Sample records for powder mixes comprising

  1. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  2. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  3. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  4. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  5. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  6. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  7. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  8. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  10. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  12. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  13. Modeling of mixing processes: Fluids, particulates, and powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino, J.M.; Hansen, S.

    Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is foundmore » that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.« less

  14. Magnetic Properties of Amorphous Fe-Si-B Powder Cores Mixed with Pure Iron Powder

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Jun; Nam, Seul Ki; Kim, Kyu-Sung; Yoon, Sung Chun; Sohn, Keun-Yong; Kim, Mi-Rae; Sul Song, Yong; Park, Won-Wook

    2012-10-01

    Amorphous Fe-Si-B alloy was prepared by melt-spinning, and then the ribbons were pulverized and ball-milled to make the amorphous powder of ˜25 µm in size. Subsequently those were mixed with pure iron powders with an average particle size of 3 µm, and 1.5 wt % water glass diluted by distilled water at the ratio of 1:2. The powder mixtures were cold compacted at 650 MPa in toroid die, and heat treated at 430-440 °C under a nitrogen atmosphere for 1 h and 30 min, respectively. The soft magnetic properties of powder core were investigated using a B-H analyzer and a flux meter at the frequency range of ˜100 kHz. The microstructure was observed using scanning electron microscope (SEM), and the density of the core was measured using the principle of Archimedes. Based on the experimental results, the amorphous powder mixed with pure iron powder showed the improved powder compactability, which resulted in the increased permeability and the reduced core loss.

  15. Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability.

    PubMed

    Nakamura, Shohei; Yamaguchi, Saori; Hiraide, Rikiha; Iga, Kumi; Sakamoto, Takatoshi; Yuasa, Hiroshi

    2017-10-01

    We investigated the effectiveness of using Carr's flowability index (FI) and practical angle of internal friction (Φ) as indexes for setting the target Mg-St mixing time needed for preparing tablets with the target physical properties. We used FI as a measure of flowability under non-loaded conditions, and Φ as a measure of flowability under loaded conditions for pharmaceutical powders undergoing direct compression with varying concentrations of Mg-St and mixing times. We evaluated the relationship between Mg-St mixing conditions and pharmaceutical powder flowability, analyzed the correlation between the physical properties of the tablets (i.e., tablet weight variation, drug content uniformity, hardness, friability, and disintegration time of tablets prepared using the pharmaceutical powder), and studied the effect of Mg-St mixing conditions and pharmaceutical powder flowability on tablet properties. Mg-St mixing time highly correlated with pharmaceutical powder FI (R 2  = 0.883) while Mg-St concentration has low correlation with FI, and FI highly correlated with the physical properties of the tablet (R 2 values: weight variation 0.509, drug content variation 0.314, hardness 0.525, friability 0.477, and disintegration time 0.346). Therefore, using pharmaceutical powder FI as an index could enable prediction of the physical properties of a tablet without the need for tableting, and setting the Mg-St mixing time by using pharmaceutical powder FI could enable preparation of tablets with the target physical properties. Thus, the FI of the intermediate product (i.e., pharmaceutical powder) is an effective index for controlling the physical properties of the finished tablet.

  16. Method for producing a compressed body of mix-powder for ceramic

    NASA Technical Reports Server (NTRS)

    Okawa, K.

    1983-01-01

    Under the invented method, a compressed body of mix powder for ceramic is produced by mixing and stirring several raw powder materials with mixing liquid such as water, and, in the process of sending the resulted viscous material pressurized at 5 kg/cm to 7 kg/cm, using 1.5 to 2 times the pressure to filter and dehydrate, adjusting the water content to 10 to 20%.

  17. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  18. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  19. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  20. Continuous manufacturing of extended release tablets via powder mixing and direct compression.

    PubMed

    Ervasti, Tuomas; Simonaho, Simo-Pekka; Ketolainen, Jarkko; Forsberg, Peter; Fransson, Magnus; Wikström, Håkan; Folestad, Staffan; Lakio, Satu; Tajarobi, Pirjo; Abrahmsén-Alami, Susanna

    2015-11-10

    The aim of the current work was to explore continuous dry powder mixing and direct compression for manufacturing of extended release (ER) matrix tablets. The study was span out with a challenging formulation design comprising ibuprofen compositions with varying particle size and a relatively low amount of the matrix former hydroxypropyl methylcellulose (HPMC). Standard grade HPMC (CR) was compared to a recently developed direct compressible grade (DC2). The work demonstrate that ER tablets with desired quality attributes could be manufactured via integrated continuous mixing and direct compression. The most robust tablet quality (weight, assay, tensile strength) was obtained using high mixer speed and large particle size ibuprofen and HPMC DC2 due to good powder flow. At low mixer speed it was more difficult to achieve high quality low dose tablets. Notably, with HPMC DC2 the processing conditions had a significant effect on drug release. Longer processing time and/or faster mixer speed was needed to achieve robust release with compositions containing DC2 compared with those containing CR. This work confirms the importance of balancing process parameters and material properties to find consistent product quality. Also, adaptive control is proven a pivotal means for control of continuous manufacturing systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material.

    PubMed

    Yamaga, Yoshio; Kanatani, Mitsugu; Nomura, Shuichi

    2015-01-01

    The purpose of this study was to evaluate the distribution of bubbles, degree of mixing, flowability and mechanical strength of powder-liquid reline material by manually and with a rotation-revolution (planetary) mixer, and to determine the usefulness of a rotation-revolution mixer for this application. Powder-liquid reline material (Mild Rebaron, GC, Tokyo, Japan) was mixed with a powder to liquid ratio of 1:0.62 according to the manufacturer's instruction. Two methods were used to mix it: mixed by manually ("manual-mixing") and automatically with a rotation-revolution mixer (Super Rakuneru Fine, GC, Tokyo, Japan; "automatic-mixing"). Disc-shaped specimens, 30 mm in diameter and 1.0mm in thickness, were used to observe the distribution of bubbles in at 10× magnifications. Flowability tests were carried out according to the JIS T6521 for denture base hard reline materials. A three point bending test was carried out by a universal testing machine. Elastic modulus and flexural stress at the proportional limit were calculated. A median of 4 bubbles and inhomogeneous were observed in manual-mixed specimens. However, no bubbles and homogeneous were observed in automatic-mixed specimens. Flowability was within the JIS range in all mixing conditions and did not differ significantly across conditions. The elastic modulus was the same for manual-mixed and automatic-mixed specimens. On the other hand, the flexural stress at the proportional limit differed significantly between manual-mixed and automatic-mixed specimens. The results confirm that rotation-revolution mixer is useful for mixing powder-liquid reline material. Automatic-mixing may be recommended for clinical practice. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Mixing order of glidant and lubricant – Influence on powder and tablet properties

    PubMed Central

    Pingali, Kalyana; Mendez, Rafael; Lewis, Daniel; Michniak-Kohn, Bozena; Cuitino, Alberto; Muzzio, Fernando

    2014-01-01

    The main objective of the present work was to study the effect of mixing order of Cab-O-Sil (CS) and magnesium stearate (MgSt) and microlayers during mixing on blend and tablet properties. A first set of pharmaceutical blend containing Avicel PH200, Pharmatose and micronized acetaminophen was prepared with three mixing orders (mixing order-1: CS added first; mixing order-2: MgSt added first; mixing order-3: CS and MgSt added together). All the blends were subjected to a shear rate of 80 rpm and strain of 40, 160 and 640 revolutions in a controlled shear environment resulting in nine different blends. A second set of nine blends was prepared by replacing Avicel PH200 with Avicel PH102. A total of eighteen blends thus prepared were tested for powder hydrophobicity, powder flow, tablet weight, tablet hardness and tablet dissolution. Results indicated that powder hydrophobicity increased significantly for mixing order-1. Intermediate hydrophobic behavior was found for mixing order-3. Additionally, mixing order 1 resulted in improved powder flow properties, low weight variability, higher average tablet weight and slow drug release rates. Dissolution profiles obtained were found to be strongly dependent not only on the mixing order of flowing agents, but also on the strain and the resulting hydrophobicity. PMID:21356286

  3. Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder

    PubMed Central

    Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M

    2015-01-01

    The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723

  4. Reconstituted yogurt from yogurt cultured milk powder mix has better overall characteristics than reconstituted yogurt from commercial yogurt powder.

    PubMed

    Song, Lijie; Aryana, Kayanush J

    2014-10-01

    For manufacture of commercial yogurt powder, yogurt has to go through a drying process, which substantially lowers the yogurt culture counts, so the potential health benefits of the yogurt culture bacteria are reduced. Also, upon reconstitution, commercial yogurt powder does not taste like yogurt and has an off-flavor. The objective was to study the microbial, physicochemical, and sensory characteristics of reconstituted yogurt from yogurt cultured milk powder (YCMP) mix and reconstituted yogurt from commercial yogurt powder (CYP). The CYP reconstituted yogurt was the control and YCMP mix reconstituted yogurt was the treatment. Microbial and physicochemical characteristics of the CYP reconstituted yogurt and YCMP mix reconstituted yogurt were analyzed daily for the first week and then weekly for a period of 8 wk. Sensory consumer testing of CYP reconstituted yogurt and YCMP mix reconstituted yogurt was conducted with 100 consumers. At 56 d, YCMP mix reconstituted yogurt had 5 log cfu/mL higher counts of Streptococcus thermophilus than the control (CYP reconstituted yogurt). Also, Lactobacillus bulgaricus counts of YCMP mix reconstituted yogurt were 6.55 log cfu/mL at 28 d and were 5.35 log cfu/mL at 56 d, whereas the CYP reconstituted yogurt from 28 d onwards had a count of <10 cfu/mL. The YCMP mix reconstituted yogurt also had significantly higher apparent viscosity and sensory scores for appearance, color, aroma, taste, thickness, overall liking, consumer acceptability, and purchase intent than CYP reconstituted yogurt. Overall, YCMP mix reconstituted yogurt had more desirable characteristics than CYP reconstituted yogurt. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  6. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  7. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  8. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  9. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  10. [Study of the strength of compacts of mixed dry binders consisting of powdered cellulose and directly compressible lactose].

    PubMed

    Muzíková, J; Hájková, P; Vinklarová, S

    2004-07-01

    The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.

  11. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  12. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  13. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  14. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  15. Compositions Comprising Nickel-Titanium, Methods Manufacture Thereof and Articles Comprising the Same

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2016-01-01

    Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650.degree. F. to about 1900.degree. F. at a pressure of about 3 Torr to about 5 Kg-f/cm.sup.2 for a time period of about 10 minutes to about 5 hours; and quenching the article.

  16. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed.

    PubMed

    Shalash, Ahmed O; Elsayed, Mustafa M A

    2017-11-01

    The potential of fine excipient materials to improve the performance of carrier-based dry powder inhalation mixtures is well acknowledged. The mechanisms underlying this potential are, however, open to question till date. Elaborate understanding of these mechanisms is a requisite for rational rather than empirical development of ternary dry powder inhalation mixtures. While effects of fine excipient materials on drug adhesion to and detachment from surfaces of carrier particle have been extensively investigated, effects on other processes, such as carrier-drug mixing, capsule/blister/device filling, or aerosolization in inhaler devices, have received little attention. We investigated the influence of fine excipient materials on the outcome of the carrier-drug mixing process. We studied the dispersibility of micronized fluticasone propionate particles after mixing with α-lactose monohydrate blends comprising different fine particle concentrations. Increasing the fine (D < 10.0 μm) excipient fraction from 1.84 to 8.70% v/v increased the respirable drug fraction in the excipient-drug mixture from 56.42 to 67.80% v/v (p < 0.05). The results suggest that low concentrations of fine excipient particles bind to active sites on and fill deep crevices in coarse carrier particles. As the concentration of fine excipient particles increases beyond that saturating active sites, they fill the spaces between and adhere to the surfaces of coarse carrier particles, creating projections and micropores. They thereby promote deagglomeration of drug particles during carrier-drug mixing. The findings pave the way for a comprehensive understanding of contributions of fine excipient materials to the performance of carrier-based dry powder inhalation mixtures.

  17. Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders

    NASA Astrophysics Data System (ADS)

    Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei

    2018-03-01

    A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.

  18. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  19. Characterization of manganese?gallium mixed oxide powders

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Sánchez Huidobro, Paula; Panizza, Marta; Resini, Carlo; Gallardo-Amores, José M.; Busca, Guido

    2003-11-01

    MnGa mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type α-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn 3O 4 and of β-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type α-Mn 2O 3 solid solutions containing up to 20% at. Ga have been observed.

  20. Assessment of phosphate binding by sevelamer carbonate powder for oral suspension mixed in foods.

    PubMed

    Hanus, Martin; Zhorov, Eugene; Brommage, Deborah; Plone, Melissa; Holmes-Farley, Stephen Randall

    2012-01-01

    This study investigated mixing sevelamer carbonate powder with foods and beverages other than water. Food samples, including applesauce, oatmeal, chicken, protein powder, scrambled eggs, ginger ale, and diet ginger ale, were subjected to an in vitro assay, and the difference in the amount of phosphate bound between samples pre-exposed to foods and samples where the drug was exposed to foods concurrently was determined Under these assay conditions, pre-exposure to sevelamer carbonate powder had no effect on the ability to bind phosphate. Clinical testing is needed to further evaluate this finding.

  1. Quantitative Determination of Citric and Ascorbic Acid in Powdered Drink Mixes

    ERIC Educational Resources Information Center

    Sigmann, Samuella B.; Wheeler, Dale E.

    2004-01-01

    A procedure by which the reactions are used to quantitatively determine the amount of total acid, the amount of total ascorbic acid and the amount of citric acid in a given sample of powdered drink mix, are described. A safe, reliable and low-cost quantitative method to analyze consumer product for acid content is provided.

  2. Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders

    NASA Astrophysics Data System (ADS)

    Aydin, Huseyin; Alomair, Mashael; Wong, Wilson; Vo, Phuong; Yue, Stephen

    2017-02-01

    In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers's hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the `matrix' powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.

  3. Catalytic oxidation of toluene: comparative study over powder and monolithic manganese-nickel mixed oxide catalysts.

    PubMed

    Duplančić, Marina; Tomašić, Vesna; Gomzi, Zoran

    2017-07-05

    This paper is focused on development of the metal monolithic structure for total oxidation of toluene at low temperature. The well-adhered catalyst, based on the mixed oxides of manganese and nickel, is washcoated on the Al/Al 2 O 3 plates as metallic support. For the comparison purposes, results observed for the manganese-nickel mixed oxide supported on the metallic monolith are compared with those obtained using powder type of the same catalyst. Prepared manganese-nickel mixed oxides in both configurations show remarkable low-temperature activity for the toluene oxidation. The reaction temperature T 50 corresponding to 50% of the toluene conversion is observed at temperatures of ca. 400-430 K for the powder catalyst and at ca. 450-490 K for the monolith configuration. The appropriate mathematical models, such as one-dimensional (1D) pseudo-homogeneous model of the fixed bed reactor and the 1D heterogeneous model of the metal monolith reactor, are applied to describe and compare catalytic performances of both reactors. Validation of the applied models is performed by comparing experimental data with theoretical predictions. The obtained results confirmed that the reaction over the monolithic structure is kinetically controlled, while in the case of the powder catalyst the reaction rate is influenced by the intraphase diffusion.

  4. Effects of Process Parameters and Cryotreated Electrode on the Radial Overcut of Aisi 304 IN SiC Powder Mixed Edm

    NASA Astrophysics Data System (ADS)

    Bhaumik, Munmun; Maity, Kalipada

    Powder mixed electro discharge machining (PMEDM) is further advancement of conventional electro discharge machining (EDM) where the powder particles are suspended in the dielectric medium to enhance the machining rate as well as surface finish. Cryogenic treatment is introduced in this process for improving the tool life and cutting tool properties. In the present investigation, the characterization of the cryotreated tempered electrode was performed. An attempt has been made to study the effect of cryotreated double tempered electrode on the radial overcut (ROC) when SiC powder is mixed in the kerosene dielectric during electro discharge machining of AISI 304. The process performance has been evaluated by means of ROC when peak current, pulse on time, gap voltage, duty cycle and powder concentration are considered as process parameters and machining is performed by using tungsten carbide electrodes (untreated and double tempered electrodes). A regression analysis was performed to correlate the data between the response and the process parameters. Microstructural analysis was carried out on the machined surfaces. Least radial overcut was observed for conventional EDM as compared to powder mixed EDM. Cryotreated double tempered electrode significantly reduced the radial overcut than untreated electrode.

  5. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  6. The influence of high shear mixing on ternary dry powder inhaler formulations.

    PubMed

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Phase quantification by X-ray photoemission valence band analysis applied to mixed phase TiO2 powders

    NASA Astrophysics Data System (ADS)

    Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.

    2017-11-01

    A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.

  8. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  9. Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.

    2016-04-01

    Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.

  10. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.

    PubMed

    Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R

    2010-09-15

    Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Sonocatalytic degradation of azo fuchsine in the presence of the Co-doped and Cr-doped mixed crystal TiO2 powders and comparison of their sonocatalytic activities.

    PubMed

    Wang, Jun; Lv, Yanhui; Zhang, Zhaohong; Deng, Yingqiao; Zhang, Liquan; Liu, Bin; Xu, Rui; Zhang, Xiangdong

    2009-10-15

    In order to degrade some pollutants effectively under ultrasonic irradiation, the Co-doped and Cr-doped mixed crystal TiO(2) powders, with high sonocatalytic activity, were prepared as sonocatalyst. The Co-doped and Cr-doped mixed crystal TiO(2) powders as sonocatalyst were prepared through sol-gel and heat-treated methods from tetrabutylorthotitanate, and then were characterized by XRD and TG-DTA technologies. In order to compare and evaluate the sonocatalytic activity of the Co-doped and Cr-doped mixed crystal TiO(2) powders, the low power ultrasound was as an irradiation source and the azo fuchsine was chosen as a model compound to be degraded. The degradation process was investigated by UV-vis, TOC, ion chromatogram and HPLC techniques. The results indicated that the sonocatalytic activity of Cr-doped mixed crystal TiO(2) powder was higher than that of Co-doped and undoped mixed crystal TiO(2) powder during the sonocatalytic degradation of the azo fuchsine in aqueous solution. These results may be of great significance for driving sonocatalytic method to treat non- or low-transparent industrial wastewaters.

  12. Defect Control of the WC Hardmetal by Mixing Recycled WC Nano Powder and Tungsten Powder

    NASA Astrophysics Data System (ADS)

    Hur, Man Gyu; Shin, Mi Kyung; Kim, Deug Joong; Yoon, Dae Ho

    2018-03-01

    Tungsten metal powder was added to recycled WC nano powder to control the macro and micro defects of WC hardmetal. The macro and micro defects caused by the excess carbon in the recycled WC powder were markedly removed after the addition of tungsten metal powder ranging from 2 to 6 wt%. The density and hardness of the WC hardmetals also increased due to the removal of defects after adding the tungsten metal powder. The density and hardness of WC hardmetals with the addition of W metal powder ranged from 8 to 12 wt% increased linearly as the W metal powder content increased due to the formation of a new (Co- and W-rich WC) composition. The surface morphology of the WC hardmetals was observed via field emission scanning electron microscopy, and a quantitative elemental analysis was conducted via X-ray fluorescence spectrometry and energy dispersive X-ray analysis. The density and hardness of the WC hardmetals were respectively measured using an analytical balance and a Vikers hardness tester. The effect on the defects in the recycled WC hardmetals through the addition of the tungsten metal powder was discussed in detail.

  13. Powder collection apparatus/method

    DOEpatents

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  14. Powder collection apparatus/method

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.

  15. Influence of debittered, defatted fenugreek seed powder and flaxseed powder on the rheological characteristics of dough and quality of cookies.

    PubMed

    Metwal, Nirmala; Jyotsna, R; Jeyarani, T; Venkateswara Rao, G

    2011-06-01

    A functional ingredient mix (FIM) comprising debittered and defatted fenugreek seed powder (70%) and flaxseed powder (30%) was used in cookies. Ash, fat and protein, dough development time, resistance to extension and peak viscosity values increased as the level of FIM increased from 10 to 30% in the blend. Beyond 20% of FIM substitution, the quality characteristics of cookies were adversely affected. Use of soya lecithin produced a significant improvement in the overall quality of the cookies with 20% FIM. Linolenic acid and total dietary fiber content of the cookies with 20% FIM and lecithin contained four times the amount of linolenic acid (2.3%) and double the amount of dietary fiber (13.04%) when compared with the control cookies (0.5% and 6.22%) respectively. Surface scanning electron microscopy of cookies with different levels of FIM from 10 to 30% showed that there was a disruption in the matrix.

  16. [Impact of directly compressed auxiliary materials on powder property of fermented cordyceps powder].

    PubMed

    Chen, Li-Hua; Yue, Guo-Chao; Guan, Yong-Mei; Yang, Ming; Zhu, Wei-Feng

    2014-01-01

    To investigate such physical indexes as hygroscopicity, angle of repose, bulk density, fillibility of compression of mixed powder of directly compressed auxiliary materials and fermented cordyceps powder by using micromeritic study methods. The results showed that spray-dried lactose Flowlac100 and microcrystalline cellulose Avicel PH102 had better effect in liquidity and compressibility on fermented cordyceps powder than pregelatinized starch. The study on the impact of directly compressed auxiliary materials on the powder property of fermented cordyceps powder had guiding significant to the research of fermented cordyceps powder tablets, and could provide basis for the development of fermented cordyceps powder tablets.

  17. The Quantitative Determination of Food Dyes in Powdered Drink Mixes: A High School or General Science Experiment

    ERIC Educational Resources Information Center

    Sigmann, Samuella B.; Wheeler, Dale E.

