Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.
2014-01-01
Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.
Daddow, Pamela B.
1986-01-01
Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)
Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.
2010-01-01
Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.
Senecal, Anna C.; Walters, Annika W.; Hubert, Wayne A.
2016-01-01
Wyoming’s Powder River is considered an example of a pristine prairie river system. While the river hosts a largely native fish assemblage and remains unimpounded over its 1,146-km course to the Yellowstone River confluence, the hydrologic regime has been altered through water diversion for agriculture and natural gas extraction and there has been limited study of fish assemblage structure. We analyzed fish data collected from the mainstem Powder River in Wyoming between 1896 and 2008. Shifts in presence/absence and relative abundance of fish species, as well as fish assemblage composition, were assessed among historical and recent samples. The recent Powder River fish assemblage was characterized by increased relative abundances of sand shiner Notropis stramineus and plains killifish Fundulus zebrinus, and decreases in sturgeon chub Macrhybopsis gelida. Shifts in fish species relative abundance are linked to their reproductive ecology with species with adhesive eggs generally increasing in relative abundance while those with buoyant drifting eggs are decreasing. Assemblage shifts could be the result of landscape level changes, such as the loss of extreme high and low flow events and changing land use practices.
Clark, Melanie L.
2012-01-01
The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios, and major ion concentrations of the main-stem streams. Sites in the Tongue River drainage basin typically had the smallest range of specific conductance and SAR values. The water chemistry of sites in the Powder River drainage basin generally was the most variable as a result of diverse characteristics of that basin. Plains tributaries in the Powder River drainage basin had the largest range of specific conductance and SAR values, in part due to the many tributaries that receive CBNG-produced waters. Trends were analyzed using the seasonal Kendall test with flow-adjusted concentrations to determine changes to water quality through time at sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Trends were evaluated for water years 2001–10 for 17 sites, which generally were on the main-stem streams and primary tributaries. Trends were evaluated for water years 2005–10 for 26 sites to increase the spatial coverage of sites. Trends were evaluated for water years 1991–2010 for eight sites to include water-quality data collected prior to widespread CBNG development and expand the temporal context of trends. Consistent patterns were not observed in trend results for water years 2001–10 for flow-adjusted specific conductance and SAR values in the Tongue, Powder, and Belle Fourche River drainage basins. Significant (p-values less than 0.05) upward trends in flow-adjusted specific conductance values were determined for 3 sites, a downward trend was determined for 1 site, and no significant (p-value greater than 0.05) trends were determined for 13 sites. One of the sites with a significant upward trend was the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 2 sites and no significant trends were determined for 15 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. One of the sites with a significant upward trend in flow-adjusted SAR values was the Powder River at Arvada, Wyo. For water years 2005–10, significant upward trends in flow-adjusted specific conductance values were determined no significant trends were determined for 13 sites. A significant upward trend was determined for flow-adjusted specific conductance values for the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 4 sites, downward trends were determined for 5 sites, and no significant trend was determined for 17 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted specific conductance values for water years 1991–2010 indicated no significant trend for eight sites in the Tongue, Powder, and Belle Fourche River drainage basins. No significant trend in flow-adjusted specific conductance was determined for the Tongue River at the Wyoming-Montana State line or the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted SAR values for water years 1991–2010 indicated an upward trend for one site and no significant trend for four sites in the Powder and Belle Fourche River drainage basins. The significant upward trend in flow-adjusted SAR values was determined for the Powder River at Arvada, Wyo., for water years 1991–2010. Results indicate that CBNG development in the Powder River structural basin may have contributed to some trends, such as the upward trend in flow-adjusted SAR for the Powder River at Arvada, Wyo., for water years 1991–2010. An upward trend in flow-adjusted alkalinity concentrations for water years 2001–10 also was determined for the Powder River at Arvada, Wyo. Trend results are consistent with changes that can occur from the addition of sodium and bicarbonate associated with CBNG-produced waters to the Powder River. Upward trends in constituents at other sites, including the Belle Fourche River, may be the result of declining CBNG development, indicating that CBNG-produced waters may have had a dilution effect on some streams. The factors affecting other trends could not be determined because multiple factors could have been affecting the stream-water quality or because trends were observed at sites upstream from CBNG development that may have affected water-quality trends at sites downstream.
Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06
Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul
2009-01-01
Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005–06) and to establish a baseline for future monitoring.The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report.The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River.Macroinvertebrate communities showed similarity at the river-drainage scale. Macroinvertebrate communities at sites with mountainous headwaters and snowmelt-driven hydrology, such as Clear Creek, Crazy Woman Creek, and Goose Creek, showed similarity with communities from the main-stem Tongue River. The data also indicated similarity among sites on the main-stem Powder River and among small tributaries of the Tongue River. Data analyses using macroinvertebrate observed/expected models and multimetric indices developed by the States of Wyoming and Montana indicated a tendency toward declining biological condition in the downstream direction along the Tongue River. Biological condition for the main-stem Powder River generally improved downstream, from below Salt Creek to near the Wyoming/Montana border, followed by a general decline downstream from the border to the confluence with the Yellowstone River. The biological condition generally was not significantly different between 2005 and 2006, although streamflow was less in 2006 because of drought.Algal communities showed similarity at the river-drainage scale with slight differences from the pattern observed in the macroinvertebrate communities. Although the algal communities from Clear Creek and Goose Creek were similar to those from the main-stem Tongue River, as was true of the macroinvertebrate communities, the algal communities from Crazy Woman Creek had more similarity to those of main-stem Powder River sites than to the Tongue River sites, contrary to the macroinvertebrates. Ordination of algal communities, as well as diatom metrics including salinity and dominant taxa, indicated substantial variation at two sites along the main stem of the Powder River.Fish communities of the PRB were most diverse in the Tongue River drainage. In part due to the effects of Tongue River Reservoir, 15 species of fish were found in the Tongue River drainage that were not found in the Cheyenne, Belle Fourche, or Little Powder River drainages. The number of introduced species and relative abundance of introduced species of fish were higher in the Tongue River and other drainages than at sites on the main-stem Powder River. Although non-native species were identified in the Powder River, the native fish community is largely intact. Western silvery minnow and sturgeon chub—species of special concern—were identified only at sites on the main-stem Powder River and were most common in the Montana segment of the main stem. Fish and habitat sampling on the main-stem Powder River indicated affinity of some species for certain habitats such as pools, runs, riffles, backwaters, or shoals.
Crysdale, B.L.
1991-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.
Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.
2014-01-01
The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells. Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.
Clark, Melanie L.; Mason, Jon P.
2006-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.
Peterson, David A.; Hargett, Eric G.; Feldman, David L.
2011-01-01
Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case, near the Wyoming-Montana border, and a decrease in another case, upstream of Tongue River Reservoir. Few significant differences were noted from upstream to downstream of Prairie Dog Creek, a major tributary to the Tongue River. Further study would be needed to confirm the observed patterns and choose areas to examine in greater detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin andmore » the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.« less
Crysdale, B.L.
1991-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.
Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming
Wangsness, David J.; Peterson, David A.
1980-01-01
Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)
Crysdale, B.L.
1990-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.
Crysdale, B.L.
1990-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.
,
2006-01-01
The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.
76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWYP00000-L13200000-EL0000] Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Public Meeting. SUMMARY: The Powder River Regional Coal Team (RCT) has...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWY922000-L13200000-EL0000] Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of public meeting. SUMMARY: The Powder River Regional Coal Team (RCT...
Sando, Steven K.; Vecchia, Aldo V.; Barnhart, Elliott P.; Sando, Thomas R.; Clark, Melanie L.; Lorenz, David L.
2014-01-01
The primary purpose of this report is to present information relating to flow-adjusted temporal trends in major-ion constituents and properties for 16 sampling sites in the Tongue and Powder River watersheds based on data collected during 1980–2010. In association with this primary purpose, the report presents background information on major-ion characteristics (including specific conductance, calcium, magnesium, potassium, sodium adsorption ratio, sodium, alkalinity, chloride, fluoride, dissolved sulfate, and dissolved solids) of the sampling sites and coal-bed methane (CBM) produced water (groundwater pumped from coal seams) in the site watersheds, trend analysis methods, streamflow conditions, and factors that affect trend results. The Tongue and Powder River watersheds overlie the Powder River structural basin (PRB) in northeastern Wyoming and southeastern Montana. Limited extraction of coal-bed methane (CBM) from the PRB began in the early 1990’s, and increased dramatically during the late 1990’s and early 2000’s. CBM-extraction activities produce discharges of water with high concentrations of dissolved solids (particularly sodium and bicarbonate ions) relative to most stream water in the Tongue and Powder River watersheds. Water-quality of CBM produced water is of concern because of potential effects of sodium on agricultural soils and potential effects of bicarbonate on aquatic biota. Two parametric trend-analysis methods were used in this study: the time-series model (TSM) and ordinary least squares regression (OLS) on time, streamflow, and season. The TSM was used to analyze trends for 11 of the 16 study sites. For five sites, data requirements of the TSM were not met and OLS was used to analyze trends. Two primary 10-year trend-analysis periods were selected. Trend-analysis period 1 (water years 1986–95; hereinafter referred to as period 1) was selected to represent variability in major-ion concentrations in the Tongue and Powder River watersheds before potential effects of CBM-extraction activities. Trend analysis period 2 (water years 2001–10; hereinafter referred to as period 2) was selected because it encompassed substantial CBM-extraction activities and therefore might indicate potential effects of CBM-extraction activities on water quality of receiving streams in the Tongue and Powder River watersheds. For sites that did not satisfy data requirements for the TSM, OLS was used to analyze trends for period 2 (if complete data were available) or a 6-year period (2005–10). Flow-rate characteristics of CBM-produced water were estimated to allow general comparisons with streamflow characteristics of the sampling sites. The information on flow-rate characteristics of CBM-produced water in relation to streamflow does not account for effects of disposal, treatment, or other remediation activities on the potential quantitative effects of CBM-produced water on receiving streams. In many places, CBM-produced water is discharged into impoundments or channels in upper reaches of tributary watersheds where water infiltrates and does not directly contribute to streamflow. For Tongue River at State line (site 4) mean annual pumping rate of CBM-produced water during water years 2001–10 (hereinafter referred to as mean CBM pumping rate) was 6 percent of the mean of annual median streamflows during water years 2001–10 (hereinafter referred to as 2001–10 median streamflow). For main-stem Tongue River sites 5, 7, and 10, mean CBM pumping rate was 8–12 percent of 2001–10 median streamflow. For main-stem Powder River sites (sites 12, 13, and 16), mean CBM pumping rates were 26, 28, and 34 percent of 2001–10 median streamflows, respectively. For main-stem Tongue River sites analyzed by using the TSM and downstream from substantial CBM-extraction activities [Tongue River at State line (site 4), Tongue River at Tongue River Dam (site 5), Tongue River at Birney Day School (site 7), and Tongue River at Miles City (site 10)], generally small significant or nonsignificant decreases in most constituents are indicated for period 1. For period 2 for these sites, the TSM trend results do not allow confident conclusions concerning detection of effects of CBM-extraction activities on stream water quality. Detection of significant trends in major-ion constituents and properties for period 2 generally was infrequent, and direction, magnitudes, and significance of fitted trends were not strongly consistent with relative differences in water quality between stream water and CBM-produced water. The TSM indicated significant or generally large magnitude increases in median values of sodium adsorption ratio (SAR), sodium, and alkalinity for period 2 for sites 5 and 7, which might indicate potential effects of CBM-extraction activities on stream water. However, other factors, including operations of Tongue River Reservoir, irrigation activities, contributions of saline groundwater, and operations of the Decker coal mine, confound confident determination of causes of detected significant trends for sites 5 and 7. For all mainstem Tongue River sites, trends for period 2 generally are within ranges of those for period 1 before substantial CBM-extraction activities. For main-stem Powder River sites analyzed by using the TSM [Powder River at Sussex (site 11), Powder River at Arvada (site 12), Powder River at Moorhead (site 13), and Powder River near Locate (site 16)], significant or generally large magnitude decreases in median values of SAR, sodium, estimated alkalinity, chloride, fluoride, specific conductance, and dissolved solids are indicated for period 1. Patterns in trend results for period 1 for main-stem Powder River sites are consistent with effects of Salt Creek oil-brine reinjection that started in 1990. Trend results for all main-stem Powder River sites downstream from substantial CBM-extraction activities (sites 12, 13, and 16) indicate evidence of potential effects of CBM-extraction activities on stream water quality, although evidence is stronger for sites 12 and 13 than for site 16. Evidence in support of potential CBM effects includes significant increases in median values of SAR, sodium, and estimated alkalinity for period 2 for sites 12, 13, and 16 that are consistent with relative differences between stream water and CBM-produced water. Significant increases in median values of these constituents for period 2 are not indicated for Powder River at Sussex (site 11) upstream from substantial CBM-extraction activities. In interpreting the trend results, it is notable that the fitted trends evaluate changes in median concentrations and also notable that changes in median concentrations that might be attributed to CBM-extraction activities probably are more strongly evident during low to median streamflow conditions than during mean to high streamflow conditions. This observation is relevant in assessing trend results in relation to specific water-quality concerns, including effects of water-quality changes on irrigators and effects on stream biota and ecology.
Clark, Melanie L.; Mason, Jon P.
