclear Cobalt Building Blocks Cluster: Synthesis, Crystal Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Tang, Z. H.; Shi, J.; Ge, H. G.; Jiang, M.; Song, J.; Jin, L. X.

    2017-12-01

    The title compound {[Co3(μ3-OH)(μ2-H2O)2(H2O)5(BTC)2] · 6H2O} n (H3BTC is a 1,3,5-benzenetricarboxylic acid) was prepared and characterized by single crystal and powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and elemental analyses. The single crystal X-ray diffraction reveals that the title compound consists of 1D infinite zigzag chains which were constructed by trinuclear cobalt cluster and BTC3- ligand. Neighbouring above-mentioned 1D infinite zigzag chains are further linked by intermolecular hydrogen bonding to form a 3D supermolecular structure. In addition, the luminescent properties of the title compound were investigated.

  10. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material.

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Crystal structure of hydrocortisone acetate, C23H32O6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Gindhart, Amy M.; Blanton, Thomas N.

    The crystal structure of hydrocortisone acetate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydrocortisone acetate crystallizes in space groupP2 1(#4) witha= 8.85173(3) Å,b= 13.53859(3) Å,c= 8.86980(4) Å,β= 101.5438(3)°,V= 1041.455(6) Å 3, andZ= 2. Both hydroxyl groups form hydrogen bonds to the ketone oxygen atom on the steroid ring system, resulting in a three-dimensional hydrogen bond network. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less

  14. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    PubMed

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  16. Synthesis of cerium oxide (CeO 2) by co-precipitation for application as a reference material for X-ray powder diffraction peak widths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio

    Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less

  17. PVP capped CdS nanoparticles for UV-LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  18. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  19. A novel orange-red emitting NaCaVO{sub 4}:Sm{sup 3+} phosphor for solid state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pankaj, E-mail: pankaj79biswas@gmail.com; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com; Ntwaeaborwa, O. M.

    2016-05-06

    The samarium doped NaCaVO{sub 4} phosphor was synthesized by the combustion method. The X-ray powder diffraction (XRD) analysis confirmed that the phosphor powder crystallized as orthorhombic structure belonging to space group Cmcm. From Williamson-Hall analysis the grain size and microstrain in the powder was estimated. The Fourier- transform infrared (FT-IR) studies further validated the formation of vanadate phase of the phosphor. Photoluminescence (PL) study revealed that the phosphor could be efficiently excited by UV-VIS from 200 nm to 500 nm. The 565 nm, 602 nm, 648 nm and 713 nm emissions were ascribed to {sup 4}G{sub 5/2} to {sup 6}H{submore » J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of the Sm{sup 3+} ion. The present material may be explored as a novel phosphor to be excited by UV light emitting diodes (LEDs) chips for solid-state lighting and display applications.« less

  20. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less

  1. Addressing the amorphous content issue in quantitative phase analysis : the certification of NIST SRM 676a.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, J. P.; Von Dreele, R. B.; Winburn, R.

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  2. Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of NIST Standard Reference Material 676a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Cline; R Von Dreele; R Winburn

    2011-12-31

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  3. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  4. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  5. Melting point suppression in new lanthanoid(III) ionic liquids by trapping of kinetic polymorphs: an in situ synchrotron powder diffraction study.

    PubMed

    Chesman, Anthony S R; Yang, Mei; Mallick, Bert; Ross, Tamsyn M; Gass, Ian A; Deacon, Glen B; Batten, Stuart R; Mudring, Anja-Verena

    2012-01-04

    The complexes (N(4444))(3)[Ln(dcnm)(6)] (Ln = La-Nd, Sm; N(4444) = tetrabutylammonium) display a decrease in the melting point upon fast cooling from a melt, which is shown by in situ synchrotron based X-ray powder diffraction to be due to the formation of a second, less thermodynamically stable, polymorph. This journal is © The Royal Society of Chemistry 2012

  6. Growth, structural, thermal, linear and nonlinear optical and laser damage threshold studies of picolinium tartrate monohydrate single crystals.

    PubMed

    Peramaiyan, G; Pandi, P; Sornamurthy, B M; Bhagavannarayana, G; Mohan Kumar, R

    2012-09-01

    Picolinium tartrate monohydrate (PTM), a novel organic nonlinear optical material was synthesized and bulk crystals were grown from aqueous solution by slow cooling technique. The cell parameters of the grown crystal were found by single and powder X-ray diffraction analyses. The crystalline perfection of the grown crystals has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The presence of functional groups in the grown crystal was identified by FTIR and FT-Raman spectral analyses. UV-Vis spectral studies reveal PTM crystals are transparent in the wavelength region of 295-1100 nm. The thermal characteristics of PTM were analyzed by TGA/DTA studies. The dielectric and mechanical behaviours of PTM crystals were investigated. Dislocation density was estimated to be 2.89 × 10(3) cm(-2) on the flat-surface of PTM crystals from the etching studies. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. Its second harmonic generation relative efficiency was measured by Kurtz and Perry powder technique and was observed to be comparable with KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Growth, nonlinear optical, thermal, dielectric and laser damage threshold studies of semiorganic crystal: monohydrate piperazine hydrogen phosphate.

    PubMed

    Krishnan, P; Gayathri, K; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G

    2013-02-01

    Monohydrate piperazine hydrogen phosphate (MPHP), a semi organic nonlinear optical material has been synthesized and single crystals were grown from aqueous solution by slow evaporation technique. Single crystal X-ray diffraction study on grown crystal reveals that they belong to monoclinic crystal system with space group P2(1)/c; (a=6.39Å; b=12.22Å; c=11.16Å; β=97.14°; V=864Å(3)). The structural perfection of the grown crystal was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. FTIR spectrum confirms the presence of the functional groups in synthesized material. UV-Vis spectrum indicates that the crystal is transparent in the entire visible region with a lower cut off wavelength of 387 nm. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Thermal analysis carried out on the MPHP crystal shows that the crystal is stable up to 135°C. Relative powder second harmonic generation efficiency tested by Kurtz-Perry powder technique, which was about 0.638 times that of Potassium dihydrogen phosphate. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol-gel based Pechini method

    NASA Astrophysics Data System (ADS)

    Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan

    2018-04-01

    Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.

  9. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.W.B.; Das Gupta, S.K.; Mattai, J.

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition at temperatures similar to the transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. {sup 2}H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and {sup 13}C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicting very little motion atmore » the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. The authors postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluididty of the hydrophobic region in the L{sub {lambda}} phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms.« less

  11. Improved electrochemical properties of a coin cell using LiMn 1.5Ni 0.5O 4 as cathode in the 5 V range

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Das, Suprem R.; Oviedo, Osbert; Tomar, Maharaj S.; Katiyar, Ram S.

    Phase pure LiMn 1.5Ni 0.5O 4 powders were synthesized by a chemical synthesis route and were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode and lithium hexafluorophosphate (LiPF 6), dissolved in dimethyl carbonate (DMC) + ethylene carbonate (EC) [1:1, v/v ratio] as electrolyte. The spinel structure and phase purity of the powders were characterized using X-ray diffraction and micro-Raman spectroscopy. The presence of both oxidation and reduction peaks in the cyclic voltammogram revealed Li + extraction and insertion from the spinel structure. The charge-discharge characteristics of the coin cell were performed in the 3.0-4.8 V range. An initial discharge capacity of ∼140 mAh g -1 was obtained with 94% initial discharge capacity retention after 50 repeated cycles. The microstructures and compositions of the cathode before and after electrochemistry were investigated using scanning electron microscopy and energy-dispersive analysis by X-ray analysis, respectively. Using X-ray diffraction, Raman spectroscopy and electrochemical analysis, we correlated the structural stability and the electrochemical performance of this cathode.

  12. Sr 2Fe 1.5Mo 0.5O 6- δ as a regenerative anode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Bugaris, Daniel E.; Xiao, Guoliang; Chmara, Maxwell; Ma, Shuguo; zur Loye, Hans-Conrad; Amiridis, Michael D.; Chen, Fanglin

    Sr 2Fe 1.5Mo 0.5O 6- δ (SFM) was prepared using a microwave-assisted combustion synthesis method. Rietveld refinement of powder X-ray diffraction data reveals that SFM crystallizes in the simple cubic perovskite structure with iron and molybdenum disordered on the B-site. No structure transition was observed by variable temperature powder X-ray diffraction measurements in the temperature range of 25-800 °C. XPS results show that the iron and molybdenum valences change with an increase in temperature, where the mixed oxidation states of both iron and molybdenum are believed to be responsible for the increase in the electrical conductivity with increasing temperature. SFM exhibits excellent redox stability and has been used as both anode and cathode for solid oxide fuel cells. Presence of sulfur species in the fuel or direct utilization of hydrocarbon fuel can result in loss of activity, however, as shown in this paper, the anode performance can be regenerated from sulfur poisoning or coking by treating the anode in an oxidizing atmosphere. Thus, SFM can be used as a regenerating anode for direct oxidation of sulfur-containing hydrocarbon fuels.

  13. Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Opherden, L.; Xu, J.; Adroja, D. T.; Hillier, A. D.; Biswas, P. K.; Herrmannsdörfer, T.; Uhlarz, M.; Hornung, J.; Wosnitza, J.; Canévet, E.; Lake, B.

    2018-03-01

    We report the physical properties of Tb2Hf2O7 based on ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat capacity Cp(T ) measurements combined with muon spin relaxation (μ SR ) and neutron powder diffraction measurements. No evidence for long-range magnetic order is found down to 0.1 K. However, χac(T ) data present a frequency-dependent broad peak (near 0.9 K at 16 Hz) indicating slow spin dynamics. The slow spin dynamics is further evidenced from the μ SR data (characterized by a stretched exponential behavior) which show persistent spin fluctuations down to 0.3 K. The neutron powder diffraction data collected at 0.1 K show a broad peak of magnetic origin (diffuse scattering) but no magnetic Bragg peaks. The analysis of the diffuse scattering data reveals a dominant antiferromagnetic interaction in agreement with the negative Weiss temperature. The absence of long-range magnetic order and the presence of slow spin dynamics and persistent spin fluctuations together reflect a dynamical ground state in Tb2Hf2O7 .

  14. Type I antiferromagnetic order in Ba 2LuReO 6: Exploring the role of structural distortions in double perovskites containing 5d 2 ions

    DOE PAGES

    Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.; ...

    2017-12-02

    The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less

  15. Structural and microstructural description of the glacial state in triphenyl phosphite from powder synchrotron X-ray diffraction data and Raman scattering investigations

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Hernandez, O.; Hédoux, A.; Guinet, Y.; Masson, O.; Lefebvre, J.; Descamps, M.

    2004-06-01

    The structure and microstructure (refinement of the isotropic size and microstrain parameters) of the glacial state in triphenyl phosphite (TPP, P(OC 6H 5) 3) transformed at 222K have been determined from powder synchrotron X-ray diffraction data through a Rietveld and a Le Bail refinement, respectively. It is shown that the glacial state is composed of crystallites of the stable crystal phase coexisting with non-transformed supercooled liquid, the apparent size of the crystallites—depending on the aging temperature at which the glacial state is isothermally formed, [Phys. Rev. B 60 (1999) 9390]—being equal to 329.2(2) Å at 222K. The molecular conformation is slightly less mirror-symmetric than the one in the crystal state, and correlatively only one of the two unusual weak intermolecular C-H⋯O hydrogen bonds already observed in the latter state is encountered in the glacial one. Additional Raman scattering investigations confirm the previous result and reveal in addition that no hydrogen bonding interaction is observed neither in the glass nor in the liquid states.

  16. Crystal structure and physicochemical characterization of ambazone monohydrate, anhydrous, and acetate salt solvate.

    PubMed

    Muresan-Pop, Marieta; Braga, Dario; Pop, Mihaela M; Borodi, Gheorghe; Kacso, Irina; Maini, Lucia

    2014-11-01

    The crystal structures of the monohydrate and anhydrous forms of ambazone were determined by single-crystal X-ray diffraction (SC-XRD). Ambazone monohydrate is characterized by an infinite three-dimensional network involving the water molecules, whereas anhydrous ambazone forms a two-dimensional network via hydrogen bonds. The reversible transformation between the monohydrate and anhydrous forms of ambazone was evidenced by thermal analysis, temperature-dependent X-ray powder diffraction and accelerated stability at elevated temperature, and relative humidity (RH). Additionally, a novel ambazone acetate salt solvate form was obtained and its nature was elucidated by SC-XRD. Powder dissolution measurements revealed a substantial solubility and dissolution rate improvement of acetate salt solvated form in water and physiological media compared with ambazone forms. Also, the acetate salt solvate displayed good thermal and solution stability but it transformed to the monohydrate on storage at elevated temperature and RH. Our study shows that despite the requirement for controlled storage conditions, the acetate salt solvated form could be an alternative to ambazone when solubility and bioavailability improvement is critical for the clinical efficacy of the drug product. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2017-01-01

    Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  18. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Science.gov Websites

    Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April

  19. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; Turky, A. O.; Hessien, M. M.

    2015-01-01

    Nanocrystalline Ni0.5Zn0.5-xCoxFe2-zYzO4 powders (x=0-0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 oC for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co2+ and they were increased with the value of Y3+ ion as well as both of Y3+ and Co2+ ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y3+ ion suppressed the grain size whereas addition of Co2+ ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni0.5Zn0.2Co0.3Fe2O4 sample annealed at 1000 oC for 2 h.

  20. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  1. Synthesis of nano-forsterite powder by making use of natural silica sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurbaiti, Upik, E-mail: upik-nurbaiti@mail.unnes.ac.id; Department of Physics, Faculty of Mathematics and Natural Sciences Semarang State University Jl. Raya Sekaran GunungPati, Semarang 50221; Suud, Fikriyatul Azizah

    2016-02-08

    Nano-forsterite powder with natural silica sand and magnesium powder as the raw materials have been succesfully synthesized. The silica sand was purified followed by a coprecipitation process to obtain colloidal silica. The magnesium powder was dissolved in a chloric acid solution to obtain MgCl{sub 2} solution. The nanoforsterite powder was synthesised using a sol-gel method which included the mixing the colloidal silica and the MgCl{sub 2} solution with various aging and filtering processes. The samples were dried at 100 °C using a hot plate and then the dried powders were calcinated at 900 °C for 2 hours. The samples weremore » characetised for their elements and phase compositions using X-ray Flourescence (XRF) and X-ray Diffraction (XRD) methods, respectively. The diffraction data were qualitatively analyzed using Match!2 software and quantitatively using Rietica software. The crystallite size was verified using Transmission Electron Microscopy (TEM). Results of XRD data analysis showed that the forsterite content reached up to 90.5% wt. The TEM average crystallite size was approximately 53(6) nm.« less

  2. Crystal structure of methylprednisolone acetate form II, C 24H 32O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, Austin M.; Kaduk, James A.; Gindhart, Amy M.

    The crystal structure of methylprednisolone acetate form II, C 24H 32O 6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space groupP2 12 12 1(#19) witha= 8.17608(2),b= 9.67944(3),c= 26.35176(6) Å,V= 2085.474(6) Å 3, andZ= 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in theabplane. C–H…O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.

  3. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  4. Glass transition in ferroic glass K x (ND4)1-x D2PO4: a complete x-ray diffraction line shape analysis

    NASA Astrophysics Data System (ADS)

    Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.

    2016-03-01

    Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.

  5. Growth and characterization of barium complex of 1,3,5-triazinane-2,4,6-trione in gel: a corrosion inhibiting material

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Babu, K. Rajendra

    2018-05-01

    Good quality prismatic crystals of industrially applicable corrosion inhibiting barium complex of 1,3,5-triazinane-2,4,6-trione have been grown by conventional gel method. The crystal structure, packing, and nature of bonds are revealed in the single crystal X-ray diffraction analysis. The crystal has a three-dimensional polymeric structure having a triclinic crystal system with the space group P-1. The powder X-ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal are identified by Fourier transform infrared spectroscopy. Elemental analysis confirms the stoichiometry of the elements present in the complex. Thermogravimetric analysis and differential thermal analysis reveal its good thermal stability. The optical properties like band gap, refractive index and extinction coefficient are evaluated from the UV-visible spectral analysis. The singular property of the material, corrosion inhibition efficiency achieved by the adsorption of the sample molecules is determined by the weight loss method.

  6. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction.

    PubMed

    Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander

    2018-09-01

    For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Morin-like spin canting in the magnetic CaFe{sub 5}O{sub 7} ferrite: A combined neutron and Mössbauer study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delacotte, C.; Bréard, Y.; Caignaert, V.

    2017-03-15

    Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. The latter corroborates the structural monoclinic-orthorhombic transition previously reported by transmission electron microscopy techniques and X-ray thermodiffractometry. Complementary heat capacity measurements have confirmed this first order transition with a sharp peak at 360 K. Interestingly, this large study has revealed a second magnetic transition associated to a spin rotation at 125 Kmore » similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K. - Graphical abstract: Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. Interestingly, this large study has revealed a magnetic transition associated to a spin rotation at 125 K similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K.« less

  8. Surfactant-assisted morphological studies of α-Al2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    The present study deals with the synthesis and characterization of aluminum oxide (Al2O3) nanopowders, it is very useful material as dielectric, ceramic and catalyst. The high-quality nanopowders were obtained by adding surfactants urea and sodium acetate. Further, all characterizations are done for with (urea and sodium acetate) and without surfactant. X-ray diffraction was used to characterize phase formation and the crystallite size of powder while, FTIR gives information about the particle composition and surface intermediates. X-ray diffraction spectra revealed the synthesized nanoparticles phase transformation were γ-Al2O3 to α-Al2O3 phase. Furthermore, the addition of urea and sodium acetate significantly reduced the crystalline size of α-Al2O3 nanoparticles from 43.94 nm to 35.12 nm respectively.

  9. Magnetic order in the frustrated Ising-like chain compound Sr3NiIrO6

    NASA Astrophysics Data System (ADS)

    Lefrançois, E.; Chapon, L. C.; Simonet, V.; Lejay, P.; Khalyavin, D.; Rayaprol, S.; Sampathkumaran, E. V.; Ballou, R.; Adroja, D. T.