    2004-01-01

    The development of a simple spectro photometric method to quantitatively determine the quantity of FD&C color additives present in powdered drink mixes, are focused by the investigations. Samples containing single dyes of binary mixtures of dyes can be analyzed using this method.

  18. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Process for preparing titanium nitride powder

    DOEpatents

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  20. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  1. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  2. Effect of mixing method on the mixing degree during the preparation of triturations.

    PubMed

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Komada, Fusao; Kawabata, Haruno; Ohtani, Michiteru; Saitoh, Yukiya; Kariya, Satoru; Suzuki, Hiroshi; Uchino, Katsuyoshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we investigated the effects of mixing methods on mixing degree during the preparation of trituration with a mortar and pestle. The extent of powder dilution was set to 4 to 64 fold in the experiments. We compared the results obtained by using two methods: (1) one-step mixing of powders after addition of diluents and (2) gradual mixing of powders after addition of diluents. As diluents, we used crystallized lactose and powdered lactose for the preparation of trituration. In the preparation of 64-fold trituration, an excellent degree of mixing was obtained, with CV values of less than 6.08%, for both preparation methods and for the two kinds of diluents. The mixing of two kinds of powders whose distributions of particle sizes were similar resulted in much better degree of mixing, with CV values of less than 3.0%. However, the concentration of principal agents in 64-fold trituration was reduced by 20% due to the adsorption of dye to the apparatus. Under conditions in which a much higher dilution rate and/or much better degree of dilution was required, it must be necessary to dilute powders with considering their physicality and to determine the concentrations of principal agents after the mixing.

  3. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  4. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  5. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  6. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  7. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  8. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    NASA Astrophysics Data System (ADS)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  9. Effect of particle size on mixing degree in dispensation.

    PubMed

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  10. Assessing the effects of different dielectrics on environmentally conscious powder-mixed EDM of difficult-to-machine material (WC-Co)

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Sharma, Rajiv Kumar

    2016-12-01

    Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.

  11. Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products.

    PubMed

    Ingle, Prashant D; Christian, Roney; Purohit, Piyush; Zarraga, Veronica; Handley, Erica; Freel, Keith; Abdo, Saleem

    2016-01-01

    Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22-90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85-88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.

  12. Dielectric properties and microstructure of sintered BaTiO3 fabricated by using mixed 150-nm and 80-nm powders with various additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Kang, Jae Won; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2015-04-01

    Recently, the use of small-sized BaTiO3 particles for ultra-thin MLCC research has increased as a method for minimizing the dielectric layer's thickness in thick film process. However, when particles smaller than 100 nm are used, the reduced particle size leads to a reduced dielectric constant. The use of nanoparticles, therefore, requires an increase in the amount of additive used due to the increase in the specific surface area, thus increasing the production cost. In this study, a novel method of coating 150-nm and 80-nm BaTiO3 powders with additives and mixing them together was employed, taking advantage of the effect obtained through the use of BaTiO3 particles smaller than 100 nm, to conveniently obtain the desired dielectric constant and thermal characteristics. Also, the microstructure and the dielectric properties were evaluated. The additives Dy, Mn, Mg, Si, and Cr were coated on a 150-nm powder, and the additives Dy, Mn, Mg, and Si were coated on 80-nm powder, followed by mixing at a ratio of 1:1. As a result, the microstructure revealed grain formation according to the liquid-phase additive Si; additionally, densification was well realized. However, non-reducibility was not obtained, and the material became a semiconductor. When the amount of added Mn in the 150-nm powder was increased to 0.2 and 0.3 mol%, insignificant changes in the microstructure were observed, and the bulk density after mixing was found to have increased drastically in comparison to that before mixing. Also, non-reducibility was obtained for certain conditions. The dielectric property was found to be consistent with the densification and the grain size. The mixed composition #1-0.3 had a dielectric constant over 2000, and the result somewhat satisfied the dielectric constant temperature dependency for X6S.

  13. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  14. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  15. Method of producing high purity zirconia powder from zircon powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funahashi, T.; Uchimura, R.; Oguchi, Y.

    A method is described of producing a zirconia powder from zirconia containing SiO/sub 2/, comprising the steps of: preparing a raw material mixture comprising the zircon powder containing the SiO/sub 2/ and a powdery carbon-containing material such that the mole ratio of C, which is contained in the carbon-containing material and does not gasify at temperatures below 100/sup 0/C. in a nonoxidizing atmosphere, to SiO/sub 2/ contained in the zircon powder is in the range from 0.4 to 2.0; and subjecting the raw material mixture to a desiliconizing heat treatment in a nonoxidizing atmosphere of which the presence is notmore » higher than 0.6 atm, the desiliconizing heat treatment being a combination of a first-stage heat treatment which is performed at a temperature in the range from 1200/sup 0/ to 1550/sup 0/C. for separating silica from the zircon powder and a second-stage heat treatment which is performed at a higher temperature in the range from above 1550/sup 0/C. to 2000/sup 0/C. for completely converting silica in the mixture under heat treatment into gaseous SiO and dissipating the gaseous SiO, wherein the raw material mixture is subjected to the desiliconizing heat treatment in the form of at least one lump whose bulk density is in the range from 0.7 to 2.0.« less

  16. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-06

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.

  17. Method for forming biaxially textured articles by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  18. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  19. Bimodal metal micro-nanopowders for powder injection molding

    NASA Astrophysics Data System (ADS)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  20. Device for preparing combinatorial libraries in powder metallurgy.

    PubMed

    Yang, Shoufeng; Evans, Julian R G

    2004-01-01

    This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented.

  1. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  2. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  3. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, Raghu N.; Ginley, David S.

    1995-01-01

    A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.

  4. Evaluation of the degree of mixing of combinations of dry syrup, powder, and fine granule products in consideration of particle size distribution using near infrared spectrometry.

    PubMed

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Matsumoto, Mika; Ohtani, Michiteru; Hayano, Shuichi; Fukami, Toshiro; Tomono, Kazuo

    2012-01-01

    We used near infrared (NIR) spectroscopy to evaluate the degree of mixing of blended dry syrup (DS) products whose particle sizes are not specified in the Revised 16th Edition of the Japanese Pharmacopoeia, and also evaluated the degree of mixing when powder products or fine granule products were added to DS products. The data obtained were used to investigate the relationship between the particle size distributions of the products studied and the degree of mixing. We found that the particle size distribution characteristics of the 15 DS products studied can be broadly classified into 5 types. Combinations of frequently prescribed products were selected to represent 4 of the 5 particle size distribution types and were blended with a mortar and pestle. The coefficient of variation (CV) decreased as the percent mass of Asverin® Dry Syrup 2% (Asverin-DS) increased in blends of Periactin® Powder 1% (Periactin) and Asverin-DS, indicating an improved degree of mixing (uniformity). In contrast, in blends of Periactin and Mucodyne® DS 33.3%, mixing a combination at a 1:1 mass ratio 40 times resulted in a CV of 20%. Other mixing frequencies and mass ratios resulted in a CV by 50% to 70%, indicating a very poor degree of mixing (poor uniformity). These results suggest that when combining different DSs, or a DS with a powder or fine granule product, the blending obtained with a mortar and pestle improves as the particle size distributions of the components approach each other and as the ranges of the distributions narrow.

  5. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  6. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  7. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  8. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1995-10-31

    A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.

  9. Pharmacokinetics and Histopathological Findings of Chemoembolization Using Cisplatin Powder Mixed with Degradable Starch Microspheres in a Rabbit Liver Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Takeshi; Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Nishiofuku, Hideyuki

    PurposeThe purpose of this study is to evaluate the pharmacokinetics and histopathological findings of transarterial chemoembolization (TACE) using cisplatin powder mixed with degradable starch microspheres (DSM) (Cis/DSM-TACE) compared with cisplatin arterial infusion (Cis-AI).Materials and MethodsEighteen rabbits with VX2 liver tumors were divided into two groups: Cis/DSM-TACE (n = 9) and Cis-AI (n = 9) groups. In the Cis/DSM-TACE group, a mixture of cisplatin powder and DSM was injected until stasis of hepatic arterial flow was achieved. In the Cis-AI group, cisplatin solution was infused.ResultsThe platinum concentrations in VX2 tumors in the Cis/DSM-TACE group at 24 and 72 h were significantly elevated compared with those inmore » the Cis-AI group (P = .016 and .019, respectively). There were no significant differences in the platinum concentrations in plasma. Histopathological examination revealed the presence of several microspheres inside the tumors at 1 h, which completely disappeared at 24 h. Tumor cell apoptosis at 1 h in the Cis/DSM-TACE group was more frequently observed compared with that in the Cis-AI group (P = .006).ConclusionsTACE using cisplatin powder mixed with DSM provides a higher drug concentration in tumors, thereby achieving stronger antitumor effects compared with arterial infusion of cisplatin solution.« less

  10. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Teng, Jie; Yu, Jin-gang; Tan, Ao-shuang; Fu, Ding-fa; Zhang, Hui

    2018-01-01

    Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.

  11. Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xingyu; Liu, Xuheng; Zhao, Zhongwei; Liu, Chongwu

    2018-05-01

    Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction.

  12. Free radical interactions between raw materials in dry soup powder.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-12-01

    Interactions at the free radical level were observed between dry ingredients in cauliflower soup powder, prepared by dry mixing of ingredients and rapeseed oil, which may be of importance for quality deterioration of such dry food products. The free radical concentrations of cauliflower soup powder, obtained by electron spin resonance (ESR) spectroscopy, rapidly become smaller during storage (40°C and relative humidity of 75%) than the calculated concentrations of free radicals based on the free radical concentrations of the powder ingredients used to make the soup powder and stored separately under similar conditions. Similarly, free radical concentrations decreased faster when any combination of two powder ingredients (of the three major ingredients of the soup powder) were mixed together and stored at 50°C for 1week than when each powder component was stored separately. Furthermore, yeast extract powder was found to play a key role when free radical interactions between powder ingredients occurred. The incubation of rapeseed oil with powder ingredients at 45°C for 24h, indicated the ability of cauliflower powder to increase the concentration of hydroperoxides in rapeseed oil, while yeast extract powder was found to prevent this hydroperoxide formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of Embedding Cu-Graphene Hybrid Powder into 2-Phase In-Cu Solders on Its Suitability as Metallic Thermal Interface Material

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Jain, Aman; Somaiah, Nalla; Narayanan, P. Ramesh; Kumar, Praveen

    2018-05-01

    The effect of embedding Cu-graphene hybrid powder, namely "graphene nano-sheet Cu" (GNS-Cu) powder, into In-40 vol.% Cu solder alloy on the electrical and mechanical properties of In-Cu solder is investigated. GNS-Cu hybrid powders were prepared by mixing reduced graphene oxide powders and CuSO4·5H2O, followed by reduction of the mixture with hydrazine. Subsequently, In-Cu solders with GNS-Cu powders were prepared using a 2-step process, comprising liquid phase sintering (LPS) of In and Cu powders followed by accumulative roll bonding (ARB). During ARB, the GNS-Cu powders were embedded as distinct layers into In-Cu composite solders. Electrical conductivity of the GNS-Cu embedded solders increased by > 20% as compared to pure In-Cu solders processed through the same combination of LPS-ARB steps. The yield strength of In-Cu solder increased by only 10% with the addition of GNS-Cu powders and thus retained the moderate strength often associated with pure In-Cu composite solders. Moreover, the thermal conductivity of GNS-Cu-embedded solders was estimated theoretically to increase by > 60%. These promising findings suggest that GNS-Cu-embedded In-Cu solders can be suitable for next-generation metallic thermal interface material and package-level interconnect applications.

  14. Viscous lubricant composition comprising mixed esters and a silicone oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, P.J.

    1981-03-03

    A viscous composition capable of substantially retaining its viscosity within a temperature range of from 5*-30* C. Comprising as its components diisopropyl adipate, a mixture of cetyl and stearyl octanoates, glyceryl tribehenate, silicone oil and a surfactant is described.

  15. Microgravity acoustic mixing for particle cloud combustors

    NASA Technical Reports Server (NTRS)

    Pla, Frederic; Rubinstein, Robert I.

    1990-01-01

    Experimental and theoretical investigations of acoustic mixing procedures designed to uniformly distribute fuel particles in a combustion tube for application in the proposed Particle Cloud Combustion Experiment (PCCE) are described. Two acoustic mixing methods are investigated: mixing in a cylindrical tube using high frequency spinning modes generated by suitably phased, or quadrature speakers, and acoustic premixing in a sphere. Quadrature mixing leads to rapid circumferential circulation of the powder around the tube. Good mixing is observed in the circulating regions. However, because axial inhomogeneities are necessarily present in the acoustic field, this circulation does not extend throughout the tube. Simultaneous operation of the quadrature-speaker set and the axial-speaker was observed to produce considerably enhanced mixing compared to operation of the quadrature-speaker set alone. Mixing experiments using both types of speakers were free of the longitudinal powder drift observed using axial-speakers alone. Vigorous powder mixing was obtained in the sphere for many normal modes: however, in no case was the powder observed to fill the sphere entirely. Theoretical analysis indicated that mixing under steady conditions cannot fill more than a hemisphere except under very unusual conditions. Premixing in a hemisphere may be satisfactory; otherwise, complete mixing in microgravity might be possible by operating the speaker in short bursts. A general conclusion is that acoustic transients are more likely to produce good mixing than steady state conditions. The reason is that in steady conditions, flow structures like nodal planes are possible and often even unavoidable. These tend to separate the mixing region into cells across which powder cannot be transferred. In contrast, transients not only are free of such structures, they also have the characteristics, desirable for mixing, of randomness and disorder. This conclusion is corroborated by mixing

  16. Structural comparison of sintering products made of "TiC + Ti" composite powders and "Ti + C" powder mixtures

    NASA Astrophysics Data System (ADS)

    Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.

    2017-12-01

    In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.

  17. The Efficacy of Calcium Hydroxide Powder mixed with 0.2% Chlorhexidine Digluconate or mixed with Normal Saline as Intracanal Medicament in the Treatment of Apical Periodontitis.

    PubMed

    Menakaya, Ifeoma N; Adegbulugbe, Ilemobade C; Oderinu, Olabisi H; Shaba, Olufemi P

    2015-08-01

    To compare the efficacy of calcium hydroxide powder mixed with 0.2% chlorhexidine digluconate or mixed with normal saline as intracanal medicament in the treatment of apical periodontitis. Subjects were 55 in number aged 17 to 60 years. Two-visit conventional root canal treatment was performed on 70 teeth. The teeth were divided by randomization (balloting) into two groups: control group and experimental group, each with 35 teeth treated with calcium hydroxide mixed with normal saline or with 0.2% chlorhexidine digluconate as intracanal medicament respectively. All treated teeth were evaluated clinically and radiographically for signs and symptom of periapical infection at specified periods postoperatively. Overall efficacy of medicament was rated based on quality guidelines for endodontic treatment by the European Society of Endodontology 2006. A postoperative favorable outcome of 97.1% in the control group and 94.3% in the experimental group was observed at 6-month review. This difference was not statistically significant (p > 0.05). The use of normal saline or 0.2% chlorhexidine digluconate to mix calcium hydroxide used as intracanal medicament during endodontic treatment resulted in high postoperative favorable outcomes. Efficacy of 0.2% chlorhexidine digluconate as a vehicle for mixing calcium hydroxide as an intracanal medicament in the treatment of apical periodontitis is comparable to the efficacy of calcium hydroxide mixed with normal saline.

  18. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, John E.; Korth, Gary E.

    1986-01-01

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block.

  19. The suppression of enhanced bitterness intensity of macrolide dry syrup mixed with an acidic powder.

    PubMed

    Ishizaka, Toshihiko; Okada, Sachie; Takemoto, Eri; Tokuyama, Emi; Tsuji, Eriko; Mukai, Junji; Uchida, Takahiro

    2007-10-01

    The aim of the present study was to identify a medicine which strongly enhanced the bitterness of clarithromycin dry syrup (CAMD) when administered concomitantly and to develop a method to suppress this enhanced bitterness. The bitterness enhancement was evaluated not only by gustatory sensation tests but also using pH and taste sensor measurements of the mixed sample. A remarkable bitterness enhancement was found when CAMD was mixed with the acidic powder L-carbocysteine. The acidic pH (pH 3.40) of the suspension made from these two preparations, seemed to be due to enhanced release of clarithromycin caused by the dissolution of the alkaline polymer film-coating. Several methods for preventing this bitterness enhancement were investigated. Neither increasing the volume of water taken with the mixture, nor changing the ratio of CAMD:L-carbocysteine in the mixture, were effective in reducing the bitterness intensity of the CAMD/L-carbocysteine mixture. The best way to achieve taste masking was to first administer CAMD mixed with chocolate jelly, which has a neutral pH, followed by the L-carbocysteine suspension. Similar results were obtained for the bitterness suppression of azithromycin fine granules with L-carbocysteine. The chocolate jelly will be useful for taste masking of bitter macrolide drug formulations, when they need to be administered together with acidic drug formulations.

  20. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, J.E.; Korth, G.E.

    1985-06-27

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

  1. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  2. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging

    USDA-ARS?s Scientific Manuscript database

    This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...

  3. Synthesis of nanoscale magnesium diboride powder

    DOE PAGES

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB 2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB 2 particles have a grain size in themore » 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less

  4. Synthesis of nanoscale magnesium diboride powder

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-01

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.

  5. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  6. Development of a Rational Design Space for Optimizing Mixing Conditions for Formation of Adhesive Mixtures for Dry-Powder Inhaler Formulations.

    PubMed

    Sarkar, Saurabh; Minatovicz, Bruna; Thalberg, Kyrre; Chaudhuri, Bodhisattwa

    2017-01-01

    The purpose of the present study was to develop guidance toward rational choice of blenders and processing conditions to make robust and high performing adhesive mixtures for dry-powder inhalers and to develop quantitative experimental approaches for optimizing the process. Mixing behavior of carrier (LH100) and AstraZeneca fine lactose in high-shear and low-shear double cone blenders was systematically investigated. Process variables impacting the mixing performance were evaluated for both blenders. The performance of the blenders with respect to the mixing time, press-on forces, static charging, and abrasion of carrier fines was monitored, and for some of the parameters, distinct differences could be detected. A comparison table is presented, which can be used as a guidance to enable rational choice of blender and process parameters based on the user requirements. Segregation of adhesive mixtures during hopper discharge was also investigated. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Judkins, Roddie R.; Armstrong, Timothy R.; Adcock, Kenneth D.

    2010-11-09

    A method for treating a porous item constructed of metal powder, such as a powder made of Series 400 stainless steel, involves a step of preheating the porous item to a temperature of between about 700 and 900.degree. C. degrees in an oxidizing atmosphere and then sintering the body in an inert or reducing atmosphere at a temperature which is slightly below the melting temperature of the metal which comprises the porous item. The thermal stability of the resulting item is enhanced by this method so that the item retains its porosity and metallic characteristics, such as ductility, at higher (e.g. near-melting) temperatures.

  8. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  9. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  10. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Evaluation of Factors Affecting Powdered Drug Reconstitution in Microgravity

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant; Johnston, Smith; Marshburn, Tom

    1999-01-01

    Owing to the high cost of transporting mass into space, and the small volume available for equipment in the Space Shuttle Orbiter and the International Space Station, refrigeration space is extremely limited. For this reason, there exists strong motivation for transporting certain drugs in powdered form so that they do not require refrigeration. When needed, the powdered drug will be mixed with saline to obtain a liquid form that may be injected intravenously. While this is a relatively simple task in a 1-G environment, there are some difficulties that may be encountered in 0-G. In non-accelerated spaceflight, gravitational and inertial forces are eliminated allowing other smaller forces, such as capillary forces and surface tension, to dominate the behavior of fluids. For instance, water slowly ejected from a straw will tend to form a sphere, while fluid in a container will tend to wet the inside surface forming a highly rounded meniscus. Initial attempts at mixing powdered drugs with saline in microgravity have shown a tendency toward forming foamy emulsions instead of the desired homogeneous solution. The predominance of adhesive forces between the drug particles and the interface tensions at the gas/liquid and solid/liquid interfaces drastically reduce the rate of deaggregation of the drug powder and also reduce the rate of absorption of saline by the powder mass. In addition, the capillary forces cause the saline to wet the inside of the container, thus trapping air bubbles within the liquid. The rate of dissolution of a powder drug is directly proportional to the amount of surface area of the solid that is exposed to liquid solvent. The surface area of drug that is in contact with the liquid is greatly reduced in microgravity and, as a result, the dissolution rate is reduced as well. The KC-135 research described here was aimed at evaluating the extent to which it is possible to perform drug reconstitution in the weightlessness of parabolic flight using

  12. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  13. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Method and article of manufacture corresponding to a composite comprised of ultra nonacrystalline diamond, metal, and other nanocarbons useful for thermoelectric and other applications

    DOEpatents

    Gruen, Dieter M.

    2010-05-18

    One provides (101) disperse ultra-nanocrystalline diamond powder material that comprises a plurality of substantially ordered crystallites that are each sized no larger than about 10 nanometers. One then reacts (102) these crystallites with a metallic component. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also substantially preserving the thermal conductivity behavior of the disperse ultra-nanocrystalline diamond powder material. The reaction process can comprise combining (201) the crystallites with one or more metal salts in an aqueous solution and then heating (203) that aqueous solution to remove the water. This heating can occur in a reducing atmosphere (comprising, for example, hydrogen and/or methane) to also reduce the salt to metal.

  15. Preparation of powders suitable for conversion to useful .beta.-aluminas

    DOEpatents

    Morgan, Peter E. D.

    1982-01-01

    A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION

  16. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  17. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  18. Effects of mixing technique on bubble formation in alginate impression material.