2007-01-01
Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the Tongue River to 1,460 ?S/cm at 25?C on Prairie Dog Creek. The Tongue River drainage basin has the largest percentage of area underlain by Mesozoic-age and older rocks and by more resistant rocks. In addition, the higher annual precipitation and a steeper gradient in this basin compared to basins in the plains produce relatively fast stream velocities, which result in a short contact time between stream waters and basin materials. The Powder River drainage basin, which has the largest drainage area and most diverse site conditions, had the largest range of median specific-conductance values among the four major drainage basins. Median values in that basin ranged from 680 ?S/cm at 25?C on Clear Creek to 5,950 ?S/cm at 25?C on Salt Creek. Median specific-conductance values among sites in the Cheyenne River drainage basin ranged from 1,850 ?S/cm at 25?C on Black Thunder Creek to 4,680 ?S/cm at 25?C on the Cheyenne River. The entire Cheyenne River drainage basin is in the plains, which have low precipitation, soluble geologic materials, and relatively low gradients that produce slow stream velocities and long contact times. Median specific-conductance values among sites in the Belle Fourche River drainage basin ranged from 1,740 ?S/cm at 25?C on Caballo Creek to 2,800 ?S/cm at 25?C on Donkey Creek. Water in the study area ranged from a magnesium-calcium-bicarbonate type for some sites in the Tongue River drainage basin to a sodium-sulfate type at many sites in the Powder, Cheyenne, and Belle Fourche River drainage basins. Little Goose Creek, Goose Creek, and the Tongue River in the Tongue River drainage basin, and Clear Creek in the Powder River drainage basin, which have headwaters in the Bighorn Mountains, consistently had the smallest median dissolved-sodium concentrations, sodium-adsorption ratios, dissolved-sulfate concentrations, and dissolved-solids concentrations. Salt Creek, Wild Horse Creek, Little Powder River, and the Cheyenne River, which have headwat
Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles
NASA Astrophysics Data System (ADS)
Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.
2011-12-01
We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.D.
1984-01-01
This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less
Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin
Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.
2010-01-01
The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.
Hinaman, Kurt
2005-01-01
The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a second volume of ground water for each hydrogeologic unit. Significant figure considerations limited estimates of ground-water volumes to two significant digits. A total ground-water volume of 2.0x1014 ft3 (cubic feet) was calculated using porosity values, and a total ground-water volume of 3.6x1013 ft3 was calculated using specific yield and specific storage values. These results are consistent with retention properties, which would have some of the total water being retained in the sediments. Sensitivity analysis shows that the estimates of ground-water volume are most sensitive to porosity. The estimates also are sensitive to confined thickness and saturated thickness. Better spatial information for hydrogeologic units could help refine the ground-water volume estimates.
2002-05-23
22/02; David Tate, “VR in the Field: Hunter Warrior & JCOS/MCM Situational Awareness Using the Virtual Reality Responsive Workbench;” available from... Fetterman Union-Pacific Railroad N. Platte River Missouri River Missouri River Yellowstone River Bighorn R. Black Hills Powder R. Little Missouri R... Fetterman on March 1, 1876, and made contact with a Sioux band on the Powder River two weeks later. However, the lead Unit of Action failed to defeat
Potential effects of coalbed natural gas development on fish and aquatic resources
Farag, Aïda M.; Harper, David D.; Senecal, Anna C.; Hubert, Arthur E.; Reddy, K.J.
2010-01-01
The purpose of this chapter is to provide a summary of issues and findings related to the potential effects of coalbed natural gas (CBNG) development on fish and other aquatic resources. We reviewed CBNG issues from across the United States and used the Powder River Basin of Wyoming as a case study to exemplify some pertinent issues. The quality of water produced during CBNG extraction is quite variable. High total dissolved solids in many CBNG produced waters are of concern relative to fish and other aquatic organisms. Untreated CBNG produced water has the potential to be toxic to fish and aquatic organisms. Of particular concern at some locations in the Powder River basin are elevated concentrations of sodium bicarbonate which have been shown to be toxic to some species of larval fish and aquatic invertebrates. The areas affected by direct toxicity were limited to headwaters and small tributaries studied in the basin. The potential effects of organic compounds used during well drilling and CBNG production on water quality, fish, and aquatic organisms are not well defined. Water produced from CBNG wells that is low in salts or has been treated to remove salts may be discharged into ephemeral or perennially-flowing streams. Higher flows in small streams can enhance erosion and affect habitat for fish and aquatic organisms. In Great Plains rivers, such as the Powder River, fish and aquatic invertebrate communities are structured by extreme environmental conditions. Direct discharge of CBNG produced water during periods of very low or no surface flow may cause shifts in the aquatic community structure. Additional effects of CBNG development on fish and aquatic organisms may stem from road building and pipeline construction, roads crossing streams and ephemeral water courses, the possible spread of invasive organisms, potential spills of toxic substances, and increased harvest of sport fish.
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.
2012-01-01
The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.
Powder River outlook stays healthy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-08-01
Well drilling activity in Wyoming's Powder River Basin is discussed. Operators are taking advantage of favorable economic advantages to tap the area's multiple pay potential and challenge its high success rate reputation. A significant amount of exploration and development can be expected in the future due to the recent discovery of high-flowing wells.
NASA Astrophysics Data System (ADS)
Custer, S. G.; Sojda, R. S.
2003-12-01
The removal and disposal of ground water during production of coalbed methane has the potential to influence wetland-bird habitat in the Powder River Basin. Office analysis of wetland areas was conducted on National Wetland Inventory maps and Digital Orthophoto Quadrangles along the Tongue and Powder rivers in the northern Powder River Basin, Montana. Selected sites were palustrine emergent, large enough to be important to waterbirds, part of a wetland complex, not dependent on artificial water regimes, in an area with high potential for coalbed methane production, and judged to be accessible in the field. Several promising wetland areas were selected for field examination. Field investigation suggests that the most promising wetlands in oxbow cutoffs would not be productive sites. Only facultative not obligate wetland plants were observed, the topographic position of the wetlands suggested that flooding would be infrequent, and the stream flow would likely dilute the effect of produced water adjacent to these rivers. Fortuitously wetland-bird habitat not recognized on the National Wetland Inventory maps and Digital Orthophoto Quadrangles was observed along Rosebud Creek during the field reconnaissance. This habitat is not continuous. The lack of continuity is reflected in the soil surveys as well as in the reconnaissance field nvestigation. The Alluvial Land soil series corresponds to observed wetland areas but the extent of the wetland-bird habitat varies substantially within the soil unit. When the Korchea series is present, extensive wetland-bird habitat is not observed. Field and aerial photo analysis suggests that the presence of the habitat may be controlled by beaver, and/or by stratigraphic and structural elements that influence stream erosion. Human modification of the stream for irrigation purposes may impact habitat continuity in some areas. The "Rosebud" type wetland-bird habitat may have the potential to be influenced by coalbed methane water production and warrants further more detailed investigation to determine the areal extent of the habitat, to determine the factors that control the distribution of intermittent wetland-bird-habitat areas, and to better model whether and how water produced during coalbed methane development might influence wetland-bird habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, P.R.
1989-09-01
Donkey Creek and Coyote Creek fields contain combined reserves of approximately 35 million bbl of oil and are within a trend of fields on the eastern flank of the Powder River basin that totals over 100 million bbl of reserves. The principal producing formation is the Lower Cretaceous Fall River Sandstone. A study of 45 cores and 248 logs from the three pools in the Donkey Creek and Coyote fields has shown that the Fall River is composed of three progradational deltaic units deposited during a period of rising relative sea level. These are locally eroded and are filled bymore » a fluvial point-bar complex deposited following a lowering of relative sea level. Four important depositional facies have been recognized: the delta-front and distributary-channel sandstone of the highstand deltaic sequence and the point-bar sandstone and channel-abandonment of the lowstand fluvial sequence. Stratigraphic traps in Coyote Creek and south Donkey Creek pools are the result of permeable (250 md) point-bar sandstone (250 bbl oil/day ip) bounded updip by impermeable (0.1 md) channel abandonment mudstone. Most of the oil in the central Donkey Creek pool is produced from permeable (76 md) distributary-channel sandstone (150 bbl oil/day ip), which is restricted to the western flank of a structural nose. Lesser production, on the crest and upper western flank of the structure, is obtained from the less permeable (2.8 md) delta-front sandstone (50 bbl oil/day ip). Production is possibly limited to the crest and western flank by hydrodynamic processes.« less
Powder River lures contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-10-01
Drilling successes are stimulating a high level of geophysical activity in the Powder River Basin. Focused in areas of concentrated exploration, a majority of speculative surveys are specifically designed to delineate target formations. Several contractors credit available data with an increased amount of current and proposed exploration. Geophysical surveying operations in the northern Rockies are discussed.
Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana
Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.
2015-01-01
The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.
Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, D.W.
Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Tongue River Member of the Fort Union Formation (Paleocene) in the Wyoming portion of the Powder River Basin. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Coal-sourced bacterial gas may have accumulated in localized structural highs early in the burial history of lenticular sand bodies and associated sediments. Structural relief is due to the compaction contrast between sand and stratigraphically equivalent fine-grained sediments. A shallow gas playmore » targeting sandstones as potential reservoirs was initiated in the Recluse area in response as sources for bacterial gas, and the presence of lenticular sandstones that may have promoted the development of compaction structures early in the burial process, to which early-formed bacterial gas migrated. Prospects were ranked based on a number of geologic elements related to compaction-induced trap development. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery and development of the Oedekoven Fort Union gas pool, which has produced nearly 2 BCF of gas from a depth of 340 ft. Production figures from the Oedekoven and Chan pools demonstrate the commercial gas potential of Fort Union sandstone reservoirs in the Powder River Basin. The shallow depths of the reservoirs, coupled with low drilling and completion costs, an abundance of subsurface control with which to delineate prospects, and an existing network of gas-gathering systems, make them attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.« less
Dissolution of Permian salt and Mesozoic depositional trends, Powder River basin, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, D.L.; Bean, D.W.
1983-08-01
Salt deposits in the Powder River basin of Wyoming occur in the Late Permian Ervay Member of the Goose Egg Formation which was deposited in a redbed-evaporite trend extending from the Williston basin of North Dakota to the Alliance basin of Nebraska and Wyoming. However, only remnants of the once extensive Ervay salt remain in the Powder River basin, with major salt dissolution events occurring during Late Jurassic and Early Cretaceous. Subsidence and deposition at the surface were contemporaneous with subsurface salt dissolution except in areas where uplift and erosion were occurring. Earliest dissolution of the Ervay salt occurred inmore » the Jurassic, during regional uplift and erosion of the overlying Triassic Chugwater Formation in the present Hartville uplift and southeastern Powder River basin areas. Thickness variations of the Canyon Springs and Stockade Beaver members of the early Late Jurassic Sundance Formation, which unconformably overlie the deeply eroded Chugwater Formation, may be related in part to dissolution of the Ervay salt. Extensive salt dissolution, synsubsidence, and syndeposition occurred throughout most of the Powder River basin during the latest Jurassic and Early Cretaceous. Many producing fields from the Mowry, Muddy, and Dakota formations exhibit either rapid stratigraphic changes syndepositional to salt collapse or fracture-enhanced reservoir quality due to postdepositional salt collapse. Major Muddy accumulations occurring in areas of local Ervay salt collapse include Kitty, Hilight, Fiddler Creek, and Clareton which have produced jointly over 172 million bbl of oil. The relationship of Ervay salt dissolution to Lower Cretaceous deposition can be exploited as an effective exploration tool.« less
Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming
Karlinger, M.R.; Skrivan, James A.
1981-01-01
Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.
1974-01-01
The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.
Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.
2010-01-01
Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-01
Thick Phaneorozoic sediments (greater than 17,000 feet) fill the northwest-trending Powder River Basin, which is the dominant tectonic structure in the study area. Lower Tertiary sediments comprise over 90% of the exposed units at the surface of the Basin. Small portions of the Bighorn Uplift, Casper Arch, and Porcupine Dome occupy the western edge of the study area. Numerous small claims and prospects are found in the Pumpkin Buttes - Turnercrest District at the south end of the study area (northeastern Arminto quadrangle). No economic deposits of uranium are known to exist in the area, according to available literature. Interpretationmore » of the radiometric data resulted in 62 statistical uranium anomalies listed for this area. Most anomalies are found in the southern half of the study area within the Tertiary Fort Union and Wasatch Formations. Some are found in Cretaceous sediments in the adjoining uplifts to the west of the Basin.« less
Beikman, Helen M.
1962-01-01
The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.
Invertebrate communities of small streams in northeastern Wyoming
Peterson, D.A.
1990-01-01
Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)
Flow reconstructions in the Upper Missouri River Basin using riparian tree rings
NASA Astrophysics Data System (ADS)
Schook, Derek M.; Friedman, Jonathan M.; Rathburn, Sara L.
2016-10-01
River flow reconstructions are typically developed using tree rings from montane conifers that cannot reflect flow regulation or hydrologic inputs from the lower portions of a watershed. Incorporating lowland riparian trees may improve the accuracy of flow reconstructions when these trees are physically linked to the alluvial water table. We used riparian plains cottonwoods (Populus deltoides ssp. monilifera) to reconstruct discharge for three neighboring rivers in the Upper Missouri River Basin: the Yellowstone (n = 389 tree cores), Powder (n = 408), and Little Missouri Rivers (n = 643). We used the Regional Curve Standardization approach to reconstruct log-transformed discharge over the 4 months in early summer that most highly correlated to tree ring growth. The reconstructions explained at least 57% of the variance in historical discharge and extended back to 1742, 1729, and 1643. These are the first flow reconstructions for the Lower Yellowstone and Powder Rivers, and they are the furthest downstream among Rocky Mountain rivers in the Missouri River Basin. Although mostly free-flowing, the Yellowstone and Powder Rivers experienced a shift from early-summer to late-summer flows within the last century. This shift is concurrent with increasing irrigation and reservoir storage, and it corresponds to decreased cottonwood growth. Low-frequency flow patterns revealed wet conditions from 1870 to 1980, a period that includes the majority of the historical record. The 1816-1823 and 1861-1865 droughts were more severe than any recorded, revealing that drought risks are underestimated when using the instrumental record alone.
Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming
Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.
2011-01-01
A total of 37 coal beds were identified during this assessment, 23 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Southwestern Powder River Basin assessment area for these 23 coal beds, with no restrictions applied was calculated to be 369 billion short tons. Available coal resources, which are part of the original resource that is accessible for potential mine development after subtracting all restrictions, are about 341 billion short tons (92.4 percent of the total original resource). Approximately 61 percent are at depths between 1,000 and 2,000 ft, with a modeled price of about $30 per short ton. Therefore, the majority of coal resources in the South-western Powder River Basin assessment area are considered sub-economic.
Ellis, Margaret S.
2002-01-01
The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).