    2014-07-01

    We have studied the field and temperature dependencies of the magnetization of single crystals of Sr3NiIrO6. These measurements evidence the presence of an easy axis of anisotropy and two anomalies in the magnetic susceptibility. Neutron powder diffraction realized on a polycrystalline sample reveals the emergence of magnetic reflections below 75 K with magnetic propagation vector k ˜ (0, 0, 1), undetected in previous neutron studies [T. N. Nguyen and H.-C. zur Loye, J. Solid State Chem. 117, 300 (1995), 10.1006/jssc.1995.1277]. The nature of the magnetic ground state, and the presence of two anomalies common to this family of material, are discussed on the basis of the results obtained by neutron diffraction, magnetization measurements, and symmetry arguments.

  10. Growth and characterization of Cadmium Thiosemicarbazide Bromide crystals for antibacterial and nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Thomas Joseph Prakash, J.; Martin Sam Gnanaraj, J.

    2015-01-01

    Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate.

  11. Effects of Peripheral Architecture on the Properties of Aryl Polyhedral Oligomeric Silsesquioxanes

    DTIC Science & Technology

    2012-07-26

    POSS) molecules are described. These POSS materials were synthesized in our laboratory and characterized by single-crystal and powder X - ray diffraction ...powder X - ray diffraction (XRD), where applicable. 1H, 13C, and 29Si NMR spectra were obtained on Bruker 300 and 400 MHz spectrometers using 5 mm o.d...degree of cage ordering during precipitation. Referring back to Figure 14, strong X - ray scattering peaks in the spectra for 1 in the d- spacing range

  12. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N

  13. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011

  14. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  15. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  16. Crystallographic Determination of Molecular Parameters for K2SiF6: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Loehlin, James H.; Norton, Alexandra P.

    1988-01-01

    Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)

  17. Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2

    NASA Astrophysics Data System (ADS)

    Leineweber, Andreas; Krumeich, Frank

    2013-12-01

    The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).

  18. Phase diagram of the relaxor ferroelectric (1- x )Pb(Mg 1/3Nb 2/3)O 3+ x PbTiO 3 revisited: a neutron powder diffraction study of the relaxor skin effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelan, D.; Rodriguez, E. E.; Gao, J.

    2014-11-17

    We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less

  19. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  20. Synthesis and characterization of a prominent NLO active MOF of lead with 1,5-naphthalenedisulfonic acid

    NASA Astrophysics Data System (ADS)

    Prasad, S. Shibu; Sudarsanakumar, M. R.; Dhanya, V. S.; Suma, S.; Kurup, M. R. Prathapachandra

    2018-09-01

    A new metal-organic framework of lead, [Pb(1,5-nds)(H2O)3]n (1,5-nds = 1,5-naphthalenedisulfonate) having prominent nonlinear optical property has been prepared by single gel diffusion technique at ambient condition using sodium metasilicate. The second harmonic generation efficiency was analyzed using Kurtz and Perry powder method and was found to be 30 times as large as potassium dihydrogen phosphate (KDP). Single crystal X-ray diffraction studies reveal the crystal structure. The grown crystals were further characterized by elemental analysis, powder XRD study, thermogravimetry, FT-IR and UV-visible spectral studies. The Pb2S2O4 rings in the crystal structure form a 1D channel. Hydrogen bonding and π-π interactions provide additional stability to the compound. Photoluminescence studies were also carried out.

  1. Hydrogenation properties of Li{sub x}Sr{sub 1−x}AlSi studied by quantum-chemical methods (0≤x≤1) and in-situ neutron powder diffraction (x=1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian

    2015-01-15

    In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less

  2. Studies on the growth, structural, spectral and third-order nonlinear optical properties of ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate single crystal.

    PubMed

    Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R

    2015-01-25

    An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction

    NASA Astrophysics Data System (ADS)

    Reiche, H. Matthias; Vogel, Sven C.; Tang, Ming

    2016-04-01

    We investigated the formation of UCx from UO2+x and graphite in situ using neutron diffraction at high temperatures with particular focus on resolving the conflicting reports on the crystal structure of non-quenchable cubic UC2. The agents were UO2 nanopowder, which closely imitates nano grains observed in spent reactor fuels, and graphite powder. In situ neutron diffraction revealed the onset of the UO2 + 2C → UC + CO2 reaction at 1440 °C, with its completion at 1500 °C. Upon further heating, carbon diffuses into the uranium carbide forming C2 groups at the octahedral sites. This resulting high temperature cubic UC2 phase is similar to the NaCl-type structure as proposed by Bowman et al. Our novel experimental data provide insights into the mechanism and kinetics of formation of UC as well as characteristics of the high temperature cubic UC2 phase which agree with proposed rotational rehybridization found from simulations by Wen et al.

  5. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug

    PubMed Central

    Alyami, Hamad; Dahmash, Eman; Bowen, James

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation. PMID:28609454

  6. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.

    PubMed

    Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D

    2015-08-01

    Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.

  7. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.

    PubMed

    Alyami, Hamad; Dahmash, Eman; Bowen, James; Mohammed, Afzal R

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.

  8. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  9. Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.

    2016-04-04

    The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space groupPbca(#61) witha= 12.341 03(2),b= 28.568 70(6),c= 12.025 62(2) Å,V= 4239.84(1) Å 3, andZ= 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to theac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

  10. Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie

    Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16F 2N 4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16ClFN 4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space groupmore » $$P\\bar 1$$,Z= 2, with the unit-cell parametersa= 6.37433(9),b= 11.3641(2),c= 14.09115(19) Å,α= 80.1740(8)°,β= 85.1164(8)°,γ= 80.9831(10)°,V= 991.55(3) Å 3of compound (1) anda= 6.53736(6),b= 11.55725(15),c= 14.01373(13) Å,α= 80.3323(7)°,β= 84.8939(6)°,γ= 79.3954(8)°,V= 1024.08(2) Å 3of compound (2). Structural analyses reveal that the title compounds are isostructural.« less

  11. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  12. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less

  13. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.

    PubMed

    Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E

    2013-04-01

    The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  15. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  16. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  17. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  18. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  19. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  20. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  1. Powder metallurgy of Ge, Si, and Ge-Si

    NASA Astrophysics Data System (ADS)

    Schilz, Jürgen; Langenbach, Marion

    1993-03-01

    id="ab1"Planetary ball-milling and pressing behaviour of Ge, Si and Ge-Si powder mixtures are investigated. Scanning and transmission electron microscopy observations revealed the different microstructure of the two elements after milling: Ge remains in a microcrystalline state, whereas Si can be comminuted into grains consisting of nanocrystalline regions. Planetary milling of the two elements together, using agate balls and vial, did not reveal any compound formation. By hot-isostatic pressing, pure Ge and Ge-Si mixtures were densified to a higher value than pure Si. This denotes a plastic flow of the Ge component at a process temperature of 800°C. The microhardness of hot-pressed Ge reaches the bulk value; hot-pressed Si is very soft. Energy dispersive X-ray analysis and X-ray diffraction did not detect any impurity contamination from vial and milling media wear. Moreover, by electrical transport measurements it turned out that the net carrier concentration density resulting from electrical active impurities introduced by the milling and pressing process is below 2 x 1016 cm 3 at room temperature.

  2. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  3. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  4. Synthesis and Characterization of Single-Source Molecular Precursors to Binary Metal Sulphides: Bis(Diethyldithiocarbamato) M(II)Trialkylphosphine (M=Zn and Cd) Adducts

    DTIC Science & Technology

    1994-05-06

    while the heterobimetallic species, 7, thermally decomposed to give00 crystalline ZnO.5S according to X-ray powder diffraction data. A. SUBJECT TERMS 15... heterobimetallic species, 7, thermally decomposed to give crystalline ZnO.5CdO.5S according to X-ray powder diffraction data. LaGOSSIOn "or OTIS RA&I VT-iC TAB EU...on the NMR timescale, and a single heterobimetallic species. Attempts to distinguish these possibilities are described later. The variable temperature

  5. Structural, optical, and magnetic properties of Cu- and Ni-codoped CdO dilute magnetic nanocrystalline semiconductor: effect of hydrogen post-treatment

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Bououdina, M.

    2015-06-01

    Cadmium oxide codoped with Cu and Ni ions powders was synthesised by thermal co-decomposition of a mixture of cadmium, copper, and nickel acetylacetonates. The mass ratio of Cu/Cd was fixed, while the Ni/Cd mass ratio was varied systematically. The purpose of the present study is to prepare powders having room-temperature ferromagnetic (RT-FM) properties. X-ray fluorescence (XRF) and X-ray diffraction (XRD) confirm the purity and the formation of single nanocrystalline structure of the as-prepared powders. The energy bandgap of the as-prepared powders was found to vary slightly and then increases by 3.96-38.02 % after post-H2-treatment. Magnetic measurements reveal that all as-prepared doped CdO powders gained partial (RT-FM) properties. Furthermore, the created RT-FM is dependent on the Ni% doping level. After annealing under H2 gas, a strong enhancement of RT-FM was observed, especially for 1.2 % Ni-doping-level powder where the whole powder became ferromagnetic with coercivity, remanence, and saturation magnetisation of 249.2 Oe, 4.52 memu/g, and 14.57 memu/g, respectively, representing an increase by ~241.3, 1062, and 1700 %, respectively, in comparison with the as-prepared sample. Thus, it was proved, for the first time, the possibility of producing of codoped CdO with RT-FM, where the magnetic characteristics can be tailored by doping and post-treatment under H2 atmosphere, thus a new potential candidate for dilute magnetic semiconductor (DMS).

  6. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  7. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdre, G.; Botton, G.A.; Brown, L.M.

    The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edgemore » structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.« less

  8. Effect of Heat Treatment Temperature on Chemical Compositions of Extracted Hydroxyapatite from Bovine Bone Ash

    NASA Astrophysics Data System (ADS)

    Younesi, M.; Javadpour, S.; Bahrololoom, M. E.

    2011-11-01

    This article presents the effect of heat treating temperature on chemical composition of hydroxyapatite (HA) that was produced by burning bovine bone, and then heat treating the obtained bone ash at different temperatures in range of 600-1100 °C in air. Bone ash and the resulting white powder from heat treating were characterized by Fourier transformed infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD). The FT-IR spectra confirmed that heat treating of bone ash at temperature of 800 °C removed the total of organic substances. x-ray diffraction analysis showed that the white powder was HA and HA was the only crystalline phase indicated in heat treating product. x-ray fluorescence analyses revealed that calcium and phosphorous were the main elements and magnesium and sodium were minor impurities of produced powder at 800 °C. The results of the energy dispersive x-ray analysis showed that Ca/P ratio in produced HA varies in range of 1.46-2.01. The resulting material was found to be thermally stable up to 1100 °C.

  9. One-dimensional coordination polymers of whole row rare earth tris-pivalates

    NASA Astrophysics Data System (ADS)

    Tsymbarenko, Dmitry; Martynova, Irina; Grebenyuk, Dimitry; Shegolev, Vsevolod; Kuzmina, Natalia

    2018-02-01

    Fourteen 1D coordination polymers of rare earth pivalates [Ln(Piv)3]∞ (Ln = Y, La, Pr, Nd, Sm-Lu) were synthesized and characterized by powder X-ray diffraction, IR spectroscopy, TGA, and conventional elemental analysis. Crystal structures of [La(Piv)3]∞, [Yb(Piv)3]∞, [Lu(Piv)3]∞ were determined by means of single crystal X-ray analysis at 120 K, those of [Y(Piv)3]∞ and [Ho(Piv)3]∞ - from powder XRD data at 293 K. Transformation of [Ln(Piv)3]∞ structure and Piv- anions coordination mode along the whole row has been derived from powder XRD and IR spectroscopy results, and shown to crucially affect the relative location of 1D chains in the crystal structure, as well as the Ln···Ln distance within the single chain. Negative thermal expansion along 1D [Ln(Piv)3]∞ chain was revealed for Ln = Tm, Yb, Lu. Enforcement of 1D polymeric structure with the decrease of Ln ionic radius has been established from solid-state DFT calculations.

  10. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  11. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    NASA Astrophysics Data System (ADS)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  12. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  13. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  14. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Amber M.; Wilfong, Brandon; Moetakef, Pouya

    A metal–insulator transition tuned by application of an external magnetic field occurs in the quasi-one dimensional system Bi1.7V8O16, which contains a mix of S = 1 and S = 1/2 vanadium cations. Unlike all other known vanadates, the magnetic susceptibility of Bi1.7V8O16 diverges in its insulating state, although no long-range magnetic ordering is observed from neutron diffraction measurements, possibly due to the frustrated geometry of the triangular ladders. Magnetotransport measurements reveal that the transition temperature is suppressed upon application of an external magnetic field, from 62.5 K at zero field to 40 K at 8 T. This behavior is bothmore » hysteretic and anisotropic, suggesting t2g orbital ordering of the V3+ and V4+ cations drives a first-order structural transition. Single crystal X-ray diffraction reveals a charge density wave of Bi3+ cations with a propagation vector of 0.846c*, which runs parallel to the triangular chain direction. Neutron powder diffraction measurements show a first-order structural transition, characterized by the coexistence of two tetragonal phases near the metal–insulator transition. Finally, we discuss the likelihood that ferromagnetic V–V dimers coexist with a majority spin-singlet state below the transition in Bi1.7V8O16.« less

  16. Diffraction, microstructure and thermal stability analysis in a double phase nanocrystalline Al20Mg20Ni20Cr20Ti20 high entropy alloy

    NASA Astrophysics Data System (ADS)

    Rameshbabu, A. M.; Parameswaran, P.; Vijayan, V.; Panneer, R.

    2017-12-01

    An effort has been made to develop a new composition of AlMgNiCrTi high entropy alloy (HEA) with a distinct properties includes squat density, intense strength and hardness, superior corrosion resistance, better oxidation resistance, high temperature resistance, fatigue load and crack resistance to congregate the necessity of aircraft applications. The equivalent atomic percentage for the above defined composition is established using analytical correlation for molar and atom renovation by trial and error method. The alloy is synthesized by powder metallurgy technique through mechanical alloying. Succeeding to mechanical alloying it is elucidated that the metal powder is primarily composed of single BCC solid solution with crystallite magnitude <10 nm. It is also observed that the alloy is thermally stable at prominent temperature about 800°C as it is retained its nanostructure which was revealed using differential scanning caloriemetry (DSC). This alloy powder was consolidated and sintered using spark plasma sintering at 800°C with 50 Mpa pressure to a density of 98.83%. Subsequent to sintering, Titanium carbide FCC phase evolved along with the BCC phase. The alloying behavior and phase transformation were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The homogeneity of the composition is confirmed by energy dispersive spectroscopy (EDS). The hardness of the alloy is found to be 710±20 HV. The evolutions of the phases and hardness imply that this alloy is apposite for both high strength and high temperature applications.

  17. Chloroform- and water-soluble sol-gel derived Eu+++/Y2O3 (red) and Tb+++/Y2O3 (green) nanophosphors: synthesis, characterization, and surface modification.

    PubMed

    Pandey, Ashutosh; Roy, M K; Pandey, Anjana; Zanella, Marco; Sperling, Ralph A; Parak, Wolfgang J; Samaddar, A B; Verma, H C

    2009-03-01

    Eu+++ and Tb+++ ions have been incorporated into nanodimensional yttrium oxide host matrices via a sol-gel process using Y5O(OPr(i))13 as precursor (OPr(i) = isopropoxy). The as-synthesized white powders have been annealed at different temperatures. Photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) have been used as tools for documenting the characteristics of these powders. For Eu+++-doped powders, a comparison of the Eu+++, 5D0-->7F1, and 5D0-->7F2 peak intensities in the emission spectra reveals that the dopant ions are occupying unsymmetrical sites in the host yttrium oxide in all the samples. For Tb+++-doped powders, the characteristic terbium 5D3-->7Fn and 5D-->7Fn (n = 2-6) transitions were visible only in the samples that had been annealed above 500 degrees C. Samples of the doped particle powders were suspended in chloroform by fragmenting the powder with and without sonification under the presence of trioctylphosphine oxide, or a mixture of oleic acid and dioctyl ether. The resulting clear colorless (for Eu+++) and light green translucent (for Tb+++) solutions of the suspended particles showed red and green luminescence upon UV excitation, respectively. In addition, suspension in water has been achieved by fragmenting the powder in the presence of dichloroacetic acid. Transmission electron micrograph investigation of the soluble particles shows single dispersed particles along with agglomerates. The changes in the luminescence due to fragmentation of the particle powder and due the influence of the surfactant of the suspended colloidal particles are discussed.

  18. Investigation on the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ manganites

    NASA Astrophysics Data System (ADS)

    Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.

    2018-02-01

    We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.

  19. Calculating cellulose diffraction patterns

    USDA-ARS?s Scientific Manuscript database

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  20. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  1. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics

    NASA Astrophysics Data System (ADS)

    Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.

    2018-05-01

    Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.

  2. Effect of polarizable lone pair cations on the second-harmonic generation (SHG) properties of noncentrosymmetric (NCS) Bi(2-x)Y(x)TeO₅ (x = 0-0.2).

    PubMed

    Jo, Hongil; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2014-08-14

    Y(3+)-doped noncentrosymmetric (NCS) bismuth tellurite materials, Bi(2-x)Y(x)TeO5 (x = 0, 0.1, and 0.2), have been synthesized through standard solid-state reactions and structurally characterized by powder neutron diffraction. The reported NCS materials crystallize in the orthorhombic space group Abm2 (no. 39), and exhibit pseudo-three-dimensional frameworks that are composed of BiO3, BiO5, and TeO3 polyhedra. Detailed diffraction studies show that the cell volume of Bi(2-x)Y(x)TeO5 decreases with an increasing amount of Y(3+)on the Bi(3+) sites. However, no ordering between Bi(3+) and Y(3+) was observed in the Bi(2-x)Y(x)TeO5. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that Bi2TeO5, Bi(1.9)Y(0.1)TeO5, and Bi(1.8)Y(0.2)TeO5 exhibit SHG efficiencies of approximately 300, 200, and 60 times that of α-SiO2, respectively. The reduction in SHG for Y(3+)-doped materials is consistent with the lack of net moment originating from polyhedra with a polarizable Bi(3+) cation.