    PubMed

    McDaniel, Thomas F; Kramer, Robert T; Im, Francis; Snow, Dallin

    2013-01-01

    Previous studies have found that variations in mixing technique can influence the porosity content of alginate impression material. The aim of this study was twofold: determine whether bubble formation in alginate is influenced by the sequence of water/powder addition prior to mixing, and to compare 4 different mixing techniques. Manual spatulation, an automated spinning bowl, a centrifugal mixer and a vacuum mixer were evaluated for the resulting porosity in the set alginate. It was found that adding powder first, versus water first, made no difference in the bubble content using the 3 automated mixing techniques (P = 0.714). However, porosity was significantly less for powder-first trials using manual spatulation (P < 0.05). It was also found that surface porosity in the resulting impressions was significantly less for centrifugal and vacuum mixing when compared to manual spatulation, while internal porosity was significantly less for centrifugal mixing compared to all other mixing techniques (P < 0.05). The centrifugal mixing and vacuum mixing techniques required the least amount of mixing time.

  19. Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater

    NASA Astrophysics Data System (ADS)

    Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief

    2018-02-01

    Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.

  20. Method for low temperature preparation of a noble metal alloy

    DOEpatents

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  1. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    PubMed Central

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  2. Food powders flowability characterization: theory, methods, and applications.

    PubMed

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  3. Analysis of copper mixed kerosene servotherm in EDM of Monel 400™

    NASA Astrophysics Data System (ADS)

    Anandakumar, P. A.; Molla, Baya; Biruke, Fisha; Aravind, S.

    2017-05-01

    Powder mixed electro discharge machine process (PMEDM) is a hybrid machine process where a conductive powders is mixed to the dielectric fluid to facilitate effective machining of advanced material. This present study focused on performance of copper mixed kerosene servotherm as dielectric medium in EDM of Monel 400TM. The ratio of kerosene sevothermis 75 : 25. The copper powder was mixed with dielectric medium of kerosene servothem of 6g, 8g and 10 g respectively. This mixture was analyzed using different current rate of 8 amps, 10 amps and 12 amps to know the performance characteristics by using material removal rate, tool wear rate, diameter overcut, surface finish and dimensional accuracy. Based on the experimental investigation it is concluded that copper powder of 10g with 10 amps performed well than that of all other parameters.

  4. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  5. 21 CFR 520.2520g - Trichlorfon, phenothiazine, and piperazine dihydrochloride powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Specifications. Each 54.10 grams (1.91 ounces) of water dispersible powder contains 9.10 grams of trichlorfon, 6... (Oxyuris equi). (3) Limitations. Mix powder and vial contents together in warm water to form suspension... pregnancy is not recommended. Surgery or any severe stress should be avoided for at least 2 weeks before or...

  6. 21 CFR 520.2520g - Trichlorfon, phenothiazine, and piperazine dihydrochloride powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Specifications. Each 54.10 grams (1.91 ounces) of water dispersible powder contains 9.10 grams of trichlorfon, 6... (Oxyuris equi). (3) Limitations. Mix powder and vial contents together in warm water to form suspension... pregnancy is not recommended. Surgery or any severe stress should be avoided for at least 2 weeks before or...

  7. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  8. Optimization of Premix Powders for Tableting Use.

    PubMed

    Todo, Hiroaki; Sato, Kazuki; Takayama, Kozo; Sugibayashi, Kenji

    2018-05-08

    Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.

  9. Development of a Raman chemical imaging detection method for authenticating skim milk powder

    USDA-ARS?s Scientific Manuscript database

    This research demonstrated that Raman chemical imaging coupled with a simple image classification algorithm can be used to detect multiple chemical adulterants in skim milk powder. Ammonium sulfate, dicyandiamide, melamine, and urea were mixed into the milk powder as chemical adulterants in the conc...

  10. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  11. Morphology and structural development of reduced anatase-TiO{sub 2} by pure Ti powder upon annealing and nitridation: Synthesis of TiO{sub x} and TiO{sub x}N{sub y} powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolokang, A.S., E-mail: Sylvester.Bolokang@transnet.net; DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001; Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark 0127

    2015-02-15

    It is well known that nitriding of titanium is suitable for surface coating of biomaterials and in other applications such as anti-reflective coating, while oxygen-rich titanium oxynitride has been applied in thin film resistors and photocatalysis. Thus in this work anatase was reduced with pure titanium powder during annealing in argon. This was done to avoid any metallic contamination and unwanted residual metal doping. As a result, interesting and different types of particle morphology were synthesized when the pre-milled elemental anatase and titanium powders were mixed. The formation of metastable face centred cubic and monoclinic titanium monoxide was detected bymore » the X-ray diffraction technique. The phases were confirmed by energy dispersive X-ray spectroscopy analysis. Raman analysis revealed weak intensity peaks for samples annealed in argon as compared to those annealed under nitrogen. - Graphical abstract: Display Omitted - Highlights: • Reaction of TiO{sub 2} and Ti induced metastable FCC and monoclinic TiO{sub x}. • Compositions of mixed powder were prepared from the unmilled and pre-milled powders. • Nitridation of TiO{sub x} yielded TiO{sub x}N{sub y} phase. • Mixed morphology was observed on all three powder samples.« less

  12. Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.

    2017-01-01

    Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.

  13. Detection of azo dyes in curry powder using a 1064-nm dispersive hyperspectral Raman imaging system

    USDA-ARS?s Scientific Manuscript database

    Curry powder is extensively used in Southeast Asian dishes. It has been subject to adulteration by azo dyes. This study used a newly developed 1064 nm dispersive hyperspectral Raman imaging system for detection of metanil yellow and Sudan-I contamination in curry powder. Curry powder was mixed with ...

  14. Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology

    DOEpatents

    Dixon, George P.; Martin, Joe A.; Thompson, Don

    1998-01-01

    A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.

  15. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  16. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  17. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE PAGES

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...

    2016-11-02

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  18. Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei

    Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less

  19. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  20. Explosively driven low-density foams and powders

    DOEpatents

    Viecelli, James A [Orinda, CA; Wood, Lowell L [Simi Valley, CA; Ishikawa, Muriel Y [Livermore, CA; Nuckolls, John H [Danville, CA; Pagoria, Phillip F [Livermore, CA

    2010-05-04

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  1. Mixing method and apparatus

    DOEpatents

    Green, Norman W.

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  2. Screening of adulterants in powdered foods and ingredients using line-scan Raman chemical imaging.

    USDA-ARS?s Scientific Manuscript database

    A newly developed line-scan Raman imaging system using a 785 nm line laser was used to authenticate powdered foods and ingredients. The system was used to collect hyperspectral Raman images in the range of 102–2865 wavenumber from three representative food powders mixed with selected adulterants eac...

  3. Study on Raman spectral imaging method for simultaneous estimation of ingredients concentration in food powder

    USDA-ARS?s Scientific Manuscript database

    This study investigated the potential of point scan Raman spectral imaging method for estimation of different ingredients and chemical contaminant concentration in food powder. Food powder sample was prepared by mixing sugar, vanillin, melamine and non-dairy cream at 5 different concentrations in a ...

  4. IEA/Annex II Powder Characterization Cooperative Program

    DTIC Science & Technology

    1989-06-01

    entatie Sampling of Particks with a Spinning Riffler. Stochastic ModeL Powder Technol., v. 19, 1978. p. 227-233 6. CHARLIER, R., and GOOSSENS , P. J. D...12222 St. Paul, Mix 55144 1 ATTN: Prof. W. A. Lanfo d ATTN: R. E. Richards State University of New York at Stony Brook, Department of Technology

  5. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    NASA Astrophysics Data System (ADS)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  6. Application of probiotics and different size of sodium bicarbonate powders for feedlot sheep fattening

    NASA Astrophysics Data System (ADS)

    Supratman, Hery; Ramdani, Diky; Kuswaryan, Sondy; Budinuryanto, Dwi Cipto; Joni, I. Made

    2018-02-01

    This paper reports the use of probiotic and sodium bicarbonate in the diet of feedlot sheep. Probiotics from Heriyaki powder can function as forge preservative and sodium bicarbonate as an artificial rumen buffer that helps to stabilize pH levels in sheep's stomach. The objectives of this formulation is to improve the rumen function, feed efficiency and reduce the risk of acidosis leading to a significant increase of average daily gain (ADG, gram/head/day) of feedlot sheep. Heriyaki probiotic liquid was prepared by fermenting beans mixed with sugarcane molasses while Heriyaki powder was obtained by mixing the Heriyaki probiotic liquid with rice hull powder and additional molasses sugarcane in anaerobic condition for 5 days. The powder was then applied for preparing whole maize silage 0.5 wt% in anaerobic condition for 7 days before feeding. Meanwhile, the feed concentrate contained acid buffer of sodium bicarbonate powder at different doses and sizes [0.35 wt% commercial size (T1), 0.18 wt% mesh -400 (T2) and 0.35 wt% mesh -400 (T3)]. The diet treatment was a total mixed ratio containing 1 kg silage and 700 g concentrate. The experiment was conducted to compare the effect of 3 different treatments (T1, T2 and T3) on dry matter intake (DMI, g/day), ADG and feed conversion ratio (FCR) of feedlot sheep for 2 months fattening, where each treatment was applied into a flock colony for 6 heads of sheep with three flock replications involving 54 heads of sheep in total for all the treatments. The results showed no difference (P>0.05) in DMI, ADG and FCR of feedlot sheep confirming the use of low-dose and finer sodium bicarbonate powder in T2 yield a targeted ADG of > 110 g but being more efficient than other treatments.

  7. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-05-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only powder.

  8. Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder.

    PubMed

    Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira

    2007-08-01

    Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.

  9. Soft wheat quality characteristics required for making baking powder biscuits

    USDA-ARS?s Scientific Manuscript database

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  10. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Process for applying a superconductive powder to a wide variety of substrates

    NASA Astrophysics Data System (ADS)

    Hooker, Matthew W.; Wise, Stephanie A.; Tran, Sang Q.

    1992-12-01

    A fine superconducting powder such as YBa2Cu3O(7-x), wherein x is less than one, is blended into a liquid mixture comprising an epoxy resin and a thinner. This liquid mixture with the blended superconducting powder is coated onto a substrate. Next, the thinner is evaporated and the remaining coating cured, resulting in a coating of cured epoxy resin having superconducting powder suspended therein. This coating exhibits the Meissner effect, i.e., it expels a magnetic flux which protects the substrate from external magnetic interference. Since the coated substrate need only be heated for evaporation and curing at relatively low temperatures compared to firing, the superconducting coating can be applied to a wide variety of different materials.

  12. Method for molding ceramic powders using a water-based gel casting

    DOEpatents

    Janney, Mark A.; Omatete, Ogbemi O.

    1991-07-02

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product any be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  13. Cohering Behavior of Coal Ash with Pellet Scrap Powder and Relationship Between Coal Ash and Kiln Ringing

    NASA Astrophysics Data System (ADS)

    Yang, Yong-bin; Zhang, Yan; Zhong, Qiang; Jiang, Tao; Li, Qian; Xu, Bin

    The occurrence of different ringing behaviors in oxidized pellet kiln for two kinds of coal (A and B) with similar properties, is difficult to explain based on the relationship between kiln ringing and coal properties. In this paper, the interaction of coal ash with pellet scrap powder was considered by studying the cohering behavior of powders consisting of them. The results showed that the cohering briquette strength of pellet scrap powder increased considerably when mixed with a small amount of coal ash; a maximum could be reached when the mass percent ratio of coal ash was 1.5%; the strength of powder mixed with coal B ash was always higher in same firing system. This obviously illustrated that coal B caused a more serious ringing problem. The relevant mechanism was that the stronger reactivity of coal B ash made cohering briquette have a more perfect crystallization and a more compact structure.

  14. The use of glass powder in making batako

    NASA Astrophysics Data System (ADS)

    Nursyamsi, N.; Indrawan, I.

    2018-02-01

    Along with the increase in construction materials, innovation is needed to lessen the use of them, and one of them is by using cement [1]. In this research, it is reduced by glass powder; the reason for using it as the substitution of cement is that some chemical elements in cement are similar to those in glass powder such as SiO2, A12o3, Fe2O3, and CaO. The glass powder used was the one who passed sieve no. 100 and was hampered in sieve no. 200. It passed sieve no. 200 with its composition of 0%, 10%, 15%, 20%, 25%, and 30% from the volume of the use of cement. The specimen would treat within 28 days before the testing of compressive strength, water absorption, and tensile strength [2]. The variation which produced optimum result would mix with the foaming agent as the material for reducing the weight of the specimen. After that, the test of compressive strength, water absorption, and tensile strength on the installment of batako walls were done. The data analyzed by using SNI 02-0349-1989[3] reference about concrete brick for wall installment. The variation of 20% of glass powder passing sieve no. 200 gave optimum result. A specimen of the variation on glass powder of 20% which passed sieve no. 200 and the foaming agent was higher than the compressive strength of the specimen which used glass powder substitution of 0% of passing sieve no. 200 and foaming agent. The compressive strength of batako walls which used the batako construction with glass powder substitution of 20% of passing sieve no. 200 and the foaming agent was also higher than the compressive strength of the assaying object which used glass powder substitution of 0% of passing sieve no. 200 and foaming agent.

  15. Simultaneous plate forming and hydriding of La(Fe, Si)13 magnetocaloric powders

    NASA Astrophysics Data System (ADS)

    Yang, Nannan; You, Caiyin; Tian, Na; Zhang, Yue; Leng, Haiyan; He, Jun

    2018-04-01

    In this work, we propose a way to simultaneously realize the plate forming and hydriding of La(Fe, Si)13 powders by mixing hydride MgNiYHx and solder powders Sn3.0Ag0.5Cu. Under the annealing of the green compact, the hydriding of La(Fe, Si)13 was realized through absorbing the released hydrogen from the metallic hydride MgNiYHx. The Curie temperature of La(Fe, Si)13 alloy increased from 213 K to 333 K and hysteresis reduced from 3.3 J/kg·K to 1.33 J/kg·K. Due to the bonding of Sn3.0Ag0.5Cu powders, the mechanical strength of the composite compact was highly improved in comparison to the compact of La(Fe, Si)13 powders alone.

  16. Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Tae; Kim, Dong Won; Kim, Soo Hyung; Kim, Chang Kee; Choi, Yoon Jeong

    2017-09-01

    Nickel (Ni) materials with a thickness of a few hundred nm were homogeneously coated on the surfaces of aluminum (Al) powders by an electroless plating process. The Ni-coated Al powders show characteristic interfacial structures mixed of Ni, Al and O instead of densely packed Al oxide at the surface. The explosion test of the Ni-coated Al powders utilizing flame ignition showed that the powders had a 3.6 times enhanced pressurization rate of 405 kPa/ms compared to 111 kPa/ms of uncoated Al powders. It was found that this is due to a feasible diffusion of oxygen atoms into the Al powders through the thin and rough interfacial layers present at the Ni/Al interface. These results clearly indicate that nano-sized Ni film introduced instead of surface oxide acts as a very profitable layer to achieve efficient combustion behaviors by a rapid oxidation of Al powders.

  17. Intravenous Fluid Mixing in Normal Gravity, Partial Gravity, and Microgravity: Down-Selection of Mixing Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Miller, Fletcher J.

    2008-01-01

    The missions envisioned under the Vision for Space Exploration will require development of new methods to handle crew medical care. Medications and intravenous (IV) fluids have been identified as one area needing development. Storing certain medications and solutions as powders or concentrates can both increase the shelf life and reduce the overall mass and volume of medical supplies. The powders or concentrates would then be mixed in an IV bag with Sterile Water for Injection produced in situ from the potable water supply. Fluid handling in microgravity is different than terrestrial settings, and requires special consideration in the design of equipment. This document describes the analyses and down-select activities used to identify the IV mixing method to be developed that is suitable for ISS and exploration missions. The chosen method is compatible with both normal gravity and microgravity, maintains sterility of the solution, and has low mass and power requirements. The method will undergo further development, including reduced gravity aircraft experiments and computations, in order to fully develop the mixing method and associated operational parameters.

  18. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination.

    PubMed

    Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul

    2013-03-25

    A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin

  19. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  20. [Improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology].

    PubMed

    Zeng, Rong-Gui; Jiang, Qie-Ying; Liao, Zheng-Gen; Zhao, Guo-Wei; Luo, Yun; Luo, Juan; Lv, Dan

    2016-06-01

    To study the improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology. The 1% hydrophobic silica nanoparticles were used as surface modifier, and andrographis extract powder was taken as a model drug. Three different techniques were used for coating model drugs, with angle of repose, compressibility, flat angle and cohesion as the comprehensive evaluation indexes for the powder flowability. The powder particle size and the size distribution were measured by Mastersizer 2000. FEI scanning electron microscope was used to observe the surface morphology and structure of the powder. The percentage of Si element on the powder surface was measured by energy dispersive spectrometer. The hygroscopicity of powder was determined by Chinese pharmacopoeia method. All of the three techniques can improve the flowability of powder extract. In particular, hygroscopicity of extract powder can also be improved by dispersion and then high-speed mixing, which can produce a higher percentage of Si element on the powder surface. The improvement principle may be correlated with a modifier adhered to the powder surface. Copyright© by the Chinese Pharmaceutical Association.

  1. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior.

    PubMed

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka; Pein-Hackelbusch, Miriam

    2018-02-01

    There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries; overall goal was to assess mixing process of powder blends at small-scale with a combination of spectroscopic and mechanical monitoring. As part of the segregation evaluation studies, the flowability of three different paracetamol/filler-blends at different ratios was investigated, inter alia to define the percolation thresholds. Blends with a paracetamol wt% above the percolation threshold were subsequently investigated in relation to their segregation behavior. Rapid prototyping using 3D printing allowed designing two funnels with tailored flow behavior (funnel flow) of model formulations, which could be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder blend were monitored during blending. Rapid prototyping allowed for fast modification of powder testing geometries and easy interfacing with process analytical tools, opening new possibilities for more detailed powder characterization.

  2. Surface doping with Al in Ba-hexaferrite powders (abstract)

    NASA Astrophysics Data System (ADS)

    Turilli, G.; Paoluzi, A.; Lucenti, M.

    1991-04-01

    Barium M-hexaferrites were intensively studied in order to improve their magnetic characteristics for application as permanent magnets using different ion substitutions. However, substitutions that improve the BHmax energy product have not been found. We propose a new method in order to modify the extrinsic magnetic characteristics of Ba-hexaferrite powders without reducing drastically the magnetization and the magnetic anisotropy. This method consists in the surface doping of the hexaferrite particles, giving as a result a modification of the energy pinning of the domain walls at the grain boundary. Ba ferrite powders having a mean diameter of 3.2 μm have been dry mixed with Al2O3 powders with a diameter <0.5 μm. From the mixed powder a series of 10 cylindrically shaped samples was obtained by isostatically pressing the powders. The samples were thermically treated from 900 to 1200 °C, together with 10 cylindrical samples of pure hexaferrite, for 1 h each. For all the samples we have measured the Curie temperature (Tc), the anisotropy field (HA), the coercive field (Hc), and the saturation magnetization σ. The main results are that up to 1000 °C the Al diffusion is mainly localized at the surface of the grain so that the main part of the grain is undoped as confirmed by the Tc and HA values that are the same as those found in pure hexaferrites. From 900 to 1000 °C the saturation magnetization decreases of the 3% while Hc increases of the 9% with respect to the pure hexaferrite. This result seems to confirm the validity of the proposed method. Above 1000 °C Al begin to diffuse in the grain and above 1200 °C it is possible to say, from thermomagnetic analysis, that Al has diffused uniformly throughout the grain. In this last temperature range the Al substitution leads to a 10% reduction in σ as expected1 while Hc only increases 12%. These preliminary results suggest that the method of surface doping of the powders could be used in order to increase or

  3. Method for molding ceramic powders using a water-based gel casting process

    DOEpatents

    Jenny, Mark A.; Omalete, Ogbemi O.

    1992-09-08

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  4. Reutilization of granite powder as an amendment and fertilizer for acid soils.

    PubMed

    Barral Silva, M T; Silva Hermo, B; García-Rodeja, E; Vázquez Freire, N

    2005-11-01

    The properties of granite powders--a granite manufacturing waste product-were analyzed to assess their potential use as amendments and fertilizers on acid soils. Two types of powders were characterized: one produced during cutting of granite with a diamond-edged disc saw, comprising only rock powder, the other produced during cutting with a multi-blade bandsaw, containing calcium hydroxide and metal filings added during the cutting procedure. The acid neutralizing capacity of the granite powders was assessed in short- (2-3 h) and medium-term (1-30 d) experiments. The powders showed a buffering capacity at around pH 8, which corresponded to the rapid dissolution of basic cations, and another buffering effect at pH<4.5, attributable to the dissolution of Fe and Al. The acid neutralizing capacity (ANC) determined in the short-term experiments, to a final pH of 4.5, varied between 5 and 61 cmol H+kg(-1) powder. The ANC to pH 4.5 obtained in the medium-term experiments was much higher than that obtained in the short-term experiments, reaching a maximum ANC value of 200 cmol H+kg(-1) powder. There was no great difference in the neutralizing capacity determined at between 1 and 30 d. The most abundant elements in acid solutions obtained at the end of medium-term experiments were Mg and Ca for disc saw powders, whereas Ca and Fe (at pH<5) were the most soluble elements in the bandsaw powders. The rapid release of these cations suggests the possible effective use of the granite powders as a source of nutrients on being added to acid soils.

  5. HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...

  6. Ball-free mechanochemistry: in situ real-time monitoring of pharmaceutical co-crystal formation by resonant acoustic mixing.