Comparative facies formation in selected coal beds of the Powder River Basin
Stanton, R.W.; Moore, Timothy A.; Warwick, Peter D.; Crowley, S.S.; Flores, Romeo M.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean
1989-01-01
Petrologic studies of thick coal beds [Warwick, 1985; Moore, 1986; Moore and others, 1986; Moore and others, 1987; Warwick and Stanton, in press], which build on sedimentological interpretations [Flores, this volume] of associated units, provide data to interpret and contrast the varieties of peat formation in the Powder River Basin. Detailed analyses of the composition of coal beds lead to more complete interpretations regarding the depositional environment on a regional and local scale. Our efforts in the Powder River Basin [areas A-D in fig. 1 of Flores, this volume] have resulted in a series of site-specific studies that interpret the types of peat formation from the arrangement of different facies which comprise the coal beds and from the spatial form of the coal beds.Our approach was to use a combination of megascopic criteria for facies sampling, and where only core was available, to analyze many interval samples to discriminate facies by their maceral composition. Coal beds in the Powder River Basin are composed of laterally continuous, compositional subunits of the bed (facies) that can be discerned most easily in weathered highwall exposures, less readily in fresh highwalls, and very poorly in fresh-cut core surfaces. In general, very low ash (
Coal-bed methane discoveries in Powder River basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matson, R.E.
1991-06-01
The Powder River basin of northeastern Wyoming and southeastern Montana contains the nation's largest supply of subbituminous coal. The coal beds have been mapped with surprising continuity, with thickness of individual beds exceeding 200 ft. The Paleocene Tongue River Member of the Fort Union Formation contains the bulk of the reserves. The coal near surface along the eastern part of the basin is subbituminous C, while in the deeper part and in the northwestern part of the basin the rank is subbituminous B or A. Commercial exploitation of methane in the Powder River was initiated by Wyatt Petroleum in themore » Recluse area north of Gillette in 1986. Early production was from sands occurring between major coal beds. Production directly from coal beds along the shallow eastern part of the Powder River basin was achieved by Betop Inc. in the Rawhide field a short distance north of Gillette in early 1989 from five wells. Fifteen additional wells were drilled and completed in the field in late 1990. Other shallow coal-bed methane production has been achieved from the same thick Wyodak coalbed nearby by Martins and Peck Operating, Wasatch Energy, and DCD Inc. Numerous deeper tests have been drilled and tested by various companies including Coastal Oil and Gas, Materi Exploration, Cenex, Gilmore Oil and Gas, and Betop Inc., none of which has attained commercial success. Recent exploration in the northwestern part of the basin has resulted in two apparent discoveries.« less
Assessment of coal geology, resources, and reserves in the Montana Powder River Basin
Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.
2013-01-01
The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.
Flow reconstructions in the Upper Missouri River Basin using riparian tree rings
Schook, Derek M.; Friedman, Jonathan M.; Rathburn, Sara L.
2016-01-01
River flow reconstructions are typically developed using tree rings from montane conifers that cannot reflect flow regulation or hydrologic inputs from the lower portions of a watershed. Incorporating lowland riparian trees may improve the accuracy of flow reconstructions when these trees are physically linked to the alluvial water table. We used riparian plains cottonwoods (Populus deltoides ssp. monilifera) to reconstruct discharge for three neighboring rivers in the Upper Missouri River Basin: the Yellowstone (n = 389 tree cores), Powder (n = 408), and Little Missouri Rivers (n = 643). We used the Regional Curve Standardization approach to reconstruct log-transformed discharge over the 4 months in early summer that most highly correlated to tree ring growth. The reconstructions explained at least 57% of the variance in historical discharge and extended back to 1742, 1729, and 1643. These are the first flow reconstructions for the Lower Yellowstone and Powder Rivers, and they are the furthest downstream among Rocky Mountain rivers in the Missouri River Basin. Although mostly free-flowing, the Yellowstone and Powder Rivers experienced a shift from early-summer to late-summer flows within the last century. This shift is concurrent with increasing irrigation and reservoir storage, and it corresponds to decreased cottonwood growth. Low-frequency flow patterns revealed wet conditions from 1870 to 1980, a period that includes the majority of the historical record. The 1816–1823 and 1861–1865 droughts were more severe than any recorded, revealing that drought risks are underestimated when using the instrumental record alone.
Evolution of cutoffs across meander necks in Powder River, Montana, USA
Gay, G.R.; Gay, H.H.; Gay, W.H.; Martinson, H.A.; Meade, R.H.; Moody, J.A.
1998-01-01
Over a period of several decades, gullies have been observed in various stages of forming, growing and completing the cutoff of meander necks in Powder River. During one episode of overbank flow, water flowing over the down-stream bank of the neck forms a headctu. The headcut migrates up-valley, forming a gully in its wake, until it has traversed the entire neck, cutting off the meander. The river then follows the course of the gully, which is subsequently enlarged as the river develops its new channel. The complete process usually requires several episodes of high water: in only one of the five cases described herein was a meander cutoff initiated and completed during a single large flood.
Jordan, P.R.; Bloyd, R.M.; Daddow, P.B.
1984-01-01
The U.S. Geological Survey and the Wyoming Department of Environmental Quality are involved in a cooperative effort to assess the probable cumulative impacts of coal mining on the hydrology of a part of the Powder River Structural Basin in Wyoming. It was assumed that the principal impacts on the ground-water system due to mining will occur in the relatively shallow aquifers which can be grouped into three homogeneous aquifers, namely, the Wyodak coal, the overburden, and the under burden. Emphasis of this report is on the results of analysis of surface-water resources in the Caballo Creek drainage. A surface-water model of the Caballo Creek drainage was developed using the Hydrological Simulation Program-Fortran model to help assess the impacts of mining activities on streamflow. The Caballo Creek drainage was divided into 10 land segments and 6 stream reaches in the modeling process. Three simulation runs show little, if any, change in streamflow between pre- and post-mining conditions and very little change between pre-mining and during-mining conditions. The principal reason for the absence of change is the high infiltration rate used in the model for all three conditions. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-01
The small detail area, 18 miles by 18 miles, lying near the center of the Powder River Basin, is covered entirely by sediments of the Eocene Wasatch Formation. Historically economic uranium deposits have been worked in the southeast corner of the area which includes the northern extremity of the Pumpkin Buttes district. 127 statistical uranium anomalies were generated for the study area, based on area wide statistics.
Regional thermal-inertia mapping from an experimental satellite ( Powder River basin, Wyoming).
Watson, K.
1982-01-01
A new experimental satellite has provided, for the first time, thermal data that should be useful in reconnaissance geologic exploration. Thermal inertia, a property of geologic materials, can be mapped from these data by applying an algorithm that has been developed using a new thermal model. A simple registration procedure was used on a pair of day and night images of the Powder River basin, Wyoming, to illustrate the method.-from Author
Luppens, James A.; Scott, David C.
2015-01-01
This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstonesmore » of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest.« less
NASA Technical Reports Server (NTRS)
Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.
1981-01-01
In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-01
During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1/sup 0/ x 2/sup 0/ NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within themore » northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects.« less
Philip J. Howell
2017-01-01
Many bull trout populations have declined from non-native brook trout introductions, habitat changes (e.g. water temperature) and other factors. We systematically sampled the distribution of bull trout and brook trout in the upper Powder River basin in Oregon in the 1990s and resampled it in 2013â2015, examined temperature differences in the habitats of the two species...
PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geslin, H.E.; Bromley, C.P.
1957-06-01
On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less
A field conference on Impacts of coalbed methane development in the Powder River basin, Wyoming
Flores, Romeo M.; Stricker, Gary D.; Meyer, Joseph F.; Doll, Thomas E.; Norton, Pierce H.; Livingston, Robert J.; Jennings, M. Craig; Kinney, Scott; Mitchell, Heather; Dunn, Steve
2001-01-01
Coalbed methane (CBM) development from the Paleocene Fort Union Formation coal beds in the Powder River Basin in Wyoming has been rapidly expanding since 1993. During the past ten years the number of CBM producing wells rose to about 4,000 wells as of October, 2000. About 3,500 of these wells were completed since 1998. About 13-14 percent of these CBM wells are on Federal lands while the majority are on State and private lands. More than 50 percent of the lands in the Powder River Basin contains mineral rights owned by the Federal government. CBM development on Federal lands creates impacts in the basin resulting from associated drilling, facilities, gas gathering systems (e.g., pipeline networks), access roads, and withdrawal and disposal of co-produced water from CBM wells. The Bureau of Land Management (BLM) assesses the land-use management and impacts of drilling CBM wells on lands where mineral rights are controlled by the Federal government.
Mineral precipitation in north slope aufeis
NASA Technical Reports Server (NTRS)
Hall, D. K.
1978-01-01
The Canning and Shaviovik river aufeis fields were studied on the ground and with aircraft data. Powdered calcium carbonate (CaCO3) patches, a few cm in thickness, were found in discrete locations on both aufeis fields. This is indicative of chemical weathering of limestone bedrock which is known to underlie much of the eastern arctic coastal plain of Alaska. Spring or river water which remains unfrozen throughout much of the winter carries CaCO3 in solution; as the river ice freezes more deeply the CaCO3 in solution is forced upwards through cracks in the river ice. Upon exposure to the cold air CaCO3 is excluded as the water freezes, forming successive layers during aufeis growth. In the melt season CaCO3, slush/powder accumulates in patches on top of the ice as the aufeis melts downward.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... the proposed line is to transport low sulfur sub-bituminous coal from mine sites in the Otter Creek... October 16, 2012, but modified the project in a December 17, 2012 supplemental application that supersedes... River and Rosebud Cntys., Mont. (Tongue River I), FD 30186 (ICC served Sept. 4, 1985), modified (ICC...
Geologic applications of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming
NASA Technical Reports Server (NTRS)
Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.
1979-01-01
The author has identified the following significant results. After digitization, a noise rejection filter was applied to data obtained by USGS aircraft. An albedo image was formed by combining three bands of visible data. Along with the day and nighttime thermal data, the albedo image was used to construct a relative thermal-inertia image. This image, registered to a topographic base, shows there are thermal property differences in the vicinity of the contact between the Fort Union and Wasatch formations in the Powder River Basin, Wyoming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Bauder
U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial wastemore » product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operation demonstrated an 84% sodium removal capacity. Greenhouse, laboratory and field research documented substantial likelihood of measurable alteration in soil chemistry, soil physical properties, and shallow alluvial aquifers in and below areas of sustained surface application through irrigation or water spreading or impoundment of coalbed methane product water in evaporation reservoirs within the Basin. Events of repeated wetting and drying of agricultural soils characteristic of the Powder River Basin with coalbed methane product water, followed by infrequent rainfall events, presents high probability circumstances of significant reductions in infiltration capacity and hydraulic conductivity of agricultural soils containing more than 34% smectite clay.« less
Cary, L.E.
1989-01-01
Selected water-quality data from two streamflow-gaging stations on the Powder River, Montana and Wyoming, were statistically analyzed for trends using the seasonal Kendall test. Data for water years 1952-63 and 1975-85 from the Powder River near Locate, Montana, and water years 1967-68 and 1976-85 from the Powder River at Sussex, Wyoming, were analyzed. Data for the earlier period near Locate were discharge-weighted monthly mean values, whereas data for the late period near Locate and at Sussex were from periodic samples. For data from water years 1952-63 near Locate, increasing trends were detected in sodium and sodium-adsorption ratio; no trends were detected in specific conductance, hardness, non-carbonate hardness, alkalinity, dissolved solids, or sulfate. For data from water years 1975-85 near Locate, increasing trends were detected in specific conductance, sodium, sodium-adsorption ratio, and chloride; no trends were detected in hardness, noncarbonate hardness, alkalinity, dissolved solids, calcium, magnesium, potassium, or sulfate. At Sussex (water years 1967-68 and 1976-85), increasing trends were detected in sodium, sodium-adsorption ratio, and chloride, and a decreasing trend was detected in sulfate. No trends were detected in specific conductance, alkalinity, or dissolved solids. When the 1967-68 data were deleted and the analysis repeated for the 1976-85 data, only sodium-adsorption ratio displayed a significant (increasing) trend. Because the study was exploratory, causes and effects were not considered. The results might have been affected by sample size, number of seasons, heterogeneity, significance level, serial correlation, and data adjustment for changes in discharge. (USGS)
Lipinski, B.A.; Sams, J.I.; Smith, B.D.; Harbert, W.
2008-01-01
Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam's inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin. ?? 2008 2008 Society of ExplorationGeophysicists. All rights reserved.
Relocation of Wyoming mine production blasts using calibration explosions
Finn, Carol A.; Kraft, Gordon D.; Sibol, Matthew S.; Jones, Ronald L.; Pulaski, Mark E.
2001-01-01
Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Association of Seismology and the Physics of the Earth’s Interior (IASPEI) travel-time tables, coupled with JHDderived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.
Lewis, Barney D.; Roberts, Robert S.
1978-01-01
Numerous and widespread subbituminous and lignite coal deposits occur in the Powder River Basin in southeastern Montana, principally within the Fort Union Formation. Many of the coal beds are less than 250 feet (76.2 m) below land surface and are, therefore, mineable by surface methods. Individual cola beds are commonly 20-30 feet (6.1-9.1 m) thick, but may be as much as 80 feet (24 m). These factors, coupled with the low-sulfur content of the coal, make it attractive as a major energy resource.
Hydrologic properties of coal beds in the Powder River Basin, Montana I. Geophysical log analysis
Morin, R.H.