  3. Synthesis of nanocrystalline zirconia by amorphous citrate route: structural and thermal (HTXRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagwat, Mahesh; Ramaswamy, Veda

    Nanocrystalline zirconia powder with a fairly narrow particle size distribution has been synthesized by the amorphous citrate route. The sample obtained has a high BET surface area of 89 m{sup 2} g{sup -1}. Rietveld refinement of the powder X-ray diffraction (XRD) profile of the zirconia sample confirms stabilization of zirconia in the tetragonal phase with around 8% monoclinic impurity. The data show the presence of both anionic as well as cationic vacancies in the lattice. Crystallite size determined from XRD is 8 nm and is in close agreement with the particle size determined by TEM. The in situ high temperature-X-raymore » diffraction (HTXRD) study revealed high thermal stability of the mixture till around 1023 K after which the transformation of tetragonal phase into the monoclinic phase has been seen as a function of temperature till 1473 K. This transformation is accompanied by an increase in the crystallite size of the sample from 8 to 55 nm. The thermal expansion coefficients are 9.14 x 10{sup -6} K{sup -1} along 'a'- and 15.8 x 10{sup -6} K{sup -1} along 'c'-axis. The lattice thermal expansion coefficient in the temperature range 298-1623 K is 34.6 x 10{sup -6} K{sup -1}.« less

  4. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  5. Structure of N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide by combined X-ray powder diffraction, 13C solid-state NMR and molecular modelling.

    PubMed

    Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu

    2010-12-01

    The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.

  6. Crystal structure of paliperidone palmitate (INVEGA SUSTENNA®), C39H57FN4O4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduk, James A.; Dmitrienko, Artem O.; Gindhart, Amy M.

    2017-08-29

    The crystal structure of paliperidone palmitate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone palmitate crystallizes in space groupP2 1/c(#14) witha= 34.415 40(35),b= 10.093 49(7),c= 10.904 92(9) Å,β= 94.3917(9)°,V= 3776.94(6) Å 3, andZ= 4. The conformation of the paliperidone fragment differs from that of the parent compound. The palmitate chain exhibits a slight twist close to the ester group. Several C–H•••O hydrogen bonds contribute to the crystal packing, which is dominated by van der Waals interactions. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1614.

  7. Nonvolatile RRAM cells from polymeric composites embedding recycled SiC powders.

    PubMed

    De Girolamo Del Mauro, Anna; Nenna, Giuseppe; Miscioscia, Riccardo; Freda, Cesare; Portofino, Sabrina; Galvagno, Sergio; Minarini, Carla

    2014-10-21

    Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.

  8. CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor

    NASA Astrophysics Data System (ADS)

    Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.

    2018-02-01

    Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.

  9. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  10. Synthesis, growth and characterization of 3-nitroacetanilide—A new organic nonlinear optical crystal by Bridgman technique

    NASA Astrophysics Data System (ADS)

    Lenin, M.; Ramasamy, P.

    2008-10-01

    Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.

  11. Processing and Characterization of Fe-Mn-Cu-Sn-C Alloys Prepared by Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bączek, Elżbieta; Konstanty, Janusz; Romański, Andrzej; Podsiadło, Marcin; Cyboroń, Jolanta

    2018-03-01

    In this work, Fe-Mn-Cu-Sn-C alloys were prepared by means of powder metallurgy (PM). Powder mixtures were ball-milled for 8, 30 and 120 h and densified to < 1% porosity using spark plasma sintering (SPS) at 900 °C and 35 MPa. After consolidation, all samples of the Fe alloys were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), hardness and flexural strength tests. Resistance to abrasive wear was evaluated in both three-body abrasion and two-body abrasion tests. The SEM observations revealed an evident dependence of grain size and microstructural homogeneity on milling time. The XRD analysis showed a marked increase in austenite content in the as-sintered specimens with milling time. Although the proportion of deformation-induced martensite was small, the strengthening effect of abrasion on the subsurface layer of the investigated alloys was clearly indicated by Knoop hardness measurements.

  12. Grain boundary misorientations and percolative current paths in high-{ital J}{sub {ital c}} powder-in-tube (Bi,Pb){sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 3}O{sub {ital x}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.

    1995-05-22

    Grain orientations and grain boundary misorientations in high-{ital J}{sub {ital c}}, powder-in-tube (PIT) (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} (Bi-2223) were determined using electron backscatter Kikuchi diffraction and x-ray microdiffraction. Data collected from over 113 spatially correlated grains, resulting in 227 grain boundaries, show that over 40% of the boundaries are {Sigma}1 or small angle (less than 15{degree}). In addition, 8% of the boundaries are within the Brandon criterion for CSLs (sigma larger than 1 and less than 50). Grain boundary ``texture maps`` derived from the electron microscope image and orientation data reveal the presence of percolative paths betweenmore » low energy boundaries.« less

  13. Same Precursor, Two Different Products: Comparing the Structural Evolution of In–Ga–O “Gel-Derived” Powders and Solution-Cast Films Using Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Suzannah R.; Woods, Keenan N.; Plassmeyer, Paul N.

    Amorphous metal oxides are central to a variety of technological applications. In particular, indium gallium oxide has garnered attention as a thin-film transistor channel layer material. In this work we examine the structural evolution of indium gallium oxide gel-derived powders and thin films using infrared vibrational spectroscopy, X-ray diffraction, and pair distribution function (PDF) analysis of X-ray total scattering from standard and normal incidence thin-film geometries (tfPDF). We find that the gel-derived powders and films from the same aqueous precursor evolve differently with temperature, forming mixtures of Ga-substituted In2O3 and In-substituted β-Ga2O3 with different degrees of substitution. X-ray total scatteringmore » and PDF analysis indicate that the majority phase for both the powders and films is an amorphous/nanocrystalline β-Ga2O3 phase, with a minor constituent of In2O3 with significantly larger coherence lengths. This amorphous β-Ga2O3 phase could not be identified using the conventional Bragg diffraction techniques traditionally used to study crystalline metal oxide thin films. The combination of Bragg diffraction and tfPDF provides a much more complete description of film composition and structure, which can be used to detail the effect of processing conditions and structure–property relationships. This study also demonstrates how structural features of amorphous materials, traditionally difficult to characterize by standard diffraction, can be elucidated using tfPDF.« less

  14. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less

  15. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    PubMed Central

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  16. Magnetic and magneto elastic properties of cobalt ferrite ceramic compacted through cold isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indla, Srinivas; Das, Dibakar, E-mail: ddse@uohyd.ernet.in; Chelvane, Arout

    2016-05-06

    Nano crystalline CoFe{sub 2}O{sub 4} powder was prepared by combustion synthesis method. As synthesized powder was calcined at an appropriate condition to remove the impurities and to promote phase formation. Phase pure CoFe{sub 2}O{sub 4} powder was pressed into cylindrical rod at an applied pressure of 200 MPa using a cold isostatic pressing. Sintering of the green compact at 1350°c for 12 hrs resulted in sintered cylindrical rod with ~85% of the theoretical density. Single phase cubic spinel structure was observed in the powder x-ray diffraction pattern of the sintered pellet. Scanning electron micrographs (SEM) of the as sintered pelletmore » revealed the microstructure to be composed of ferrite grains of average size ~4 µm. Saturation magnetization of 72 emu/g and coercivity of 355 Oe were observed for cobalt ferrite sample. The magnetostriction was measured on a circular disc (12 mm diameter and 12 mm length) with the strain gauge (350 Ω) mounted on the flat surface of the circular disc. Magnetostriciton of 180 ppm and strain derivative of 1 × 10{sup −9} m/A were observed for the sintered CoFe{sub 2}O{sub 4} sample.« less

  17. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars.

    PubMed

    Bhat, Farhan Mohiuddin; Riar, Charanjit Singh

    2016-11-01

    The research was carried out to investigate the effect of starch powder particle size, morphology, amylose content and varietal effect on physicochemical, X-ray diffraction pattern, thermal and pasting characteristics. The results indicated that starches isolated from seven traditional rice cultivars of temperate region of India have possessed higher yield (82.47-86.83%) with lower degree of granule damage and higher level of starch crystallinity (36.55-39.15%). The water and oil binding capacities were observed to correlate positively with amylose content. The bulk density and color parameters of starches were found to have linked with starch powder particle size coupled with arrangement and morphology of the starch granules. The rice cultivars having smaller starch powder particle size indicated lowest degree of crystallinity. Morphological studies revealed that the starches with tightly packed granules had greater mean granular width, while granules with openly spaced granular morphology depicted the higher values for mean granular length. The peak height index (PHI) among different starches ranged from 1.01 to 2.57 whereas the gelatinization range varied from 10.66 to 10.88. Concluding, the differences in distributional pattern of starch granule size and shape and powder particle size indicated a significant effect on the functional properties of starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling

    DOE PAGES

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; ...

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less thanmore » 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.« less

  19. Formation and morphology of Zn(2)Ti(3)O(8) powders using hydrothermal process without dispersant agent or mineralizer.

    PubMed

    Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin

    2011-01-28

    Synthesis of Zn(2)Ti(3)O(8) powders for attenuating UVA using TiCl(4), Zn(NO(3))(2)·6H(2)O and NH(4)OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO(2) and Zn(2)Ti(3)O(8) coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn(2)TiO(4), rutile TiO(2) and ZnTiO(3). Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO(3) crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent.

  20. Formation and Morphology of Zn2Ti3O8 Powders Using Hydrothermal Process without Dispersant Agent or Mineralizer

    PubMed Central

    Wang, Cheng-Li; Hwang, Weng-Sing; Chang, Kuo-Ming; Ko, Horng-Huey; Hsi, Chi-Shiung; Huang, Hong-Hsin; Wang, Moo-Chin

    2011-01-01

    Synthesis of Zn2Ti3O8 powders for attenuating UVA using TiCl4, Zn(NO3)2·6H2O and NH4OH as precursor materials by hydrothermal process has been investigated. The X-ray diffractometry (XRD) results show the phases of ZnO, anatase TiO2 and Zn2Ti3O8 coexisted when the zinc titanate powders were calcined at 600 °C for 1 h. When calcined at 900 °C for 1 h, the XRD results reveal the existence of ZnO, Zn2TiO4, rutile TiO2 and ZnTiO3. Scanning electron microscope (SEM) observations show extensive large agglomeration in the samples. Transmission electron microscope (TEM) and electron diffraction (ED) examination results indicate that ZnTiO3 crystallites formed with a size of about 5 nm on the matrix of plate-like ZnO when calcined at 700 °C for 1 h. The calcination samples have acceptable absorbance at a wavelength of 400 nm, indicating that the zinc titanate precursor powders calcined at 700 °C for 1 h can be used as an UVA-attenuating agent. PMID:21541035

  1. Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A = Ca, Sr, Pb) series of powder compounds

    NASA Astrophysics Data System (ADS)

    El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; Couzi, Michel; Goldner, Philippe; Delmas, Claude

    2014-10-01

    AFe3O(PO4)3 (A = Ca, Sr and Pb) powder compounds were studied by means of X-ray diffraction (XRD), electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A = Sr, Ca and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32-8 K temperature range. Room temperature Mössbauer spectroscopy and associated DFT calculations confirm the existence of three crystallographically non equivalent Fe3+ sites in the three compounds. Mössbauer spectra recorded as a function of temperature in the PbFe3O(PO4)3 compound also establishes the occurrence of two purely magnetic and reversible phase transitions at 32 and 10 K. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ∼10-20 cm2 typical of spin-forbidden and forced electric dipole intraconfigurational transitions.

  2. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al₂O₃ Nanocomposite Synthesized by Ball Milling and Powder Metallurgy.

    PubMed

    Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-10-26

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  3. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    PubMed

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  4. Raman scattering and X-ray powder diffraction studies of hydrate layered perovskites: dirubidium aquapentafluoromanganate(III) and dipotassium aquapentafluoroferrate(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galicka, Karolina; Slodczyk, Aneta; Ratuszna, Alicja

    2004-06-08

    The structural and vibrational properties of above mentioned crystals were determined using X-ray powder diffraction and Raman scattering experiments. At room temperature hydrate layered perovskites: Rb{sub 2}MnF{sub 5}{center_dot}H{sub 2}O and K{sub 2}FeF{sub 5}{center_dot}H{sub 2}O exhibit orthorhombic--Cmcm (D{sub 2h}{sup 17}) and monoclinic--C2/c (C{sub 2h}{sup 6}) symmetry. Their structure is built up of MnF{sub 6} or FeF{sub 5}{center_dot}H{sub 2}O octahedra forming trans-linked zig-zag chains or hydrogen bonded zig-zag chains along the major crystallographic direction [0 0 1], respectively. To confirm crystal structures and to describe lattice dynamics of these compounds the vibrational normal modes (in {gamma} point of first Brillouin zone) weremore » calculated on the base of the group theory analysis and compared with the spectra obtained from Raman scattering experiments. A relatively good reliability was obtained for both X-ray powder diffraction and Raman scattering.« less

  5. Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Huang, Saifang; Zhang, Weijun; Cao, Peng; Huang, Zhaohui; Gao, Wei

    2014-03-01

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu3Ti4O12 (CCTO) precursors prepared via solid-state and sol-gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol-gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol-gel precursor. Both precursors are able to be calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study.

  6. Development of Cu Reinforced SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  7. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  8. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform.

    PubMed

    René de Cotret, Laurent P; Siwick, Bradley J

    2017-07-01

    The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  9. In Situ Neutron Diffraction of Rare-Earth Phosphate Proton Conductors Sr/Ca-doped LaPO4 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.

    Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.

  10. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  11. Exploring Orthogonal Hydrogen Bonding towards Designing Organic-Salt-Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties.

    PubMed

    Chakraborty, Poulami; Dastidar, Parthasarathi

    2018-05-18

    A series of primary ammonium monocarboxylate (PAM) salts derived from β-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  13. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  14. High resolution powder diffraction at HASYLAB

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas; Ihringer, Jorg; Maichle, Josef

    1988-04-01

    HASYLAB's beamline F1 was modified for powder diffraction in a triple-axis geometry. The diffractometer consists of two independent circles for θ and 2θ motion on either side of the beam. The θ circle can be translated along its axis. This makes the instrument highly flexible for the installation of different attachments like a cryostat which was used for low temperature measurements on the new high Tc superconductors. Measurements on zeolites demonstrate the excellent resolution and signal-to-noise ratio. Novel measuring strategies concerning the use of multiple analyzers, the examination of phase transitions and anomalous dispersion are presented.

  15. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  16. TSX-PLUS MULTI-TASKING UPGRADE FOR THE NICOLET L-11 POWDER DIFFRACTION SYSTEM.

    USGS Publications Warehouse

    Fitzpatrick, J.; Queen, David L.

    1985-01-01

    In August of 1982, a single-user, dual-translator, automated powder diffraction system was purchased by the Denver Research Institute for use on project work in the Chemical and Materials Sciences Division. Within a short period of time, the system had already become saturated with users. Scheduling conflicts arose. In view of these problems, an answer was sought in the form of hardware and software changes which would allow many users access to the system simultaneously. A low-cost, minimum impact solution was eventually found. The elements of the solution are reported.

  17. Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr{sub 5}Fe{sub 6}O{sub 15.4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr

    2016-10-15

    The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less

  18. Idealized powder diffraction patterns for cellulose polymorphs

    USDA-ARS?s Scientific Manuscript database

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  19. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D., AIP Conf Proc, 2007. 879: p. 879-882. [5] Liss, K.D., et al., Phys B-Cond Mat, 2006. 385-86: p. 1010-1012. [6] Maynard-Casely, H.E., K.S. Wallwork, and M. Avdeev, (In review). [7] Maynard-Casely, H.E., H.E.A. Brand, and K.S. Wallwork, J.of App.Cryst, 2012. 45: p.1198-1207. [8] Maynard-Casely, H.E., K.S. Wallwork, and H.E.A. Brand, (In Preparation). Stages of the crystal structure determination of sulfruic acid octahydrate a) the oxygen and sulfur postions were determined from the synchrotron x-ray data b) Once neutron diffraction data was collected Fourier difference methods were used to locate hydrogen positions to determine c) the full structure of sulfuric acid octahydrate.

  20. Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, S; Momose, Y

    2001-01-16

    A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.

  1. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  2. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  3. Low cost synthesis of TiO2-C nanocomposite powder for high efficiency visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-04-01

    Titanium dioxide-carbon nanocomposite powder was synthesized via a low cost chemical route using oleic acid and titanium tetra-isopropoxide. Since the carbon remained mainly on the surface of the TiO2 nanoparticles, the powder had black color. The composition of the powder was analyzed by X-ray photoelectron spectroscopy and the structure was studied with X-ray diffraction and transmission electron microscopy. The visible photocatalytic activity of the black TiO2 powder was investigated by studying the photo-bleaching of methylene blue under visible light. Our experimental observation showed that the black-TiO2 powder had a higher visible photocatalytic activity compared to the commercial TiO2 powder (P25 Degussa).