    PubMed

    Michalchuk, Adam A L; Hope, Karl S; Kennedy, Stuart R; Blanco, Maria V; Boldyreva, Elena V; Pulham, Colin R

    2018-04-17

    Resonant acoustic mixing (RAM) is a new technology designed for intensive mixing of powders that offers the capability to process powders with minimal damage to particles. This feature is particularly important for mixing impact-sensitive materials such as explosives and propellants. While the RAM technique has been extensively employed for the mixing of powders and viscous polymers, comparatively little is known about its use for mechanosynthesis. We present here the first in situ study of RAM-induced co-crystallisation monitored using synchrotron X-ray powder diffraction. The phase profile of the reaction between nicotinamide and carbamazepine in the presence of a small amount of water was monitored at two different relative accelerations of the mixer. In marked contrast to ball-milling techniques, the lack of milling bodies in the RAM experiment does not hinder co-crystallisation of the two starting materials, which occurred readily and was independent of the frequency of oscillation. The reaction could be optimised by enhancing the number of reactive contacts through mixing and comminution. These observations provide new insight into the role of various experimental parameters in conventional mechanochemistry using liquid-assisted grinding techniques.

  7. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    DOEpatents

    Pederson, L.R.; Chick, L.A.; Exarhos, G.J.

    1992-05-19

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  8. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  9. Synthesis of nano-forsterite powder by making use of natural silica sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurbaiti, Upik, E-mail: upik-nurbaiti@mail.unnes.ac.id; Department of Physics, Faculty of Mathematics and Natural Sciences Semarang State University Jl. Raya Sekaran GunungPati, Semarang 50221; Suud, Fikriyatul Azizah

    2016-02-08

    Nano-forsterite powder with natural silica sand and magnesium powder as the raw materials have been succesfully synthesized. The silica sand was purified followed by a coprecipitation process to obtain colloidal silica. The magnesium powder was dissolved in a chloric acid solution to obtain MgCl{sub 2} solution. The nanoforsterite powder was synthesised using a sol-gel method which included the mixing the colloidal silica and the MgCl{sub 2} solution with various aging and filtering processes. The samples were dried at 100 °C using a hot plate and then the dried powders were calcinated at 900 °C for 2 hours. The samples weremore » characetised for their elements and phase compositions using X-ray Flourescence (XRF) and X-ray Diffraction (XRD) methods, respectively. The diffraction data were qualitatively analyzed using Match!2 software and quantitatively using Rietica software. The crystallite size was verified using Transmission Electron Microscopy (TEM). Results of XRD data analysis showed that the forsterite content reached up to 90.5% wt. The TEM average crystallite size was approximately 53(6) nm.« less

  10. [Identification of antler powder components based on DNA barcoding technology].

    PubMed

    Jia, Jing; Shi, Lin-chun; Xu, Zhi-chao; Xin, Tian-yi; Song, Jing-yuan; Chen Shi, Lin

    2015-10-01

    In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine

  11. Vacuum powder injector and method of impregnating fiber with powder

    NASA Astrophysics Data System (ADS)

    Working, Dennis C.

    1993-05-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  12. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  13. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  14. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  15. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, S.; Graff, G.L.

    1997-12-09

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering. 2 figs.

  16. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.

    1997-01-01

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.

  17. Synthesis, structural and vibrational studies on mixed alkali metal gadolinium double tungstate, K1-xNaxGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.

    2013-02-01

    Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.

  18. Properties of concrete containing coconut shell powder (CSP) as a filler

    NASA Astrophysics Data System (ADS)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  19. Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders

    NASA Astrophysics Data System (ADS)

    Surzhikov, A. P.; Galtseva, O. V.; Vasendina, E. A.; Vlasov, V. A.; Nikolaev, E. V.

    2016-02-01

    The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 0C within- 120 min.

  20. Comparative performance of rubber modified hot mix asphalt under ALF loading.

    DOT National Transportation Integrated Search

    2003-08-01

    Experiment 2 at the Louisiana ALF site involved determining the engineering benefits of using powdered rubber (PRM) in hot mix asphalt mixes. Three full scale test sections were constructed and subjected to increasing loads from the ALF. Lane 2-1 inc...

  1. Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing

    NASA Astrophysics Data System (ADS)

    Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.

    2009-04-01

    The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

  2. Synthesis and characterization of nanocrystalline Al 2024-B4C composite powders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Varol, T.; Canakci, A.

    2013-06-01

    In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.

  3. Laser production of articles from powders

    DOEpatents

    Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.

    1998-01-01

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

  4. Laser production of articles from powders

    DOEpatents

    Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

    1998-11-17

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

  5. Effect of incorporation of pumpkin (Cucurbita moshchata) powder and guar gum on the rheological properties of wheat flour.

    PubMed

    Kundu, Himani; Grewal, Raj Bala; Goyal, Ankit; Upadhyay, Neelam; Prakash, Saurabh

    2014-10-01

    The present study was carried out to study the effect of incorporation of fibre rich pumpkin powder and guar gum on the farinographic characteristics of wheat flour. The flour and pumpkin powder were assessed for proximate composition, total dietary fibre, minerals and β-carotene. Pumpkin powder contained appreciable amount of fibre, minerals and β-carotene. The effects of incorporation of different levels of pumpkin powder and guar gum along with pumpkin powder on farinographic characteristics were studied. Dough development time, dough stability, time to break down and farinograph quality number increased whereas mixing tolerance index decreased with incorporation of pumpkin powder (> 5 %) and guar gum (1.0 and 1.5 %) along with pumpkin powder in the flour. Resistance to extension as well as extensibility of dough prepared increased significantly by adding pumpkin powder (5-15 %) whereas increase in resistance to extension only was noticed with inclusion of guar gum (0.5-1.5 %) to flour containing 5 % pumpkin powder. Results indicated that pumpkin can be processed to powder that can be utilized with guar gum for value addition.

  6. The thermal stability and catalytic application of manganese oxide-zirconium oxide powders

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang

    MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a

  7. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  8. Amorphous Silica Micro Powder Additive Influence on Tensile Strength of One-Ply Particle Board

    NASA Astrophysics Data System (ADS)

    Pitukhin, A. V.; Kolesnikov, G. N.; Panov, N. G.; Vasilyev, S. B.

    2018-03-01

    The methods and results of experimental investigation on the additive influence of amorphous silica micro powder when mixed in the glue for one-ply particle board are presented in the article. Wooden particles of coniferous and hardwood species as well as glue solution based on carbamide-formaldehyde resin were used for boards manufacturing. The amorphous silica micro powder contained particles on the average 8 μm by the size and specific surface 120…400 m2/g was used in experiment. The samples were tested to determine their physical-mechanical properties. It was found that 1 % amorphous silica micro powder additive increases the breaking point of one-ply particle board under tensile stress by 143 %.

  9. Mixing Study in a Multi-dimensional Motion Mixer

    NASA Astrophysics Data System (ADS)

    Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.

    2009-06-01

    Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.

  10. Synthesis Of Nanosized CGYO Powders Via Glycine Nitrate Methods As Precursors For Dense Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kochhar, Savinder P.; Singh, Anirudh P.

    2011-12-01

    Glycine nitrate combustion method was used to synthesize Ce0.8Gd0.1Y0.1O1.9 powders. Soluble metal-glycine complexes, detected by infrared spectroscopy, were formed by atomic level mixing of metal cations with glycine. The concentration of glycine has been varied in order to change the fuel to oxidant ratio i.e. of glycine to nitrate (g/n) with the purpose to study the effect of concentration of glycine on the parameters of resulting CGYO powder. The ratio of glycine to nitrate per mole is 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.4. Increasing the glycine increases the temperatures reached during combustion. Powders prepared from GNP method demonstrated that combustion synthesized powders have large surface area as shown by SEM.

  11. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  12. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    PubMed

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  13. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  14. Nitriding kinetics of Si-SiC powder mixtures as simulations of reaction bonded Si3N4-SiC composites

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Sheldon, B. W.; Flint, J. H.; Haggerty, J. S.

    1989-01-01

    The nitriding kinetics of Si and Si plus SiC powder mixtures were studied to simulate the fabrication of RBSN-SiC ceramic matrix composites. Very clean, assynthesized, and solvent-exposed powders were studied; C-rich and Si-rich SiC 0.04-0.05 micron diameter powders were mixed in varying concentrations with SiH4-derived 0.2-0.3 micron diameter Si powder. Complete nitridation is achieved with C-rich SiC powders in 140 min at 1250 C, and in the centers of Si-rich SiC powders in 15 min. The effects on the incubation periods, fast reaction periods, and slow reaction periods that characterize these nitriding processes were studied to explain unusual reverse reaction gradients and other effects of contamination.

  15. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  16. Investigation of the Dependences of the Attenuation Properties of Cryogenic Metal-Powder Filters on the Preparation Method

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hoon; Lee, Soon-Gul

    2018-04-01

    We fabricated low-pass metal powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire-turn densities, metalpowder shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30-μmsized stainless-steel 304L powder and mixed it with low-temperature binders. The low-temperature binders used were Stycast 2850FT (Emerson and Cumming) with catalyst 23LV and GE-7031 varnish. A 0.1-mm insulated copper wire was wound on preformed powder-mixture bobbins in the shape of a circular rod and was encapsulated in metal tubes with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. For filters of the same wire length, a lower wiring density showed a larger attenuation, which implies that the amount of powder in close contact with the wire determines the attenuation. Filters made of a powder/varnish mixture showed significantly larger attenuations than those of a powder/stycast mixture, and the attenuation improved with increasing powder ratio in the mixture. The low-temperature thermal conductivities of a 2 : 1 powder/Stycast mixture and a 5 : 1 powder/varnish mixture showed similar values at temperatures up to 4.2 K.

  17. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.

    PubMed

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-08

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  18. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder

    PubMed Central

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-01-01

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport. PMID:27824132

  19. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    NASA Astrophysics Data System (ADS)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  20. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2017-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  1. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2015-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  2. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  3. Composites comprising silicon carbide fibers dispersed in magnesia-aluminate matrix and fabrication thereof and of other composites by sinter forging

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1989-10-03

    A novel ceramic-ceramic composite of a uniform dispersion of silicon carbide fibers in a matrix of MgO.multidot.nAl.sub.2 O.sub.3 wherein n ranges from about 1 to about 4.5, said composite comprising by volume from 1 to 50% silicon carbide fibers and from 99 to 50% MgO.multidot.nAl.sub.2 O.sub.3. The composite is readily fabricated by forming a powder comprising a uniform dispersion of silicon carbide fibers in poorly crystalline phase comprising MgO and Al.sub.2 O.sub.3 in a mole ratio of n and either (a) hot pressing or preferably (b) cold pressing to form a preform and then forging utilizing a temperature in the range of 1100.degree. C. to 1900.degree. C. and a strain rate ranging from about 10.sup.-5 seconds .sup.-1 to about 1 seconds .sup.-1 so that surfaces cracks do not appear to obtain a shear deformation greater than 30%.

  4. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  5. Effect of boric acid on the properties of Li{sub 2}MnO{sub 3}·LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Young Jun; Choi, Seung Ho; Sim, Chul Min

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Spherical shape Li{sub 2}MnO{sub 3}·LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders are prepared by large-scale spray pyrolysis with droplet classifier. ► Boric acid improves the morphological and electrochemical properties of the composite cathode powders. ► The discharge capacity of the composite cathode powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle. -- Abstract: Spherically shaped 0.3Li{sub 2}MnO{sub 3}·0.7LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders with filled morphology and narrow size distribution are prepared by large-scale spray pyrolysis. A droplet classification reduces the standard deviation of the size distribution of themore » composite cathode powders. Addition of boric acid improves the morphological properties of the product powders by forming a lithium borate glass material with low melting temperature. The optimum amount of boric acid dissolved in the spray solution is 0.8 wt% of the composite powders. The powders prepared from the spray solution with 0.8 wt% boric acid have a mixed layered crystal structure comprising Li{sub 2}MnO{sub 3} and LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} phases, thus forming a composite compound. The initial charge and discharge capacities of the composite cathode powders prepared from the 0.8 wt% boric acid spray solution are 297 and 217 mAh g{sup −1}, respectively. The discharge capacity of the powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle, in which the capacity retention is 90%.« less

  6. Optimization of Maghemite (γ-Fe2O3) Nano-Powder Mixed micro-EDM of CoCrMo with Multiple Responses Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj

    2017-10-01

    This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.

  7. Production of coconut protein powder from coconut wet processing waste and its characterization.

    PubMed

    Naik, Aduja; Raghavendra, S N; Raghavarao, K S M S

    2012-07-01

    Virgin coconut oil (VCO) has been gaining popularity in recent times. During its production, byproducts such as coconut skim milk and insoluble protein are obtained which are underutilized or thrown away to the environment at present. This study deals with utilization of these byproducts to obtain a value-added product, namely, coconut protein powder. When coconut milk was subjected to centrifugation, three phases, namely, fat phase (coconut cream), aqueous phase (coconut skim milk), and solid phase (insoluble protein) were obtained. The coconut skim milk and insoluble protein were mixed and homogenized before spray drying to obtain a dehydrated protein powder. The proximate analysis of the powder showed high protein content (33 % w/w) and low fat content (3 % w/w). Protein solubility was studied as a function of pH and ionic content of solvent. Functional properties such as water hydration capacity, fat absorption capacity, emulsifying properties, wettability, and dispersibility of coconut protein powder were evaluated along with morphological characterization, polyphenol content, and color analysis. Coconut protein powder has shown to have good emulsifying properties and hence has potential to find applications in emulsified foods. Sensory analysis showed high overall quality of the product, indicating that coconut protein powder could be a useful food ingredient.

  8. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carter, Elizabeth A; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2017-04-15

    This study aimed to develop inhalable powders containing phages active against antibiotic-resistant Pseudomonas aeruginosa for pulmonary delivery. A Pseudomonas phage, PEV2, was spray dried into powder matrices comprising of trehalose (0-80%), mannitol (0-80%) and l-leucine (20%). The resulting powders were stored at various relative humidity (RH) conditions (0, 22 and 60% RH) at 4°C. The phage stability and in vitro aerosol performance of the phage powders were examined at the time of production and after 1, 3 and 12 months storage. After spray drying, a total of 1.3 log titer reduction in phage was observed in the formulations containing 40%, 60% and 80% trehalose, whereas 2.4 and 5.1 log reductions were noted in the formulations containing 20% and no trehalose, respectively. No further reduction in titer occurred for powders stored at 0 and 22% RH even after 12 months, except the formulation containing no trehalose. The 60% RH storage condition had a destructive effect such that no viable phages were detected after 3 and 12 months. When aerosolised, the total lung doses for formulations containing 40%, 60% and 80% trehalose were similar (in the order of 10 5 pfu). The results demonstrated that spray drying is a suitable method to produce stable phage powders for pulmonary delivery. A powder matrix containing ≥40% trehalose provided good phage preservation and aerosol performances after storage at 0 and 22% RH at 4°C for 12 months. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparative performance of rubber modified hot mix asphalt under ALF loading : technical summary.

    DOT National Transportation Integrated Search

    2004-07-01

    The objectives of this study were to evaluate the overall performance under accelerated loading of hot mix asphalt mixtures containing powdered rubber modifier (PRM) as compared to similar mixes with conventional HMA and to optimize the use of these ...

  10. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    NASA Astrophysics Data System (ADS)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  11. Vacuum Powder Injector

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.

    1991-01-01

    Method developed to provide uniform impregnation of bundles of carbon-fiber tow with low-solubility, high-melt-flow polymer powder materials to produce composite prepregs. Vacuum powder injector expands bundle of fiber tow, applies polymer to it, then compresses bundle to hold powder. System provides for control of amount of polymer on bundle. Crystallinity of polymer maintained by controlled melt on takeup system. All powder entrapped, and most collected for reuse. Process provides inexpensive and efficient method for making composite materials. Allows for coating of any bundle of fine fibers with powders. Shows high potential for making prepregs of improved materials and for preparation of high-temperature, high-modulus, reinforced thermoplastics.

  12. Free flowing and cohesive powders agitation in a cylindrical convective blender- kinetics experiments and Markov chain modelling

    NASA Astrophysics Data System (ADS)

    Legoix, Léonard; Milhé, Mathieu; Gatumel, Cendrine; Berthiaux, Henri

    2017-06-01

    An original methodology for studying powder flow in a cylindrical convective blender has been developed. A free-flowing and a cohesive powder were studied, at a fixed stirring speed, in rolling regime. For both powders, three apparent flow mechanisms were evidenced: convection in the volume swept by the blades, diffusion/shearing between the agitated zone and the stagnant one, as well as in the stagnant zone itself, and avalanches at the powder bed surface between agitated and stagnant zones. After defining six zones in the blender, tracing experiments were carried out by placing appropriate tracers in different starting zones and sampling the whole bed at different stirring times, which lead to mixing kinetics of the powders into themselves. A Markov chains model of the blender allowed the quantification of the three mechanisms respective magnitude by fitting the experimental data. This simple model has a good agreement with the free-flowing powder data, but is not able to represent well the observations for the cohesive powder. Bed consolidation should probably be taken into account for this kind of powders and thus a linear Markov model is not sufficient.

  13. Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer

    NASA Astrophysics Data System (ADS)

    Sholiyi, Olusegun; Williams, John

    2014-12-01

    In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.

  14. Nutritional and functional characterization of barley flaxseed based functional dry soup mix.

    PubMed

    Kaur, Sumeet; Das, Madhusweta

    2015-09-01

    Barley flaxseed based functional dry soup mix (BFSM) was developed from whole barely flour (46.296%), roasted flaxseed powder (23.148%) and the seasoning (30.555%) comprising several flavoring compounds and anticaking agent, using simple processing technique. Developed BFSM was nutritious. On dry matter basis it contained: protein (14.31%), carbohydrate excluding crude fiber (54.70%), fat (8.70%), ash (17.45%) and crude fiber (4.84%). It was low glycemic soup, free of antinutritional risk and had calorific value of 319.77 kcal/100 g (wet or sample basis, sb) estimated from its composition. 100 g (sb) of BFSM contained 4.36 g β-glucans and 8.08 g total lipid of which 25.6% was ω-3 fatty acids. Different extracts of BFSM revealed the presence of total phenols (0.57-1.86 mg gallic acid equivalent/g, sb) with antioxidants equivalence of DPPH (20.69-39.07%) and FRAP (120-331 μm Fe (II)/g, sb).

  15. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Scott

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontiummore » manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.« less

  16. Control of bacillus cereus spore germination and outgrowth in cooked rice during chilling by nonorganic and organic appled, orange, and potato peel powders

    USDA-ARS?s Scientific Manuscript database

    The inhibition of Bacillus cereus spore germination and outgrowth in cooked rice by nine fruit and vegetable peel powders prepared from store-bought conventional (nonorganic) and organic apples, oranges, and potatoes was investigated. The powders were mixed into rice at 10% (wt/wt) along with heat ...

  17. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  18. Micro-feeding and dosing of powders via a small-scale powder pump.

    PubMed

    Besenhard, M O; Fathollahi, S; Siegmann, E; Slama, E; Faulhammer, E; Khinast, J G

    2017-03-15

    Robust and accurate powder micro-feeding (<100mg/s) and micro-dosing (<5 mg) are major challenges, especially with regard to regulatory limitations applicable to pharmaceutical development and production. Since known micro-feeders that yield feed rates below 5mg/s use gravimetric feeding principles, feed rates depend primarily on powder properties. In contrast, volumetric powder feeders do not require regular calibration because their feed rates are primarily determined by the feeder's characteristic volume replacement. In this paper, we present a volumetric micro-feeder based on a cylinder piston system (i.e., a powder pump), which allows accurate micro-feeding and feed rates of a few grams per hours even for very fine powders. Our experimental studies addressed the influence of cylinder geometries, the initial conditions of bulk powder, and the piston speeds. Additional computational studies via Discrete Element Method simulations offered a better understanding of the feeding process, its possible limitations and ways to overcome them. The powder pump is a simple yet valuable tool for accurate powder feeding at feed rates of several orders of magnitude. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Haiming; Lin, Yaojun; Seidman, David N.

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  20. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE PAGES

    Wen, Haiming; Lin, Yaojun; Seidman, David N.; ...

    2015-09-09

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  1. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  2. Preparation of (Fe, N)-doped TiO2 powders and their antibacterial activities under visible light irradiation.

    PubMed

    He, Rong-Liang; Wei, Yi; Cao, Wen-Bin

    2009-02-01

    Yellowish (Fe, N)-doped nanocrystalline TiO2 powders have been prepared using TiOSO4, CO(NH2)2, Fe(NO3)3.9H2O and CN3H5.HCl as precursors by hydrothermal method. The as-synthesized powders were anatase in phase and the grain size was about 10 nm according to the TEM photos. The ratio of Fe/Ti is 2.2 at% and N/O is 0.8 at% respectively. TiO2 powders were mixed with organic silicon and acrylic syrup to test their antibacterial performance by the colony counting method. The results show that the sterilization ratio of E. coli by the heat-treated (Fe, N)-doped nanocrystalline TiO2 powders is reached up to 94.5% while that of the powders without any heat treatment is 91.1% by 8 hours-400 lux-Visible-light irradiation with humidity of 55% RH.

  3. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  4. Insulating Materials Comprising Polysilazane, Methods of Forming Such Insulating Materials, and Precursor Formulations Comprising Polysilazane

    NASA Technical Reports Server (NTRS)

    Larson, Robert S. (Inventor); Fuller, Michael E. (Inventor)

    2013-01-01

    Methods of forming an insulating material comprising combining a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or combinations thereof. The cross-linking compound may be an isocyanate, an epoxy resin, or combinations thereof. The insulating material may include a matrix comprising one of a reaction product of a polysilazane and an isocyanate and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from one of reaction of the polysilazane and the isocyanate and from reaction of the polysilazane and the epoxy resin. A precursor formulation that comprises a polysilazane, a cross-linking compound, and a gas-generating compound is also disclosed.

  5. Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami

    1990-01-01

    A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.

  6. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances.