2005-01-01
As part of a multidisciplinary investigation designed to assess the implications of coal-bed methane development on water resources for the Powder River Basin of southeastern Montana, six wells were drilled through Paleocene-age coal beds along a 31-km east-west transect within the Tongue River drainage basin. Analysis of geophysical logs obtained in these wells provides insight into the hydrostratigraphic characteristics of the coal and interbedded siliciclastic rocks and their possible interaction with the local stress field. Natural gamma and electrical resistivity logs were effective in distinguishing individual coal beds. Full-waveform sonic logs were used to determine elastic properties of the coal and an attendant estimate of aquifer storage is in reasonable agreement with that computed from a pumping test. Inspection of magnetically oriented images of the borehole walls generated from both acoustic and optical televiewers and comparison with coal cores infer a face cleat orientation of approximately N33??E, in close agreement with regional lineament patterns and the northeast trend of the nearby Tongue River. The local tectonic stress field in this physiographic province as inferred from a nearby 1984 earthquake denotes an oblique strike-slip faulting regime with dominant east-west compression and north-south extension. These stress directions are coincident with those of the primary fracture sets identified from the televiewer logs and also with the principle axes of the drawdown ellipse produced from a complementary aquifer test, but oblique to apparent cleat orientation. Consequently, examination of these geophysical logs within the context of local hydrologic characteristics indicates that transverse transmissivity anisotropy in these coals is predominantly controlled by bedding configuration and perhaps a mechanical response to the contemporary stress field rather than solely by cleat structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... Asia. According to TRRC, some coal may be used for electricity generation within Montana, it may move... throughout the country. The coal market, TRRC asserts, is so volatile that more accurate predictions are...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
.... Colstrip Alternative--This route would leave the existing Cow Creek branch of BNSF at Colstrip, crossing Cow Creek and Rosebud Creek as it heads south and east, following the Greenleaf Creek valley to the...
Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow
NASA Astrophysics Data System (ADS)
Horner-Devine, Alexander R.; Chickadel, C. Chris
2017-05-01
Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.
Miller, Kirk A.; Clark, Melanie L.; Wright, Peter R.
2005-01-01
The National Water-Quality Assessment Program of the U.S. Geological Survey initiated an assessment in 1997 of the quality of water resources in the Yellowstone River Basin. Water-quality samples regularly were collected during 1999-2001 at 10 fixed sites on streams representing the major environmental settings of the basin. Integrator sites, which are heterogeneous in land use and geology, were established on the mainstem of the Yellowstone River (4 sites) and on three major tributaries?Clarks Fork Yellowstone River (1 site), the Bighorn River (1 site), and the Powder River (1 site). Indicator sites, which are more homogeneous in land use and geology than the integrator sites, were located on minor tributaries with important environmental settings?Soda Butte Creek in a mineral resource area (1 site), the Tongue River in a forested area (1 site), and the Little Powder River in a rangeland area (1 site). Water-quality sampling frequency generally was at least monthly and included field measurements and laboratory analyses of fecal-indicator bacteria, major ions, dissolved solids, nutrients, trace elements, pesticides, and suspended sediment. Median concentrations of fecal coliform and Escherichia coli were largest for basins that were predominantly rangeland and smallest for basins that were predominantly forested. Concentrations of fecal coliform and Escherichia coli significantly varied by season (p-value <0.001); the smallest median concentrations were during January?March and the largest median concentrations were during April?June. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 400 colonies per 100 milliliters in 2.6 percent of all samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 298 colonies per 100 milliliters for moderate use, full-body contact recreation in 7.6 percent of all samples. Variations in water type in the basin are reflective of the diverse geologic terrain in the Yellowstone River Basin. The water type of Soda Butte Creek and the Tongue River was calcium bicarbonate. These two sites are in forested and mountainous areas where igneous rocks and Paleozoic-era and Mesozoic-era sedimentary rocks are the dominant geologic groups. The water type of the Little Powder River was sodium sulfate. The Little Powder River originates in the plains, and geology of the basin is nearly homogenous with Tertiary-period sedimentary rocks. Water type of the Yellowstone River changed from a mixed-cation bicarbonate type upstream to a mixed-cation sulfate type downstream. Dissolved-solids concentrations ranged from fairly dilute in Soda Butte Creek, which had a median concentration of 118 milligrams per liter, to concentrated in the Little Powder River, which had a median concentration of 2,840 milligrams per liter. Nutrient concentrations generally were small and reflect the relatively undeveloped conditions in the basin; however, some correlations were made with anthropogenic factors. Median dissolved-nitrate concentrations in all samples from the fixed sites ranged from 0.04 milligram per liter to 0.54 milligram per liter. Flow-weighted mean dissolved-nitrate concentrations were positively correlated with increasing agricultural land use and rangeland on alluvial deposits upstream from the sites and negatively correlated with increasing forested land. Ammonia concentrations generally were largest in samples collected from the Yellowstone River at Corwin Springs, Montana, which is downstream from Yellowstone National Park and receives discharge from geothermal waters that are high in ammonia. Median total-phosphorus concentrations ranged from 0.007 to 0.18 milligram per liter. Median total-phosphorus concentrations exceeded the U.S. Environmental Protection Agency's recommended goal of 0.10 milligram per liter for preventing nuisance plant growth for samples collec
Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.
2009-01-01
Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.
Floods of May 1978 in southeastern Montana and northeastern Wyoming
Parrett, Charles; Carlson, D.D.; Craig, G.S.; Chin, E.H.
1984-01-01
Heavy rain and some snow fell on previously saturated ground over southeastern Montana and northeastern Wyoming during May 16-19, 1978. The maximum amount of 7.60 inches within a 72-hour period observed at Lame Deer, Montana, set a record for the month of May in that region. Heavy flooding occurred in the drainages of the Yellowstone River and its tributaries as well as the Belle Fourche, Cheyenne, and North Platte Rivers. The previous maximum flood of record was exceeded at 48 gaged sites, and the 1-percent chance flood was equaled or exceeded at 24 sites. Flood damage was extensive, exceeding $33 million. Nineteen counties in the two States were declared major disaster areas. Mean daily suspended-sediment discharges exceeded previously recorded maximum mean daily values at four sites on the Powder River. The maximum daily suspended-sediment discharge of 2,810,000 tons per day occurred on May 20 at the Site Powder River near Arvada, Wyoming. (USGS)
Ground-water resources and geology of northern and central Johnson County, Wyoming
Whitcomb, Harold A.; Cummings, T. Ray; McCullough, Richard A.
1966-01-01
Northern and central Johnson County, Wyo., is an area of about 2,600 square miles that lies principally in the western part of the Powder River structural basin but also includes the east flank of the Bighorn Mountains. Sedimentary rocks exposed range in age from Cambrian to Recent and have an average total thickness of about 16,000 feet. Igneous and metamorphic rocks of Precambrian age crop out in the Bighorn Mountains. Rocks of pre-Tertiary age, exposed on the flanks and in the foothills of the Bighorns, dip steeply eastward and lie at great depth in the Powder River basin. The rest of the project area is underlain by a thick sequence of interbedded sandstone, siltstone, and shale of Paleocene and Eocene age. Owing to the regional structure, most aquifers in Johnson County contain water under artesian pressure. The Madison Limestone had not been tapped for water in Johnson County at the time of the present investigation (1963), but several wells in eastern Big Horn and Washakie Counties, on the west flank of the Bighorn Mountains, reportedly have flows ranging from 1,100 to 2,800 gallons per minute. Comparable yields can probably be obtained from the Madison in Johnson County in those areas where the limestone is fractured or cavernous. The Tensleep Sandstone reportedly yields 600 gallons per minute to a pumped irrigation well near its outcrop in the southwestern part of the project area. Several flowing wells tap the formation on the west flank of the Bighorn Mountains. The Madison Limestone and the Tensleep Sandstone have limited potential as sources of water because they can be developed economically only in a narrow band paralleling the Bighorn Mountain front in the southwestern part of the project area. Overlying the Tensleep Sandstone is about 6,000 feet of shale, siltstone, and fine-grained sandstone that, with a few exceptions, normally yields only small quantities of water to wells. The Cloverly Formation and the Newcastle Sandstone may yield moderate quantities of water to wells; but, in some areas, properly constructed wells tapping both formations might yield large quantities of water. The Shannon Sandstone Member of the Cody Shale will probably yield only small quantities of water to Wells, but it is the best potential source of ground water in the stratigraphic interval between the Newcastle and Parkman Sandstones. The Parkman Sandstone and the Lance Formation yield water to relatively shallow wells principally in the southwestern part of the project area. The Fort Union Formation yields adequate supplies of water for stock and domestic use from relatively shallow wells near its outcrop almost everywhere in the county. A few deep wells tap the Fort Union along the Powder River valley in the northeastern part of Johnson County. Some of these wells flow, but their flows rarely exceed 10 gallons per minute; larger yields could be undoubtedly be obtained by pumping. The Wasatch Formation is the principal source of ground water in Johnson County. It yields adequate supplies to many relatively shallow stock and domestic wells, some of which flow, but much larger yields probably would require pumping lifts that are prohibitive for most purposes. The Kingsbury Conglomerate and Moncrief Members of the Wasatch Formation, though, may yield moderate quantities of water in some places. Alluvial deposits underlying the valleys of the Powder River and Crazy Woman, Clear, and Piney Creeks are potential sources of moderate to large supplies of water in the Powder River drainage basin. The permeability of these deposits decreases with distance from the Bighorn Mountain front, so that largest yields can probably be obtained along the upper reaches of these streams. Most ground water utilized in the project area is for domestic and stock supplies and is obtained from drilled wells and from springs. Water for irrigation is obtained almost entirely by diverting flows of perennial streams. The discharge of wel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, P.L.; Hower, J.C.
1996-12-31
Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3more » coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.« less
A Riparian Approach to Dendrochronological Flow Reconstruction, Yellowstone River, Montana
NASA Astrophysics Data System (ADS)
Schook, D. M.; Rathburn, S. L.; Friedman, J. M.
2015-12-01
Tree ring-based flow reconstructions can reveal river discharge variability over durations far exceeding the gauged record, building perspective for both the measured record and future flows. We use plains cottonwood (Populus deltoides subsp. monilifera) tree rings collected from four rivers to reconstruct flow history of the Yellowstone River near its confluence with the Missouri River. Upland trees in dry regions are typically used in flow reconstruction because their annual growth is controlled by the same precipitation that drives downstream flow, but our study improves flow reconstruction by including floodplain trees that are directly affected by the river. Cores from over 1000 cottonwoods along the Yellowstone, Powder, Little Missouri, and Redwater Rivers were collected from within a 170 km radius to reconstruct flows using the Age Curve Standardization technique in a multiple regression analysis. The large sample from trees spanning many age classes allows us to use only the rings that were produced when each tree was less than 50 years old and growth was most strongly correlated to river discharge. Using trees from a range of rivers improves our ability to differentiate between growth resulting from local precipitation and river flow, and we show that cottonwood growth differs across these neighboring rivers having different watersheds. Using the program Seascorr, tree growth is found to better correlated to seasonal river discharge (R = 0.69) than to local precipitation (R = 0.45). Our flow reconstruction reveals that the most extreme multi-year or multi-decade drought periods of the last 250 years on either the Yellowstone (1817-1821) or Powder (1846-1865) Rivers are missed by the gauged discharge record. Across all sites, we document increased growth in the 20th century compared to the 19th, a finding unattainable with conventional methods but having important implications for flow management.
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
Bloyd, R.M.; Daddow, P.B.; Jordon, P.R.; Lowham, H.W.
1986-01-01
The effects of surface coal mining on the surface- and groundwater systems in a 5,400 sq mi area in the Powder River Basin, Wyoming, that includes 20 major coal mines were evaluated using three approaches: A surface water model, a landscape-stability analysis, and a groundwater model. A surface water model was developed for the Belle Fourche River basin. The Hydrological Simulation Program-Fortran model was used to simulate changes in streamflow and changes in dissolved-solids and sulfate concentrations. Simulated streamflows resulting from less than average rainfall were small, changes in flow from premining to during-mining and postmining conditions were less than 2.5%, and changes in mean dissolved-solids and sulfate concentrations ranged from 1 to 7%. A landscape-stability analysis resulted in regression relations to aid in the reconstruction of reclaimed drainage networks. Hypsometric analyses indicate the larger basins are relatively stable, and statistical data from these basins may be used to design the placement of material within a mined basin to approximate natural, stable landscapes in the area. The attempt to define and simulate the groundwater system in the area using a groundwater-flow model was unsuccessful. The steady-state groundwater-flow model could not be calibrated. The modeling effort failed principally because of insufficient quantity and quality of data to define the spatial distribution of aquifer properties; the hydraulic-head distribution within and between aquifers; and the rates of groundwater recharge and discharge, especially for steady-state conditions. (USGS)
,
2006-01-01
This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.
Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.
2006-01-01
The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.
Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G.
1988-01-01
There are 16 existing and six proposed surface coal mines in the eastern Powder River structural basin of northeastern Wyoming. Coal mining companies predict water level declines of 5 ft or more in the Wasatch aquifer to extend form about 1,000 to about 2,000 ft beyond the mine pits. The predicted 5 ft water level decline in the Wyodak coal aquifer generally extends 4-8 mi beyond the lease areas. About 3,000 wells are in the area of potential cumulative water level declines resulting from all anticipated mining. Of these 3,000 wells, about 1,200 are outside the areas of anticipated mining: about 1,000 wells supply water for domestic or livestock uses, and about 200 wells supply water for municipal, industrial, irrigation, and miscellaneous uses. The 1,800 remaining wells are used by coal mining companies. Future surface coal mining probably will result in postmining groundwater of similar quality to that currently present in the study area. By use of geochemical modeling techniques, the results of a hypothetical reaction path exercise indicate the potential for marked improvements in postmining water quality because of chemical reactions as postmining groundwater with a large dissolved solids concentration (3,540 mg/L) moves into a coal aquifer with relatively small dissolved solids concentrations (910 mg/L). Results of the modeling exercise also indicate geochemical conditions that are most ideal for large decreases in dissolved solids concentrations in coal aquifers receiving recharge from a spoil aquifer. (Lantz-PTT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, V.F.
The purposes of the study are to (1) present burial histories representative of the northwestern and southwestern parts of the Powder River Basin (south of lat 45 N.), (2) show the maximum level of thermal maturity for the Steele Member and its Shannon Sandstone Bed, and (3) show the source-rock potential and timing of petroleum generation for the Steele. It is hoped that data presented in the study will also lead to a better understanding of the burial and temperature history of the Shannon Sandstone Bed, an understanding crucial for diagenetic studies, fluid-flow modeling, and reservoir-rock characterization.
Decadal changes in channel morphology of a freely meandering river—Powder River, Montana, 1975–2016
Moody, John A.; Meade, Robert H.