  4. Water-Free Rare Earth-Prussian Blue Type Analogues: Synthesis, Structure, Computational Analysis, and Magnetic Data of {Ln[superscript III](DMF)[subscript 6]Fe[superscript III](CN)[subcsript 6]}[subscript infinity] (Ln = Rare Earths Excluding Pm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Duane C.; Liu, Shengming; Chen, Xuenian

    2009-11-04

    Water-free rare earth(III) hexacyanoferrate(III) complexes, {l_brace}Ln(DMF){sub 6}({mu}-CN){sub 2}Fe(CN){sub 4}{r_brace}{sub {infinity}} (DMF = N,N-dimethylformamide; Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Ho, 6; Er, 7; Tm, 8; Yb, 9; Lu, 10; Y, 11; La, 12; Ce, 13; Pr, 14; Nd, 15), were synthesized in dry DMF through the metathesis reactions of [(18-crown-6)K]{sub 3}Fe(CN){sub 6} with LnX{sub 3}(DMF){sub n} (X = Cl or NO{sub 3}). Anhydrous DMF solutions of LnX{sub 3}(DMF){sub n} were prepared at room temperature from LnCl{sub 3} or LnX{sub 3} {center_dot} nH{sub 2}O under a dynamic vacuum. All compounds were characterized by IR, X-raymore » powder diffraction (except for 10), and single crystal X-ray diffraction (except for 2, 7, 10). Infrared spectra reveal that a monotonic, linear relationship exists between the ionic radius of the lanthanide and the {nu}{sub {mu}-CN} stretching frequency of 1-10, 12-15 while 11 deviates slightly from the ionic radius relationship. X-ray powder diffraction data are in agreement with powder patterns calculated from single crystal X-ray diffraction results, a useful alternative for bulk sample confirmation when elemental analysis data are difficult to obtain. Eight-coordinate Ln(III) metal centers are observed for all structures. trans-cyanide units of [Fe(CN){sub 6}]{sup 3-} formed isocyanide linkages to Ln(III) resulting in one-dimensional polymeric chains. Structures of compounds 1-9 and 11 are isomorphous, crystallizing in the space group C2/c. Structures of compounds 12-15 are also isomorphous, crystallizing in the space group P2/n. One unique polymeric chain exists in the structures of 1-9 and 11 while two unique polymeric chains exist in structures of 12-15. One of the polymeric chains of 12-15 is similar to that observed for 1-9, 11 while the other is more distorted and has a shorter Ln-Fe distance. Magnetic susceptibility measurements for compounds 3-6, 8, 11 were performed on polycrystalline samples of the compounds.« less

  5. Preparation and Characterization of Nano-CL-20 Explosive

    NASA Astrophysics Data System (ADS)

    Bayat, Yadollah; Zeynali, Vida

    2011-10-01

    Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.

  6. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyaseelan, B., E-mail: bsseelan03@gmail.com; Manigandan, A.; Anbarasu, V.

    2015-06-24

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  7. Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.

    2016-05-23

    2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less

  8. Magnetic structure of the antiferromagnetic Kondo lattice compounds CeRhAl 4Si 2 and CeIrAl 4Si 2

    DOE PAGES

    Ghimire, N. J.; Calder, S.; Janoschek, M.; ...

    2015-06-01

    In this article, we have investigated the magnetic ground state of the antiferromagnetic Kondo-lattice compounds CeMAl 4Si 2(M = Rh, Ir) using neutron powder diffraction. Although both of these compounds show two magnetic transitions T N1 and T N2 in the bulk properties measurements, evidence for magnetic long-range order was only found below the lower transition T N2. Analysis of the diffraction profiles reveals a commensurate antiferromagnetic structure with a propagation vector k = (0, 0, 1/2). The magnetic moment in the ordered state of CeRhAl 4Si 2 and CeIrAl 4Si 2 were determined to be 1.14(2) and 1.41(3) μB/Ce,more » respectively, and are parallel to the crystallographic c-axis in agreement with magnetic susceptibility measurements.« less

  9. A new polymorph of 4'-hydroxyvalerophenone revealed by thermoanalytical and X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Lopes, Cátia S. D.; Bernardes, Carlos E. S.; Piedade, M. Fátima M.; Diogo, Hermínio P.; da Piedade, Manuel E. Minas

    2017-04-01

    A new polymorph of 1-(4-hydroxyphenyl)pentan-1-one (4'-hydroxyvalerophenone, HVP) was identified by using differential scanning calorimetry, hot stage microscopy, and X-ray powder diffraction. This novel crystal form (form II) was obtained by crystallization from melt. It has a fusion temperature of T fus = 324.3 ± 0.2 K and an enthalpy of fusion Δfus H m o = 18.14±0.18 kJ·mol-1. These values are significantly lower than those observed for the previously known phase (form I, monoclinic, space group P21/ c, T fus = 335.6 ± 0.7 K; Δfus H m o = 26.67±0.04 kJ·mol-1), which can be prepared by crystallization from ethanol. The results here obtained, therefore, suggest that form I is thermodynamically more stable than the newly identified form II and, furthermore, that the two polymorphs are monotropically related.

  10. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Zhang, Gao; Luan, Jieyu; Chen, Zhiqun; Su, Pengfei; Shu, Yuanjie

    2016-04-01

    A new cocrystal explosive of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane(CL-20) and 2,5-dinitrotoluene(DNT) in a molar ratio of 1:2 has been prepared by slow solvent evaporation method. Crystal structure of the cocrystal characterized by single crystal X-ray diffraction (SXRD) reveals that the cocrystal is formed by intermolecular hydrogen bond interactions and belongs to the triclinic system with P-1 group. Moreover, the obivious differences of powder X-ray diffraction (PXRD) patterns, infrared spectroscopy and Raman spectroscopy confirm that the intermolecular interactions have great influence for the crystal structure and formation of cocrystal. The cocrystal exhibits a lower impact height of 44 cm, suggesting a substantial reduction of sensitivity in comparison with CL-20. And thermal test results showed cocrystal obtains a lower melting point than DNT, which means huge advantages in blasting engineering.

  11. A new series of lanthanide coordination polymers with 2,2‧-bipyridine and glutaric acid: Synthesis, crystal structures and properties of [Ln(bipy)(glut)(NO3)

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun

    2009-08-01

    A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.

  12. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun

    2017-05-01

    Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.

  13. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  14. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  15. Microporous Cd(II) metal-organic framework as fluorescent sensor for nitroaromatic explosives at the sub-ppm level

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Po; Han, Lu-Lu; Wang, Zhi; Guo, Ling-Yu; Sun, Di

    2016-03-01

    A novel Cd(II) metal-organic framework (MOF) based on a rigid biphenyltetracarboxylic acid, [Cd4(bptc)2(DMA)4(H2O)2·4DMA] (1) was successfully synthesized under the solvothermal condition and characterized by single-crystal X-ray diffraction and further consolidated by elemental analyses, powder X-ray diffraction (PXRD), infrared spectra (IR) and luminescent measurements. Single crystal X-ray diffraction analysis reveals that compound 1 is 4-connected PtS (Point symbol: {42·84}) network based on [Cd2(COO)4] secondary building units (SBUs). Its inherent porous and emissive characteristics make them to be a suitable fluorescent probe to sense small solvents and nitroaromatic explosives. Compound 1 shows obviously solvent-dependent emissive behaviors, especially for acetone with very high fluorescence quenching effect. Moreover, compound 1 displays excellent sensing of nitroaromatic explosives at sub-ppm level, giving a detection limit of 0.43 ppm and 0.37 ppm for nitrobenzene (NB) and p-nitrotoluene (PNT), respectively. This shows this Cd(II) MOF can be used as fluorescence probe for the detection of nitroaromatic explosives.

  16. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NASA Astrophysics Data System (ADS)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  17. Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited

    DOE PAGES

    Whitfield, Pamela S.

    2016-04-29

    Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less

  18. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    PubMed Central

    Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.

    2014-01-01

    Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400

  19. Iron oxide nanoparticles supported on ultradispersed diamond powders: Effect of the preparation procedure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Momtchil; Ivanova, Ljubomira; Paneva, Daniela; Tsoncheva, Tanya; Stavrev, Stavry; Mitov, Ivan; Minchev, Christo

    2009-01-01

    The state of the iron oxide nanoparticles, supported on ultradispersed diamond (UDD) powders is studied by X-ray diffraction, nitrogen physisorption, temperature-programmed reduction, FTIR and Mössbauer spectroscopy. Methanol decomposition to hydrogen and CO is used as a catalytic test. The peculiarities of the iron oxide species strongly depend on the detonation procedure used for the UDD powders preparation as well as on the iron modification procedure.

  20. Synthesis and characterization of titanium dioxide (TiO2) nanopowder

    NASA Astrophysics Data System (ADS)

    Munirah, S.; Nadzirah, Sh.; Khusaimi, Z.; Fazlena, H.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) powder was synthesized via sol-gel technique using Titanium tetraisopropoxide (TTIP) and ethanol as precursors. Acetylacetone, distilled water, polyethylene glycol (PEG) and stabilizers (glacial acetic acid and nitric acid) were then added to the solution. The solution was left for ageing for 24 hours and then dried into powder. The synthesized powders were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA).

  1. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.

  2. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  3. Synthesis and LPG sensing properties of nano-sized cadmium oxide.

    PubMed

    Waghulade, R B; Patil, P P; Pasricha, Renu

    2007-04-30

    This paper reports the synthesis and liquid petroleum gas (LPG) sensing properties of nano-sized cadmium oxide (CdO). The nano-sized CdO powder was successfully synthesized by using a chemical co-precipitation method using cadmium acetate and the ammonium hydroxide, as starting materials and water as a carrier. The resulting nano-sized powder was characterized by X-ray diffraction (XRD) measurements and the transmission electron microscopy (TEM). The LPG sensing properties of the synthesized nano-sized CdO were investigated at different operating temperatures and LPG concentrations. It was found that the calcination temperature and the operating temperature significantly affect the sensitivity of the nano-sized CdO powder to the LPG. The sensitivity is found to be maximum when the calcination temperature was 400 degrees C. The sensitivity to 75ppm of LPG is maximum at an operating temperature 450 degrees C and it was found to be approximately 341%. The response and recovery times were found to be nearly 3-5s and 8-10s, respectively. The synthesized nano-sized CdO powder is able to detect up to 25ppm for LPG with reasonable sensitivity at an operating temperature 450 degrees C and it can be reliably used to monitor the concentration of LPG over the range (25-75ppm). The experimental results of the LPG sensing studies reveal that the nano-sized CdO powder synthesized by a simple co-precipitation method is a suitable material for the fabrication of the LPG sensor.

  4. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  5. Formation of Fluorohydroxyapatite with Silver Diamine Fluoride

    PubMed Central

    Mei, M.L.; Nudelman, F.; Marzec, B.; Walker, J.M.; Lo, E.C.M.; Walls, A.W.; Chu, C.H.

    2017-01-01

    Silver diamine fluoride (SDF) is found to promote remineralization and harden the carious lesion. Hydroxyapatite crystallization is a crucial process in remineralization; however, the role of SDF in crystal formation is unknown. We designed an in vitro experiment with calcium phosphate with different SDF concentrations (0.38, 1.52, 2.66, 3.80 mg/mL) to investigate the effect of this additive on the nucleation and growth of apatite crystals. Two control groups were also prepared—calcium phosphate (CaCl2·2H2O + K2HPO4 in buffer solution) and SDF (Ag[NH3]2F in buffer solution). After incubation at 37 oC for 24 h, the shape and organization of the crystals were examined by bright-field transmission electron microscopy and electron diffraction. Unit cell parameters of the obtained crystals were determined with powder X-ray diffraction. The vibrational and rotational modes of phosphate groups were analyzed with Raman microscopy. The transmission electron microscopy and selected-area electron diffraction confirmed that all solids precipitated within the SDF groups were crystalline and that there was a positive correlation between the increased percentage of crystal size and the concentration of SDF. The powder X-ray diffraction patterns indicated that fluorohydroxyapatite and silver chloride were formed in all the SDF groups. Compared with calcium phosphate control, a contraction of the unit cell in the a-direction but not the c-direction in SDF groups was revealed, which suggested that small localized fluoride anions substituted the hydroxyl anions in hydroxyapatite crystals. This was further evidenced by the Raman spectra, which displayed up-field shift of the phosphate band in all the SDF groups and confirmed that the chemical environment of the phosphate functionalities indeed changed. The results suggested that SDF reacted with calcium and phosphate ions and produced fluorohydroxyapatite. This preferential precipitation of fluorohydroxyapatite with reduced solubility could be one of the main factors for arrest of caries lesions treated with SDF. PMID:28521107

  6. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  7. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    PubMed

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  8. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  9. Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.

    2018-05-01

    The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.

  10. Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rammohan, Alagappa; Kaduk, James A.

    2017-01-27

    The crystal structure of pentasodium hydrogen dicitrate, Na 5H(C 6H 5O 7) 2, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Each of the two independent citrate anions is joined into a dimer by very strong centrosymmetric O—H...O hydrogen bonds, with O...O distances of 2.419 and 2.409 Å. Four octahedrally coordinated Na +ions share edges to form open layers parallel to theabplane. A fifth Na +ion in trigonal–bipyramidal coordination shares faces with NaO 6octahedra on both sides of these layers.

  11. In situ neutron diffraction study of micromechanical interactions and phase transformation in Ni-Mn-Ga alloy under uniaxial and hydrostatic stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R. L.; Wang, Y. D.; Nie, Z. H.

    2008-01-01

    This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.

  12. High temperature phase stability in Li{sub 0.12}Na{sub 0.88}NbO{sub 3}: A combined powder X-ray and neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.

    2015-09-07

    The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less

  13. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    PubMed

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  14. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  15. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  16. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  17. POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany

    NASA Astrophysics Data System (ADS)

    Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.

    2009-05-01

    In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.

  18. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    DTIC Science & Technology

    2011-02-01

    coefficient depends on the optical efficiency factor, QCM , the geometric cross section, G, and the particle mass as indicated by the relationship in eq 2...diffraction sensor with a RODOS powder dispersing unit. The instrument houses a HeNe laser (632.8 nm) and Fourier lens. Upon introduction of the

  19. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    PubMed

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  20. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  1. Effect of microfibril twisting in theoretical powder diffraction studies of cellulose Iß

    USDA-ARS?s Scientific Manuscript database

    Previous studies of calculated diffraction patterns for cellulose crystallites have suggested that the distortions arising once models have been subjected to MD simulation are likely the result of dimensional changes induced by the empirical force field, but have been unable to determine to what ext...

  2. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn.

    PubMed

    Barczak, Sonia A; Buckman, Jim; Smith, Ronald I; Baker, Annabelle R; Don, Eric; Forbes, Ian; Bos, Jan-Willem G

    2018-03-30

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi 1+y Sn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5-3 mW m -1 K -2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m -1 K -1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  3. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    PubMed Central

    Barczak, Sonia A.; Smith, Ronald I.; Baker, Annabelle R.; Don, Eric; Forbes, Ian

    2018-01-01

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn. PMID:29601547

  4. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less

  5. Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs

    NASA Astrophysics Data System (ADS)

    Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.

    2018-04-01

    A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.

  6. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  7. Structural, vibrational and dielectric studies of (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Dwivedi, R. K., E-mail: rk.dwivedi@jiit.ac.in

    2014-04-24

    (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics with x=0.51, 0.53 and 0.55 were synthesized by sol-gel route. Rietveld refined X-ray powder diffraction pattern of the samples confirm the single phase formation of compounds with tetragonal structure (P4mm). FT-IR studies revealed that slight shift of phonon modes towards the lower wave number and increase in the bond length with increasing Zr{sup 4+} concentration. Room temperature dielectric properties of system revealed that relaxor characteristics of these samples. Ferroelectric hysteresis curve shows the decrease in polarization values with Zr concentration.

  8. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    PubMed Central

    2009-01-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513

  9. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  10. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  11. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    PubMed Central

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  12. Eu2+,Dy3+ codoped SrAl2O4 nanocrystalline phosphor for latent fingerprint detection in forensic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Vishal; Das, Amrita; Kumar, Vinay

    2016-01-01

    In this work, europium and dysprosium doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) nanophosphor is synthesized and its novel application for the detection of latent fingerprints on various contact surfaces is reported. The SrAl2O4:Eu2+,Dy3+ is synthesized using a combustion method and shows long-lasting afterglow luminescence. The powder particles are characterized using field emission scanning electron microscopy (FE-SEM), SEM-energy dispersive x-ray analysis, x-ray diffraction and photoluminescence spectrophotometry. The FE-SEM image analysis reveals that the nanoparticles are mostly 8-15 nm in size with an irregular spherical shape. This nano-structured powder was applied to fresh and aged fingerprints deposited on porous, semi-porous and non-porous contact surfaces, such as ordinary colored paper, glossy paper, glass, aluminum foil, a yellow foil chocolate wrapper, a soft drink can, a PET bottle, a compact disc and a computer mouse. The results are reproducible and show great sensitivity and high contrast in the developed fingermark regions on these surfaces. These nanophosphor particles also show a strong and long-lasting afterglow property, making them a suitable candidate for use as a fingerprint developing agent on luminescent and highly patterned surfaces. These kinds of powders have shown that they can remove the interference from background luminescence, which is not possible using ordinary luminescent fingerprinting powders.

  13. Oxidized nanocrystalline Fe-Cu pseudoalloy subjected to high pressure and electrodischarge pulses: Mössbauer and x-ray investigations

    NASA Astrophysics Data System (ADS)

    Gavriliuk, A. G.; Voitkovsky, V. S.; Sidorov, V. A.; Filonenko, V. P.; Tsiok, O. B.; Khvostantsev, L. G.

    1998-05-01

    Nanocrystalline Fe15Cu85 pseudoalloy has been subjected to pulsed heating up to 1500 K at high pressure (8 GPa). Two regimes were studied: the direct heating using electrodischarge through the sample and indirect heating with the use of cylindrical heater around the sample. The temperature and time conditions in both types of experiments were adjusted to be equivalent. The discharge parameters (stored energy, discharge time, and magnitude of current pulse) were sufficient to move defects by conduction electrons, but insufficient to melt the sample. The properties of treated samples were studied using Mössbauer absorption spectra and x-ray diffraction for three types of samples: (a) primary powder treated by high pressure up to 8 GPa, (b) powder subjected to indirect pulsed heating at 8 GPa, (c) powder treated by electrical pulses at 8 GPa. The x-ray diffraction pattern of primary powder exhibits peaks of copper, iron, and copper oxide (CuO). The Mössbauer spectrum of primary powder exhibits six peaks of alpha iron and some peaks near zero velocity due to the small iron clusters in the copper matrix and ultrafine clusters of paramagnetic phase x-Fe2O3. The transformation of CuO to Cu2O takes place in the course of indirect heating, the Mössbauer spectrum being almost unchanged. The direct electrodischarge heating causes the appearance of new magnetic phase with the magnetic field on iron nucleus 505 kOe, which corresponds to α-Fe2O3. The formation of α-Fe2O3 was confirmed by x-ray diffraction. At the same time the transformation of CuO to Cu2O is incomplete. These experiments demonstrate that high density current pulses, causing the electron wind, can be a useful tool to influence the structure of nanocrystalline powder.

  14. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014

  15. Symmetry and light stuffing of H o 2 T i 2 O 7 ,   E r 2 T i 2 O 7 , and Y b 2 T i 2 O 7 characterized by synchrotron x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.