    PubMed

    Andriamanohiarisoamanana, Fetra J; Shirai, Tomoya; Yamashiro, Takaki; Yasui, Seiichi; Iwasaki, Masahiro; Ihara, Ikko; Nishida, Takehiro; Tangtaweewipat, Suchon; Umetsu, Kazutaka

    2018-02-15

    Biogas is composed of different gases including hydrogen sulfide (H 2 S), which is a hazardous gas that damages pipes and generators in anaerobic digestion system. The objective of this study was to control H 2 S by waste iron powder produced by laser cutting machine in a steel and iron industry. Waste iron powder was mixed with dairy manure at a concentration between 2.0 and 20.0 g/L in batch experiments, while the concentration was varied between 1.0 and 4.0 g/L in bench experiment. In batch experiment, a reduction of up to 93% of H 2 S was observed at waste iron powder of 2.0 g/L (T1), while the reduction was of more than 99% at waste iron powder beyond 8.0 g/L (T4 ∼ T6). The total sulfide concentration (S T ) increased together with waste iron powder concentration and was fitted with a quadratic equation with a maximum S T of 208.0 mg/L at waste iron powder of 20.2 g/L. Waste iron powder did not have significant effect on methane yield in batch and bench experiments. However, hydrolysis rate constant was increased by almost 100%, while the lag-phase period was reduced to half in test digesters compared to that in control digester. In bench experiment, H 2 S concentration was reduced by 89% at 2.0 g/L, while 50% at 1.0 g/L. Therefore, waste iron powder was effectively removed H 2 S and did not affect negatively anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    PubMed

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  8. Silicosis Caused by Chronic Inhalation of Snail Shell Powder

    PubMed Central

    Jung, Jae Woo; Lee, Byung Ook; Lee, Jae Hee; Park, Sung Woon; Kim, Bo Min; Choi, Jae Chol; Shin, Jong Wook; Park, In Won; Choi, Byoung Whui

    2012-01-01

    A 70-yr-old woman visited our hospital for shortness of breath. Chest CT showed ground glass opacity and traction bronchiectasis at right middle, lower lobe and left lingular division. Video-assisted thoracic surgical biopsy at right lower lobe and pathologic examination revealed mixed dust pneumoconiosis. Polarized optical microscopy showed lung lesions were consisted of silica and carbon materials. She was a housewife and never been exposed to silica dusts occupationally. She has taken freshwater snails as a health-promoting food for 40 yr and ground shell powder was piled up on her backyard where she spent day-time. Energy dispersive X-ray spectroscopy of snail shell and scanning electron microscopy with energy dispersive x-ray spectroscopy of lung lesion revealed that silica occupies important portion. Herein, we report the first known case of silicosis due to chronic inhalation of shell powder of freshwater snail. PMID:22219621

  9. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Optimization of the development of reproductive organs celepuk jawa (otus angelinae) owl which supplemented by turmeric powder

    NASA Astrophysics Data System (ADS)

    Rini Saraswati, Tyas; Yuniwarti, Enny Yusuf W.; Tana, Silvan

    2018-03-01

    Otus angelinae is included as a protected animal because of its endangered existence. Whereas, it has many values such as for mice pest control. Therefore, this research aims to optimize the reproductive function of Otus angelinae by administering turmeric powder mixed in its feed. This study was held on a laboratory scale with two male and two female Otus angelinae three months of age. Each subject is divided into two groups: a control group and a treatment group which is treated with turmeric powder 108 mg/owl/day mixed in 30 g catfish/day for a month. The parameter observed were the development of hierarchy follicles and the ovarium weight of female Otus angelinae, whereas the testis organs and testes weight were observed for the male. Both the female’s and male’s body weight, liver weight and the length of ductus reproduction were also observed. The data was analyzed descriptively. The results showed that the administration of turmeric powder can induce the development of ovarian follicles hierarchy and the length of ductus reproduction of female Otus angelinae and also induce the development of the testes and the length of ductus reproduction of male Otus angelinae. The addition of turmeric powder increased the liver weight of the female Otus angelinae, however it does not affect the body weight.

  11. Granulation of fine powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Fong

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less

  12. Compositions comprising free-standing two-dimensional nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsoum, Michel W.; Gogotsi, Yury; Abdelmalak, Michael Naguib

    2017-12-05

    The present invention is directed to methods of transferring urea from an aqueous solution comprising urea to a MXene composition, the method comprising contacting the aqueous solution comprising urea with the MXene composition for a time sufficient to form an intercalated MXene composition comprising urea.

  13. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability

  14. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  15. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  16. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  17. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  18. Ammonia formation caused by the presence of water in the wet grinding of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Suzuki, K.; Kuwahara, Y.

    1984-01-01

    Si3 N4 powder (amorphous, alpha-, and beta-Si3 N4) was mixed with MeOH containing 8.87 mol. % H2O and ground. The NH3 generation rapidly increased after a grinding time of 100 hours. Silicon nitride sintered material was chosen as one of the high temperature, high strength structural materials and studies of the control of the raw material powder, preparation of the sintered body (finding the right assistant, hot press, high pressure sintering, fracture toughness and oxidation at high temperature were performed.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Mechanism of amorphisation of micro-particles of griseofulvin during powder flow in a mixer.

    PubMed

    Pazesh, Samaneh; Höckerfelt, Mina Heidarian; Berggren, Jonas; Bramer, Tobias; Alderborn, Göran

    2013-11-01

    The purpose of the research was to investigate the degree of solid-state amorphisation during powder flow and to propose a mechanism for this transformation. Micro-particles of griseofulvin (about 2 μm in diameter) were mixed in a shear mixer under different conditions to influence the inter-particulate collisions during flow, and the degree of amorphisation was determined by micro-calorimeter. The amorphisation of griseofulvin particles (GPs) during repeated compaction was also determined. The GPs generally became disordered during mixing in a range from about 6% to about 86%. The degree of amorphisation increased with increased mixing time and increased batch size of the mixer, whereas the addition of a lubricant to the blend reduced the degree of amorphisation. Repeated compaction using the press with ejection mode gave limited amorphisation, whereas repeated compaction without an ejection process gave minute amorphisation. It is concluded that during powder flow, the most important inter-particulate contact process that cause the transformation of a crystalline solid into an amorphous state is sliding. On the molecular scale, this amorphisation is proposed to be caused by vitrification, that is the melting of a solid because of the generation of heat during sliding followed by solidification into an amorphous phase. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Effect of mechanical alloying and heat treatment on the behavior of fe - 28% al - 5% cr powder with nanocrystalline structure

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.

    2012-05-01

    Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.

  2. High strength particulate ceramics

    DOEpatents

    Liles, Kenneth J.; Hoyer, Jesse L.; Mlynarski, Kenneth W.

    1991-01-01

    This invention relates to new and useful hard, dense, composite materials made from metallic nitrides such as titanium nitride when combined with aluminum oxide and aluminum nitride and a process comprising the steps of: (1) mixing constituent materials using kerosene as a mixing medium; (2) screening, settling, filtering, and washing the mixture in acetone; (3) filling and sealing said materials in a latex mold; (4) isostatically pressing the material into a compacted powder; and (5) sintering the compacted powder in a gas atmosphere at 1,850.degree. C. for two hours.

  3. A comparison of mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder for decolorization of methylene blue dye and antimicrobial activity.

    PubMed

    Sundararaman, B; Muthuramu, K L

    2016-11-01

    The waste mango seed generated from mango pulp industry in India is a major problem in handling the waste and hence, conversion of mango seed kernel. Mango seeds were collected and processed for oil extraction. Decolorization of methylene blue was achieved by mango seed kernel powder, mango leaf powder and Manilkara zapota seed powder. Higher efficiency was attained in mango seed kernel powder when compared to mango leaf powder and Manilkara zapota seed powder. A 60 to 95 % of removal efficiency was achieved by varying concentration. Effect of pH, dye concentration, adsorbent dosage and temperature were studied. Mango seed kernel powder is a better option that can be used as an adsorbent for the removal of methylene blue and basic red dye from its aqueous solutions.

  4. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  5. An analysis of un-dissolved powders of instant powdered soup by using ultrasonographic image

    NASA Astrophysics Data System (ADS)

    Kawaai, Yukinori; Kato, Kunihito; Yamamoto, Kazuhiko; Kasamatsu, Chinatsu

    2008-11-01

    Nowadays, there are many instant powdered soups around us. When we make instant powdered soup, sometimes we cannot dissolve powders perfectly. Food manufacturers want to improve this problem in order to make better products. Therefore, they have to measure the state and volume of un-dissolved powders. Earlier methods for analyzing removed the un-dissolved powders from the container, the state of the un-dissolved power was changed. Our research using ultrasonographic image can measure the state of un-dissolved powders with no change by taking cross sections of the soup. We then make 3D soup model from these cross sections of soup. Therefore we can observe the inside of soup that we do not have ever seen. We construct accurate 3D model. We can visualize the state and volume of un-dissolved powders with analyzing the 3D soup models.

  6. Production of al-si alloy feedstocks using the solvent hot mixing method

    NASA Astrophysics Data System (ADS)

    Ni, J. Q.; Han, K. Q.; Yu, M. H.

    2018-05-01

    Powder injection molding is a promising low-cost technique for net shape processing of metal and ceramic components. This study aimed to investigate a new method for preparing aluminium (Al) – silicon (Si) alloy feedstock using the solvent hot mixing process. For this purpose, micron-sized Al-Si (20 wt. %) alloy powder was mixed with a binder consisting of 55 wt. % carnauba wax, 45 wt. % high-density polyethylene, and 3 wt. % stearic acid in a hot xylene bath. The scanning electron microscopy technique, thermogravimetric analysis, density measurement and torque measurements were used to verify the homogeneity of the feedstock. Moreover, the feedstock was chosen to perform the molding, debinding cycle and sintering. An Al-Si (20 wt. %) alloy part was successfully produced using this new method.

  7. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P; Figiel, Adam

    2017-01-17

    Among popular crops, plum ( Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar "Valor") juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.

  8. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    PubMed

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  9. Study on the fabrication of low-pass metal powder filters for use at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hoon; Lee, Soon-Gul

    2016-08-01

    We fabricated compact low-pass stainless-steel powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire lengths, filter shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30- μm-sized SUS 304L powder and mixed it with Stycast 2850FT (Emerson and Cumming) with catalyst 23LV. A 0.1-mm insulated copper wire was wound on preformed powder-mixture spools in the shape of a right-circular cylinder, a flattened elliptic cylinder and a toroid, and the coils were encapsulated in metal tubes or boxes filled with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. However, the toroidal filter showed prominent ripples corresponding to resonance modes in the 0.5-m-long coil wire. A filter with a 2:1 powder/epoxy mixture mass ratio and a wire length of 1.53 m showed an attenuation of -93 dB at 4 GHz, and the attenuation was linearly proportional to the wire's length. As the powder-to-epoxy ratio was increased, the high-frequency attenuation increased. An equally-spaced single-layer coil structure was found to be more efficient in attenuation than a double-layer coil. The geometry of the metal filter's case affected the noise ripples, with the least noise being found for a circular tube.

  10. Nanofluidic mixing via hybrid surface

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Li, Shunbo; Zhou, Bingpu; Hui, Yu Sanna; Shen, Rong; Wen, Weijia

    2014-10-01

    We report the design and fabrication of the nanofluidic mixer comprising hybrid hydrophobic/hydrophilic micro-patterns on the top and bottom walls of the nanochannel. The unique feature of such mixer is that, without any geometric structure inside the nanochannel, the mixing can be realized solely by the hybrid surfaces. Besides, the mixing length in nanomixer has been significantly shortened comparing to micromixer. We attribute the mixing achievement to be caused by the convection and chaotic flows of two fluids along the hybrid surface due to the large surface-to-volume ratio of the nanochannel.

  11. Nanofluidic mixing via hybrid surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ziran; Li, Shunbo; Zhou, Bingpu

    2014-10-20

    We report the design and fabrication of the nanofluidic mixer comprising hybrid hydrophobic/hydrophilic micro-patterns on the top and bottom walls of the nanochannel. The unique feature of such mixer is that, without any geometric structure inside the nanochannel, the mixing can be realized solely by the hybrid surfaces. Besides, the mixing length in nanomixer has been significantly shortened comparing to micromixer. We attribute the mixing achievement to be caused by the convection and chaotic flows of two fluids along the hybrid surface due to the large surface-to-volume ratio of the nanochannel.

  12. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  13. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  14. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods.

    PubMed

    Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian

    2014-09-01

    The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A cost-effective process to prepare VO{sub 2} (M) powder and films with superior thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiudi; Zhang, Hua; Chai, Guanqi

    2014-03-01

    Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Preparation of ZrO II/nano-TiO II composite powder by sol-gel method

    NASA Astrophysics Data System (ADS)

    Baharvandi, H. R.; Mohammadi, E.; Abdizadeh, H.; Hadian, A. M.; Ehsani, N.

    2007-07-01

    The effects of concentration of TTIP, amount of distilled water, and calcination temperature on morphology and particle size distribution of ZrO II/nano-TiO II catalysts were investigated. Mixed ZrO II/nano-TiO II powders were prepared by a modified sol-gel method by varying the mole fraction of TTIP from 0.002 to 0.01, H IIO/TTIP fraction from 2 to 8, and various stirring time (2, 4, and 10 h). The prepared ZrO II/nano-TiO II powders have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and TG/DTA. Each oxide was calcined at the temperature between 110 and 1000°C. The results showed that the calcinations temperature has a pronounced effect on the phase formation and particle size of the calcined zirconium titanate (ZT) powders.

  5. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells.

    PubMed

    Chang, Chih-Hung; Chen, Chia-Chun; Liao, Cheng-Hao; Lin, Feng-Huei; Hsu, Yuan-Ming; Fang, Hsu-Wei

    2014-07-01

    In our previous study, we found that cartilage fragments from osteoarthritic knee promoted chondrogenesis of mesenchymal stem cells. In this study, we further transformed the cartilage tissues into acellular cartilage matrix (ACM) and explored the feasibility of using ACM as a biological scaffold. Nonworn parts of cartilage tissues were obtained during total knee arthroplasty (TKA) surgery and were successfully fabricated into ACM powders. The ACM powders and human synovium-derived mesenchymal stem cells (SMSCs) were mixed into collagen gel for in vitro culture. Histological results showed a synergistic effect of ACM powders and chondrogenic growth factors in the formation of engineered cartilage. The findings of real-time polymerase chain reaction (PCR) suggested that ACM powders had the potential of promoting type II collagen gene expression in the growth factors-absent environment. Moreover, with growth factors induction, the ACM powders could reduce the hypertrophy in chondrogenesis of SMSCs. In summary, ACM powders could serve as a functional scaffold that benefited the chondrogenesis of SMSCs for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc.

  6. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  7. Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder

    NASA Astrophysics Data System (ADS)

    Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki

    Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).

  8. Deposition behavior of mixed binary metallic powders in cold spraying process

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Mou, S. J.; Wu, X. K.; Zhang, J. S.

    2011-10-01

    In the present study, Zn/Al composite coating was selected for the typical case to study the deposition behavior and the deformation of binary mixing particles in cold spraying process by means of an experiment and numerical simulation. The experimental results demonstrated that the coating had a dense microstructure, and that Zn and Al were uniformly distributed in the coating. Al particles deformed more severely than Zn particles, and extensively deformed Al particles had a local jet-metallic mixing area. The steel substrate underwent a small amount of deformation when impacted by Zn particles, whereas the substrate did not deform when impacted by Al particles. XRD results show that the Zn/Al composite coating did not form a new phase, and only resulted in the mechanical mixing of Zn and Al, producing a pseudo-alloy coating. In addition, a binary Zn/Al multiparticle impact was first simulated using the finite element analysis software ANSYS/LS-DYNA. The effective plastic strain contour, which enabled the description of the particle deposit procedure, was demonstrated. The plastic deformation evolution of Zn and Al particles in the composite coating was analyzed individually, and the curves of effective plastic strain versus time of typical monitored elements at the edge of the Zn and Al particles were plotted. The simulations showed good concordance with the experimental results.

  9. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  10. Face powder poisoning

    MedlinePlus

    ... poisoning URL of this page: //medlineplus.gov/ency/article/002700.htm Face powder poisoning To use the sharing features on this page, please enable JavaScript. Face powder poisoning occurs when someone swallows or ...

  11. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  12. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  13. Production of high-quality polydisperse construction mixes for additive 3D technologies.

    NASA Astrophysics Data System (ADS)

    Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.

    2018-03-01

    The paper describes a new design of a mixer allowing production of high quality polydisperse powders, used in additive 3D technologies. A new principle of dry powder particle mixing is considered, implementing a possibility of a close-to-ideal distribution of such particles in common space. A mathematical model of the mixer is presented, allowing evaluating quality indicators of the produced mixture. Experimental results are shown and rational values of process parameters of the mixer are obtained.

  14. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed.more » Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.« less

  15. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  16. Apparatus for producing nanoscale ceramic powders

    DOEpatents

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  17. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  18. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  19. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  20. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  1. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  2. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  3. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    NASA Astrophysics Data System (ADS)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  4. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    PubMed

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  5. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  6. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial.

    PubMed

    Ahmed, A Shafath; Charles, P David; Cholan, R; Russia, M; Surya, R; Jailance, L

    2015-08-01

    This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < 0.001) but did not affect the surface quality or dimensional stability of the casts. Mixing the extract of M. citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality.

  7. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations

    PubMed Central

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P.; Figiel, Adam

    2017-01-01

    Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders. PMID:28106740

  8. Self-nanoemulsifying drug delivery system of nifedipine: impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants.

    PubMed

    Weerapol, Yotsanan; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2014-04-01

    A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic-lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor(®) 742 as oil and Tween(®)/Span(®) or Cremophor(®)/Span(®) as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween(®)/Span(®) in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor(®)/Span(®) blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor(®) RH40/Span(®) 80 onto Aerosil(®) 200 or Aerosil(®) R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30-50% w/w) of Aerosil(®) 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder.

  9. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  10. Comparative facies formation in selected coal beds of the Powder River Basin

    USGS Publications Warehouse

    Stanton, R.W.; Moore, Timothy A.; Warwick, Peter D.; Crowley, S.S.; Flores, Romeo M.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean

    1989-01-01

    Petrologic studies of thick coal beds [Warwick, 1985; Moore, 1986; Moore and others, 1986; Moore and others, 1987; Warwick and Stanton, in press], which build on sedimentological interpretations [Flores, this volume] of associated units, provide data to interpret and contrast the varieties of peat formation in the Powder River Basin. Detailed analyses of the composition of coal beds lead to more complete interpretations regarding the depositional environment on a regional and local scale. Our efforts in the Powder River Basin [areas A-D in fig. 1 of Flores, this volume] have resulted in a series of site-specific studies that interpret the types of peat formation from the arrangement of different facies which comprise the coal beds and from the spatial form of the coal beds.Our approach was to use a combination of megascopic criteria for facies sampling, and where only core was available, to analyze many interval samples to discriminate facies by their maceral composition. Coal beds in the Powder River Basin are composed of laterally continuous, compositional subunits of the bed (facies) that can be discerned most easily in weathered highwall exposures, less readily in fresh highwalls, and very poorly in fresh-cut core surfaces. In general, very low ash ( 

  11. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  12. Characterization of electrolyte-binder mixes for use in thermal batteries

    NASA Astrophysics Data System (ADS)

    Guidotti, R. A.; Reinhardt, F. W.

    1991-03-01

    A number of metal oxides were evaluated for their ability to immobilize molten LiCl-KCl eutectic in electrolyte-binder (EB) mixes used in thermally activated batteries. These metal oxides included fumed silicas, alumina, and a titania (all prepared by steam hydrolysis of the halides), floated silicas, MgO, and an alumina molecular sieve. The characteristics of the EB powders that were used as metrics were flow properties, homogeneity, BET surface area, particle-size distribution, and moisture content. The characteristics of EB pellets used as metrics were deformation at 530 C under an applied pressure and tendency for electrolyte leakage at 400 C. Many of the same characterization techniques used for EB powders were applied to the LiCl-KCl eutectic, its component halides, and the metal oxides as well. The reproducibility of the properties of several of the standard Sandia EB mixes was evaluated for materials prepared at a number of thermal-battery manufacturing facilities following the same processing procedures.

  13. Method for removing oxide contamination from silicon carbide powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  14. Experimental Equipment for Powder Processing

    DTIC Science & Technology

    2009-08-20

    for a series of alumina and zirconia powder mixtures by TMDAR, CR-15 (alumina), as well as TZ3YS and CERAC-2003 (zirconia). The proportion of TMDAR...is known to cause abnormal grain growth. Fig.15 shows the seven representative curves obtained for our zirconia powder system. The 10% and 20...various zirconia powder mixtures. The maximum densification rate for each of our zirconia powder mixtures occurs within the relative density range of

  15. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products

    PubMed Central

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770

  16. Influence of Co and W powders on viscosity of composite solders during soldering of specially shaped diamond-abrasive tools

    NASA Astrophysics Data System (ADS)

    Sokolov, E. G.; Aref’eva, S. A.; Svistun, L. I.

    2018-03-01

    The influence of Co and W powders on the structure and the viscosity of composite solders Sn-Cu-Co-W used for the manufacture of the specially shaped diamond tools has been studied. The solders were obtained by mixing the metallic powders with an organic binder. The mixtures with and without diamonds were applied to steel rollers and shaped substrates. The sintering was carried out in a vacuum at 820 ° C with time-exposure of 40 minutes. The influence of Co and W powders on the viscosity solders was evaluated on the basis of the study of structures and according to the results of sintering specially shaped diamond tools. It was found that to provide the necessary viscosity and to obtain the uniform diamond-containing layers on the complex shaped surfaces, Sn-Cu-Co-W solder should contain 27–35 vol % of solid phase. This is achieved with a total solder content of 24–32 wt % of cobalt powder and 7 wt % of tungsten powder.