2018-03-19
Few studies exist on the long-term geomorphic effects of floods. However, the U.S. Geological Survey (USGS) was able to begin such a study after a 50-year recurrence interval flood in 1978 because 20 channel cross sections along a 100-kilometer reach of river were established in 1975 and 1977 as part of a study for a proposed dam on Powder River in southeastern Montana. These cross-section measurements (data for each channel cross section are available at the USGS ScienceBase website) have been repeated about 30 times during four decades (1975–2016) and provide a unique dataset for understanding long-term changes in channel morphology caused by an extreme flood and a spectrum of annual floods.Changes in channel morphology of a 100-kilometer reach of Powder River are documented in a series of narratives for each channel cross section that include a time series of photographs as a record of these changes. The primary change during the first decade (1975–85) was the rapid vertical growth of a new inset flood plain within the flood-widened channel. Changes during the second decade (1985–95) were characterized by slower growth of the flood plain, and the effects of ice-jam floods typical of a northward-flowing river. Changes during the third decade (1995–2005) showed little vertical growth of the inset flood plain, which had reached a height that limited overbank deposition. And changes during the final decade (2005–16) covered in this report showed that, because the new inset flood plain had reached a limiting height, the effects of the large annual flood of 2008 (largest flood since 1978) were relatively small compared to smaller floods in previous decades. Throughout these four decades, the riparian vegetation, which interacts with the river, has undergone a gradual but substantial change that may have lasting effects on the channel morphology.
Peterson, James A.
1978-01-01
To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The porosity-feet for the 'Winnipeg' and Flathead Sandstones and four regional geologic sections are also shown.
Chase, Katherine J.
2013-01-01
Major floods in 1996 and 1997 on the Yellowstone River in Montana intensified public debate over the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to conduct a cumulative-effects study on the main stem of the Yellowstone River. The cumulative-effects study is intended to provide a basis for future management decisions in the watershed. Streamflow statistics, such as flow-frequency and flow-duration data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated streamflow statistics for unregulated and regulated conditions for the Yellowstone, Tongue, and Powder Rivers for the 1928–2002 study period. Unregulated streamflow represents flow conditions that might have occurred during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period. Peak-flow frequency estimates for regulated and unregulated streamflow were developed using methods described in Bulletin 17B. High-flow frequency and low-flow frequency data were developed for regulated and unregulated streamflows from the annual series of highest and lowest (respectively) mean flows for specified n-day consecutive periods within the calendar year. Flow-duration data, and monthly and annual streamflow characteristics, also were calculated for the unregulated and regulated streamflows.
Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.
1986-01-01
Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... the Board's Web site, http://www.stb.dot.gov , by clicking on the ``E-FILING'' link. Please refer to Docket No. FD 30186 in all correspondence, including e-filings, addressed to the Board. Scoping comments... addressed to: Ken Blodgett, Surface Transportation Board, 395 E Street SW., Washington, DC 20423-0001...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.
1986-08-01
Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less
Naeser, Nancy D.
1984-01-01
The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.
Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita
2015-11-01
In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.
The Textures of Heroin: User Perspectives on "Black Tar" and Powder Heroin in Two U.S. Cities.
Mars, Sarah G; Bourgois, Philippe; Karandinos, George; Montero, Fernando; Ciccarone, Daniel
2016-01-01
Since the 1990s, U.S. heroin consumers have been divided from the full range of available products: east of the Mississippi River, Colombian-sourced powder heroin (PH) dominates the market while, to the west, Mexican-sourced "black tar" (BTH) is the main heroin available. By conducting qualitative research in two exemplar cities, Philadelphia (PH) and San Francisco (BTH), we compare users' experiences of heroin source-types, markets, health consequences, and consumption preferences. The strict division of heroin markets may be changing with novel forms of powder heroin appearing in San Francisco. Our researchers and interviewees perceived vein loss stemming from the injection of heroin alone to be a particular problem of BTH while, among the Philadelphia sample, those who avoided the temptations of nearby cocaine sales displayed healthier injecting sites and reported few vein problems. Abscesses were common across both sites, the Philadelphia sample generally blaming missing a vein when injecting cocaine and the San Francisco group finding several explanations, including the properties of BTH. Consumption preferences revealed a "connoisseurship of potency," with knowledge amassed and deployed to obtain the strongest heroin available. We discuss the reasons that their tastes take this narrow form and its relationship to the structural constraints of the heroin market.
The Textures of Heroin: User Perspectives on “Black Tar” and Powder Heroin in Two US Cities
Mars, Sarah G.; Bourgois, Philippe; Karandinos, George; Montero, Fernando; Ciccarone, Daniel
2016-01-01
Since the 1990s, US heroin consumers have been divided from the full range of available products: east of the Mississippi River, Colombian-sourced powder heroin (PH) dominates the market, while to the west, Mexican-sourced “black tar” (BTH) is the main heroin available. By conducting qualitative research in two exemplar cities, Philadelphia (PH) and San Francisco (BTH), we compare users’ experiences of heroin source-types, markets, health consequences and consumption preferences. The strict division of heroin markets may be changing with novel forms of powder heroin appearing in San Francisco. Our researchers and interviewees perceived vein loss stemming from the injection of heroin alone to be a particular problem of BTH while among the Philadelphia sample, those who avoided the temptations of nearby cocaine sales displayed healthier injecting sites and reported few vein problems. Abscesses were common across both sites, the Philadelphia sample generally blaming missing a vein when injecting cocaine and the San Francisco group finding several explanations, including the properties of BTH. Consumption preferences revealed a ‘connoisseurship of potency’, with knowledge amassed and deployed to obtain the strongest heroin available. We discuss the reasons that their tastes take this narrow form and its relationship to the structural constraints of the heroin market. PMID:27440088
Tremors from earthquakes and blasting in the Powder River basin of Wyoming and Montana
Miller, C.H.; Osterwald, F.W.
1980-01-01
We are not aware of any damage to people or to property caused by blasting in the coal surface mines even though thousands of tons of explosives are detonated each year in the basin. The maximum weight of an individual explosive charge and the time interval between blasts are regulated so that any nearby structures will not be damaged or the residents disturbed. Blasting, nevertheless, does produce seismic tremors that can be recorded over 200 kilometers away. In addition, at one mine, some very low order aftershocks were recorded relatively close to the source within 2 hours after blasting.
Operators selectively develop muddy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-08-01
Restricted production has limited drilling in Amos Draw Field but activity continues on the fringes of this large producing field in the Powder River Basin. Drilling and exploration activity in the field are discussed.
Coal-bed gas resources of the Rocky Mountain region
Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.
2001-01-01
The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.
Structural changes during milling of aluminum oxide powders
NASA Technical Reports Server (NTRS)
Ziepler, G.
1984-01-01
The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.
NASA Astrophysics Data System (ADS)
Koo, H. Y.; Kim, J. H.; Hong, S. K.; Ko, Y. N.; Jang, H. C.; Jung, D. S.; Han, J. M.; Hong, Y. J.; Kang, Y. C.; Kang, S. H.; Cho, S. B.
2012-06-01
Fe powders as the heat pellet material for thermal batteries are prepared from iron oxide powders obtained by spray pyrolysis from a spray solution of iron nitrate with ethylene glycol. The iron oxide powders with hollow and thin wall structure produce Fe powders with elongated structure and fine primary particle size at a low reducing temperature of 615 °C. The mean size of the primary Fe powders with elongated structure decreases with increasing concentration of ethylene glycol dissolved into the spray solution. The heat pellets prepared from the fine-size Fe powders with elongated structure have good ignition sensitivities below 1 watt. The heat pellets formed from the Fe powders obtained from the spray solution with 0.5 M EG have an extremely high burn rate of 26 cms-1.
NASA Astrophysics Data System (ADS)
Dawson, H. E.
2003-12-01
This paper presents a mass balance approach to assessing the cumulative impacts of discharge from Coal Bed Methane (CBM) wells on surface water quality and its suitability for irrigation in the Powder River Basin. Key water quality parameters for predicting potential effects of CBM development on irrigated agriculture are sodicity, expressed as sodium adsorption ratio (SAR) and salinity, expressed as electrical conductivity (EC). The assessment was performed with the aid of a spreadsheet model, which was designed to estimate steady-state SAR and EC at gauged stream locations after mixing with CBM produced water. Model input included ambient stream water quality and flow, CBM produced water quality and discharge rates, conveyance loss (quantity of water loss that may occur between the discharge point and the receiving streams), beneficial uses, regulatory thresholds, and discharge allocation at state-line boundaries. Historical USGS data were used to establish ambient stream water quality and flow conditions. The resultant water quality predicted for each stream station included the cumulative discharge of CBM produced water in all reaches upstream of the station. Model output was presented in both tabular and graphical formats, and indicated the suitability of pre- and post-mixing water quality for irrigation. Advantages and disadvantages of the spreadsheet model are discussed. This approach was used by federal agencies to support the development of the January 2003 Environmental Impact Statements (EIS) for the Wyoming and Montana portions of the Powder River Basin.
Naftz, D.L.; Rice, J.A.
1989-01-01
Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.
Laminated composite of magnetic alloy powder and ceramic powder and process for making same
Moorhead, Arthur J.; Kim, Hyoun-Ee
1999-01-01
A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.
Laminated composite of magnetic alloy powder and ceramic powder and process for making same
Moorhead, A.J.; Kim, H.
1999-08-10
A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.
Characterization of ceramic powders by an X-ray measuring method
NASA Technical Reports Server (NTRS)
Ziegler, B.
1983-01-01
X-ray line broadening analysis gives quantitative data on structural changes of ceramic powders after different processing steps. Various Al2O3 powders were investigated and the following points are discussed on the basis of these results: X-ray line broadening analysis, structural changes during grinding, structural changes during annealing, influence of structural properties on sintering behavior and application of line broadening analysis to quality control of powders.
Murrieta-Pazos, I; Gaiani, C; Galet, L; Cuq, B; Desobry, S; Scher, J
2011-10-01
Surface composition of dairy powders influences significantly a quantity of functional properties such as rehydration, caking, agglomeration. Nevertheless, the kinetic of water uptake by the powders was never directly related to the structure and the composition of the surface. In this work, the effect of relative humidity on the structural reorganization of two types of dairy powder was studied. The water-powder interaction for industrial whole milk powder, and skim milk powder was studied using dynamic vapor sorption. The water sorption isotherms were fitted with a Brunner-Emmet-Teller model and each stage of the sorption curve was analyzed with a Fickian diffusion. The water content in the monolayer predicted for each powder and the moisture diffusivity calculated were discussed and compared. Concurrently, powders microstructure and powders surface under variable relative humidity were assessed by X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray and atomic force microscopy. A correlation between the data obtained from the sorption isotherms and the modifications of structure allowed us to conclude that powder microstructure and chemical state of the components could play an important role in determining the water diffusivity. Copyright © 2011 Elsevier B.V. All rights reserved.
2011-09-01
Structure Evolution During Sintering From [19]. ...................................20 Figure 10. Ising Model Configuration With Eight Nearest Neighbors...INTRODUCTION A. MOTIVATION The ability to fabricate structural components from metals with a fine (micron- sized), controlled grain size is one of the...hallmarks of modern, structural metallurgy. Powder metallurgy, in particular, consists of powder manufacture, powder blending, compacting, and sintering
Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming
Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.
1987-01-01
Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.
2000-07-01
The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less
Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming
Haacke, Jon E.; Scott, David C.
2013-01-01
This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.
Comparative studies of industrial grade carbon black powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu
Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375more » was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.« less
Depositional aspects and a guide to Paleocene coal-bearing sequences, Powder River Basin
Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean
1989-01-01
The Paleocene coal-bearing sequences in the northern Powder River Basin are contained in the Tongue River Member of the Fort Union Formation and include anomalously thick (54 m) subbituminous coals. These thick coals have been the target of exploration and development for the past few decades. For the past decade, these coals have also been the object of depositional modeling studies [Law, 1976; Galloway, 1979; Flores, 1981, 1983, 1986; Ethridge and others, 1981; Ayers and Kaiser, 1984; Warwick, 1985; Ayers, 1986; Moore, 1986; Warwick and Stanton, 1988].Intensive modeling of these coals has resulted in two major schools of thought. Firstly, Galloway [1979], Flores [1981, 1983, 1986], Ethridge and others [1981], Warwick [1985], Moore [1986], and Warwick and Stanton [1988] believe that the coals formed from peat that accumulated in swamps of fluvial systems. The fluvial systems are interpreted as a basin axis trunktributary complex that drained to the north-northeast into the Williston Basin. Secondly, Ayers and Kaiser [1984] and Ayers [1986] believe that the coals formed from peat swamps of deltaic systems. These deltas are envisioned to have prograded east to west from the Black Hills and infilled Lebo lake that was centrally located along the basin axis.In order to explain the low ash content of the thick coals, Flores [1981] proposed that they are formed as domed peats, similar in geomorphology to swamps associated with the modern fluvial systems in Borneo as described by Anderson [1964]. Ethridge and others [1981] suggested that these fluvial-related swamps are platforms well above drainage systems and are fed by ground water that is recharged from surrounding highlands. Warwick [1985], Warwick and Stanton [1988], Satchell [1984], and Pocknall and Flores [1987] confirmed the domed peat hypothesis by investigating the petrology and palynology of the thick coals.The purpose of this paper is to provide a guide to the depositional aspects of the thick coals in the Tongue River Member of the Fort Union Formation and, because of the biases of the field trip leaders, it elaborates on the fluvial origin of the swamps in which the thick coals formed. Case histories of these thick coals and associated sediments in the Gillette, Powder River, and Kaycee-Linch areas of Wyoming and in the Decker-Tongue River area of Montana (fig. 1) are highlighted on this field trip.
2007-06-29
than others. It was found that TZ-3Y-E, which is a partially stabilised zirconia powder , was particularly suitable. The percentage of ceramic powder...layered coatings The current ceramic powder that was being used was a fully stabilised zirconia powder TZ-0Y. However a readily available powder...TZ-3Y-E, partially stabilised zirconia powder , was available and utilised. These tests consisted of a combination of 3, 4 and 5 layers. In the
NASA Astrophysics Data System (ADS)
Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan
2015-06-01
Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odland, S.K.; Gardner, M.H.; Gustason, E.R.