    2015-07-01

    The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less

  16. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w/w) of LL in the bulk powders) could minimize moisture-induced deterioration in the aerosol performance. In conclusion, particle surface coverage of LL can offer short-term protection against moisture on dispersion of hygroscopic powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  18. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine. PMID:23403805

  19. Influence of grinding on service properties of VT-22 powder applied in additive technologies

    NASA Astrophysics Data System (ADS)

    Zakharov, M. N.; Rybalko, O. F.; Romanova, O. V.; Gelchinskiy, B. R.; Il'inykh, S. A.; Krashaninin, V. A.

    2017-01-01

    Powder of titanium alloy (VT-22) produced by plasma-spraying was subjected to grinding to obtain powder with size less 100 microns. These powders were sprayed by plasma unit using two types of gases, namely, air and air with methane (spraying in water and sputtering of coating on steel support). Influence of grinding time on yield of powder of required fraction was studied. Morphology and phase composition of the grinded powder and plasma sprayed one were under investigation. In the result of experiments, it appears that the grinding time genuinely influences the chemical and phase compositions, but there is no effect on physical-processing properties. For powders after plasma spraying some changes of non-metal elements content were detected by chemical analysis. Using gaseous mixture of air and methane in plasma spraying unit leads to formation of a new phase in the powder according X-ray diffraction data.

  20. A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst.

    PubMed

    Faure, J; Drevet, R; Lemelle, A; Ben Jaber, N; Tara, A; El Btaouri, H; Benhayoune, H

    2015-02-01

    In this paper a new sol-gel approach was explored for the synthesis of the 45S5 bioactive glass. We demonstrate that citric acid can be used instead of the usual nitric acid to catalyze the sol-gel reactions. The substitution of nitric acid by citric acid allows to reduce strongly the concentration of the acid solution necessary to catalyze the hydrolysis of silicon and phosphorus alkoxides. Two sol-gel powders with chemical compositions very close to that of the 45S5 were obtained by using either a 2M nitric acid solution or either a 5mM citric acid solution. These powders were characterized and compared to the commercial Bioglass®. The surface properties of the two bioglass powders were assessed by scanning electron microscopy (SEM) and by Brunauer-Emmett-Teller method (BET). The Fourier transformed infrared spectroscopy (FTIR) and the X-ray diffraction (XRD) revealed a partial crystallization associated to the formation of crystalline phases on the two sol-gel powders. The in vitro bioactivity was then studied at the key times during the first hours of immersion into acellular Simulated Body Fluid (SBF). After 4h immersion into SBF we clearly demonstrate that the bioactivity level of the two sol-gel powders is similar and much higher than that of the commercial Bioglass®. This bioactivity improvement is associated to the increase of the porosity and the specific surface area of the powders synthesized by the sol-gel process. Moreover, the nitric acid is efficiently substituted by the citric acid to catalyze the sol-gel reactions without alteration of the bioactivity of the 45S5 bioactive glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Compact, Non-Pneumatic Rock-Powder Samplers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu; Jones, Christopher; Aldrich, Jack

    2008-01-01

    Tool bits that automatically collect powdered rock, permafrost, or other hard material generated in repeated hammering action have been invented. The present invention pertains to the special case in which it is desired to collect samples in powder form for analysis by x-ray diffraction and possibly other techniques. The present invention eliminates the need for both the mechanical collection equipment and the crushing chamber and the pneumatic collection equipment of prior approaches, so that it becomes possible to make the overall sample-acquisition apparatus more compact.

  2. Time-resolved in situ neutron diffraction under supercritical hydrothermal conditions: a study of the synthesis of KTiOPO4.

    PubMed

    Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot

    2012-10-31

    In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.

  3. Influence of the sintering temperature on the electrical properties of Ce-doped WO3 ceramics prepared from nano-powders

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Chen, Han-Jun; Wang, Yu; Li, De-Zhu; Li, Tong-Ye; Zhao, Yong

    2007-04-01

    Using a nm-level powder fabricated by a wet chemical method as precursor, the CeO2-doped WO3 ceramics were prepared by the conventional solid state reaction at sintering temperatures from 600 to 1100 °C. The x-ray diffraction analysis reveals the coexistence of different WO3 phases in the samples sintered at temperatures below 900 °C, whereas a single phase appears in the samples sintered above 1000 °C. No new Ce-W compound appears. As the sintering temperature increases, the electrical properties of the samples display an interesting transformation from linear to nonlinear behaviour. The measurements of scanning electron microscope, complex impedance and electrical stability indicate that a lot of grain boundary regions in the samples sintered at low temperatures strongly influences the electrical transportation. Therefore, the electrical nonlinearity is due to a basic process controlled by the back-to-back Schottky barriers at grain boundaries with suitable thickness as well as the coexistence of phases.

  4. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.

    PubMed

    Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso

    2014-03-05

    The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.

    PubMed

    Jones, Matthew D; Hooton, Jennifer C; Dawson, Michelle L; Ferrie, Alan R; Price, Robert

    2006-04-26

    The physico-chemical behaviour of trehalose dihydrate during storage at low relative humidity and ambient temperature was investigated, using a combination of techniques commonly employed in pharmaceutical research. Weight loss, water content determinations, differential scanning calorimetry and X-ray powder diffraction showed that at low relative humidity (0.1% RH) and ambient temperature (25 degrees C) trehalose dihydrate dehydrates forming the alpha-polymorph. Physical examination of trehalose particles by scanning electron microscopy and of the dominant growth faces of trehalose crystals by environmentally controlled atomic force microscopy revealed significant changes in surface morphology upon partial dehydration, in particular the formation of cracks. These changes were not fully reversible upon complete rehydration at 50% RH. These findings should be considered when trehalose dihydrate is used as a pharmaceutical excipient in situations where surface properties are key to behaviour, for example as a carrier in a dry powder inhalation formulations, as morphological changes under common processing or storage conditions may lead to variations in formulation performance.

  6. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less

  7. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki

    2017-04-01

    The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.

  8. Fabrication of PbFe12O19 nanoparticles and study of their structural, magnetic and dielectric properties

    NASA Astrophysics Data System (ADS)

    Mousavi Ghahfarokhi, S. E.; Rostami, Z. A.; Kazeminezhad, I.

    2016-02-01

    In this study, M-type Lead hexaferrite (PbFe12O19) nanoparticles were prepared by a sol-gel method and the prepared powders were annealed at 700-1000 °C for 1, 1.5, 2, 2.5 and 3 h. The Lead hexaferrite powders were characterized using thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, LCR meter, vibrating sample magnetometer, and Fourier transforms infrared spectroscopy. The size of the nanoparticles was increased with the annealing temparature. The results reveal that the best annealing temperature and annealing time for preparing PbFe12O19 nanoparticles at 800 °C and 3 h are obtained. The infrared spectra measured in range of 4000-400 cm-1 exhibit stretching modes of metal ions in tetrahedral site at 580-550 cm-1 and octahedral site at 470-430 cm-1. The variation in ac conductivity (σac) with frequency shows that the electrical conductivity in these ferrites is mainly attributed to the electron hopping mechanism.

  9. Experimental measurement of lattice strain pole figures using synchrotron x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.P.; Bernier, J.V.; Park, J.-S.

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm{sup 2} monochromatic (50 keV) xmore » ray beam. Entire Debye rings of data were collected for multiple lattice planes ({l_brace}hkl{r_brace}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys.« less

  10. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  11. Structural insights into the thermal decomposition sequence of barium tetrahydrogenorthotellurate(VI), Ba[H{sub 4}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, Matthias, E-mail: Matthias.Weil@tuwien.ac.at; Stöger, Berthold; Gierl-Mayer, Christian

    2016-09-15

    The compounds Ba[H{sub 4}TeO{sub 6}] (I), Ba[H{sub 2}TeO{sub 5}] (II), Ba[Te{sub 2}O{sub 6}(OH){sub 2}] (III) and Ba[TeO{sub 4}] (IV) were prepared by application of a diffusion method (I), under hydrothermal conditions (II and III) and from solid state reactions (IV), respectively. Structure analysis on the basis of single crystal X-ray diffraction data revealed novel structure types for (I), (II) and (III) and isotypism of (IV) with PrSbO{sub 4} and LaSbO{sub 4}. Common feature of the four oxotellurate(VI) structures are [TeO{sub 6}] octahedra. Whereas in the crystal structure of (I) the octahedral units are isolated, they are condensed into chains viamore » corner-sharing in (II) and via edge-sharing in (III) and (IV). The coordination numbers of the barium cations in the four structures range from seven to ten. Although hydrogen atom positions could not be located for the structures of (I) and (II), short interpolyhedral O···O contacts are evident for strong hydrogen bonding. The temperature behaviour of (I), (II) and (IV) was monitored by simultaneous thermal analysis (STA) measurements and in situ powder X-ray diffraction, revealing the decomposition sequence Ba[H{sub 4}TeO{sub 6}] → Ba[H{sub 2}TeO{sub 5}] → Ba[TeO{sub 4}]→ Ba[TeO{sub 3}] upon heating to temperatures up to 900 °C. - Graphical abstract: The crystal structures of the four oxotellurates(VI) were determined from single crystal data. The thermal decomposition of Ba[H{sub 4}TeO{sub 6}], monitored by temperature-dependent X-ray powder diffraction and simultaneous thermal analysis measurements, involves two condensation reactions according to Ba[H{sub 4}TeO{sub 6}]→Ba[H{sub 2}TeO{sub 5}]+H{sub 2}O(↑)→Ba[TeO{sub 4}]+ H{sub 2}O(↑). Display Omitted.« less

  12. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn beta-diketonates.

    PubMed

    Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V

    2009-09-07

    Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.

  13. Development of a magnetic system for the treatment of Helicobacter pylori infections

    NASA Astrophysics Data System (ADS)

    Silva, Érica L.; Carvalho, Juliana F.; Pontes, Thales R. F.; Oliveira, Elquio E.; Francelino, Bárbara L.; Medeiros, Aldo C.; do Egito, E. Sócrates T.; Araujo, José H.; Carriço, Artur S.

    2009-05-01

    We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit ®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.

  14. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  15. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  16. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  17. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  18. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  19. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  20. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    PubMed

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  1. Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen

    DOE PAGES

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; ...

    2015-11-20

    Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less

  2. Growth, crystalline perfection, spectral and optical characterization of a novel optical material: l-tryptophan p-nitrophenol trisolvate single crystal.

    PubMed

    Sivakumar, N; Srividya, J; Mohana, J; Anbalagan, G

    2015-03-15

    l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.

    Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less

  4. Competing magnetic ground states and their coupling to the crystal lattice in CuFe 2Ge 2

    DOE PAGES

    May, Andrew F.; Calder, Stuart; Parker, David S.; ...

    2016-10-14

    Identifying and characterizing systems with coupled and competing interactions is central to the development of physical models that can accurately describe and predict emergent behavior in condensed matter systems. This work demonstrates that the metallic compound CuFe 2Ge 2 has competing magnetic ground states, which are shown to be strongly coupled to the lattice and easily manipulated using temperature and applied magnetic fields. The temperature-dependent magnetization M measurements reveal a ferromagnetic-like onset at 228 (1) K and a broad maximum in M near 180 K. Powder neutron diffraction confirms antiferromagnetic ordering below T N ≈ 175 K, and an incommensuratemore » spin density wave is observed below ≈125 K. Coupled with the small refined moments (0.5–1 μB/Fe), this provides a picture of itinerant magnetism in CuFe 2Ge 2. Furthermore, the neutron diffraction data reveal a coexistence of two magnetic phases that further highlights the near-degeneracy of various magnetic states. Our results demonstrate that the ground state in CuFe 2Ge 2 can be easily manipulated by external forces, making it of particular interest for doping, pressure, and further theoretical studies.« less

  5. Synthesis of TiCx Powder via the Underwater Explosion of an Explosive

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigeru; Bataev, Ivan; Hamashima, Hideki; Tsurui, Akihiko; Hokamoto, Kazuyuki

    2018-05-01

    In this study, a novel approach to the explosive synthesis of titanium carbide (TiC) is discussed. Nonstoichiometric TiCx powder was produced via the underwater explosion of a Ti powder encapsulated within a spherical explosive charge. The explosion process, bubble formation, and synthesis process were visualized using high-speed camera imaging. It was concluded that synthesis occurred within the detonation gas during the first expansion/contraction cycle of the bubble, which was accompanied by a strong emission of light. The recovered powders were studied using scanning electron microscopy and X-ray diffraction. Submicron particles were generated during the explosion. An increase in the carbon content of the starting powder resulted in an increase in the carbon content of the final product. No oxide byproducts were observed within the recovered powders.

  6. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  7. Spheroidization of molybdenum powder by radio frequency thermal plasma

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  8. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    NASA Astrophysics Data System (ADS)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.

  9. New Insights on the Recrystallization and New Growth of Extensively Radiation-damaged Zircon

    NASA Astrophysics Data System (ADS)

    Hanchar, J. M.; Schmitz, M. D.; Wirth, R.

    2012-12-01

    Approximately 10 grams of cm-sized nearly metamict zircon crystals from the Saranac Prospect in the Bancroft District of Ontario were combined by breaking into small pieces and then ground under ethanol to a fine powder with an agate mortar and pestle in order to make enough homogeneously mixed material for multiple powder X-Ray and diffraction scans, high-resolution transmission electron microscopy (HR-TEM) measurements, and chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-TIMS). While these large zircon crystals ground to a powder have a larger surface area and not in the same physical state (i.e., brown and metamict) as what is typically analyzed in single zircon CA-ID-TIMS U-Pb analysis (clear euhedral grains), the physical and chemical changes that occur during the heat treatment used in CA-TIMS are thought to be similar processes. Aliquots of the ground zircon powder were annealed in situ using a Pt furnace in a powder diffractometer during which time simultaneous powder diffraction patterns were acquired starting at 25°C, at elevated temperature (from 500°C to 1400°C) at selected time intervals, and then again at 25°C. The powder X-ray diffraction results indicate that below ~900°C the recrystallization of the zircon powder commences but is incomplete, even after 36 hours, with diffuse low intensity diffraction peaks. At 1150°C the zircon powder shows significant recrystallization. At 1150°C, the recrystallization is essentially complete in less than one hour. Before heating the zircon powder samples consisted of clear, transparent to brown, translucent, complexly zoned fragments. After heating at 900°C the zircon powder retained a smaller percentage of clear or brown complexly zoned fragments, while the majority of material had transformed to oscillatory or irregularly zoned, dominantly white opaque microcrystalline fragments. The clear fragments were hypothesized to be preexisting original crystalline zircon, the brown complexly zoned fragments preexisting metamict zircon, and the white opaque fragment new recrystallized zircon and other oxides. At 1150°C all that remained after heating were dominantly white opaque fragments and extremely rare clear fragments. A variety of fragment types from unannealed, 900°C and 1150°C anneals were chemically abraded in concentrated hydrofluoric acid at 190°C for 12 hours. Upon treatment with chemical abrasion, all unannealed material, nearly all material from the 900°C anneal, and all white opaque microcrystalline material from the 1150°C anneal dissolved; only the rare residual clear, transparent fragments from the 1150°C anneal were robust to chemical abrasion at these conditions. Residual clear fragments yielded concordant U-Pb ID-TIMS dates of 1064 Ma (considering updated U decay constant ratio), confirming the hypothesis that low-U closed system domains are preserved through annealing up to 1150°C and can be extracted via chemical abrasion from even dominantly metamict zircon crystals. By contrast, newly formed crystallites resulting from metamict zircon breakdown during annealing appear to be quite soluble during chemical abrasion. Further experiments are underway to refine minimum threshold chemical abrasion conditions necessary to eliminate open-system domains in the Saranac zircon.

  10. Phase modification of copper phthalocyanine semiconductor by converting powder to thin film

    NASA Astrophysics Data System (ADS)

    Ai, Xiaowei; Lin, Jiaxin; Chang, Yufang; Zhou, Lianqun; Zhang, Xianmin; Qin, Gaowu

    2018-01-01

    Thin films of copper phthalocyanine (CuPc) semiconductor were deposited on glass substrates by a thermal evaporation system using the CuPc powder in a high vacuum. The crystal structures of both the films and the powder were measured by the X-ray diffraction spectroscopy technique. It is observed that CuPc films only show one peak at 6.84°, indicating a high texture of α phase along (200) orientation. In comparison, CuPc powder shows a series of peaks, which are confirmed from the mixture of both α and β phases. The effects of substrate anneal temperature on the film structure, grain size and optical absorption property of CuPc films were also investigated. All the films are of α phase and the full width of half maximum for (200) diffraction peak becomes narrow with increasing the substrate temperatures. The average grain size calculated by the Scherrer's formula is 33.63 nm for the film without anneal, which is increased up to 58.29 nm for the film annealed at 200 °C. Scanning electron microscope was further measured to prove the growth of crystalline grain and to characterize the morphologies of CuPc films. Ultraviolet-visible absorption spectra were employed to study the structure effect on the optical properties of both CuPc films and powder. Fourier Transform infrared spectroscopy was used to identify the crystalline nature of both CuPc powder and film.

  11. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  12. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  13. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  14. The storage degradation of an 18650 commercial cell studied using neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Wu, She-huang; Pang, Wei Kong; Peterson, Vanessa K.

    2018-01-01

    Commercial 18650 lithium ion cells containing a blended positive electrode of layered LiNi0.5Mn0.3Co0.2O2 and spinel Li1.1Mn1.9O4 alongside a graphite negative electrode were stored at various depth-of-discharge (DoD) at 60 °C for 1, 2, 4, and 6 months. After storage, the cells were cycled at C/25 at 25 °C between 2.75 and 4.2 V for capacity determination and incremental capacity analysis (ICA). In addition to ICA analysis, the mechanism for capacity fade was investigated by combining the results of neutron powder diffraction under in-situ and operando conditions, in conjunction with post-mortem studies of the electrodes using synchrotron X-ray powder diffraction and inductively-coupled plasma optical emission spectroscopy. Among the cells, those stored at 25% DoD suffered the highest capacity fade due to their higher losses of active Li, NMC, and LMO than cells stored at other DoD. The cells stored at 0% DoD shows second high capacity fade because they exhibit the highest of active LMO and graphite anode among the stored cells and higher losses of active Li and NMC than cells stored at 50% DoD.