  17. Electrochemical energy storage devices comprising self-compensating polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises amore » zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.« less

  18. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    PubMed

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore

  19. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial

    PubMed Central

    Ahmed, A. Shafath; Charles, P. David; Cholan, R.; Russia, M.; Surya, R.; Jailance, L.

    2015-01-01

    Aim: This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Materials and Methods: Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Results: Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < 0.001) but did not affect the surface quality or dimensional stability of the casts. Conclusion: Mixing the extract of M. citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality. PMID:26538926

  20. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  1. Synthesis of boron nitride powders

    NASA Astrophysics Data System (ADS)

    Dreissig, Dirk Horst

    2002-09-01

    In the materials science community there is much interest in the development of new, efficient approaches for preparing ceramic powders having properties or performance characteristics not found with powders produced by traditional metallurgical synthesis methods. In this regard, aerosol-based syntheses are finding general acceptance for the preparation of non-metal and metal oxide powders. In contrast, much less effort has been given to aerosol-type syntheses for non-oxide powders despite potentially useful benefits. This dissertation describes the application of two chemical systems in aerosol assisted vapor phase synthesis (AAVS) for the preparation of spherical morphology boron oxynitride, BNxOy, powders that are subsequently converted to spherical morphology boron nitride in a second nitridation step. Chapter 1 describes the AAVS synthesis of BNxOy powders using a reaction of an aqueous boric acid containing aerosol with ammonia at 1000°C. The effect of reactor tube material, total gas flow rate, ammonia concentration, boric acid concentration, and urea addition to the boric acid aerosol on the percent oxygen composition is described. The resulting BNxOy powders contain significant amounts of oxygen that require replacement in a second stage nitridation reaction at elevated temperature under ammonia. The influences of the reaction temperature profile, crucible geometry and transformation additive on final oxygen composition and powder crystallinity are described. Chapter 2 outlines the formation of BNxOy powders from an AAVS reaction between the boron precursor (MeO)3B and ammonia. The formation of the powders is studied as a function of total gas flow rate and ammonia concentration. In all cases the resulting powders contain lower levels of oxygen compared to powders produced from aqueous boric acid aerosols. The conversion of the BNxOy powders in the second stage nitridation reaction with ammonia is examined as a function of crucible geometry, temperature

  2. Estimating growth and yield of mixed stands

    Treesearch

    Stephen R. Shifley; Burnell C. Fischer

    1989-01-01

    A mixed stand is defined as one in which no single species comprises more than 80 percent of the stocking. The growth estimation methods described below can be used not only in mixed stands but in almost any stand, regardless of species composition, age structure, or size structure. The methods described are necessary to accommodate the complex species mixtures and...

  3. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.

    PubMed

    Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke

    2015-01-06

    The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.

  4. Powdered aluminum and oxygen rocket propellants: Subscale combustion experiments

    NASA Technical Reports Server (NTRS)

    Meyer, Mike L.

    1993-01-01

    Aluminum combined with oxygen has been proposed as a potential lunar in situ propellant for ascent/descent and return missions for future lunar exploration. Engine concepts proposed to use this propellant have not previously been demonstrated, and the impact on performance from combustion and two-phase flow losses could only be estimated. Therefore, combustion tests were performed for aluminum and aluminum/magnesium alloy powders with oxygen in subscale heat-sink rocket engine hardware. The metal powder was pneumatically injected, with a small amount of nitrogen, through the center orifice of a single element O-F-O triplet injector. Gaseous oxygen impinged on the fuel stream. Hot-fire tests of aluminum/oxygen were performed over a mixture ratio range of 0.5 to 3.0, and at a chamber pressure of approximately 480 kPa (70 psia). The theoretical performance of the propellants was analyzed over a mixture ratio range of 0.5 to 5.0. In the theoretical predictions the ideal one-dimensional equilibrium rocket performance was reduced by loss mechanisms including finite rate kinetics, two-dimensional divergence losses, and boundary layer losses. Lower than predicted characteristic velocity and specific impulse performance efficiencies were achieved in the hot-fire tests, and this was attributed to poor mixing of the propellants and two-phase flow effects. Several tests with aluminum/9.8 percent magnesium alloy powder did not indicate any advantage over the pure aluminum fuel.

  5. Large grained perovskite solar cells derived from single-crystal perovskite powders with enhanced ambient stability

    DOE PAGES

    Yen, Hung -Ju; Liang, Po -Wei; Chueh, Chu -Chen; ...

    2016-05-25

    In this study, we demonstrate the large grained perovskite solar cells prepared from precursor solution comprising single-crystal perovskite powders for the first time. Here, the resultant large grained perovskite thin film possesses negligible physical (structural) gap between each large grain and are highly crystalline as evidenced by its fan-shaped birefringence observed under polarized light, which is very different to the thin film prepared from the typical precursor route (MAI + PbI 2).

  6. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    NASA Astrophysics Data System (ADS)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  7. Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.

    2004-03-01

    We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.

  8. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a

  9. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  10. The effect of fruit and vegetable powder mix on hypertensive subjects: a pilot study☆

    PubMed Central

    Zhang, John; Oxinos, George; Maher, John H.

    2009-01-01

    Abstract Objective This study was designed to evaluate the effects of a fruit and vegetable powder mix on cardiovascular health as determined by blood pressure and heart rate variability (HRV) in a chiropractic college faculty and student population. Methods Forty subjects were recruited in the study via a schoolwide e-mail notification and through personal contacts. NanoGreens (Biopharma Scientific, Inc, San Diego, CA) vegetable supplement drink was tested to document its effect on the blood pressure and HRV in relation to cardiovascular health. Results After taking the supplement for 90 days, both systolic and diastolic blood pressures decreased significantly in the treatment group. The systolic blood pressure decreased from 140.4 ± 17.7 to 128 ± 14.2 mm Hg, and the diastolic blood pressure decreased from 90.2 ± 7.7 to 83.1 ± 7.4 mm Hg. No significant blood pressure decrease was observed in the control group (systolic blood pressure from 130.8 ± 16.3 to 131 ± 16.1 mm Hg and diastolic blood pressure from 83.6 ± 9.6 to 83.1 ± 7.9 mm Hg). Subject's body weight in pounds did not change significantly in the experimental group: from 193.5 ± 31.1 to 194 ± 31.3. The body weight in the control group showed an increase from 175.9 ± 27.4 to 178 ± 29.9, but it was not significant. The heart rate did not show any statistically significant changes. Time domain analysis of HRV showed an increase in the standard deviation of the average R-R intervals root mean square of successive interbeat intervals, but it did not reach statistical significance. Frequency analysis of HRV found an increase in the total power, but it did not reach a significant level. Conclusion It was concluded that taking the nutritional supplement for 90 days reduced blood pressure but not body weight in this group of subjects. The HRV was not affected by the supplement over the 3-month period. Larger studies should be conducted to determine effects on other populations. PMID:19703665

  11. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  12. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    PubMed

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  13. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    PubMed

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  14. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  15. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less

  16. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed...

  17. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed...

  18. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while being...

  19. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed...

  20. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while being...

  1. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while being...

  2. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed...

  3. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while being...

  4. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while being...

  5. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed...

  6. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  7. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Vanilla powder. 169.179 Section 169.179 Food and... § 169.179 Vanilla powder. (a) Vanilla powder is a mixture of ground vanilla beans or vanilla oleoresin...) Dried corn sirup. (6) Gum acacia. Vanilla powder may contain one or any mixture of two or more of the...

  8. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Vanilla powder. 169.179 Section 169.179 Food and... § 169.179 Vanilla powder. (a) Vanilla powder is a mixture of ground vanilla beans or vanilla oleoresin...) Dried corn sirup. (6) Gum acacia. Vanilla powder may contain one or any mixture of two or more of the...

  9. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Vanilla powder. 169.179 Section 169.179 Food and... § 169.179 Vanilla powder. (a) Vanilla powder is a mixture of ground vanilla beans or vanilla oleoresin...) Dried corn sirup. (6) Gum acacia. Vanilla powder may contain one or any mixture of two or more of the...

  10. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Vanilla powder. 169.179 Section 169.179 Food and... § 169.179 Vanilla powder. (a) Vanilla powder is a mixture of ground vanilla beans or vanilla oleoresin...) Dried corn sirup. (6) Gum acacia. Vanilla powder may contain one or any mixture of two or more of the...

  11. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Vanilla powder. 169.179 Section 169.179 Food and... § 169.179 Vanilla powder. (a) Vanilla powder is a mixture of ground vanilla beans or vanilla oleoresin...) Dried corn sirup. (6) Gum acacia. Vanilla powder may contain one or any mixture of two or more of the...

  12. Mixing of acrylic bone cement: effect of oxygen on setting properties.

    PubMed

    He, Shulin; Scott, Christopher; Higham, Paul

    2003-12-01

    The present study investigates the effect of different mixing methods on the setting properties of bone cement. It was found that vacuum mixing decreased the setting time of the bone cement by nearly 2 min (10%), compared to mixing in air. Two additional experiments, in which the bone cement powders were purged with argon or oxygen, and mixed with the methyl methacrylate monomer, revealed that oxygen concentrations in the bone cement had a great effect on the setting time. The setting time increases significantly as the oxygen concentration increases, which suggests that the decrease in the setting time by vacuum mixing may be attributed to the lower oxygen levels present in the mixer. No significant effect was observed on dough time or maximum exothermic temperature by varying oxygen concentrations in the bone cement mixer.

  13. Daily Intake of Milk Powder and Risk of Celiac Disease in Early Childhood: A Nested Case-Control Study.

    PubMed

    Hård Af Segerstad, Elin M; Lee, Hye-Seung; Andrén Aronsson, Carin; Yang, Jimin; Uusitalo, Ulla; Sjöholm, Ingegerd; Rayner, Marilyn; Kurppa, Kalle; Virtanen, Suvi M; Norris, Jill M; Agardh, Daniel

    2018-04-28

    Milk powder and gluten are common components in Swedish infants' diets. Whereas large intakes of gluten early in life increases the risk of celiac disease in genetically at-risk Swedish children, no study has yet evaluated if intake of milk powder by 2 years of age is associated with celiac disease. A 1-to-3 nested case-control study, comprised of 207 celiac disease children and 621 controls matched for sex, birth year, and HLA genotype, was performed on a birth cohort of HLA-DR3-DQ2 and/or DR4-DQ8-positive children. Subjects were screened annually for celiac disease using tissue transglutaminase autoantibodies (tTGA). Three-day food records estimated the mean intake of milk powder at ages 6 months, 9 months, 12 months, 18 months, and 24 months. Conditional logistic regression calculated odds ratios (OR) at last intake prior to seroconversion of tTGA positivity, and for each time-point respectively and adjusted for having a first-degree relative with celiac disease and gluten intake. Intake of milk powder prior to seroconversion of tTGA positivity was not associated with celiac disease (OR = 1.00; 95% CI = 0.99, 1.03; p = 0.763). In conclusion, intake of milk powder in early childhood is not associated with celiac disease in genetically susceptible children.

  14. Effect of powder to liquid ratio on tensile strength and glass transition temperature of alumina filled poly methyl methacrylate (PMMA) denture base material.

    PubMed

    Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Nizam, A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.

  15. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  16. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  17. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    NASA Astrophysics Data System (ADS)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  18. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  19. Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand

    2016-10-01

    The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling

  20. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    NASA Technical Reports Server (NTRS)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  1. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures.

    PubMed

    DeCost, Brian L; Holm, Elizabeth A

    2016-12-01

    This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM) images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article "Characterizing powder materials using keypoint-based computer vision methods" (B.L. DeCost, E.A. Holm, 2016) [1]. These data are freely available in a Mendeley Data archive "A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures" (B.L. DeCost, E.A. Holm, 2016) located at http://dx.doi.org/10.17632/tj4syyj9mr.1[2] for any academic, educational, or research purposes.

  2. Photocatalytic Water Splitting for O2 Production under Visible Light Irradiation Using NdVO4-V2O5 Hybrid Powders

    PubMed Central

    Chiang, Tzu Hsuan; Chen, Tso-Ming

    2017-01-01

    The study investigated photocatalytic water splitting for O2 production under visible light irradiation using neodymium vanadium oxide (NdVO4) and vanadium oxide (V2O5) hybrid powders. The results in a sacrificial agent of 0.01 M AgNO3 solution were obtained, and the highest photocatalytic O2 evolution was 2.63 μmol/h, when the hybrid powders were prepared by mixing Nd and V at a volume ratio of 1:3 at a calcination temperature of 350 °C for 1 h. The hybrid powders were synthesized by neodymium nitrate and ammonium metavanadate using the glycothermal method in ethylene glycol at 120 °C for 1 h. The hybrid powders consisted of two shapes, NdVO4 nanoparticles and the cylindrical V2O5 particles, and they possessed the ability for photocatalytic oxygen (O2) evolution during irradiation with visible light. The band gaps and structures of the hybrid powders were analyzed using UV-visible spectroscopy and transmission electron microscopy. PMID:28772692

  3. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachuri, Yadagiri; Bisht, Kamal Kumar; Academy of Scientific and Innovative Research

    2015-03-15

    Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanolmore » with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro

  4. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  5. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  6. Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures

    DOE PAGES

    Wildfire, Christina; Sabolsky, Edward M.; Spencer, Michael J.; ...

    2017-06-14

    The rapid synthesis of yttrium aluminum garnet (Y 3Al 15O 12, YAG) powder was investigated through the use of microwave irradiation of the oxide precursor system. For this investigation, an external hybrid heating source was not used. Instead, the rapid heating of the precursor materials (yttria and alumina powders, which are typically transparent to 2.45 GHz microwaves) was initiated by mixing an intrinsic absorbing material (carbon) into the original oxide precursors. The effect of the carbon characteristics, such as carbon source, concentration, particle size, and agglomerate microstructure were evaluated on the efficiency of coupling and resultant oxide reaction. The microwavemore » power was varied to optimize the YAG conversion and eliminate intermediate phase formation. Interactions between the conductive carbon particles and the dielectric oxides within the microwave exposure produced local arching and micro-plasma formation within the powder bed, resulting in the rapid formation of the refractory YAG composition. This optimal conduction led to temperatures of 1000°C that could be achieved in less than 5 min resulting in the formation of > 90 vol% YAG. The understanding of a conductor/dielectric particulate system here, provided insight into possible application of similar systems where microwave irradiation could be used for enhanced solid-state formation, local melting events, and gas phase reactions with a composite powder media.« less

  7. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire

  8. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery.

    PubMed

    Nieto-Orellana, Alejandro; Coghlan, David; Rothery, Malcolm; Falcone, Franco H; Bosquillon, Cynthia; Childerhouse, Nick; Mantovani, Giuseppe; Stolnik, Snow

    2018-04-05

    Pulmonary delivery of protein therapeutics has considerable clinical potential for treating both local and systemic diseases. However, poor protein conformational stability, immunogenicity and protein degradation by proteolytic enzymes in the lung are major challenges to overcome for the development of effective therapeutics. To address these, a family of structurally related copolymers comprising polyethylene glycol, mPEG 2k , and poly(glutamic acid) with linear A-B (mPEG 2k -lin-GA) and miktoarm A-B 3 (mPEG 2k -mik-(GA) 3 ) macromolecular architectures was investigated as potential protein stabilisers. These copolymers form non-covalent nanocomplexes with a model protein (lysozyme) which can be formulated into dry powders by spray-drying using common aerosol excipients (mannitol, trehalose and leucine). Powder formulations with excellent aerodynamic properties (fine particle fraction of up to 68%) were obtained with particle size (D 50 ) in the 2.5 µm range, low moisture content (<5%), and high glass transitions temperatures, i.e. formulation attributes all suitable for inhalation application. In aqueous medium, dry powders rapidly disintegrated into the original polymer-protein nanocomplexes which provided protection towards proteolytic degradation. Taken together, the present study shows that dry powders based on (mPEG 2k -polyGA)-protein nanocomplexes possess potentials as an inhalation delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode

    NASA Astrophysics Data System (ADS)

    Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok

    2012-08-01

    For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.

  10. Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder

    NASA Astrophysics Data System (ADS)

    Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.

    2017-09-01

    Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.

  11. Denudation of metal powder layers in laser powder bed fusion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Manyalibo J.; Guss, Gabe; Khairallah, Saad A.

    Understanding laser interaction with metal powder beds is critical in predicting optimum processing regimes in laser powder bed fusion additive manufacturing of metals. In this work, we study the denudation of metal powders that is observed near the laser scan path as a function of laser parameters and ambient gas pressure. We show that the observed depletion of metal powder particles in the zone immediately surrounding the solidified track is due to a competition between outward metal vapor flux directed away from the laser spot and entrainment of powder particles in a shear flow of gas driven by a metalmore » vapor jet at the melt track. Between atmospheric pressure and ~10 Torr of Ar gas, the denuded zone width increases with decreasing ambient gas pressure and is dominated by entrainment from inward gas flow. The denuded zone then decreases from 10 to 2.2 Torr reaching a minimum before increasing again from 2.2 to 0.5 Torr where metal vapor flux and expansion from the melt pool dominates. In addition, the dynamics of the denudation process were captured using high-speed imaging, revealing that the particle movement is a complex interplay among melt pool geometry, metal vapor flow, and ambient gas pressure. The experimental results are rationalized through finite element simulations of the melt track formation and resulting vapor flow patterns. The results presented here represent new insights to denudation and melt track formation that can be important for the prediction and minimization of void defects and surface roughness in additively manufactured metal components.« less

  12. Denudation of metal powder layers in laser powder bed fusion processes

    DOE PAGES

    Matthews, Manyalibo J.; Guss, Gabe; Khairallah, Saad A.; ...

    2016-05-20

    Understanding laser interaction with metal powder beds is critical in predicting optimum processing regimes in laser powder bed fusion additive manufacturing of metals. In this work, we study the denudation of metal powders that is observed near the laser scan path as a function of laser parameters and ambient gas pressure. We show that the observed depletion of metal powder particles in the zone immediately surrounding the solidified track is due to a competition between outward metal vapor flux directed away from the laser spot and entrainment of powder particles in a shear flow of gas driven by a metalmore » vapor jet at the melt track. Between atmospheric pressure and ~10 Torr of Ar gas, the denuded zone width increases with decreasing ambient gas pressure and is dominated by entrainment from inward gas flow. The denuded zone then decreases from 10 to 2.2 Torr reaching a minimum before increasing again from 2.2 to 0.5 Torr where metal vapor flux and expansion from the melt pool dominates. In addition, the dynamics of the denudation process were captured using high-speed imaging, revealing that the particle movement is a complex interplay among melt pool geometry, metal vapor flow, and ambient gas pressure. The experimental results are rationalized through finite element simulations of the melt track formation and resulting vapor flow patterns. The results presented here represent new insights to denudation and melt track formation that can be important for the prediction and minimization of void defects and surface roughness in additively manufactured metal components.« less

  13. Method for continuous synthesis of metal oxide powders

    DOEpatents

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  14. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density.

    PubMed

    Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin

    2017-09-22

    The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.

  15. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density

    PubMed Central

    Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin

    2017-01-01

    The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633

  16. Articles comprising ferritic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, James M.

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the articlemore » of manufacture is a fuel cell interconnect for a solid oxide fuel cell.« less

  17. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  18. Rotary powder feed through apparatus

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

  19. Magnetic properties of FeCuNbSiB nanocrystalline alloy powder cores using ball-milled powder

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Noh, T. H.; Choi, G. B.; Kim, K. Y.

    2003-05-01

    Cold-pressed nanocrystalline powder cores were fabricated using powders of nanocrystalline ribbons which were ball milled for short time. Their magnetic properties at high frequency were measured. The powder size ranges from 20 to 850 μm and the contents of the glass binder are between 1 and 8 wt %. For cores composed of large particles of 300-850 μm with 5 wt % glass binder, we obtained a stable permeability of 100 up to 800 kHz, a maximum level 31 of quality factor at frequency of 50 kHz, and 320 mW/cm3 core loss at f=50 kHz and Bm=0.1 T. This is mainly due to the good soft magnetic properties of the powders and the higher insulation of powder cores which cause low eddy current losses.

  20. A new powder production route for transparent spinel windows: powder synthesis and window properties

    NASA Astrophysics Data System (ADS)

    Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim

    2005-05-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.

  1. Effect of surface energy on powder compactibility.

    PubMed

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  2. Determination of cellulose crystallinity from powder diffraction diagrams: Powder Diffraction Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Benjamin; Petridis, Loukas; Langan, Paul

    2014-10-01

    Commonly one-dimensional (1D) (spherically averaged) powder diffraction diagrams are used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. Moreover, this leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrilsmore » with crystalline segments as amorphous. Finally, the reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation.« less

  3. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  4. Fabrication of MgB2 monofilament wire by in-situ using powder-in-tube (PIT) method

    NASA Astrophysics Data System (ADS)

    Rasyadi, Muhammad Emir Hanif; Yudanto, Sigit Dwi; Imaduddin, Agung; Sawitri, Dyah

    2018-04-01

    In this research we have studied the making of MgB2 superconducting monofilament wire using powder-in-tube method with variation of Mg composition to B ie 0.90, 1.00 and 1.10, while Boron remains The precursor used is Mg powder (98%) and powder B (95%) Both materials are mixed and then crushed with agate mortar for 30 minutes and then put into stainless steel tube 316. The tube is then subjected to a mechanical treatment of rolling to form its monofilament wire. The wire is then cut and sintered at a temperature of 800o C for 2 hours. After that we measure the critical temperature then characterize the samples by XRD and SEM. From the result of this research it was found that in-situ wire-making by powder-in-tube method can make MgB2 superconducting monofilament wire with MgB2 as the dominant phase around 95% and MgO as the impurity phase around 5%. MgO is formed due to the oxidation occurring in the MgB2 powder inside the wire. The optimal Mg:B composition to make this wire is in the 1:2 composition Because it has a good resistivity curve with a high enough Tc Onset that is 41,67 K and Tc Zero 40,89 K. However, there is a porosity in the wire due to the volume reduction of the Mg + 2B reaction plus the evaporation of Mg.