1986-08-01
It has long been known that an unconformity plays a critical role in trapping oil in the Muddy Sandstone in the Powder River basin, but opinions have varied as to exactly where in the section that unconformity is located. Their work indicates that there are, in fact, two unconformities associated with the Muddy in the northern part of the basin. The older of these occurs on top of the Skull Creek Shale, whereas the younger is largely intraformational. In places, the younger unconformity has truncated the older one. It is the younger unconformity that is responsible for creating favorable settingsmore » for stratigraphic entrapment of oil. Two types of unconformity-related oil traps result from fluvial downcutting into and through the strand-plain sandstones of the oldest member of the Muddy during a major sea level drop. In cases where the unconformity cuts through the Muddy into the underlying Skull Creek Shale, permeable valley-fill sediments, deposited during the Muddy transgression, are juxtaposed against the impermeable Skull Creek Shale along the valley walls. Where valleys are oriented roughly perpendicular to regional structure, as at Kitty field, the updip portion of the valley wall can form a permeability barrier to the fluvial reservoir sandstones of the adjacent valley fill. In cases where the unconformity is intraformational, such as at Amos Draw field, early diagenetic clay, associated with the weathered horizon directly beneath the unconformity, can create a seal on top of the strand-plain sandstones of the oldest member of the Muddy.« less
Anna, L.O.
2009-01-01
The U.S. Geological Survey completed an assessment of the undiscovered oil and gas potential of the Powder River Basin in 2006. The assessment of undiscovered oil and gas used the total petroleum system concept, which includes mapping the distribution of potential source rocks and known petroleum accumulations and determining the timing of petroleum generation and migration. Geologically based, it focuses on source and reservoir rock stratigraphy, timing of tectonic events and the configuration of resulting structures, formation of traps and seals, and burial history modeling. The total petroleum system is subdivided into assessment units based on similar geologic characteristics and accumulation and petroleum type. In chapter 1 of this report, five total petroleum systems, eight conventional assessment units, and three continuous assessment units were defined and the undiscovered oil and gas resources within each assessment unit quantitatively estimated. Chapter 2 describes data used in support of the process being applied by the U.S. Geological Survey (USGS) National Oil and Gas Assessment (NOGA) project. Digital tabular data used in this report and archival data that permit the user to perform further analyses are available elsewhere on this CD-ROM. Computers and software may import the data without transcription from the Portable Document Format files (.pdf files) of the text by the reader. Because of the number and variety of platforms and software available, graphical images are provided as .pdf files and tabular data are provided in a raw form as tab-delimited text files (.tab files).
A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Lapidus; P Stephens; K Arora
We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.
,
2006-01-01
Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive models for the assessment of CBM resources that can be used for such purposes in other basins in the United States (for example, the Bighorn, Greater Green River, and Williston Basins) and in other countries throughout the world (for example, Indonesia, New Zealand, and the Philippines). Samples of coal, produced water, and gas from coalbed methane drill holes throughout the Powder River Basin, many of which are adjacent to several active mine areas (figs. 1, 2), have been collected by personnel in the USGS, BLM Reservoir Management Group, and Casper and Buffalo BLM Field Offices. Sampling was done under confidentiality agreements with 29 participating CBM companies and operators. Analyses run on the samples include coal permeability, coal quality and chemistry, coal petrography and petrology, methane desorption and adsorption, produced-water chemistry, and gas composition and isotopes. The USGS has supplied results to the BLM Reservoir Management Group for their resource management needs, and data are released when the terms of the confidentiality agreements are completed and consent is obtained.
2012-05-17
two from the latter. The first column, led by BG Crook, maneuvered from south to north from Fort Fetterman , Wyoming Territory towards the confluence...secure all the Indian Agencies along the Missouri River. BG Crook conducted continuous offensive operations between Fort Fetterman and the newly...Fort Fetterman and the Powder River Cantonment. COL Miles and BG Crook executed the diplomatic line of effort. Both commanders used diplomacy and key
Experimental Study of Structure/Behavior Relationship for a Metallized Explosive
NASA Astrophysics Data System (ADS)
Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick
2017-06-01
Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Whitfield, Pamela S.
2016-04-29
Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1993-06-01
Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.
Flores, Romeo M.; Spear, Brianne D.; Kinney, Scott A.; Purchase, Peter A.; Gallagher, Craig M.
2010-01-01
The stratigraphy, correlation, mapping, and depositional history of coal-bearing strata in the Paleogene Fort Union and Wasatch Formations in the Powder River Basin were mainly based on measurement and description of outcrops during the early 20th century. Subsequently, the quality and quantity of data improved with (1) exploration and development of oil, gas, and coal during the middle 20th century and (2) the onset of coalbed methane (CBM) development during the late 20th and early 21st centuries that resulted in the drilling of more than 26,000 closely spaced wells with accompanying geophysical logs. The closeness of the data control points, which average 0.5 mi (805 m) apart, made for better accuracy in the subsurface delineation and correlation of coal beds that greatly facilitated the construction of regional stratigraphic cross sections and the assessment of resources. The drillhole data show that coal beds previously mapped as merged coal zones, such as the Wyodak coal zone in the Wyoming part of the Powder River Basin, gradually thinned into several discontinuous beds and sequentially split into as many as 7 hierarchical orders westward and northward. The thinning and splitting of coal beds in these directions were accompanied by as much as a ten-fold increase in the thicknesses of sandstone-dominated intervals within the Wyodak coal zone. This probably resulted from thrust loading by the eastern front of the Bighorn uplift accompanied by vertical displacement along lineaments that caused subsidence of the western axial part of the Powder River Basin during Laramide deformation in Late Cretaceous and early Tertiary time. Accommodation space was thereby created for synsedimentary alluvial infilling that controlled thickening, thinning, splitting, pinching out, and areal distribution of coal beds. Equally important was differential subsidence between this main accommodation space and adjoining areas, which influenced the overlapping, for example, of the Dietz coal zone in Montana, over the Wyodak coal zone in Wyoming. Correlation in a circular track of the Wyodak coal zone in the southern part of the basin also demonstrates overlapping with lower coal zones. Recognition of this stratigraphic relationship has led to revision of the correlations and nomenclature of coal beds because of inconsistency within these zones as well as those below and above them, which have long been subjects of controversy. Also, it significantly changes the traditional coal bed-to-bed correlations, and estimates of coal and coalbed methane resources of these coal zones due to thinning and pinching out of beds. More notably, thickness isopach, orientation, and distribution of the merged Wyodak coal bodies in the south-southeast part of the basin suggest that differential movement of lineament zones active during the Cretaceous was not a major influence on coal accumulation during the Paleocene. Improved knowledge of alluvial depositional environments as influenced by external and internal paleotectonic conditions within the Powder River Basin permits more accurate correlation, mapping, and resource estimation of the Fort Union and Wasatch coal beds. The result is a better understanding of the sedimentology of the basin infill deposits in relation to peat bog accumulation.
NASA Astrophysics Data System (ADS)
Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin
2007-07-01
The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
2014-11-01
powder metallurgy processes (e.g., using a polymer foam as a fugitive template7) can exceed 85% porosity, it is more common for powder metallurgy ...for the 0.5 GPa compact is a remarkable result from a powder metallurgy process, especially because the pore structure is not dominated by necks...strengths in bulk engineering structures produced via powder metallurgy . Completely unique to this process is the ability to create foamed powder . This
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-05
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming
Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.
1997-01-01
This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.
Hydrologic properties of coal-beds in the Powder River Basin, Montana. II. Aquifer test analysis
Weeks, E.P.
2005-01-01
A multiple well aquifer test to determine anisotropic transmissivity was conducted on a coal-bed in the Powder River Basin, southeastern Montana, as part of a multidisciplinary investigation to determine hydrologic conditions of coal-beds in the area. For the test, three wells were drilled equidistant from and at different angles to a production well tapping the Flowers-Goodale coal seam, a 7.6-m thick seam confined at a depth of about 110 m. The test was conducted by air-lift pumping for 9 h, and water levels were monitored in the three observation wells using pressure transducers. Drawdown data collected early in the test were affected by interporosity flow between the coal fracture network and the matrix, but later data were suitable to determine aquifer anisotropy, as the slopes of the late-time semilog time-drawdown curves are nearly identical, and the zero-drawdown intercepts are different. The maximum transmissivity, trending N87??E, is 14.9 m2/d, and the minimum transmissivity 6.8 m2/d, giving an anisotropy ratio of 2.2:1. Combined specific storage of the fractures and matrix is 2??10 -5/m, and of the fracture network alone 5??10-6/m. The principal direction of the anisotropy tensor is not aligned with the face cleats, but instead is aligned with another fracture set and with dominant east-west tectonic compression. Results of the test indicate that the Flowers-Goodale coal-bed is more permeable than many coals in the Powder River Basin, but the anisotropy ratio and specific storage are similar to those found for other coal-beds in the basin.
Invasive species and coal bed methane development in the Powder River Basin, Wyoming
Bergquist, E.; Evangelista, P.; Stohlgren, T.J.; Alley, N.
2007-01-01
One of the fastest growing areas of natural gas production is coal bed methane (CBM) due to the large monetary returns and increased demand for energy from consumers. The Powder River Basin, Wyoming is one of the most rapidly expanding areas of CBM development with projections of the establishment of up to 50,000 wells. CBM disturbances may make the native ecosystem more susceptible to invasion by non-native species, but there are few studies that have been conducted on the environmental impacts of this type of resource extraction. To evaluate the potential effects of CBM development on native plant species distribution and patterns of non-native plant invasion, 36 modified Forest Inventory and Analysis plots (each comprised of four 168-m2 subplots) were established in the Powder River Basin, Wyoming. There were 73 168-m2 subplots on control sites; 42 subplots on secondary disturbances; 14 on major surface disturbances; eight on well pads; and seven on sites downslope of CBM wells water discharge points. Native plant species cover ranged from 39.5 ?? 2.7% (mean ?? 1 SE) in the secondary disturbance subplots to 17.7 ?? 7.5% in the pad subplots. Non-native plant species cover ranged from 31.0 ?? 8.4% in the discharge areas to 14.7 ?? 8.9% in the pad subplots. The control subplots had significantly less non-native species richness than the combined disturbance types. The combined disturbance subplots had significantly greater soil salinity than the control sites. These results suggest that CBM development and associated disturbances may facilitate the establishment of non-native plants. Future research and management decisions should consider the accumulative landscape-scale effects of CBM development on preserving native plant diversity. ?? Springer Science+Business Media B.V. 2006.
NASA Technical Reports Server (NTRS)
Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)
2017-01-01
Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.
Schroeder, R.A.; Barnes, C.R.
1983-01-01
Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)
PRB rail loadings shatter record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, L.
Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Teton County Uinta County Washakie County Weston County 1 This date is November 15, 1990, unless... Sublette County Sweetwater County Teton County Uinta County Washakie County Weston County 1 This date is... Hampshire Energy Area, and the Kennecott/Puron PSD Baseline Area—Powder River Basin. Campbell County (part...
Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.
2010-01-01
Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.
Composite materials formed with anchored nanostructures
Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei
2015-03-10
A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2005-01-25
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2005-05-10
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-26
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-19
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2004-09-28
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2004-09-14
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-07-29
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Biaxially textured articles formed by powder metallurgy
Goval, Amit; Williams, Robert K.; Kroeger, Donald M.
2005-06-07
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections
NASA Astrophysics Data System (ADS)
Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall
2017-09-01
Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939-2013) and by aging plains cottonwoods along transects (1830-2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939-2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries.
A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections
Schook, Derek M.; Rathburn, Sara L.; Friedman, Jonathan M.; Wolf, J. Marshall
2017-01-01
Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939–2013) and by aging plains cottonwoods along transects (1830–2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939–2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries
Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA
Flores, R.M.
1993-01-01
Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
Biaxially textured articles formed by power metallurgy
Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.
2003-08-26
A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
Choi, Seung Ho; Ko, You Na; Lee, Jung-Kul; Kang, Yun Chan
2014-01-01
In this study, we synthesized a powder consisting of core-shell-structured Ni/NiO nanocluster-decorated graphene (Ni/NiO-graphene) by a simple process for use as an anodic material for lithium-ion batteries. First, a crumpled graphene powder consisting of uniformly distributed Ni nanoclusters was prepared by one-pot spray pyrolysis. This powder was subsequently transformed into the Ni/NiO-graphene composite by annealing at 300°C in air. The Ni/NiO-graphene composite powder exhibited better electrochemical properties than those of the hollow-structured NiO-Ni composite and pure NiO powders. The initial discharge and charge capacities of the Ni/NiO-graphene composite powder were 1156 and 845 mA h g−1, respectively, and the corresponding initial coulombic efficiency was 73%. The discharge capacities of the Ni/NiO-graphene, NiO-Ni, and pure NiO powders after 300 cycles were 863, 647, and 439 mA h g−1, respectively. The high stability of the Ni/NiO-graphene composite powder, attributable to the unique structure of its particles, resulted in it exhibiting long-term cycling stability even at a current density of 1500 mA g−1, as well as good rate performance. The structural stability of the Ni/NiO-graphene composite powder particles during cycling lowered the charge transfer resistance and improved the Li-ion diffusion rate. PMID:25167932
Method for forming porous sintered bodies with controlled pore structure
Whinnery, LeRoy Louis; Nichols, Monte Carl
2000-01-01
The present invention is based, in part, on a method for combining a mixture of hydroxide and hydride functional siloxanes to form a polysiloxane polymer foam, that leaves no residue (zero char yield) upon thermal decomposition, with ceramic and/or metal powders and appropriate catalysts to produce porous foam structures having compositions, densities, porosities and structures not previously attainable. The siloxanes are mixed with the ceramic and/or metal powder, wherein the powder has a particle size of about 400 .mu.m or less, a catalyst is added causing the siloxanes to foam and crosslink, thereby forming a polysiloxane polymer foam having the metal or ceramic powder dispersed therein. The polymer foam is heated to thermally decompose the polymer foam and sinter the powder particles together. Because the system is completely nonaqueous, this method further provides for incorporating reactive metals such as magnesium and aluminum, which can be further processed, into the foam structure.