  15. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  16. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    NASA Astrophysics Data System (ADS)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  17. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  18. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  19. Synthesis of Cu-W nanocomposite by high-energy ball milling.

    PubMed

    Venugopal, T; Rao, K Prasad; Murty, B S

    2007-07-01

    The Cu-W bulk nanocomposites of different compositions were successfully synthesized by high-energy ball milling of elemental powders. The nanocrystalline nature of the Cu-W composite powder is confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy. The Cu-W nanocomposite powder could be sintered at 300-400 degrees C below the sintering temperature of the un-milled Cu-W powders. The Cu-W nanocomposites showed superior densification and hardness than that of un-milled Cu-W composites. The nanocomposites also have three times higher hardness to resistivity ratio in comparison to Oxygen free high conductivity copper.

  20. Neutron diffraction studies for realtime leaching of catalytic Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iles, Gail N., E-mail: gail.iles@helmholtz-berlin.de; Reinhart, Guillaume, E-mail: guillaume.reinhart@im2np.fr; Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processingmore » route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.« less

  1. The synthesis of nanostructured SiC from waste plastics and silicon powder

    NASA Astrophysics Data System (ADS)

    Ju, Zhicheng; Xu, Liqiang; Pang, Qiaolian; Xing, Zheng; Ma, Xiaojian; Qian, Yitai

    2009-09-01

    Waste plastics constitute a growing environmental problem. Therefore, the treatment of waste plastics should be considered. Here we synthesize 3C-SiC nanomaterials coexisting with amorphous graphite particles utilizing waste plastics and Si powder at 350-500 °C in a stainless steel autoclave. 3C-SiC could be finally obtained after refluxing with aqueous HClO4 (70 wt%) at 180 °C. X-ray powder diffraction patterns indicate that the product is 3C-SiC with the calculated lattice constant a = 4.36 Å. Transmission electron microscopy (TEM) images show that the SiC samples presented two morphologies: hexagonal platelets prepared by the waste detergent bottles or beverage bottles and nanowires prepared by waste plastic bags respectively. The corresponding selected area electron diffraction (SAED) pattern indicates that either the entire hexagonal platelet or the nanowire is single crystalline. High-resolution TEM shows the planar surfaces of the SiC platelet correspond to {111} planes; the lateral surfaces are {110} planes and the preferential growth direction of the nanowires is along [111]. The output of SiC was ~39% based on the amount of Si powder.

  2. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  3. Secondary Mineral Formation Associated With Respiration of Nontronite, NAu-1 by Iron Reducing Bacteria

    DTIC Science & Technology

    2005-12-01

    with a set of expected powder diffraction rings for siderite (JCPDS Card 8-133). The diffraction rings correspond to the d-spacing values (and hkl ...Bender et al., Geochim. Cos- 33j. E. Kostka and K. H. Nealson, in Techniques in Microbial Ecology, mochim. Acta 43(7), 1075 (1979). edited by R. S

  4. Neutron diffraction measurements and micromechanical modelling of temperature-dependent variations in TATB lattice parameters

    DOE PAGES

    Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...

    2016-02-02

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less

  5. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  6. Empirically testing vaterite structural models using neutron diffraction and thermal analysis

    DOE PAGES

    Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...

    2016-11-18

    Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less

  7. Template-free solution approach to synthesize CdS dendrites with SCN based ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kangfeng; Li, Jiajia; Cheng, Xianyi

    2011-07-15

    Highlights: {yields} Template-free solution approach to synthesize CdS hierarchical dendrites. {yields} The 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) plays doubly functional roles in the progress. {yields} The CdS hierarchical dendrites exhibit a more intense emission at 710 nm belongs to infrared band. -- Abstract: Cadmium sulfide dendrites were synthesized by a facile hydrothermal treatment from CdCl{sub 2} and ionic liquid 1-butyl-3-methlyimidazole thiocyanate acted both as sulfur source and surfactant. The product was characterized by means of X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction studies indicated that the product was well-crystallized hexagonal phase of CdS, and the scanning electron microscopy imagesmore » showed that the obtained powders consisted of a wealth of well-defined CdS dendritic microstructures with a pronounced trunk and highly ordered branches. The UV-Vis and photoluminescence spectroscopy measurements were taken as well. The possible formation mechanism of CdS dendrites was simply proposed in the end.« less

  8. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    NASA Astrophysics Data System (ADS)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  9. Synthesis of ZnSnO{sub 3} nanostructure by sol gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Para, Touseef Ahmad; Reshi, Hilal Ahmad; Shelke, Vilas, E-mail: drshelke@gmail.com

    2016-05-23

    Zinc Stannate (ZST) with composition ZnSnO{sub 3} is known for high electron mobility, optical, piezoelectric and charge storage properties. ZST crystalizes in different lattice structures, which allows a wide range of tunablity. We demonstrate successful synthesis of ZnSnO{sub 3} nanomaterial by sol-gel method. ZnSnO{sub 3} nanomaterials were calcined and sintered at different temperatures. Powder X-ray diffraction confirmed the single phase of the nanomaterial with rhombohedral R-3 space group. The Rietveld refinement of diffraction pattern yielded lattice parameter values a=5.26Å, c=14.09Å. Raman spectroscopy revealed higher activity towards higher wavenumbers. Raman shift around 530cm{sup −1} was found to be highly structure dependent,more » most probably due to anharmonic atomic vibrations in ZnO{sub 6}/SnO{sub 6} octahedra around center of mass. Sharp Peak around 650cm{sup −1} is characteristic of ZnSnO{sub 3} molecule.« less

  10. Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition.

    PubMed

    de la Parra-Arciniega, Salomé M; Garcia-Gomez, Nora A; Garza-Tovar, Lorena L; García-Gutiérrez, Domingo I; Sánchez, Eduardo M

    2017-05-01

    In this work, an easy, fast and environmentally friendly method to obtain Bi 2 S 3 nanostructures with sphere-like morphology is introduced. The promising material was successfully synthesized by a sonochemical route in 20% 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] ionic liquid solution (IL). Morphological studies by electron microscopy (SEM and TEM) show that the use of IL in the synthesis of Bi 2 S 3 favors the formation of nanocrystals non-agglomerated. Micro Raman and energy dispersive X-ray spectroscopy (EDXS) were used to determine the composition and purity of the synthesized material. X-ray powder diffraction (XRD) and selective area electron diffraction (SAED) revealed that ultrasonic radiation accelerated the crystallization of Bi 2 S 3 into orthorhombic bismuthinite structure. The band gap calculated from the diffuse reflectance spectra (DRS) was found to be 1.5eV. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Studies on synthesis, growth, structural, thermal, linear and nonlinear optical properties of organic picolinium maleate single crystals.

    PubMed

    Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R

    2012-12-01

    Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.

    2016-10-01

    Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.

  13. An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries.

    PubMed

    Drozhzhin, Oleg A; Tereshchenko, Ivan V; Emerich, Hermann; Antipov, Evgeny V; Abakumov, Artem M; Chernyshov, Dmitry

    2018-03-01

    A new multi-purpose operando electrochemical cell was designed, constructed and tested on the Swiss-Norwegian Beamlines BM01 and BM31 at the European Synchrotron Radiation Facility. Single-crystal sapphire X-ray windows provide a good signal-to-noise ratio, excellent electrochemical contact because of the constant pressure between the electrodes, and perfect electrochemical stability at high potentials due to the inert and non-conductive nature of sapphire. Examination of the phase transformations in the Li 1-x Fe 0.5 Mn 0.5 PO 4 positive electrode (cathode) material at C/2 and 10C charge and discharge rates, and a study of the valence state of the Ni cations in the Li 1-x Ni 0.5 Mn 1.5 O 4 cathode material for Li-ion batteries, revealed the applicability of this novel cell design to diffraction and spectroscopic investigations of high-power/high-voltage electrodes for metal-ion batteries.

  14. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGES

    Li, C. W.; Ma, J.; Cao, H. B.; ...

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  15. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  16. The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties

    NASA Astrophysics Data System (ADS)

    Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei

    2016-10-01

    The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.

  17. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  18. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shete, Meera; Kumar, Prashant; Bachman, Jonathan E.

    High aspect-ratio nanosheets of metal-organic frameworks (MOFs) hold promise for use as selective flakes in gas separation membranes. However, simple and scalable methods for the synthesis of MOF nanosheets have thus far remained elusive. Here, we describe the direct synthesis of Cu(BDC) (BDC2-= 1,4-benzenedicarboxylate) nanosheets with an average lateral size of 2.5 mu m and a thickness of 25 nm from a well-mixed solution. Characterization of the nanosheets by powder and thin film X-ray diffraction, electron microscopy, and electron diffraction reveals pronounced structural disorder that may affect their pore structure. Incorporation of the Cu (BDC) nanosheets into a Matrimid polymermore » matrix results in mixed matrix membranes (MMMs) that exhibit a 70% increase in the CO2/CH4 selectivity compared with that of Matrimid. Analysis of new and previously reported permeation data for Cu(BDC) MMMs using a mathematical model for selective flake composites indicates that further performance improvements could be achieved with the selection of different polymers for use in the continuous phase.« less

  20. Fabricating the spherical and flake silver powder used for the optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Ma, Wangjing; Zhang, Fangzhi; Chen, Yixiang; Xie, Jinpeng

    2018-01-01

    The spherical and flake silver powder with different particle size for the optoelectronic devices was partly prepared by using chemical reduction and ball milling method, and charactered by scanning electron microscope (SEM), X-ray diffraction (XRD), laser particle size analyzer and thermo-gravimetric(TG) analyzer. The particle size of three series of spherical silver powder fabricated by chemical reduction is about 1.5μm, 1μm and 0.6μm, respectively; after being mechanical milling, the particle size of flake silver powder with high flaky rate is about 10μm, 6μm and 2μm respectively. Thermo gravimetric (TG) and XRD analyses showed that the silver powders have high purity and crystalline, and then the laser particle size and SEM analyses showed that the silver powders has good uniformity.

  1. Moisture sorption by cellulose powders of varying crystallinity.

    PubMed

    Mihranyan, Albert; Llagostera, Assumpcio Piñas; Karmhag, Richard; Strømme, Maria; Ek, Ragnar

    2004-01-28

    Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative humidities. The structure of the cellulose powders was characterized by X-ray diffraction, BET surface area analysis, and scanning electron microscopy. Moisture uptake was directly related to the cellulose crystallinity and pore volume: Cellulose powders with higher crystallinity showed lower moisture uptake at relative humidities below 75%, while at higher humidities the moisture uptake could be associated with filling of the large pore volume of the cellulose powder of highest crystallinity. In conclusion, the structure of cellulose should be thoroughly considered when manufacturing low moisture grades of MCC.

  2. Photoluminescence enhancement from GaN by beryllium doping

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  3. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula; Sharma, Vimal, E-mail: manjula.physics@gmail.com

    2016-05-23

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, Raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  4. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    NASA Astrophysics Data System (ADS)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  5. Macromolecular powder diffraction : structure solution via molecular.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebbler, J.; Von Dreele, R.; X-Ray Science Division

    Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer.more » To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.« less

  6. Influence of synthesis conditions on the crystal structure of the powder formed in the “HfO2 - CeO2/Ce2O3” system

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Menushenkov, A. P.; Khubbutdinov, R. M.; Yastrebtsev, A. A.; Svetogorov, R. D.; Zubavichus, Ya V.; Trigub, A. L.; Sharapov, A. S.; Pisarev, A. A.; Kurilkin, V. V.; Tsarenko, N. A.; Arzhatkina, L. A.

    2017-12-01

    Influence of synthesis conditions (type of atmosphere: reduction or oxidation, annealing temperature) on the chemical composition and structure of the compounds formed in the “HfO2 - CeO2/Ce2O3” system has been investigated by X-ray absorption fine structure spectroscopy combined with Raman spectroscopy, X-ray diffraction and thermogravimetric analysis. It was revealed that isothermal annealing of precursor at temperatures less than 1000°C in air leads to formation of Ce0.5Hf0.5O2 powders with cubic fluorite-type structure (space group Fm-3m). Further increase of annealing temperatures above 1000°C causes decomposition of formed crystal structure into two phases: cubic and monoclinic. Annealing in reduction hydrogen atmosphere causes formation of Ce4+ 2x Ce3+ 2-2x Hf2O7+x compounds with intermediate oxidation state of cerium, where value of x depends on the reducing conditions and treatment parameters. Annealing in vacuum at 1400°C strongly reduces the content of Ce4+ in a powder samples and leads to formation of pyrochlore structure (space group Fd-3m) with predominant +3 oxidation state of cerium.

  7. Preparation and characterization of selenite substituted hydroxyapatite.

    PubMed

    Ma, Jun; Wang, Yanhua; Zhou, Lei; Zhang, Shengmin

    2013-01-01

    Selenite-substituted hydroxyapatite (Se-HA) with different Se/P ratios was synthesized by a co-precipitation method, using sodium selenite (Na2SeO3) as a Se source. Selenium has been incorporated into the hydroxyapatite lattice by partially replacing phosphate (PO4(3-)) groups with selenite (SeO3(2-)) groups. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques reveal that substitutions of phosphate groups by selenite groups cause lower carbonate groups occupying at phosphate sites and change the lattice parameters of hydroxyapatite. The powders obtained are nano-crystalline hydroxyapatite when the Se/P ratios are not more than 0.1. The particle shape of Se-HA has not been altered compared with selenite-free hydroxyapatite but Se-incorporation reduces the crystallite size. The crystallinity was reduced as the Se/P ratios increased until amorphous phase (Se/P=0.3) appeared in the Se-HA powder obtained, and then another crystal phase presented as calcium selenite hydrate (Se/P=10). In addition, the sintering tests show that the Se-HA powders with the Se/P ratio of 0.1 have thermal stability at 900 °C for 2 h; hence they have great potential in the fabrication of bone repair scaffolds. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Innovative approach to produce submicron drug particles by vibrational atomization spray drying: influence of the type of solvent and surfactant.

    PubMed

    Durli, T L; Dimer, F A; Fontana, M C; Pohlmann, A R; Beck, R C R; Guterres, S S

    2014-08-01

    Spray drying is a technique used to produce solid particles from liquid solutions, emulsions or suspensions. Buchi Labortechnik developed the latest generation of spray dryers, Nano Spray Dryer B-90. This study aims to obtain, directly, submicron drug particles from an organic solution, employing this equipment and using dexamethasone as a model drug. In addition, we evaluated the influence of both the type of solvent and surfactant on the properties of the powders using a 3(2) full factorial analysis. The particles were obtained with high yields (above 60%), low water content (below 2%) and high drug content (above 80%). The surface tension and the viscosity were strongly influenced by the type of solvent. The highest powder yields were obtained for the highest surface tension and the lowest viscosity of the drug solutions. The use of ionic surfactants led to higher process yields. The laser diffraction technique revealed that the particles deagglomerate into small ones with submicrometric size, (around 1 µm) that was also observed by scanning electron microscopy. Interaction between the raw materials in the spray-dried powders was verified by calorimetric analysis. Thus, it was possible to obtain dexamethasone submicrometric particles by vibrational atomization from organic solution.

  9. Physicochemical interaction mechanism between nanoparticles and tetrasaccharides (stachyose) during freeze-drying.

    PubMed

    Kamiya, Seitaro; Nakashima, Kenichiro

    2017-12-01

    Nanoparticle suspensions are thermodynamically unstable and subject to aggregation. Freeze-drying on addition of saccharides is a useful method for preventing aggregation. In the present study, tetrasaccharides (stachyose) was employed as an additive. In addition, we hypothesize the interactive mechanism between stachyose and the nanoparticles during freeze-drying for the first time. The mean particle size of the rehydrated freeze-dried stachyose-containing nanoparticles (104.7 nm) was similar to the initial particle size before freeze-drying (76.8 nm), indicating that the particle size had been maintained. The mean particle size of the rehydrated normal-dried stachyose-containing nanoparticles was 222.2 nm. The powder X-ray diffraction of the freeze-dried stachyose-containing nanoparticles revealed a halo pattern. The powder X-ray diffraction of the normally dried stachyose-containing nanoparticles produced mainly a halo pattern and a partial peak. These results suggest an interaction between the nanoparticles and stachyose, and that this relationship depends on whether the mixture is freeze-dried or dried normally. In the case of normal drying, although most molecules cannot move rapidly thereby settling irregularly, some stachyose molecules can arrange regularly leading to some degree of crystallization and potentially some aggregation. In contrast, during freeze-drying, the moisture sublimed, while the stachyose molecules and nanoparticles were immobilized in the ice. After sublimation, stachyose remained in the space occupied by water and played the role of a buffer material, thus preventing aggregation.

  10. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com; Sivaramaiah, G.; Rao, J.L.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) andmore » photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.« less

  11. Nanostructured Co1-xNix(Sb1-yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Stiewe, Christian; Bertini, Luca; Toprak, Muhammet; Christensen, Mogens; Platzek, Dieter; Williams, Simon; Gatti, Carlo; Müller, Eckhard; Iversen, Bo B.; Muhammed, Mamoun; Rowe, Michael

    2005-02-01

    The properties of Te-doped Co(Sb1-yTey)3 and Te-Ni double-doped Co1-xNix(Sb1-yTey)3 nanostructured skutterudites were evaluated by means of x-ray powder diffraction, and transport properties measured on the synthesized samples have been compared with ab initio theoretical modeling. Theoretical optimal dopant contents have been evaluated according to the maximum value of the power factor, calculating the electronic transport properties from the ab initio material band structure using semiclassical Boltzmann transport theory. The samples have been synthesized by chemical alloying with Te substitution for Sb up to 2.5at.% and Ni substitution for Co up to 2.0at.%. X-ray powder diffraction has been performed on all samples to reveal information about phase purity and Rietveld refinement was performed for the phase composition and cell parameter. The thermoelectric properties of the resulting consolidates were investigated in a temperature range from 300to723K using various measurement facilities. A standardization and round robin program was started among the participating evaluation laboratories in order to ensure reliability of the data obtained. The significant reduction in thermal conductivity, when compared to highly annealed CoSb3, could be proved which is caused by the nanostructuring, resulting in a high concentration of grain boundaries. A combination of substitution levels for Ni and Te has been found resulting in the largest ZT value of 0.65 at 680K among unfilled skutterudite materials.