  5. Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank

    2016-04-01

    A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and

  6. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G.

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  7. Wet powder seal for gas containment

    DOEpatents

    Stang, L.G.

    1979-08-29

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  8. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  9. 21 CFR 169.182 - Vanilla-vanillin powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Vanilla-vanillin powder. 169.182 Section 169.182... Dressings and Flavorings § 169.182 Vanilla-vanillin powder. (a) Vanilla-vanillin powder conforms to the... prescribed for vanilla powder by § 169.179, except that for each unit of vanilla constituent as defined in...

  10. 21 CFR 169.182 - Vanilla-vanillin powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Vanilla-vanillin powder. 169.182 Section 169.182... Dressings and Flavorings § 169.182 Vanilla-vanillin powder. (a) Vanilla-vanillin powder conforms to the... prescribed for vanilla powder by § 169.179, except that for each unit of vanilla constituent as defined in...

  11. 21 CFR 169.182 - Vanilla-vanillin powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Vanilla-vanillin powder. 169.182 Section 169.182... Dressings and Flavorings § 169.182 Vanilla-vanillin powder. (a) Vanilla-vanillin powder conforms to the... prescribed for vanilla powder by § 169.179, except that for each unit of vanilla constituent as defined in...

  12. 21 CFR 169.182 - Vanilla-vanillin powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Vanilla-vanillin powder. 169.182 Section 169.182... Dressings and Flavorings § 169.182 Vanilla-vanillin powder. (a) Vanilla-vanillin powder conforms to the... prescribed for vanilla powder by § 169.179, except that for each unit of vanilla constituent as defined in...

  13. 21 CFR 169.182 - Vanilla-vanillin powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Vanilla-vanillin powder. 169.182 Section 169.182... Dressings and Flavorings § 169.182 Vanilla-vanillin powder. (a) Vanilla-vanillin powder conforms to the... prescribed for vanilla powder by § 169.179, except that for each unit of vanilla constituent as defined in...

  14. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    PubMed

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. [Advances in studies on bear bile powder].

    PubMed

    Zhou, Chao-fan; Gao, Guo-jian; Liu, Ying

    2015-04-01

    In this paper, a detailed analysis was made on relevant literatures about bear bile powder in terms of chemical component, pharmacological effect and clinical efficacy, indicating bear bile powder's significant pharmacological effects and clinical application in treating various diseases. Due to the complex composition, bear bile powder is relatively toxic. Therefore, efforts shall be made to study bear bile powder's pharmacological effects, clinical application, chemical composition and toxic side-effects, with the aim to provide a scientific basis for widespread reasonable clinical application of bear bile powder.

  16. Expandable mixing section gravel and cobble eductor

    DOEpatents

    Miller, Arthur L.; Krawza, Kenneth I.

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  17. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  18. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  19. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  20. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  1. Physicochemical properties and sensory characteristics of sausage formulated with surimi powder.

    PubMed

    Santana, Palestina; Huda, Nurul; Yang, Tajul Aris

    2015-03-01

    The objectives of this study were to determine the physicochemical properties and sensory characteristics of fish sausage made with 100 % threadfin bream (Nemipterus japonicus) surimi powder (SP100), a mix of 50 % surimi powder and 50 % frozen surimi (SP50), and a control (100 % frozen surimi). No significant differences in protein content and folding test results (P > 0.05) were detected among the SP100 and SP50 samples and the control. Gel strength of SP100 was lower (P > 0.05) than that of the control. The texture profile analysis (TPA) values (hardness, cohesiveness, springiness, and chewiness) of SP100 were significantly lower (P < 0.05) than those of the control. However, the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages. The water holding capacity, and emulsion stability of SP100 were significantly lower (P < 0.05) than those of SP50 and the control. Of the cooking properties measured, SP100 had lower (P < 0.05) cooking yield, moisture retention, and fat retention than the control. Quantitative descriptive analysis (QDA) performed by 12 trained panelists showed that sensory characteristic (hardness, cohesiveness, springiness, and chewiness) scores of SP100 were lower than those of SP50 and the control. The use of surimi powder in fish sausage did not differ with that of control in the term of color, odor, or oiliness scored by panelists. The drying process impacted the texture properties of surimi when it was used in fish sausage. However, the use of surimi powder in fish sausage formulation is still accepted since the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages.

  2. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  3. Comparing Strengthening Mechanisms of Vapor Grown Carbon Fiber vs. Titanium Carbide Reinforced Powder Metallurgy Titanium Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Franco, Staub; Kondoh, Katsuyoshi; Umeda, Junko; Imai, Hisashi

    In this experiment, TILOP-45 commercially pure titanium powder was mixed with vapor grown carbon fibers (VGCF) to form a 200 g 0.5 wt. % VGCF solution. After adding 0.15 grams of cle-safe oil, a rocking mill shook the sample at 60.0 Hz for 2 hours, resulting in satisfactory dispersion of VGCF on the titanium powder surface. The powder solution was compacted by spark plasma sintering (SPS) and hot extruded. The SPS temperature was set to either 800 °C or 1,000 °C and the pressure to 35 kN. Using an extrusion ratio of 13:1 and ram speed of 3 mm/s, the titanium billet, preheated to either 800 °C or 1,000 °C, was deformed to a 10 mm diameter rod. All four permutations of SPS and extrusion temperatures were tested. Microstructure, grain size, hardness, and oxygen/nitrogen/carbon content were observed. Also, a UTS experiment was done followed by SEM observations of the fractured surfaces.

  4. Mechanical Performance Test of Rubber-Powder Modified Concrete

    NASA Astrophysics Data System (ADS)

    Zhang, Yan Cong; Gao, Ling Ling

    2018-06-01

    A number of rubber cement concrete specimens that rubber powder dosage different were obtained using same cement, water and fine aggregates, by adjusting the dosage of rubber powder. Then it was used to research the influence of rubber powder dosage on performance of cement concrete by measuring its liquidity, strength and toughness. The results show that: when water-cement ratio was equal and rubber powder replacing the same volume sand, the fluidity of cement concrete almost linear increased with rubber powder dosage increasing. With dosage of rubber powder increasing, compressive strength and flexural strength reduced, but toughness linear growth trend when dosage of rubber powder less 30%.

  5. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  6. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  7. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing

    DOE PAGES

    Trapp, Johannes; Rubenchik, Alexander M.; Guss, Gabe; ...

    2017-09-17

    Here, the effective absorptivity of continuous wave 1070 nm laser light has been studied for bare and metal powder-coated discs of 316L stainless steel as well as for aluminum alloy 1100 and tungsten by use of direct calorimetric measurements. After carefully validating the applicability of the method, the effective absorptivity is plotted as a function of incident laser power from 30 up to ≈540 W for scanning speeds of 100, 500 and 1500 mm s –1. The effective absorptivity versus power curves of the bulk materials typically show a slight change in effective absorptivity from 30 W until the onsetmore » of the formation of a recoil pressure-induced surface depression. As observed using high-speed video, this change in surface morphology leads to an increase in absorption of the laser light. At the higher powers beyond the keyhole transition, a saturation value is reached for both bare discs and powder-coated disks. For ≈100 μm thick powder layers, the measured absorptivity was found to be two times that of the bare polished discs for low-laser power. There is a sharp decrease when full melting of the powder tracks is achieved, followed by a keyhole-driven increase at higher powers, similar to the bare disc case. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both powder-layer measurements and liquid metal estimates from the literature.« less

  8. Sensor devices comprising field-structured composites

    DOEpatents

    Martin, James E.; Hughes, Robert C.; Anderson, Robert A.

    2001-02-27

    A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.

  9. Who Moves to Mixed-Income Neighborhoods?*

    PubMed Central

    McKinnish, Terra; White, T. Kirk

    2011-01-01

    This paper uses confidential Census data, specifically the 1990 and 2000 Census Long Form data, to study the income dispersion of recent cohorts of migrants to mixed-income neighborhoods. We investigate whether neighborhoods with high levels of income dispersion attract economically diverse in-migrants. If recent in-migrants to mixed-income neighborhoods exhibit high levels of income dispersion, this is consistent with stable mixed-income neighborhoods. If, however, mixed-income neighborhoods are comprised of homogenous low-income (high-income) cohorts of long-term residents combined with homogenous high-income (low-income) cohorts of recent arrivals, this is consistent with neighborhood transition. Our results indicate that neighborhoods with high levels of income dispersion do in fact attract a much more heterogeneous set of in-migrants, particularly from the tails of the income distribution. Our results also suggest that the residents of mixed-income neighborhoods may be less heterogeneous with respect to lifetime income. PMID:21479114

  10. Toward a better determination of dairy powders surface composition through XPS matrices development.

    PubMed

    Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C

    2015-01-01

    The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electrostatic powder coating: Principles and pharmaceutical applications.

    PubMed

    Prasad, Leena Kumari; McGinity, James W; Williams, Robert O

    2016-05-30

    A majority of pharmaceutical powders are insulating materials that have a tendency to accumulate charge. This phenomenon has contributed to safety hazards and issues during powder handling and processing. However, increased understanding of this occurrence has led to greater understanding and control of processing and product performance. More recently, the charging of pharmaceutical powders has been employed to adopt electrostatic powder coating as a pharmaceutical process. Electrostatic powder coating is a mature technology used in the finishing industry and much of that knowledge applies to its use in pharmaceutical applications. This review will serve to summarize the principles of electrostatic powder coating and highlight some of the research conducted on its use for the preparation of pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Research on Durability of Recycled Ceramic Powder Concrete

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  13. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  14. Electrically conductive ceramic powders

    NASA Astrophysics Data System (ADS)

    Lu, Yanxia

    1999-11-01

    Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and

  15. Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders.

    PubMed

    Guo, Meilan; Gao, Yun; Shao, G

    2016-01-28

    Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.

  16. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  17. Improved camera for better X-ray powder photographs

    NASA Technical Reports Server (NTRS)

    Parrish, W.; Vajda, I. E.

    1969-01-01

    Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.

  18. Improved Production Of Wrought Articles From Powders

    NASA Technical Reports Server (NTRS)

    Thomas, James R.; Singleton, Ogle R.

    1994-01-01

    Improved technique for consolidation of powders into dense articles developed. Peripheral bands used in consolidation, forging, and rolling operations. Facilitates consolidation of dispersion-hardened aluminous powders and composite mixtures for processing to such useful wrought articles as plates and sheets. Potential use in production of plates and sheets and perhaps other objects from "hard" powders, particularly from powders, objects made from which have propensity to crack when mechanically worked to other forms.

  19. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  20. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  1. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  2. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  3. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  4. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses

    PubMed Central

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778

  5. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    PubMed

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  6. Magnetic properties of Sm2(Fe0.95M0.05)17Nx (M=Cr and Mn) anisotropic coarse powders with high coercivity

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Majima, Kazuhiko; Shimuta, Toru; Katsuyama, Shigeru; Nagai, Hiroshi

    2002-09-01

    Sm2(Fe0.95Cr0.05)17Nx and Sm2(Fe0.95Mn0.05)17Nx coarse powders 10-70 mum in size were synthesized by crushing mother alloy ingots into 32-74 mum in particle size and subsequent nitrogenation at 748 K in a flowing mixed gas of 60 vol % H2+40 vol % NH3. The effects of Cr or Mn substitution for Fe on the nitrogenation rate, magnetic properties, and microstructure of the Sm2Fe17Nx hard magnetic material were investigated. Cr and Mn substitution was quite effective for accelerating nitrogenation. When the powders were nitrogenated beyond x=3, amorphous phase formation was observed as the x value increased. The magnetic properties of the nitrogenated powders were significantly improved by Cr and Mn substitution, and these powders also possessed a satisfactory magnetic anisotropy. The maximum coercivity in this study, 0.59 MA/m, was obtained for the Sm2(Fe0.95Mn0.05)17N5.0 powder in spite of its large particle size. The high coercivity of the coarse powders was caused by a cell-like microstructure composed of fine 2-17 crystalline grains 20-30 nm in size surrounded by an amorphous phase.

  7. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  8. Metal powder production by gas atomization

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  9. Linking flowability and granulometry of lactose powders.

    PubMed

    Boschini, F; Delaval, V; Traina, K; Vandewalle, N; Lumay, G

    2015-10-15

    The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose αr and static cohesive index σr) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle αf, dynamic cohesive index σf, angle of first avalanche αa and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  11. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.

    PubMed

    Dawes, Jason; Gamble, John F; Greenwood, Richard; Robbins, Phil; Tobyn, Mike

    2012-01-01

    A systematic evaluation on the effect of magnesium stearate on the transmission of a placebo formulation from the hopper to the rolls during screw fed roller compaction has been carried out. It is demonstrated that, for a system with two 'knurled' rollers, addition of 0.5% w/w magnesium stearate can lead to a significant increase in ribbon mass throughput, with a consequential increase in roll gap, compared to an unlubricated formulation (manufactured at equivalent process conditions). However, this effect is reduced if one of the rollers is smooth. Roller compaction of a lubricated formulation using two smooth rollers was found to be ineffective due to a reduction in friction at the powder/roll interface, i.e. powder was not drawn through the rollers leading to a blockage in the feeding system. An increase in ribbon mass throughput could also be achieved if the equipment surfaces were pre-lubricated. However this increase was found to be temporary suggesting that the residual magnesium stearate layer was removed from the equipment surfaces. Powder sticking to the equipment surfaces, which is common during pharmaceutical manufacturing, was prevented if magnesium stearate was present either in the blend, or at the roll surface. It is further demonstrated that the influence of the hopper stirrer, which is primarily used to prevent bridge formation in the hopper and help draw powder more evenly into the auger chamber, can lead to further mixing of the formulation, and could therefore affect a change in the lubricity of the carefully blended input material.

  12. Spheroidization of molybdenum powder by radio frequency thermal plasma

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  13. Ionic liquids comprising heteraromatic anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  14. Trace metal assay of U(3)O(8) powder by electrothermal AAS.

    PubMed

    Page, A G; Godbole, S V; Kulkarni, M J; Porwal, N K; Shelar, S S; Joshi, B D

    1983-10-01

    Methods have been developed for the direct determination of Ag, Ca, K., Li, Mg, Na, Pb, Sn and Zn in U(3)O(8) powder samples by electrothermal AAS. Nanogram and lower amounts of these elements have been determined with a relative standard deviation of 6-16% in mg amounts of sample (either alone or mixed with an equal weight of graphite). The results for NBL reference samples were in reasonable agreement with the certified values. X-Ray diffraction studies on the residues left from the graphite mixtures after the atomization cycle, confirmed the formation of uranium carbide (UC(2)).

  15. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Pyrophoric behaviour of uranium hydride and uranium powders

    NASA Astrophysics Data System (ADS)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H2. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  17. 21 CFR 522.1085 - Guaifenesin sterile powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Guaifenesin sterile powder. 522.1085 Section 522....1085 Guaifenesin sterile powder. (a) Specifications. It is a sterile powder containing guaifenesin. (b... drug in sterile water for injection to make a solution containing 50 milligrams of guaifenesin per...

  18. 21 CFR 522.1085 - Guaifenesin sterile powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Guaifenesin sterile powder. 522.1085 Section 522....1085 Guaifenesin sterile powder. (a) Specifications. It is a sterile powder containing guaifenesin. (b... drug in sterile water for injection to make a solution containing 50 milligrams of guaifenesin per...

  19. 21 CFR 522.1085 - Guaifenesin sterile powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Guaifenesin sterile powder. 522.1085 Section 522....1085 Guaifenesin sterile powder. (a) Specifications. It is a sterile powder containing guaifenesin. (b... drug in sterile water for injection to make a solution containing 50 milligrams of guaifenesin per...

  20. 21 CFR 522.1085 - Guaifenesin sterile powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Guaifenesin sterile powder. 522.1085 Section 522....1085 Guaifenesin sterile powder. (a) Specifications. It is a sterile powder containing guaifenesin. (b... drug in sterile water for injection to make a solution containing 50 milligrams of guaifenesin per...

  1. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    NASA Astrophysics Data System (ADS)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  2. Compositions, methods, and systems comprising fluorous-soluble polymers

    DOEpatents

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  3. Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Roul, B. K.

    2017-05-01

    Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.

  4. Rheological, physical and sensorial evaluation of cookies supplemented with dairy powders.

    PubMed

    Sert, Durmuş; Demir, M Kürşat; Ertaş, Nilgün

    2016-04-01

    The effect of dairy powders (skim milk powder, butter milk powder, sodium caseinate, yoghurt powder, milk powder and colostrum powder) on cookie quality was studied. Cookies were tested for aw, calorimetric energy, diameter, thickness, spread ratio, breaking strength, colour, dough consistency and sensory evaluation. The lowest aw values were obtained for cookies containing colostrum powder; also the highest calorimetric energy values were obtained from the colostrum powder-added cookies. Diameter values of cookies with the addition of skim milk powder, butter milk powder, yoghurt powder and milk powder were higher than that of sodium caseinate and colostrum powder. The lowest spread ratio was measured in the cookie samples with added skim milk powder. The addition of yoghurt powder gave the highest breaking strength of cookies. Cookies with sodium caseinate addition exhibited the highest lightness (L*) values than the other cookies with different dairy powders. Cookies prepared with butter milk powder received the highest scores for colour, appearance, texture, crispness and overall acceptability. © The Author(s) 2015.

  5. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  6. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  7. Explosion risk evaluation during production of coating powder.

    PubMed

    Li, Gang; Yuan, Chunmiao; Chen, Baozhi

    2007-10-22

    Powder coating is widely used in industry to prevent equipment corrosion. More than 600 companies produce coating powder in China, but most do not understand the explosion hazard of such products. In the present investigation the explosibility parameters of a coating powder were determined. Results showed that the coating powder is explosible, though the ignition energy is higher than those of normal dusts such as coal powder and corn starch. Based on these experimental findings, a systematic explosion protection method is proposed, with explosion isolation and explosion venting being adopted as the main protective methods.

  8. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    DOEpatents

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  9. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    NASA Technical Reports Server (NTRS)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  10. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  11. Influence of Tl+ activator ions on the luminescence characteristics of KCl0.5Br0.5:Eu2+ powder phosphors.

    PubMed

    Nagarajan, S; Sudarkodi, R

    2009-01-01

    Photoluminescence (PL) of thallium co-doped with KCl0.5Br0.5:Eu2+ powder phosphors display emission bands at 320 and 370 nm attributable to centres involving Tl+ ions in addition to characteristic Eu2+ emission around 420 nm. Additional PL excitation and emission bandS observed around 260 and 380 nm, respectively, were observed in the double-doped KCl0.5Br0.5:Eu2+, Tl+ powder phosphors and are attributed to complex centres involving Tl+ and Eu2+ ions. The enhancement observed in the intensity of Eu2+ emission around 420 nm with the addition of TlBr in KCl0.5Br0.5:Eu2+ powder phosphors is attributed to the energy transfer from Tl+ --> Eu2+ ions. Photostimulated luminescence (PSL) studies of gamma-irradiated KCl0.5Br0.5:Eu2+, Tl+ mixed phosphors are reported and a tentative PSL mechanism in the phosphors has been suggested.

  12. (ZnO){sub 3}In{sub 2}O{sub 3} fine powder prepared by combustion reaction of nitrates-glycine mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikkawa, S.; Sasaki, H.; Tamura, H.

    2004-10-04

    Conducting fine powder was obtained in the Zn-In-O system by combustion of the gel prepared from an aqueous solution of mixed zinc and indium nitrates in the presence of glycine. Glycine worked as a fuel as well as a gelling agent in the combustion under the strong oxidizing power of the nitrates. In spite of the low furnace temperature of 350 deg. C, the product was (ZnO){sub 3}In{sub 2}O{sub 3} which has been obtained above 1260 deg. C in a solid state reaction of a mixture of ZnO and In{sub 2}O{sub 3}. The combustion synthesis led to an aggregated finemore » powder of hexagonal platelets of about 40 nm in diameter. Its compacted mass showed an electrical resistivity of about 700 {omega} cm. The agglomeration was improved by dispersing the fine powder in an acetic acid aqueous solution.« less

  13. Thermodynamic and experimental study of UC powders ignition

    NASA Astrophysics Data System (ADS)

    Le Guyadec, F.; Rado, C.; Joffre, S.; Coullomb, S.; Chatillon, C.; Blanquet, E.

    2009-09-01

    Mixed plutonium and uranium carbide (UPuC) is considered as a possible fuel material for future nuclear reactors. However, UPuC is pyrophoric and fine powders of UPuC are subject to temperature increase due to oxidation with air and possible ignition during conditioning and handling. In a first approach and to allow easier experimental conditions, this study was undertaken on uranium monocarbide (UC) with the aim to determine safe handling conditions for the production and reprocessing of uranium carbide fuels. The reactivity of uranium monocarbide in oxidizing atmosphere was studied in order to analyze the ignition process. Experimental thermogravimetric analysis (TGA) and differential thermal analysis (DTA) revealed that UC powder obtained by arc melting and milling is highly reactive in air at about 200 °C. The phases formed at the various observed stages of the oxidation process were analyzed by X-ray diffraction. At the same time, ignition was analyzed thermodynamically along isothermal sections of the U-C-O ternary diagram and the pressure of the gas produced by the UC + O 2 reaction was calculated. Two possible oxidation schemes were identified on the U-C-O phase diagram and assumptions are proposed concerning the overall oxidation and ignition paths. It is particularly important to understand the mechanisms involved since temperatures as high as 2500 °C could be reached, leading to CO(g) production and possibly to a blast effect.