  12. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (αmore » ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.« less

  13. Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1-x)LaxTi(1-x)AlxO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-03-01

    The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.

  14. Additional studies on mixed uranyl oxide-hydroxide hydrate alteration products of uraninite from the palermo and ruggles granitic pegmatites, grafton county, New Hampshire

    USGS Publications Warehouse

    Foord, E.E.; Korzeb, S.L.; Lichte, F.E.; Fitzpatrick, J.J.

    1997-01-01

    Additional studies on an incompletely characterized secondary uranium "mineral" from the Ruggles and Palermo granitic pegmatites, New Hampshire, referred to as mineral "A" by Frondel (1956), reveal a mixture of schoepite-group minerals and related uranyl oxide-hydroxide hydrated compounds. A composite chemical analysis yielded (in wt.%): PbO 4.85 (EMP), UO3 83.5 (EMP), BaO 0.675 (av. of EMP and ICP), CaO 0.167 (av. of EMP and ICP), K2O 2.455 (av. of EMP and ICP), SrO 0.21 (ICP), ThO2 0.85 (ICP), H2O 6.9, ??99.61. Powder-diffraction X-ray studies indicate a close resemblance in patterns between mineral "A" and several uranyl oxide-hydroxide hydrated minerals, including the schoepite family of minerals and UO2(OH)2. The powder-diffraction data for mineral "A" are most similar to those for synthetic UO2.86??1.5H2O and UO2(OH)2, but other phases are likely present as well. TGA analysis of both mineral "A" and metaschoepite show similar weight-loss and first derivative curves. The dominant losses are at 100??C, with secondary events at 400?? and 600??C. IR spectra show the presence of (OH) and H2O. Uraninite from both pegmatites, analyzed by LAM-ICP-MS, shows the presence of Th, Pb, K and Ca.

  15. Crystal structure and low-energy Einstein mode in ErV{sub 2}Al{sub 20} intermetallic cage compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, Michał J., E-mail: mwiniarski@mif.pg.gda.pl; Klimczuk, Tomasz

    Single crystals of a new ternary aluminide ErV{sub 2}Al{sub 20} were grown using a self-flux method. The crystal structure was determined by powder X-ray diffraction measurements and Rietveld refinement, and physical properties were studied by means of electrical resistivity, magnetic susceptibility and specific heat measurements. These measurements reveal that ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet down to 1.95 K with an effective magnetic moment μ{sub eff} =9.27(1) μ{sub B} and Curie-Weiss temperature Θ{sub CW} =−0.55(4) K. The heat capacity measurements show a broad anomaly at low temperatures that is attributed to the presence of a low-energy Einstein mode withmore » characteristic temperature Θ{sub E} =44 K, approximately twice as high as in the isostructural ‘Einstein solid’ VAl{sub 10.1}. - Graphical abstract: A low-energy Einstein mode is observed in a novel intermetallic cage compound ErV{sub 2}Al{sub 20} by specific heat and resistivity measurements. - Highlights: • Single crystals of a new compound ErV{sub 2}Al{sub 20} were grown by self-flux method. • Crystal structure is reported, based on powder x-ray diffraction. • ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet. • Low-energy ‘rattling’ phonon mode (Θ{sub E}=44 K) is found in specific heat measurements.« less

  16. Growth and characterization of ammonium nickel-cobalt sulfate Tutton's salt for UV light applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Santunu; Oliveira, Michelle; Pacheco, Tiago S.; Perpétuo, Genivaldo J.; Franco, Carlos J.

    2018-04-01

    We have obtained a set of sample crystals of the family of Tutton's salt comprise in the isomorphic series with general chemical formula (NH4)2NixCo(1-x) (SO4)2·6H2O, by employing growth from solutions by slow evaporation technique. The samples crystals were characterized by ICP-AES, X-ray powder diffraction analysis, thermogravimetric analysis, UV-Vis-NIR, Raman and FTIR spectroscopy. This type of material has been studied because of its physical and chemical properties not yet understood and they have potential technological applications. Chemical analysis of the samples by ICP-AES method allowed us to investigate the efficiency of the method of growth used. Thermogravimetric analysis provides the information about the thermal stability of the obtained crystals for high temperature applications, and powder X-ray diffraction analysis at ambient and high temperature reveals the structural quality and structural change of the samples respectively. We have used Raman spectroscopy in the range 100-4000 cm-1 and FTIR spectroscopy in the range 400-4000 cm-1 to understand the internal vibrational mode of the octahedral complexes [Ni(H2O)6]2+ and [Co(H2O)6]2+, SO42- and NH4+ tetrahedra. The transmittance of our mixed ammonium nickel cobalt sulfate hexahydrate (ACNSH) crystals is 75% in the UV region, which indicates that they are ideal to use in UV light filters and UV sensors.

  17. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  18. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.

    2007-11-01

    In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.

  20. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  1. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less

  2. Asymmetric band flipping for time-of-flight neutron diffraction data

    DOE PAGES

    Whitfield, Pamela S.; Coelho, Alan A.

    2016-08-24

    Charge flipping with powder diffraction data is known to produce a result more reliably with high-resolution data,i.e.visible reflections at smalldspacings. This data are readily accessible with the neutron time-of-flight technique but the assumption that negative scattering density is nonphysical is no longer valid where elements with negative scattering lengths are present. The concept of band flipping was introduced in the literature, where a negative threshold is used in addition to a positive threshold during the flipping. But, it was not tested with experimental data at the time. Finallly, band flipping has been implemented inTOPAStogether with the band modification of low-densitymore » elimination and tested with experimental powder and Laue single-crystal neutron data.« less

  3. Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)

    NASA Astrophysics Data System (ADS)

    Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji

    2009-01-01

    Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.

  4. Photocatalytic degradation of diethyl phthalate using TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Pooja, E-mail: pooja.singla@thapar.edu; Pandey, O. P., E-mail: pooja.singla@thapar.edu; Singh, K., E-mail: pooja.singla@thapar.edu

    2014-04-24

    TiO{sub 2} nanoparticles predominantly in rutile phase are synthesized by ultrasonication assisted sol-gel method. TiO{sub 2} powder is characterized using X-ray powder diffraction and UV-vis diffuse reflectance. TiO{sub 2} is used as catalyst in photocatalytic degradation of Diethyl Phthalate. TiO{sub 2} exhibits good photocatalytic activity for the degradation of diethyl phthalate.

  5. Powder Handling Device for Analytical Instruments

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)

    2006-01-01

    Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.

  6. Characterization of powdered fish heads for bone graft biomaterial applications.

    PubMed

    Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda

    2013-01-01

    The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.

  7. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  8. Synthesis and characterization of polyurethane/CdS-SiO 2 nanocomposites via ultrasonic process

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhou, Yu-Ming; Nan, Qiu-Li; Ye, Xiao-Yun; Sun, Yan-Qing; Wang, Zhi-Qiang; Zhang, Shi-Ming

    2008-12-01

    In this study, the high-intensity ultrasound was applied in the preparation of chiral polyurethane/CdS-SiO 2 nanocomposites. The polyurethane/CdS-SiO 2 nanocomposites were analyzed by powder X-ray diffraction, thermogravimetric analysis (TGA), TEM and SEM. The results indicated that the heat stability of the nanocomposites was improved in the presence of CdS-SiO 2 core-shell nanoparticles. The infrared emissivity (8-14 μm) study revealed that the nanocomposites possessed much lower infrared values compared with those of the neat polymers and nanoparticles, respectively. A possible mechanism of ultrasonic induced composite reaction was proposed based on the experimental results.

  9. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  10. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  11. Synthesis of galium nitride thin films using sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    Hamid, Maizatul Akmam Ab; Ng, Sha Shiong

    2017-12-01

    In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.

  12. Low-cost synthesis and physical characterization of thieno[3,4-c]pyrrole-4,6-dione-based polymers.

    PubMed

    Berrouard, Philippe; Dufresne, Stéphane; Pron, Agnieszka; Veilleux, Justine; Leclerc, Mario

    2012-09-21

    The improved synthesis of thieno[3,4-c]pyrrole-4,6-dione (TPD) monomers, including Gewald thiophene ring formation, a Sandmeyer-type reaction, and neat condensation with an amine, is presented. This protocol enables faster, cheaper, and more efficient preparation of TPD units in comparison to traditional methods. Furthermore, a series of TPD homo- and pseudohomopolymers bearing various alkyl chains was synthesized via a direct heteroarylation polymerization (DHAP) procedure. UV-visible absorption and powder X-ray diffraction measurements revealed the relationship between the ratio of branched to linear alkyl chains and the optoelectronic properties of the polymers as well as their packing in the solid state.

  13. In-situ microwave irradiation synthesis of ZnO-graphene nanocomposite for high-performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Gunaseelan, R.; Venkatachalam, V.; Raj, A. Antony

    2018-04-01

    In this paper, the ZnO/G nanocomposite was synthesized by facile in-situ microwave irradiation method. The as-prepared ZnO/G composite has been characterized with X-ray powder diffraction. The electrochemical properties of the obtained composite electrode for supercapacitor have been studied by cyclic voltammetry and electrochemical impedance spectra analyses. The ZnO/G nanocomposites showed a good capacitive behavior with a higher specific capacitance of 140.4 F/g at a scan rate of 5 mV/s scan rate in 1M KOH electrolyte. Based on the electrochemical results revealed that the composite electrode is a suitable candidate for supercapacitor applications.

  14. Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices

    NASA Astrophysics Data System (ADS)

    Thakur, Shashi; Gathania, Arvind K.

    2015-10-01

    YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.

  15. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.

  16. Aqueous Combustion Synthesis and Characterization of Nanosized Tetragonal Zirconia Single Crystals

    NASA Astrophysics Data System (ADS)

    Reddy, B. S. B.; Mal, Indrajit; Tewari, Shanideep; Das, Karabi; Das, Siddhartha

    2007-08-01

    Nanocrystalline zirconia powder has been synthesized by an aqueous combustion synthesis route using glycine as fuel and nitrate as oxidizer. The powders have been prepared by using different glycine to zirconyl nitrate molar ratios (G/N). The powders produced with different G/N ratios have been characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to determine the parameters resulting from powder with attractive properties. The theoretical combustion temperature (T ad ) has been calculated for different G/N ratios, and it is correlated with powder characteristics. An attempt is also made to explain the stability of tetragonal zirconia on the basis of extrinsic factors such as the morphology of nanocrystallites. Nanocrystalline metastable tetragonal zirconia (˜25 nm) powder (TZ) with disc-shaped morphology has been produced with a weak agglomeration in fuel deficient mixtures.

  17. Synchrotron powder diffraction on Aztec blue pigments

    NASA Astrophysics Data System (ADS)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  18. 1D hetero-bimetallic regularly alternated 4f-3d coordination polymers based on N-oxide-4,4'-bipyridine (bipyMO) as a linker: photoluminescence and magnetic properties.

    PubMed

    Armelao, Lidia; Belli Dell'Amico, Daniela; Bottaro, Gregorio; Bellucci, Luca; Labella, Luca; Marchetti, Fabio; Mattei, Carlo Andrea; Mian, Federica; Pineider, Francesco; Poneti, Giordano; Samaritani, Simona

    2018-06-13

    Heterotopic divergent ligand N-oxide-4,4'-bipyridine (bipyMO) has been herein exploited for the preparation of hetero-bimetallic coordination polymers where Ln(hfac)3 and M(hfac)2 nodes regularly alternate (Hhfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), bipyMO being able to selectively use its two potential coordination sites to discriminate the metal ions. The synthesis of three coordination polymers, [Ln(hfac)3M(hfac)2(bipyMO)2]n (Ln = Eu, M = Zn, 1; Ln = Eu, M = Cu, 2, Ln = Dy, M = Co, 3), was carried out by reacting the appropriate [M(hfac)2(bipyMO)]n and [Ln(hfac)3] precursors in toluene in the presence of a given stoichiometric amount of bipyMO. The products were characterized by elemental analysis, X-ray powder diffraction, and FTIR spectroscopy. Single crystal X-ray diffraction studies carried out on 2 showed that it was formed by chains containing the hexa-coordinated 3d metal (Cu(hfac)2[N]2) and the octa-coordinated lanthanide (Eu(hfac)3[O]2) nodes, where [N] and [O] stand for the donor atom of the bridging divergent ligand. The X-ray powder diffraction patterns of the three compounds and the comparison of their cell constant values allowed establishing that the derivatives were isotypic. Photoluminescence (PL) studies on microcrystalline sample powders evidenced a bright red emission for 1 with an absolute PL quantum yield of 0.24. The sensitized emission of Eu3+ can be excited in a wide wavelength range, from UV to visible, up to ≈450 nm. Conversely, europium emissions are not detectable in 2 due to the presence of Cu(hfac)2(bipyMO) moieties whose strong absorption overlaps Eu3+ transitions. Magnetic measurements conducted on 3 revealed the presence of a weak ferromagnetic interaction below 2.1 K. An ac susceptibility study highlighted a slow relaxation of the magnetization of 3 with an applied static magnetic field of 0.1 T, which could be equally fitted with a Orbach-direct or a Raman-direct mechanism. No relaxation dynamics was detected without the application of a static magnetic field.

  19. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug.

    PubMed

    Rogers, True L; Johnston, Keith P; Williams, Robert O

    2003-01-01

    The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the purpose of enhancing the dissolution of an insoluble drug. The potential of the SFL particle-engineering technology as a micronization technique for enhancing the dissolution of hydrophobic drugs was demonstrated in this study. The robustness of the micronized SFL powders to withstand stressed storage conditions was shown.

  20. Flexible graphene composites for removal of methylene blue dye-contaminant from water

    NASA Astrophysics Data System (ADS)

    Oliva, J.; Martinez, A. I.; Oliva, A. I.; Garcia, C. R.; Martinez-Luevanos, A.; Garcia-Lobato, M.; Ochoa-Valiente, R.; Berlanga, A.

    2018-04-01

    This work presents the use of flexible graphene composites (FGCs) fabricated by a casting method for the removal of Methylene blue (MB) dye from water. Those FGCs with elastic modulus of 15 MPa had enough mechanical resistance to support the Al2O3:Eu3+ and SrAl2O4:Bi3+ photocatalytic powders. After the incorporation of those powders in the FGCs, their photocatalytic activity was evaluated by monitoring the degradation of MB dye under solar irradiation. Scanning electron microscopy (SEM) images demonstrate that the surface of FGCs with catalysts powders presents pores with sizes in the range of 15-40 μm, which favored the sunlight absorption by scattering effects. Moreover, X-Ray diffraction measurements confirmed the formation of the composites by displacements of their diffraction peaks. The MB dye was completely removed (by photocatalysis and by physical adsorption) from the water after 180 min and 270 min by using the FGCs with Al2O3:Eu3+ and SrAl2O4:Bi3+ catalysts respectively. Hence, the results of photocatalytic activity suggest that our FGCs could be used as an effective support of catalyst powders for the easy removal of dye contaminants in wastewater treatment plants.

  1. Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xingyu; Liu, Xuheng; Zhao, Zhongwei; Liu, Chongwu

    2018-05-01

    Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  3. Characterization of monoclinic crystals in tablets by pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, Shigeo; Momose, Yasunori

    2003-06-18

    The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.

  4. A 2D Metal-Organic Framework with a Flexible Cyclohexane-1,2,5,6-tetracarboxylic Acid Ligand: Synthesis, Characterization and Photoluminescent Property

    PubMed Central

    Wang, Rongming; Zhang, Jian; Li, Lijuan

    2009-01-01

    A novel metal-organic framework, [Zn2(OH)(Hcht)(4,4′-bpy)]n·4nH2O (1) (H4cht = cyclohexane-1,2,4,5-tetracarboxylic acid and 4,4′-bpy = 4,4′-bipyridine), was synthesized by the hydrothermal reaction of Zn(NO3)2.6H2O, 4,4′-bipyridine, and cyclohexane-1,2,4,5-tetracarboxylic acid in the presence of sodium carbonate. The complex was obtained by controlling the ratio of the starting materials and a reaction temperature at 120°C and was characterized by IR, X-ray powder diffraction, thermogravimetric analysis, fluorescent spectrum, and single crystal X-ray diffraction. Single-crystal X-ray investigation reveals that the structure features a two-dimensional framework with novel coordination mode of Hcht ligand and all Hcht ligands exclusively convert to a sole conformation in the complex. IR spectrum reveals the characteristic absorption peaks of asymmetric stretching vibrations that result from the protonated and deprotonated carboxyl groups,. Thermogravimetric analysis shows four clear courses of weight loss, which corresponds to the decomposition of different ligands. Fluorescent spectrum displays that complex 1 is a potential blue-luminescent material. PMID:20383315

  5. Establishment of the structural and enhanced physicochemical properties of the cocrystal-2-benzyl amino pyridine with oxalic acid

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mathammal, R.

    2017-09-01

    We report on a cocrystal of 2-(benzyl amino) pyridine (BAP) with oxalic acid (OA) in the ratio 1:1. The cocrystal was synthesised and single crystals were grown under slow evaporation technique at room temperature. Single crystal X-ray diffraction (SCXRD) analysis determined the structure of the cocrystal formed and it belongs to orthorhombic system with Cc space group. It was also subjected to X-ray Powder diffraction (XRPD) to confirm the cocrystal structure. Hirshfeld surfaces and fingerprints were plotted to analyze the intermolecular interactions. Spectroscopic techniques such as FTIR, FT-Raman and NMR were carried out to identify the functional groups present in the cocrystal. The bioactivity of the cocrystal was revealed from the UV-Vis analysis. Computational Density Functional Theory (DFT) was adopted at the B3LYP/6-31+G** level to calculate the optimized geometrical parameters and the vibrational frequencies of the cocrystal. The non-linear optical property of the cocrystal was revealed from the SHG test. The different types of interactions and delocalization of charge were analysed from Natural Bond Orbital (NBO) calculations. The HOMO-LUMO energies and MEP surface maps confirmed the pharmaceutical importance of the (1:1) BAPOA cocrystal. The cocrystal has been explored for the invitro antioxidant activity and insilico molecular docking studies.

  6. Utilization of fish bone as adsorbent of Fe3+ ion by controllable removal of its carbonaceous component

    NASA Astrophysics Data System (ADS)

    Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.

    2018-05-01

    The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.

  7. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  8. Relative impact of H2O and O2 in the oxidation of UO2 powders from 50 to 300 °C

    NASA Astrophysics Data System (ADS)

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; Roberts, Sarah K.; Nelson, Art J.

    2017-12-01

    The reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO2) powder at elevated temperature was studied by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). Oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice was observed and quantified. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  9. Relative impact of H 2 O and O 2 in the oxidation of UO 2 powders from 50 to 300 °C

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Dai, Zurong; ...

    2017-10-04

    Here, we studied the reaction of water and molecular oxygen with stoichiometric uranium dioxide (i.e. UO 2) powder at elevated temperature by high-resolution x-ray photoelectron spectroscopy (XPS), infrared (IR) spectroscopy, powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). We observed and quatified oxidation resulting from the dissociative chemisorption of the adsorbing molecules and subsequent incorporation into the oxide lattice. Molecular oxygen was found to be a stronger oxidation agent than water at elevated temperatures but not at ambient.

  10. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  11. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  12. Novel synthesis of Ni-ferrite (NiFe{sub 2}O{sub 4}) electrode material for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatachalam, V.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Novel nanocrystalline NiFe{sub 2}O{sub 4} has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe{sub 2}O{sub 4} with high crystallinity. The average crystallite size of NiFe{sub 2}O{sub 4} nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemicalmore » stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.« less

  13. Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process

    NASA Astrophysics Data System (ADS)

    McHenry, M. E.; Majetich, S. A.; Artman, J. O.; Degraef, M.; Staley, S. W.

    1994-04-01

    A process based on the Kratschmer-Huffman carbon arc method of preparing fullerenes has been used to generate carbon-coated cobalt and cobalt carbide nanocrystallites. Magnetic nanocrystallites are extracted from the soot with a gradient field technique. For Co/C composites, structural characterization by x-ray diffraction and high-resolution transmission electron microscopy reveals the presence of a fcc Co phase, graphite, and a minority Co2C phase. The majority of Co nanocrystals exists as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy reveals fine-particle magnetism associated with monodomain Co particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature, TB~=160 K. Below TB, the temperature dependence of the coercivity is given by Hc=Hci[1-(T/TB)1/2], with Hci~=450 Oe.

  14. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  15. Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro

    2012-12-01

    Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.

  16. Suppression of the commensurate magnetic phase in nanosized hübnerite MnW O 4

    DOE PAGES

    Zajdel, P.; G?gor, A.; Pajerowski, D. M.; ...

    2017-05-18

    Magnetic structures of nanosized (20 to 70 nm) powders of MnWO 4 and MnWO 4:Mo were studied using neutron powder diffraction (NPD). Sizes and shapes of the crystallites calculated from anisotropic peak broadening of diffraction peaks were found to be orthogonal parallelepipedlike with the longest edge along the c axis and the shortest along the b axis. SQUID measurements indicate the presence of two magnetic transitions around 8 and 12 K. Rietveld refinement of the NPD data below the magnetic transition was consistent with the presence of an incommensurate spiral-like (ac-AF2) phase. Finally, a commensurate phase AF1 was not observedmore » down to 2.5 K for all of the samples.« less

  17. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  18. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  19. Co-Precipitation Synthesis and Characterization of SrBi2Ta2O9 Ceramic

    NASA Astrophysics Data System (ADS)

    Afqir, Mohamed; Tachafine, Amina; Fasquelle, Didier; Elaatmani, Mohamed; Carru, Jean-Claude; Zegzouti, Abdelouahad; Daoud, Mohamed

    2018-04-01

    Strontium bismuth tantalate (SrBi2Ta2O9) was synthesized by a co-precipitation method. The sample was characterized by x-ray powder diffraction patterns (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results of the dielectric properties are reported at room temperature. No secondary phases were found while heating the powder at 850°C and the pure SrBi2Ta2O9 phase was formed, as revealed by XRD. The characteristic bands for SrBi2Ta2O9 were observed by FTIR at approximately 619 cm-1 and 810 cm-1. SEM micrographs for the sample displayed thin plate-like grains. The grain size was less than 1 μm and the crystallite size of about 24 nm. Dielectric response at room temperature shows that the SrBi2Ta2O9 ceramic has low loss values, and the flattening of the dielectric constant at higher frequencies. The observed Curie temperature is comparable with those reported in the literature.

  20. Synthesis of nanocrystalline Gd2Ti2O7 by combustion process and its structural, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Wariar, P. R. S.

    2017-07-01

    Nanosized pyrochlore material Gadolinium Titanate (Gd2Ti2O7) powder was prepared by modified single step auto-ignition combustion process. The phase formation has been investigated using X-Ray diffraction analysis (XRD). The crystalline pyrochlore phase is further confirmed by the presence of metal-oxygen bonds in the FT-IR spectra. XRD analysis revealed that Gd2Ti2O7 has a cubic structure with Fd3m space group. The combustion powder was sintered to high density (97% of theoretical density) at ˜13000 C for 4h and the surface morphology was examined by Scanning Electron Microscopy (SEM). The optical band gap of Gd2Ti2O7 determined from the absorption spectrum is found to be 4.2 eV, which corresponds to direct allowed transitions. The dielectric measurements were carried out using LCR meter in the radio frequency region at room temperature. The sintered Gd2Ti2O7 has a dielectric constant (Ɛr) = 40 and dielectric loss (tan δ) = 0.01 at 1MHz.

  1. Crystal Chemistry of Pyroaurite from the Kovdor Pluton, Kola Peninsula, Russia, and the Långban Fe-Mn deposit, Värmland, Sweden

    NASA Astrophysics Data System (ADS)

    Zhitova, E. S.; Ivanyuk, G. Yu.; Krivovichev, S. V.; Yakovenchuk, V. N.; Pakhomovsky, Ya. A.; Mikhailova, Yu. A.

    2017-12-01

    Pyroaurite [Mg6Fe2 3+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group R3̅ m, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3 R polytype. The ratio of di- and trivalent cations M 2+: M 3+ was determined as 3.1-3.2 (Kovdor) and 3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600-3500 cm-1) and carbonate groups (absorption bands in the region of 1346-1058 cm-1). Based on the data obtained, the studied samples should be identified as pyroaurite-3 R (hydrotalcite group).

  2. Effect on dielectric, magnetic, optical and structural properties of Nd-Co substituted barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaur, Talwinder; Kumar, Sachin; Bhat, Bilal Hamid; Want, Basharat; Srivastava, A. K.

    2015-06-01

    M-type barium hexaferrite [Ba1- x Nd x Co x Fe12- x O19 ( x = 0.0-0.5) (BNCM)] powders, synthesized using citrate precursor method, were heat treated at 900 °C for 5 h. The pattern of powders, when subjected to X-ray diffraction, shows the formation of M-type hexaferrite phase. The formation of BNCM, from thermogravimetric analysis/differential thermal analysis/derivative thermogravimetry, is observed to be at 440 °C. The presence of two prominent peaks near 430 and 580 cm-1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The M- H curves obtained from vibrating sample magnetometer were used to calculate saturation magnetization ( M S), retentivity ( M R), squareness ration and coercivity ( H C). UV-Vis NIR spectroscopy reveals that band gap depends on size of the crystallites. The dielectric constant is found to be high at low frequency and decreases with increase in frequency. This kind of behaviour is explained on the basis of Koop's phenomenological theory and Maxwell-Wagner theory.

  3. Ce3+-doped LaF3 nanoparticles: Wet-chemical synthesis and photo-physical characteristics "optical properties of LaF3:Ce nanomaterials"

    NASA Astrophysics Data System (ADS)

    Tabatabaee, F.; Sabbagh Alvani, A. A.; Sameie, H.; Moosakhani, S.; Salimi, R.; Taherian, M.

    2014-01-01

    The most effective process parameters were determined to synthesize spherical LaF3 nanoparticles with controllable size based on ethylenediaminetetraacetic acid (EDTA) via co-precipitation technique. Thermogravimetricdifferential thermal analysis, X-ray diffraction, scanning electron microscopy, dynamic light scattering and FT-IR spectroscopy were used to characterize the resulting powders. Detailed investigations revealed that the optimal LaF3 host nano-material was obtained when NH4F was used as a fluoride source in the presence of EDTA at pH = 5. Furthermore, photoluminescence spectra showed an intense double emission peak at 289 and 302 nm for cerium-doped LaF3 nanocrystals excited at 253 nm, which was assigned to the well-known 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+ levels due to luminescence center mechanism. The experimental results indicate that the synthesized LaF3:0.05Ce powders with a band gap of 5.3 eV are promising phosphors for high density scintillators.

  4. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    PubMed Central

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  5. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations.

    PubMed

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-30

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P4₂/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.

  6. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    PubMed

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Large-scale synthesis of ear-like Si{sub 3}N{sub 4} dendrites from SiO{sub 2}/Fe composites and Si powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Feng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Jin Guoqiang

    2008-07-01

    Large-scale ear-like Si{sub 3}N{sub 4} dendrites were prepared by the reaction of SiO{sub 2}/Fe composites and Si powders in N{sub 2} atmosphere. The product was characterized by field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results reveal that the product mainly consists of ear-like Si{sub 3}N{sub 4} dendrites with crystal structures, which have a length of several microns and a diameter of 100-200 nm. Nanosized ladder-like Si{sub 3}N{sub 4} was also obtained when changing the Fe content in the SiO{sub 2}/Fe composites. The Si{sub 3}N{sub 4} nanoladders have a length of hundreds nanometers to several micronsmore » and a width of 100-300 nm. The ear-like Si{sub 3}N{sub 4} dendrites are formed from a two-step growth process, the formation of inner stem structures followed by the epitaxial growth of secondary branches.« less

  8. A study of ferromagnetic signals in SrTiO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, P.; Des Roches, B.; Crandles, D. A.

    It has been suggested that ferromagnetism may be a universal feature of nanoparticles related to particle size. We study this claim for the case of commercially produced SrTiO{sub 3} nanoparticles purchased from Alfa-Aesar. Both loosely-packed nanoparticle samples and pellets formed using uniaxial pressure were studied. Both loose and pressed samples were annealed in either air or in vacuum of 5×10{sup −6} Torr at 600, 800 and 1000°C. Then x-ray diffraction and SQUID measurements were made on the resulting samples. It was found that annealed loose powder samples always had a linear diamagnetic magnetization versus field response, while their pressed pelletmore » counterparts exhibit a ferromagnetic hysteresis component in addition to the linear diamagnetic signal. Williamson-Hall analysis reveals that the particle size in pressed pellet samples increases with annealing temperature but does not change significantly in loose powder samples. The main conclusion is that the act of pressing pellets in a die introduces a spurious ferromagnetic signal into SQUID measurements.« less

  9. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  10. M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Biing-Chiau; Selvam, TamilSelvi; Tsai, Miao-Hsin

    2016-11-15

    A series of 1-D double-zigzag (([M(papx){sub 2}(H{sub 2}O){sub 2}](ClO{sub 4}){sub 2}){sub n}; M=Mn, x=s (1), x=o (3); M=Co, x=s (4), x=o (5); M=Ni, x=s (6), x=o (7)) and 2-D polyrotaxane ([Mn(paps){sub 2}(ClO{sub 4}){sub 2}]{sub n} (2)) frameworks were synthesized by reactions of M(ClO{sub 4}){sub 2} (M=Mn, Co, and Ni) with papx (paps, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenylthioether; papo, N,N’-bis(pyridylcarbonyl)-4,4’-diaminodiphenyl ether), which have been isolated and structurally characterized by X-ray diffraction. Based on powder X-ray diffraction (PXRD) experiments, heating the double-zigzag frameworks underwent structural transformation to give the respective polyrotaxane ones. Moreover, grinding the solid samples of the respective polyrotaxanes in the presence of moisturemore » also resulted in the total conversion to the original double-zigzag frameworks. In this study, we have successfully extended studies to Mn{sup II}, Co{sup II}, and Ni{sup II} frameworks from the previous Zn{sup II}, Cd{sup II}, and Cu{sup II} ones, and interestingly such structural transformation is able to be proven experimentally by powder and single-crystal X-ray diffraction studies as well. - Graphical abstract: 1-D double-zigzag and 2-D polyrotaxane frameworks of M(II)-papx (x=s, o; M=Mn, Co, Ni) frameworks can be interconverted by heating and grinding in the presence of moiture, and such structural transformation has be proven experimentally by powder and single-crystal X-ray diffraction studies.« less

  11. Chemical Reduction of Nd 1.85 Ce 0.15 CuO 4− δ Powders in Supercritical Sodium Ammonia Solutions

    DOE PAGES

    Dias, Yasmin; Wang, Hui; Zhou, Haiqing; ...

    2015-01-01

    Nd 1.85 Ce 0.15 CuO 4− δ powders are chemically reduced in supercritical sodium ammonia solutions from room temperature to 350°C. The crystallographic structure of the reduced powders is investigated from Rietveld refinement of X-ray powder diffraction. The atomic positions are maintained constant within experimental errors while temperature factors of all atoms increase significantly after the chemical treatments, especially of Nd/Ce atoms. The ammonothermally reduced Nd 1.85 Ce 0.15 CuO 4− δ powders show diamagnetic below 24 K which is contributed to the lower oxygen content and higher temperature factors of atoms in the treated compound. Themore » ammonothermal method paves a new way to reduce oxides in supercritical solutions near room temperature.« less

  12. Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys

    NASA Technical Reports Server (NTRS)

    Nash, P.; Higgins, G. T.; Dillinger, N.; Hwang, S. J.; Kim, H.

    1989-01-01

    Mechanical alloying is being investigated as a processing route for the production of aluminide intermetallics. This program involves powder production and characterization, consolidation and thermal treatments and determination of microstructure-property relationships. An attritor mill is being used to produce powder in lots up to 1000 grams and the processing parameters are being systematically varied to establish the optimum milling conditions. The mill is being instrumented to generate data related to the processing to provide a basis for theoretical modeling. Powder is being characterized using thermal analysis, optical and electron microscopy and X-ray diffraction. Particle size distributions and powder density are being determined. Consolidation of the powder is being approached in several different ways including, cold isostatic pressing, sintering, extrusion and hot pressing. The results of the program so far will be presented and future directions discussed.

  13. Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.

    PubMed

    An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao

    2008-01-01

    The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.

  14. Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography

    PubMed Central

    Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik

    2013-01-01

    Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437

  15. X-ray diffraction, spectroscopic and mechanical studies on potential organic NLO materials of metaNitroaniline and N-3-Nitrophenyl Acetamide single crystals

    NASA Astrophysics Data System (ADS)

    Senthil, S.; Madhavan, J.

    2015-02-01

    In the present paper, attempts were made to grow good quality metaNitroaniline (mNA) and N-3-Nitrophenyl (3-NAA) single crystals. The lattice parameter values from the Powder X-ray diffraction pattern confirms that mNA belongs to orthorhombic crystal system with the unit cell parameter values of a = 6.501 Å, b = 19.330 Å and c = 5.082 Å with space group Pbc21. Similarly the powder XRD data indicates that 3-NAA crystal retained its monoclinic structure with lattice parameter values a = 9.762 Å, b =13.287 Å, c =13.226 Å, and β = 102.99°. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform infrared spectroscopy technique. The SHG efficiency of mNA and 3NAA was determined by Kurtz and Perry powder technique. The Optical absorption study confirms the suitability of the crystals for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester.

  16. Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro

    2018-01-01

    Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.

  17. Mechanically activated synthesis of PZT and its electromechanical properties

    NASA Astrophysics Data System (ADS)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  18. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    NASA Astrophysics Data System (ADS)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  19. The Effect of Time, Temperature and Composition on Boron Carbide Synthesis by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Hadian, A. M.; Bigdeloo, J. A.

    2008-02-01

    To minimize free carbon residue in the boron carbide (B4C) powder, a modified sol-gel process is performed where the starting materials as boric acid and citric acid compositions are adjusted. Because of boron loss in the form of B2O2(g) during the reduction reaction of the stoichiometric starting composition, the final B4C powders contain carbon residues. Thus, an excess H3BO3 is used in the reaction to compensate the loss and to obtain stoichiometric powders. Parameters of production have been determined using x-ray diffraction analysis and particle size analyses. The synthesized B4C powder using an excess boric acid composition shows no trace of carbon.

  20. Controlling the sol–gel process of nano-crystalline lithium-mica glass-ceramic by its chemical composition and synthesis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohidifar, M.R., E-mail: tohidifar@znu.ac.ir; Alizadeh, P.; Aghaei, A.R.

    2015-01-15

    This paper aims to explore the impact of the parameters such as pH of the system, refluxing temperature, water quantity and chemical composition on the sol–gel synthesis of lithium-mica glass-ceramic nano-powder. The synthesis process was accomplished using two chemical composition formula (Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} and LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2}). X-ray diffraction, Brunauer–Emmett–Teller surface area measurement and scanning electron microscopy techniques were applied to evaluate a variety of as-synthesized samples. Consequently, a transparent homogeneous sol was obtained under the conditions as pH ≤ 4, synthesis temperature ≤ 50 °C, and mol ratio of water to chemicals ≤more » 2. The prepared nano-powders under such conditions were in the range of 60–100 nm. The results also revealed that the mica glass-ceramics prepared based on the composition Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} possessed finer powders due to their slow hydrolysis process. Moreover, any reduction in the stoichiometric deviation of lithium mica (x) leads to acquiring finer powders. - Highlights: • A transparent homogeneous sol leads to prepare nanopowders in the range of 60–100 nm. • The particles synthesized at lower temperatures possess finer sizes. • The acquired product which is prepared with excessive water offers larger sizes. • Any reduction in stoichiometric deviation leads to acquiring finer powders. • Taking synthesis composition as Li{sub (1+x)}Mg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6.5x}F{sub 2} offers finer powders.« less

Top