  14. Electrical conductivity of metal powders under pressure

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  15. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOEpatents

    Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue

    2010-12-14

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  16. Effect of different mixing methods on the physical properties of Portland cement.

    PubMed

    Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz

    2016-12-01

    The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.

  17. Physicochemical and Thermal Properties of Extruded Instant Functional Rice Porridge Powder as Affected by the Addition of Soybean or Mung Bean.

    PubMed

    Mayachiew, Pornpimon; Charunuch, Chulaluck; Devahastin, Sakamon

    2015-12-01

    Legumes contain protein, micronutrients, and bioactive compounds, which provide various health benefits. In this study, soybean or mung bean was mixed in rice flour to produce by extrusion instant functional legume-rice porridge powder. The effects of the type and percentage (10%, 20%, or 30%, w/w) of legumes on the expansion ratio of the extrudates were first evaluated. Amino acid composition, color, and selected physicochemical (bulk density, water absorption index, and water solubility index), thermal (onset temperature, peak temperature, and transition enthalpy), and pasting (peak viscosity, trough viscosity, and final viscosity) properties of the powder were determined. The crystalline structure and formation of amylose-lipid complexes and the total phenolics content (TPC) and antioxidant activity of the powder were also measured. Soybean-blended porridge powder exhibited higher TPC, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, ferric reducing antioxidant power, amino acid, and fat contents than the mung bean-blended porridge powder. Incorporating either legume affected the product properties by decreasing the lightness and bulk density, while increasing the greenness and yellowness and the peak temperature and transition enthalpy. Expansion capacity of the extrudates increased with percentage of mung bean in the mixture but decreased as the percentage of soybean increased. Amylose-lipid complexes formation was confirmed by X-ray diffraction analysis results. Addition of soybean or mung bean resulted in significant pasting property changes of the porridge powder. © 2015 Institute of Food Technologists®

  18. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.

  19. Effect of dairy powders fortification on yogurt textural and sensorial properties: a review.

    PubMed

    Karam, Marie Celeste; Gaiani, Claire; Hosri, Chadi; Burgain, Jennifer; Scher, Joël

    2013-11-01

    Yogurts are important dairy products that have known a rapid market growth over the past few decades. Industrial yogurt manufacture involves different processing steps. Among them, protein fortification of the milk base is elemental. It greatly enhances yogurt nutritional and functional properties and prevents syneresis, an undesirable yogurt textural defect. Protein enrichment can be achieved by either concentration process (evaporation under vacuum and membrane processing: reverse osmosis and/or ultrafiltration) or by addition of dairy ingredients. Traditionally, skim milk powder (SMP) is used to enrich the milk base before fermentation. However, increased quality and availability of other dairy ingredients such as milk protein isolates (MPI), milk protein concentrates (MPC) whey protein isolates (WPI) and concentrates (WPC), micellar casein (MC) and caseinates have promoted their use as alternatives to SMP. Substituting different dry ingredients for skim milk powder in yogurt making affects the yogurt mix protein composition and subsequent textural and sensorial properties. This review focuses on various type of milk protein used for fortification purposes and their influence on these properties.

  20. Mound powder loader, Mod 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gress, A.V. Jr.

    1985-08-21

    At the investigation of Sandia Albuquerque, a semiautomatic powder loader was designed and fabricated for pyrotechnics devices. The basic functions of the system were to load a precise, measured amount of powder into a charge holder and to compact the mixture to a specified density. This report documents the history, rationale, design, and performance of the Mod 1 loader.

  1. The Powder Magazine: Historical Documentation and Architectural Maintenance, Powder Magazine Park, R.E. Bob Woodruff Lake, Montgomery, Alabama

    DTIC Science & Technology

    1999-01-01

    foundation section 13 Figure 11. Photo of rear (west side) of the Powder Magazine, looking east, showing mounded gravel 13 Figure 12. Photo...11. Photo of rear (west side) of the Powder Magazine, looking east, showing mounded gravel. The Powder Magazine, Montgomery, Alabama 13... termite tunnels from ceiling, vent holes filled with red coarse sand, drip marks in debris at north wall base, north side of roof sagging, roof

  2. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that themore » Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.« less

  3. Two-dimensional tomographic terahertz imaging by homodyne self-mixing.

    PubMed

    Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang

    2015-10-19

    We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling.

  4. 21 CFR 520.1660d - Oxytetracycline powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...

  5. 21 CFR 520.1660d - Oxytetracycline powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...

  6. 21 CFR 520.1660d - Oxytetracycline powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...

  7. 21 CFR 520.1660d - Oxytetracycline powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...

  8. 21 CFR 520.1660d - Oxytetracycline powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....14 grams of powder contains 1 gram of oxytetracycline hydrochloride (OTC HCl) (packets: 4, 6.4, and 16 oz.). (2) Each 4.43 grams of powder contains 1 gram of OTC HCl (packets: 4 and 16 oz.). (3) Each 1.32 grams of powder contains 1 gram of OTC HCl (packets: 2.39, 4.78, and 9.55 oz.; jars: 2.25 lbs...

  9. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  10. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  11. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  12. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  13. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  14. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  15. Nanopatterns by phase separation of patterned mixed polymer monolayers

    DOEpatents

    Huber, Dale L; Frischknecht, Amalie

    2014-02-18

    Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).

  16. Effect of mixing proportion on the properties of seaweed modified sustainable concrete

    NASA Astrophysics Data System (ADS)

    Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd

    2017-10-01

    Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.

  17. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  18. Identification of low amount of irradiated spices (red pepper, garlic, ginger powder) with luminescence analysis

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Keun; Akram, Kashif; Kim, Cheong-Tae; Kang, Na-Roo; Lee, Jin-Won; Ryang, Jun-Hwan; Kwon, Joong-Ho

    2012-08-01

    For the identification of irradiated food, current analysis methods have limitations regarding presence and stability of radiation-induced markers. In this study, different spice blends with small quantity of different irradiated (0, 1 and 10 kGy) spice powders, such as red pepper, garlic or ginger, were investigated using PSL and TL techniques. In PSL-based screening analysis, the spice blends containing 10% of irradiated materials (1 or 10 kGy) were determined as intermediate or positive. In TL results, the blends containing 1% of 1 or 10 kGy-irradiated spices showed the typical TL glow curves that could be interpreted as positive. The blends with irradiated garlic powder provided more good results where identification was possible at 0.5% mixing of irradiated sample. However, the TL ratios of all spice blends were <0.1 and only TL glow curve shape and intensity may be used to discriminate the samples having irradiated component.

  19. Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering

    PubMed Central

    2018-01-01

    Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed. PMID:29568652

  20. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  1. Cryomilling of Thermoplastic Powder for Prepreg Applications

    DTIC Science & Technology

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  2. Fabrication of nanocomposite particles using a two-solution mixing-type spray nozzle for use in an inhaled curcumin formulation.

    PubMed

    Taki, Moeko; Tagami, Tatsuaki; Fukushige, Kaori; Ozeki, Tetsuya

    2016-09-10

    A unique two-solution mixing-type spray nozzle is useful for producing nanocomposite particles (microparticles containing drug nanoparticles) in one step. The nanocomposite particles can prevent nanoparticle aggregation. Curcumin has many reported pharmacological effects. Curcumin was entrapped in mannitol microparticles using a spray dryer coupled with a two-solution mixing-type spray nozzle to prepare "curcumin nanocomposite particles" and the application of these particles for inhalation formulations was investigated. Spray drying conditions (flow rate, concentration and inlet temperature) affected the size of both the resulting curcumin nanocomposite particles and the curcumin nanoparticles in the nanocomposite particles. The aerosol performance of the curcumin nanocomposite particles changed depending on the spray drying conditions and several conditions provided better deposition compared with the curcumin original powder. The curcumin nanocomposite particles showed an improved dissolution profile of curcumin compared with the original powder. Furthermore, the curcumin nanocomposite particles showed a higher cytotoxic effect compared with the curcumin original powder towards three cancer cell lines. Curcumin nanocomposite particles containing curcumin nanoparticles show promise as an inhalation formulation for treating lung-related diseases including cancer. Copyright © 2016. Published by Elsevier B.V.

  3. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  4. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  5. Prior Exercise Does Not Reduce Postprandial Lipemia Following a Mixed Glucose Meal When Compared with a Mixed Fructose Meal.

    PubMed

    Rowe, James R; Biggerstaff, Kyle D; Ben-Ezra, Vic; Nichols, David L; DiMarco, Nancy

    2016-10-01

    This study examined the effect of prior exercise on postprandial lipemia (PPL) concentration following a mixed meal (MM) made with either glucose or fructose. Sedentary women completed four trials in random order: 1) Rest-Fructose: RF, 2) Rest-Glucose: RG, 3) Exercise-Fructose: EF, 4) Exercise-Glucose: EG. Exercise expended 500 kcal while walking at 70%VO 2max . Rest was 60 min of sitting. The morning after each trial, a fasting (12 hr) blood sample was collected followed by consumption of the MM. The MM was blended with whole milk and ice cream plus a glucose or fructose powder. Glucose and fructose powder accounted for 30% of the total kcal within the MM. Blood was collected periodically for 6 hr post-MM and analyzed for PPL. Magnitude of PPL over the 6 hr postmeal was quantified using the triglyceride incremental area under the curve (TG AUC I ). Significant differences (p < .05) between trials were determined using repeated-measures ANOVA and Bonferroni post hoc test. There was no significant difference in the TG AUC I between the four trials (p > .05). A significant trial by time interaction for TG concentration was reported (p < .05). Despite lack of change in the AUC I with prior exercise, the lower TG concentration at multiple time points in the EG trial does indicate that prior exercise has some desirable effect on PPL. This study suggests that replacing fructose with glucose sugars and incorporating exercise may minimize PPL following a mixed meal but exercise will need to elicit greater energy expenditure.

  6. Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.

    2017-03-21

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate amore » hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.« less

  7. Characterization of powdered fish heads for bone graft biomaterial applications.

    PubMed

    Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda

    2013-01-01

    The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.

  8. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  9. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less

  10. Physical characterization of whole and skim dried milk powders.

    PubMed

    Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano

    2017-10-01

    The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.

  11. Apparatus for mixing fuel in a gas turbine nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Carl Robert

    A fuel nozzle in a combustion turbine engine that includes: a fuel plenum defined between an circumferentially extending shroud and axially by a forward tube-sheet and an aft tube-sheet; and a mixing-tube that extends across the fuel plenum that defines a passageway connecting an inlet formed through the forward tube-sheet and an outlet formed through the aft tube-sheet, the mixing-tube comprising one or more fuel ports that fluidly communicate with the fuel plenum. The mixing-tube may include grooves on an outer surface, and be attached to the forward tube-sheet by a connection having a fail-safe leakage path.

  12. Biodegradation of thermoplastic starch/eggshell powder composites.

    PubMed

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Surface chemistry and microscopy of food powders

    NASA Astrophysics Data System (ADS)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  14. PROCESS OF FORMING POWDERED MATERIAL

    DOEpatents

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  15. Preliminary nutritional and biological potential of Artocarpus heterophyllus L. shell powder.

    PubMed

    Sharma, Anubhuti; Gupta, Priti; Verma, A K

    2015-03-01

    Artocarpus heterophyllus shell powder was investigated in terms of its nutritional and biological potential. A thorough examination of shell powder demonstrated its potential as a source of minerals, β carotene and dietary fiber, which were assessed gravimetrically & spectrophotometrically. This showed 3.05 ± 0.19 g 100 g(-1) DW of alkaloids followed by saponins and tannins. Three different extracts; acetone, methanol, & mix solvent were used to evaluate phenolic & flavonoid content, antioxidant & antimicrobial activity, GC/MS screening and quantitative analysis of polyphenols. Among all, the methanol extract showed highest antioxidant activity evaluated by DPPH, FRAP & ABTS assays and was significantly correlated with phenolic and flavonoid contents. Phenolic & flavonoid content was found to be 158 ± 0.34 mg (GAE) and 10.0 ± 0.64 mg (CE) respectively. The results of antimicrobial activity showed that L. monocytogenes was more susceptible to all extracts followed by other microorganisms. Catechin, ascorbic & chlorogenic acids were identified as major polyphenols analyzed by LC-MS/MS. GC/MS analysis showed that it contains a variety of compounds with different therapeutic activities. The study revealed that A. heterophyllus shell is a good source of natural antioxidants & other bioactive compounds and can be used in cosmetics, medicines and functional food application.

  16. Effect of Powder Leaf Breadfruit Disposals (Arthocarpus Altilis) in Oil Mandar District and Polman Against Cholesterol and Glucose Mice (Mus Musculus)

    NASA Astrophysics Data System (ADS)

    Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni

    2018-01-01

    The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.

  17. 21 CFR 522.1085 - Guaifenesin powder for injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Guaifenesin powder for injection. 522.1085 Section... § 522.1085 Guaifenesin powder for injection. (a) Specifications. The product is a sterile powder containing guaifenesin. A solution is prepared by dissolving the drug in sterile water for injection to make...

  18. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...

  19. 21 CFR 520.44 - Acetazolamide sodium soluble powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetazolamide sodium soluble powder. 520.44... Acetazolamide sodium soluble powder. (a) Specifications. The drug is in a powder form containing acetazolamide sodium, USP equivalent to 25 percent acetazolamide activity. (b) Sponsor. See No. 053501 in § 510.600(c...

  20. 21 CFR 520.44 - Acetazolamide sodium soluble powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acetazolamide sodium soluble powder. 520.44... Acetazolamide sodium soluble powder. (a) Specifications. The drug is in a powder form containing acetazolamide sodium, USP equivalent to 25 percent acetazolamide activity. (b) Sponsor. See No. 053501 in § 510.600(c...

  1. 21 CFR 520.44 - Acetazolamide sodium soluble powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acetazolamide sodium soluble powder. 520.44... Acetazolamide sodium soluble powder. (a) Specifications. The drug is in a powder form containing acetazolamide sodium, USP equivalent to 25 percent acetazolamide activity. (b) Sponsor. See No. 053501 in § 510.600(c...

  2. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  3. Dispersibility of lactose fines as compared to API in dry powders for inhalation.

    PubMed

    Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik

    2016-05-17

    This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structural changes during milling of aluminum oxide powders

    NASA Technical Reports Server (NTRS)

    Ziepler, G.

    1984-01-01

    The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.

  5. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  6. Cerebroprotective Actions of Triticum aestivum Linn Powder and Bauhinia purpurea Flower Powder in Surgically Induced Cerebral Infraction in Rats.

    PubMed

    Annapurna, Akula; Vishala, Thonangi C; Bitra, Veera R; Rapaka, Deepthi; Shaik, Asmath

    2018-01-01

    The prime objective of this study is to evaluate the cerebroprotective actions of Triticum aestivum (wheatgrass) powder and Bauhinia purpurea flower (dev kanchan) powder against the experimentally induced global ischemia reperfusion injury in rats. In the first phase of the studies, 1 h before the surgical procedure, the Wistar rats were orally served with varied doses of wheatgrass powder (5, 10, 30, and 100 μg/kg) and Bauhinia flower powder (30, 100, 200, and 300 μg/kg), respectively. The ischemia was induced by 30-min bilateral carotid artery occlusion in succession to reperfusion for 4 h. It was proved that the wheatgrass powder and Bauhinia flower powder yielded a significant, dose-dependent cerebroprotection in terms of reduction in cerebral infarct size when compared with the control group. Coming to the second phase of the studies, a certain potential dose of 10 μg/kg of wheatgrass and 200 μg/kg of Bauhinia flower powders was selected keeping the protective action in view, and the animals were treated for 15 days. The major findings of the study are that wheatgrass and Bauhinia flower powders significantly augmented the magnitude of the antioxidant enzymes, viz., super oxide dismutase and catalase, and further reduced the levels of lipid peroxidation. The present study clearly showed that the wheatgrass powder and Bauhinia flower powder possess significant antioxidant properties that may act as a key ingredient in various ayurvedic preparations for the treatment of various diseases like cerebral ischemic reperfusion injury. The wheat grass contains high amount of bioflavonoids, alkaloids, SOD etc which are responsible for anti oxidant activity.The Bauhinia purpurea contains glycosides, flavonoids and also plays a major role in DPPH activity which is responsible for anti oxidant activity.The wheat grass (10 mg/kg) and bauhinia (200 mg/kg) significantly(P < 0.0001) reduced the percentage of infract size when compared to Ischemia reperfusion control group

  7. Cerebroprotective Actions of Triticum aestivum Linn Powder and Bauhinia purpurea Flower Powder in Surgically Induced Cerebral Infraction in Rats

    PubMed Central

    Annapurna, Akula; Vishala, Thonangi C.; Bitra, Veera R.; Rapaka, Deepthi; Shaik, Asmath

    2017-01-01

    Objective: The prime objective of this study is to evaluate the cerebroprotective actions of Triticum aestivum (wheatgrass) powder and Bauhinia purpurea flower (dev kanchan) powder against the experimentally induced global ischemia reperfusion injury in rats. Materials and Methods: In the first phase of the studies, 1 h before the surgical procedure, the Wistar rats were orally served with varied doses of wheatgrass powder (5, 10, 30, and 100 μg/kg) and Bauhinia flower powder (30, 100, 200, and 300 μg/kg), respectively. The ischemia was induced by 30-min bilateral carotid artery occlusion in succession to reperfusion for 4 h. It was proved that the wheatgrass powder and Bauhinia flower powder yielded a significant, dose-dependent cerebroprotection in terms of reduction in cerebral infarct size when compared with the control group. Coming to the second phase of the studies, a certain potential dose of 10 μg/kg of wheatgrass and 200 μg/kg of Bauhinia flower powders was selected keeping the protective action in view, and the animals were treated for 15 days. Results: The major findings of the study are that wheatgrass and Bauhinia flower powders significantly augmented the magnitude of the antioxidant enzymes, viz., super oxide dismutase and catalase, and further reduced the levels of lipid peroxidation. Conclusions: The present study clearly showed that the wheatgrass powder and Bauhinia flower powder possess significant antioxidant properties that may act as a key ingredient in various ayurvedic preparations for the treatment of various diseases like cerebral ischemic reperfusion injury. SUMMARY The wheat grass contains high amount of bioflavonoids, alkaloids, SOD etc which are responsible for anti oxidant activity.The Bauhinia purpurea contains glycosides, flavonoids and also plays a major role in DPPH activity which is responsible for anti oxidant activity.The wheat grass (10 mg/kg) and bauhinia (200 mg/kg) significantly(P < 0.0001) reduced the percentage of

  8. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  9. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  10. Prediction of the Effective Thermal Conductivity of Powder Insulation

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  11. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    PubMed

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  12. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    NASA Astrophysics Data System (ADS)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  13. Characterization of the Waukesha Illite: A mixed-polytype illite in the Clay Mineral Society repository

    USGS Publications Warehouse

    Grathoff, Georg H.; Moore, D.M.

    2002-01-01

    The Waukesha Illite is an excellent example of the illites found in argillaceous rocks, typical for Paleozoic shales that have undergone significant burial diagenesis during their geologic history. It consists of a mixture of detrital 2M1, interpreted to be a residuum of karstification within Silurian carbonates, and diagenetic 1M and 1Md illite. The chemistry and the age of the illite polytypes are different. Extrapolating to 100%, the 1M and 1Md polytypes have an apparent diagenetic age between 295 and 325 Ma. The chemistry of the 1M polytype could not be determined because of its low abundance. The approximate chemical composition of the 1Md polytype is 0.67 K, 3.6 Si, and 1.9 Al per half unit cell. The 2M1 polytype has an apparent detrital age between 440 and 520 Ma, and an approximate chemical composition per half unit cell of 0.78 K, 3.4 Si, and 2.1 Al, all within our margin of error. X-ray diffraction (XRD) results of both random powder and oriented preparations both indicate that the Waukesha Illite consists of a mixture of illites. The XRD patterns of the random powder preparation indicate it is a physical mixture of three different illite polytypes. This result was confirmed using 3 different methods: (1) by measuring illite polytype-specific reflections; (2) by mixing illite polytype reference samples; and (3) by mixing WILDFIRE calculated XRD patterns. Decomposition of the illite 001 XRD peak from oriented preparations also indicates mixtures of illites. However, the proportions of the three illitic components derived from the oriented 001 peak decomposition differ from those results derived from the analysis of the random powder data. Therefore, the shape of the 001 reflection of the Waukesha Illite cannot be explained by mixing the three different illite polytypes.

  14. Talcum powder poisoning

    MedlinePlus

    ... powder As a filler in street drugs, like heroin Other products may also contain talc. ... have developed serious lung damage and cancer. Injecting heroin that contains talc into a vein may lead ...

  15. Roller compaction: Effect of relative humidity of lactose powder.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  16. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  17. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  18. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  19. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  20. Direct synthesis of zirconium powder by magnesium reduction

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Won; Yun, Jung-Yeul; Yoon, Sung-Won; Wang, Jei-Pil

    2013-05-01

    The direct synthesis of zirconium powder has been conducted through an analysis of the chemical reaction between evaporated ZrCl4 and molten magnesium over a range of reduction temperatures, concentration of hydrochloric acid, and stirring time. The observed results indicated that the purity of zirconium powder increased with increased stirring time, and Mg and MgCl2 were removed by 10 wt% of hydrochloric acid solution. The pure zirconium powder was obtained by stirring again for 5 h using 5 wt% of hydrochloric acid solution. It was noted that the mean particle size increased when the reaction temperature was increased, and the size of the powder at 1,123 K and 1,173 K was found to be 10 μm and 15 μm, respectively. In addition, the purity of the powder was also improved with temperature, and its purity finally reached up to 99.5% at 1,250 K. Overall, pure zirconium powder was obtained after a stirring stage for 5 hours using 5 wt% of hydrochloric acid solution.