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
Effects of produced water on soil characteristics, plant biomass, and secondary metabolites
USDA-ARS?s Scientific Manuscript database
The Powder River Basin in Wyoming and Montana contains the United States’ largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering...
EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY
The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...
A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...
Park, Gi Dae; Kang, Yun Chan
2016-03-14
A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cao, Fengmei; Gao, Yanfeng; Chen, Hongfei; Liu, Xinling; Tang, Xiaoping; Luo, Hongjie
2013-06-01
Multi-hierarchical structured yttria-stabilized zirconia (YSZ) powders were successfully synthesized by a hydrothermal-calcination process. The morphology, crystallinity, and microstructure of the products were characterized by SEM, XRD, TEM, and BET. A possible formation mechanism of the unique structure formed during hydrothermal processing was also investigated. The measured thermophysical results indicated that the prepared YSZ powders had a low thermal conductivity (0.63-1.27 W m-1 K-1), good short-term high-temperature stability up to 1300 °C. The influence of the morphology and microstructure on their thermophysical properties was briefly discussed. The unique multi-hierarchical structure makes the prepared YSZ powders candidates for use in enhanced applications involving thermal barrier coatings.
Effect of initial microstructure on the compactability of rapidly solidified Ti-rich TiAl powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, M.; Chiba, A.; Morizono, Y.
1997-12-31
Initial microstructure dependence of compactability at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. {alpha}{sub 2}+{gamma} microduplex and {alpha}{sub 2}/{gamma} lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1,273 K, respectively. The microduplex structure consisted of {gamma} precipitatemore » in the twin related {alpha}{sub 2} matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1,273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related {alpha}{sub 2} and {alpha}{sub 2} boundary changed to random ones and the {alpha}{sub 2} and {gamma} phases lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the {alpha}{sub 2} and {gamma} crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.« less
Slagle, Steven E.; Lewis, Barney D.; Lee, Roger W.
1985-01-01
The shallow ground-water system in the northern Powder River Basin consists of Upper Cretaceous to Holocene aquifers overlying the Bearpaw Shale--namely, the Fox Hills Sandstone; Hell Creek, Fort Union, and Wasatch Formations; terrace deposits; and alluvium. Ground-water flow above the Bearpaw Shale can be divided into two general flow patterns. An upper flow pattern occurs in aquifers at depths of less than about 200 feet and occurs primarily as localized flow controlled by the surface topography. A lower flow pattern occurs in aquifers at depths from about 200 to 1,200 feet and exhibits a more regional flow, which is generally northward toward the Yellowstone River with significant flow toward the Powder and Tongue Rivers. The chemical quality of water in the shallow ground-water system in the study area varies widely, and most of the ground water does not meet standards for dissolved constituents in public drinking water established by the U.S. Environmental Protection Agency. Water from depths less than 200 feet generally is a sodium sulfate type having an average dissolved-solids concentration of 2,100 milligrams per liter. Sodium bicarbonate water having an average dissolved-solids concentration of 1,400 milligrams per liter is typical from aquifers in the shallow ground-water system at depths between 200 and 1,200 feet. Effects of surface coal mining on the water resources in the northern Powder River Basin are dependent on the stratigraphic location of the mine cut. Where the cut lies above the water-yielding zone, the effects will be minimal. Where the mine cut intersects a water-ielding zone, effects on water levels and flow patterns can be significant locally, but water levels and flow patterns will return to approximate premining conditions after mining ceases. Ground water in and near active and former mines may become more mineralized, owing to the placement of spoil material from the reducing zone in the unsaturated zone where the minerals are subject to oxidation. Regional effects probably will be small because of the limited areal extent of ground-water flow systems where mining is feasible. Results of digital models are presented to illustrate the effects of varying hydraulic properties on water-level changes resulting from mine dewatering. The model simulations were designed to depict maximum-drawdown situations. One simulation indicates that after 20 years of continuous dewatering of an infinite, homogeneous, isotropic aquifer that is 10 feet thick and has an initial potentiometric surface 10 feet above the top of the aquifer, water-level declines greater than 1 foot would generally be limited to within 7.5 miles of the center of the mine excavation; declines greater than 2 feet to within about 6 miles; declines greater than 5 feet to within about 3.7 miles; declines greater than 10 feet to within about 1.7 miles; and declines greater than 15 feet to within 1.2 miles.
NASA Astrophysics Data System (ADS)
Krinitcyn, Maksim G.; Pribytkov, Gennadii A.; Korosteleva, Elena N.; Firsina, Irina A.; Baranovskii, Anton V.
2017-12-01
In this study, powder composite materials comprised of TiC and Ti with different ratios are processed by sintering of Ti and C powder mixtures and self-propagating high-temperature synthesis (SHS) in "Ti+C" system followed by sintering. The microstructure and porosity of obtained composites are investigated and discussed. The dependence of porosity on sintering time is explained theoretically. Optimal regimes that enable to obtain the most homogeneous structure with the least porosity are described.
Zhang, Hanyu; Wang, Zhaowei; Li, Ruining; Guo, Jialei; Li, Yan; Zhu, Junmin; Xie, Xiaoyun
2017-10-01
Heterogeneous photocatalysis namely titanium dioxide supported on reed straw biochar (acid pre-treated) (TiO 2 /pBC) was synthesized by sol-gel method. The morphology, surface area and structure of TiO 2 /pBC were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). Low calcination condition maintained the structure of biochar completely and prevented the agglomeration of TiO 2 particles. Due to the combination of adsorption and photocatalysis, TiO 2 /pBC performed higher removal efficiency of sulfamethoxazole (SMX) than pure TiO 2 powder under UV light irradiation. The photocatalytic degradation (PCD) of SMX was also studied with the water collected from the Yellow River. Three high concentration inorganic anions (Cl - , NO 3 - , SO 4 2- ) of the river exerted certain degree of detrimental effects on the contaminant degradation. TiO 2 /pBC showed stable photocatalytic activity after five sequential PCD cycles. The biochar was able to promote further PCD on TiO 2 by adsorbing SMX and intermediates thereby prolonging the separation lifetime of electrons (e - ) and valence band hole (h + ). The transformation intermediates of SMX were identified and three possible degradation reactions of hydroxylation, opening of isoxazole ring and cleavage of SN bond might occur during the PCD of SMX. Copyright © 2017 Elsevier Ltd. All rights reserved.
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
NASA Astrophysics Data System (ADS)
Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.
2016-05-01
Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.
Coal-bed methane water: effects on soil properties and camelina productivity
USDA-ARS?s Scientific Manuscript database
Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...
76 FR 75544 - Proposed Consent Decree, Clean Air Act Citizen Suit
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... Canyon Trust, San Juan Citizens Alliance, Our Children's Earth Foundation, Plains Justice, Powder River... Constitution Ave. NW., Washington, DC, between 8:30 a.m. and 4:30 p.m. Monday through Friday, excluding legal... question. EPA or the Department of Justice may withdraw or withhold consent to the proposed consent decree...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Uranium Recovery Project, located in the Pumpkin Buttes Uranium Mining District within the Powder River.... Alternatives that were considered, but were eliminated from detailed analysis, include conventional mining and... an Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC...
75 FR 21164 - Safety Zone; Neuse River, New Bern, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... other users and vessels of the waterway during a Civil War naval bombardment reenactment. DATES: This... limits of a narrow channel and the firing of black powder cannons during a Civil War naval bombardment reenactment. Basis and Purpose The City of New Bern, North Carolina is sponsoring a Civil War naval...
Powder Keg on the Upper Missouri: Sources of Blackfeet Hostility, 1730-1810.
ERIC Educational Resources Information Center
Judy, Mark A.
1987-01-01
Evaluates reasons why Blackfeet Indians were bitterly hostile toward white fur traders in the upper Missouri River basin during the early 1800s. Explains causes of internal tribal turmoil including rapid adaptation of horses to tribal culture, devastating effects of disease, and guns disrupting the balance of power among tribes. (JHZ)
Northwestern Montana next frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1983-08-01
Many contractors are proposing nonexclusive surveys, anticipating more activity in shallow, oil-producing basins. Excluding the Powder River Basin, a majority of geophysical activity in the northern Rockies is focusing on several areas in Montana. Some believe this virtually unexplored area may hold reserves equal to approximately 15-20% of the total known reserves in the U.S.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... the road construction, the final easement would be acquired by Campbell County, and this road will be... National Grassland, Campbell County, WY; Mackey Road Relocation AGENCY: Forest Service, USDA. ACTION... authorize Peabody Powder River Mining, LLC to vacate and relocate portions of Campbell County Road 69...
1982-02-05
McCo0ne Sheridan’"-M nSdHill Silver Dow Powder River Wibaux Jefferson Stillwater The following counties in Wyoming: Judith Basin Sweet Grass Albany...Sweetwater Lassen Sonoma Johnson Teton Misalera Stanislaus Lincoln Uinta Main Sutter Park Washakie Maripoaa Tehama"Sheridan Mendocino Trinity Merced
Status report: USGS coal assessment of the Powder River, Wyoming
Luppens, James A.; Rohrbacher, Timothy J.; Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.
2006-01-01
Summary: This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized.
Nichols, D.J.; Brown, J.L.; Attrep, M.; Orth, C.J.
1992-01-01
A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.
Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.
2017-09-01
The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.
Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.
Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen
2016-06-07
Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.
Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA
Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D.
2011-01-01
The Powder River Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of the large amounts of groundwater extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and water chemistry at one impoundment, Skewed Reservoir, has produced the most detailed data set for any impoundment in the Basin. Data were collected from a network of 21 observation wells and three suction lysimeters. A groundwater mound formed atop bedrock within initially unsaturated, unconsolidated deposits underlying the reservoir. Heterogeneity in physical and chemical properties of sediments resulted in complex groundwater flow paths and highly variable groundwater chemistry. Sulfate, bicarbonate, sodium, and magnesium were the dominant ions in all areas, but substantial variability existed in relative concentrations; pH varied from less than 3 to more than 9, and total dissolved solids concentrations ranged from less than 5000 to greater than 100,000 mg/L. Selenium was a useful tracer of reservoir water; selenium concentrations exceeded 300 μg/L in samples obtained from 18 of the 24 sampling points. Groundwater travel time from the reservoir to a nearby alluvial aquifer (a linear distance of 177 m) was calculated at 474 days on the basis of selenium concentrations. The produced water is not the primary source of solutes in the groundwater. Naturally occurring salts and minerals within the unsaturated zone, dissolved and mobilized by infiltrating impoundment water, account for most of the solute mass in groundwater. Gypsum dissolution, cation-exchange, and pyrite oxidation appear to be important reactions. The complex geochemistry and groundwater flow paths at the study site underscore the difficulty in assessing effects of surface impoundments on water resources within the Powder River Basin.
Stability of highwalls in surface coal mines, western Powder Ridge Basin, Wyoming and Montana
Lee, Fitzhugh T.; Smith, William K.; Savage, William Z.
1976-01-01
Preliminary results from the first part of a two-part investigation of the stability of highwalls in open-pit coal mines in the Fort Union Formation of the western Powder River Basin of Wyoming and Montana indicate that these highwalls are subject to time-dependent deformation. Field investigations and laboratory physical-properties tests of coal and overburden rocks suggest that several factors influence highwall stability. Some of these factors are rebound of overconsolidated rocks, desiccation, water, orientation and spacing of fractures, and strength and deformation properties. Factors of safety for a typical highwall in the study area (calculated by the finite-element method) may be less than 1.0 when open fractures are present and the highwall has degraded. Although it is concluded that most open-pit mines in the Fort Union Formation within the study area have generally stable highwalls, these highwalls do deteriorate and become progressively less stable. Because of this, postmining failures are common and could be critical if mining were delayed and then resumed after a period of several months. The second part of the investigation will utilize field measurements of rock-mass properties and instrumentation of actively mined highwalls to obtain data for comparison with the results of the initial investigation. Because the height of highwalls will increase as the more shallow coal is exhausted, these data will also be used to predict the behavior of slopes higher than those presently found in the western Powder River Basin.
Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.
2007-01-01
The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development. This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.
Anti-Corrosive Powder Particles
NASA Technical Reports Server (NTRS)
Parker, Donald; MacDowell, Louis, III
2005-01-01
The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).
Moisture sorption by cellulose powders of varying crystallinity.
Mihranyan, Albert; Llagostera, Assumpcio Piñas; Karmhag, Richard; Strømme, Maria; Ek, Ragnar
2004-01-28
Moisture in microcrystalline cellulose may cause stability problems for moisture sensitive drugs. The aim of this study was to investigate the influence of crystallinity and surface area on the uptake of moisture in cellulose powders. Powders of varying crystallinity were manufactured, and the uptake of moisture was investigated at different relative humidities. The structure of the cellulose powders was characterized by X-ray diffraction, BET surface area analysis, and scanning electron microscopy. Moisture uptake was directly related to the cellulose crystallinity and pore volume: Cellulose powders with higher crystallinity showed lower moisture uptake at relative humidities below 75%, while at higher humidities the moisture uptake could be associated with filling of the large pore volume of the cellulose powder of highest crystallinity. In conclusion, the structure of cellulose should be thoroughly considered when manufacturing low moisture grades of MCC.
One pot synthesis of pure micro/nano photoactive α-PbO crystals
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit
2018-05-01
The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Lalita, E-mail: chauhan.lalita5@gmail.com; Sreenivas, K.; Bokolia, Renuka
2016-05-23
Structural properties of Nickel ferrite (NiFe{sub 2}O{sub 4}) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe{sub 2}O{submore » 4} powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe{sub 2}O{sub 4} ceramics with a uniform microstructure and a large grain size.« less
Characterization of Ni ferrites powders prepared by plasma arc discharge process
NASA Astrophysics Data System (ADS)
Safari, A.; Gheisari, Kh.; Farbod, M.
2017-01-01
The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni-Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100-200 nm and was dependent on the production conditions.
NASA Astrophysics Data System (ADS)
Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.
2018-04-01
This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.
DOT National Transportation Integrated Search
2013-02-01
Steel pipe piles used by MaineDOT for bridge construction are typically coated with a fusion-bonded epoxy (FBE). FBE is a powder-based coating with properties similar to traditional : epoxies. Its name is derived from the process by which it adheres ...
Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?
ERIC Educational Resources Information Center
Duncan, Michael B.
2010-01-01
Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...
Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakata, M.; Aoyagi, S.; Ogura, T.
2007-01-19
Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less
NASA Astrophysics Data System (ADS)
Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan
2015-10-01
The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto
The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB)more » by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.« less
Article and method for making an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of depositing a metal alloy powder to form an initial layer including at least one aperture, melting the metal alloy powder with a focused energy source to transform the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder to form a layer including at least one aperture corresponding to the at least one aperture in the initial layer, melting the additional layer of the metal alloy powder with the focused energymore » source to increase the sheet thickness, and repeating the steps of sequentially depositing and melting the additional layers of metal alloy powder until a structure including at least one aperture having a predetermined profile is obtained. The structure is attached to a substrate to make the article.« less
NASA Astrophysics Data System (ADS)
Pei, Kun; Lin, Min; Yan, Aru; Zhang, Xing
2016-05-01
The effects of annealing process on magnetic properties and structures of Nd-Pr-Ce-Fe-B melt-spun powders have been investigated. The magnetic properties improve a lot when the annealing temperature is 590-650 °C and the annealing time exceeds 1 min. The magnetic properties is stable when the annealing time is 590-650 °C. The powders contains obvious grains when the annealing time is only 1 min, while the grains grow up obviously, leading to the decrease of Br and (BH)max, when the annealing time is more than 9 min. The Hcj changes little for different annealing time. The cooling rate also affects the magnetic properties of powders with different Ce-content. Faster cooling rate is favorable to improve magnetic properties with low Ce-content powders, while high Ce-content powders need slower cooling rate.
Geologic history of natural coal-bed fires, Powder River basin, USA
Heffern, E.L.; Coates, D.A.
2004-01-01
Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past century. However, current annual rates of coal mining are three to four orders of magnitude greater than estimated prehistoric annual rates of coal consumption by natural fires. ?? 2004 Published by Elsevier B.V.
Third Structure Determination by Powder Diffractometery Round Robin (SDPDRR-3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bail, A.; Cranswick, L; Adil, K
2009-01-01
The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solvingmore » a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction experts.« less
Investigation of Microtubular Ceramic Structures
1979-02-01
25 Experiments 05x - Excel ŗ-5 CAL" (Powder D). 25 Experiments 06x - Excel ŗ-5 CAL" (Powder D). 26 Experiments 07x - Stabilized Zirconia ( Powder E...an extremely fine particle size (- 0. 4 jim) for satisfactory sintering. With zirconia powder of this particle size, spherical aggregates formed...firm" packing pressure, sustained large additions (15 to--9 gm/cycle) occurred. Experiments 07x - Stabilized Zirconia ( Powder E) The 07x experiments
Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure
NASA Astrophysics Data System (ADS)
Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.
2016-02-01
The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.
King, Penelope L; Troitzsch, Ulrike; Jones, Tristen
2017-02-01
This data article contains mineralogic and chemical data from mineral coatings associated with rock art from the East Alligator River region. The coatings were collected adjacent to a rock art style known as the "Northern Running Figures" for the purposes of radiocarbon dating (doi:10.1016/j.jasrep.2016.11.016; (T. Jones, V. Levchenko, P.L. King, U. Troitzsch, D. Wesley, 2017) [1]). This contribution includes raw and processed powder X-ray Diffraction data, Scanning Electron Microscopy energy dispersive spectroscopy data, and Fourier Transform infrared spectral data.
NASA Astrophysics Data System (ADS)
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
Influence of attrition milling on nano-grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawers, J.; Cook, D.
1999-03-01
Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less
Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan
2016-09-14
Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.
NASA Astrophysics Data System (ADS)
Zhou, Y. H.; Lin, S. F.; Hou, Y. H.; Wang, D. W.; Zhou, P.; Han, P. L.; Li, Y. L.; Yan, M.
2018-05-01
Ti45Al8Nb alloy (in at.%) is designed to be an important high-temperature material. However, its fabrication through laser-based additive manufacturing is difficult to achieve. We present here that a good understanding of the surface structure of raw material (i.e. Ti45Al8Nb powder) is important for optimizing its process by selective laser melting (SLM). Detailed X-ray photoelectron spectroscopy (XPS) depth profiling and transmission electron microscopy (TEM) analyses were conducted to determine the surface structure of Ti45Al8Nb powder. An envelope structure (∼54.0 nm in thickness) was revealed for the powder, consisting of TiO2 + Nb2O5 (as the outer surface layer)/Al2O3 + Nb2O5 (as the intermediate layer)/Al2O3 (as the inner surface layer)/Ti45Al8Nb (as the matrix). During SLM, this layered surface structure interacted with the incident laser beam and improved the laser absorptivity of Ti45Al8Nb powder by ∼32.21%. SLM experiments demonstrate that the relative density of the as-printed parts can be realized to a high degree (∼98.70%), which confirms good laser energy absorption. Such layered surface structure with appropriate phase constitution is essential for promoting SLM of the Ti45Al8Nb alloy.
Enhanced Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt-Spinning Technique
NASA Astrophysics Data System (ADS)
Öztürk, Sultan; İcin, Kürşat; Öztürk, Bülent; Topal, Uğur; Odabaşı, Hülya Kaftelen; Göbülük, Metin; Cora, Ömer Necati
2017-10-01
Rapidly solidified Nd15Fe77B8 alloy powders were produced by means of melt-spinning method in high-vacuum atmosphere to achieve improved magnetic and thermal properties. To this goal, a vacuum milling apparatus was designed and constructed to ball-mill the melt-spun powders in a surfactant active atmosphere. Various milling times were experimented to reveal the effect of the milling time on the mean particle size and other size-dependent properties such as magnetism and Curie temperature. Grain structure, cooling rate, and phase structure of the produced powders were also investigated. The Curie points shifted to higher temperatures from the ingot condition to surfactant active ball-milling and the values for Nd15Fe77B8 ingot alloy, melt-spun powders, and surfactant active ball-milled powders were 552 K, 595 K, and 604 K (279 °C, 322 °C, and 331 °C), respectively. It was noted that the surfactant active ball-milling process improved the magnetic and thermal properties of melt-spun Nd15Fe77B8 alloy powders. Compared to relevant literature, the coercivity of powders increased significantly with increasing milling time and decreasing in powder size. The coercivity value as high as 3427 kA m-1 was obtained.
NASA Astrophysics Data System (ADS)
Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.
2018-03-01
Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.
NASA Astrophysics Data System (ADS)
Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev
2018-03-01
Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... the Wyoming portion of the decertified Powder River Federal Coal Production Region. The BLM is... Properties, Inc., to lease Federal coal near the Buckskin Mine approximately 12 miles north of Gillette... the revision to the Mineral Leasing Act (MLA) mining plan before the Federal coal can be mined. If the...
Seismic properties investigation of the Springer Ranch landslide, Powder River basin, Wyoming
Miller, C.H.; Ramirez, A.L.; Bullard, T.G.
1980-01-01
A recent and rapid increase since the mid-1970's in commercial and residential development in the Powder River Basin, Wyoming and Montana, is caused by exploitation of vast coal and other resources in the basin. One geologic hazard to such development is landsliding. A landslide sufficiently representative of others in the area was chosen for detailed seismic studies. Studies of this landslide show that a low-velocity layer overlies a high-velocity layer both on the slide and away from it and that the contact between the volocity layers is nearly parallel with the preslide topographic surface. Computed shear and other elastic moduli of the low-velocity layer are about one-tenth those of the high-velocity layer. When failure occurs within the slope materials, it will very likely be confined to the low-velocity layer. The number and position of main shear planes in the landslide are unknown, but the main slippage surface is probably near the contact between the low- and high-velocity layers. The main cause of landslide failure in the study area is apparently the addition of moisture to the low-velocity layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jing, E-mail: zlj007@126.com; Miao, Ju-hong; Xu, Lin-hua
2012-07-15
Graphical abstract: The graph shows the emission spectra (λ{sub ex} = 808 nm) of 1 at.% Nd:GSAG powders sintered at different temperatures for 3 h. Compared with the powder sintered at 900 °C, the PL intensity of the powder sintered at 1000 °C decreased significantly. The changes in the PL intensity should mainly due to the crystallinity and dispersion of the powders. Highlights: ► We synthesized Nd:GSAG nano-powders by gel-combustion method successfully. ► We analyzed the structure and the morphology of the heat-treated products. ► We studied the optical characteristics of Nd:GSAG nano-powders. -- Abstract: Nd{sup 3+}-doped gadolinium scandium aluminummore » garnet (Nd:GSAG) precursor was synthesized by a gel combustion method using metal nitrates and citric acid as raw materials. The structure and morphology of the precursor and the sintered powders were studied by means of X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM). The results showed that the precursor transformed into pure GSAG polycrystalline phase at about 800 °C, and the powders sintered at 800–1000 °C were well-dispersed with average particle sizes in the range of 30–80 nm. Optical properties of Nd:GSAG nano-powders were characterized by using photoluminescence spectroscopy. The highest photoluminescence intensity was achieved for the powder sintered at 900 °C.« less
Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture
Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua
2017-01-01
Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622
Kabekkodu, Soorya N; Faber, John; Fawcett, Tim
2002-06-01
The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures.
Structural Chemistry of Functional Nano-Materials for Environmental Remediation
NASA Astrophysics Data System (ADS)
John, Jesse
Nano minerals and materials have become a focal point of Geoscience research due to the unique physical, chemical, optical, magnetic, electronic, and reactive properties. Many of these desired properties in Nano technology have the potential to impact society by improving remediation, photovoltaics, medicine and the sustainability limits on Earth for an expanding population. Despite the progress made on the discovery, synthesis, and manufacturing of numerous nano-materials, the atomistic cause of their desired properties is poorly understood. To gain a better understanding of the atomic structure of nano materials and their bulk counterparts we combined several crystallographic techniques to solve the crystal structure and performed formative characterization to ascertain the atomistic source of the desired application. These strategies and tools can be used to expedite discovery, development and the goals of the National Nanotechnology Initiative (NNI). This thesis will cover the optimization of the reaction conditions and resolve the atomic structure to produce pure synthetic nano nolanite (SNN) Fe2V3O7OH. The complete structural model of nolanite was described from a bulk mineral to the nano-regime using a combination of single crystal X-ray diffraction (SC-XRD), pair distribution function analysis (PDF) and neutron powder diffraction from synthetic material. Nolanite is isostructural to ferrihydrite, a ubiquitous nano-mineral, both of these mineral structures have been the subject for debate for the last half of century. A comparative study of the isostructural minerals nolanite, akdalaite and ferrihydrite was utilized to address the discrepancies and consolidate the structural models. Lastly, we developed a structural model for nano-crystalline titanium-based material; mono sodium titanate (MST) using high energy total X-ray scattering and PDF coupled with scanning transmission electron microscope (STEM). In the USA we have accumulated over 76000 metric tons of nuclear waste and the nuclear industry continues to generate an additional 2000 tons every year. MST is the baseline material used for to effectively remove 90Sr and alpha-emitting actinides from strongly alkaline, high-level nuclear waste solutions at the Savannah River site. Despite the success of MST in the remediation of high-level radioactive waste (HLW) the process by which the metals are structurally incorporated is still poorly understood, and there is still no structural model. This study aims to better understand the ion exchange mechanism of MST by generating a structural model derived from synchrotron X-ray powder diffraction data.
Ground-water resources of Sheridan County, Wyoming
Lowry, Marlin E.; Cummings, T. Ray
1966-01-01
Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for stock or domestic use can be developed throughout much of the report area from the Fort Union and Wasatch Formations of Tertiary age; larger supplies might be obtained from the coarse-grained sandstone facies of the Wasatch Formation near Moncreiffe Ridge. Four aquifer tests were made at wells tapping formations of Tertiary age, and the coefficients of permeability determined ranged from 2.5 to 7.9 gallons per day per square foot. The depths to which wells must be drilled to penetrate an aquifer differ within relatively short distances because of the lenticularity of the aquifers. Water in aquifers of Tertiary age may occur under water-table, artesian, or a combination of artesian and gas-lift conditions. Water from the Fort Union is usable for domestic purposes, but the iron and dissolved-solids content impair the quality at some localities. Water from the Fort Union Formation is not recommended for irrigation because of sodium and bicarbonate content. The water is regarded as good to fair for stock use. Water from the Wasatch Formation generally contains dissolved solids in excess of the suggested domestic standards, but this water is usable in the absence of other supplies. The development of irrigation supplies from the Wasatch Formation may be possible in some areas, but the water quality should be carefully checked. Water of good to very poor quality for stock supplies is obtained, depending upon the location. Hydrogen sulfide, commonly present in water of the Fort Union and Wasatch Formations, becomes an objectionable characteristic when the water is used for human consumption. Deposits of Quaternary age generally yield small to moderate supplies of water to wells. Two pumping tests were conducted, and the coefficients of permeability of the aquifers tested were 380 and 1,100 gallons per day per square foot. Usable supplies of ground water can be developed from the deposits of Quaternary age, principally along the valleys of perennial strea
Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong
2013-01-01
This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317
NASA Astrophysics Data System (ADS)
Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.
2012-05-01
Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Yu; Ma, Kai; Pan, Xi-De; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2018-02-01
In this study, vacuum cold spraying was used as a simple and fast way to prepare transparent super-hydrophobic coatings. Submicrometer-sized Al2O3 powder modified by 1,1,2,2-tetrahydroperfluorodecyltriethoxysilane and mixed with hydrophobic SiO2 aerogel was employed for the coating deposition. The deposition mechanisms of pure Al2O3 powder and Al2O3-SiO2 mixed powder were examined, and the effects of powder structure on the hydrophobicity and light transmittance of the coatings were evaluated. The results showed that appropriate contents of SiO2 aerogel in the mixed powder could provide sufficient cushioning to the deposition of submicrometer Al2O3 powder during spraying. The prepared composite coating surface showed rough structures with a large number of submicrometer convex deposited particles, characterized by being super-hydrophobic. Also, the transmittance of the obtained coating was higher than 80% in the range of visible light.
Shockwave Consolidation of Nanostructured Thermoelectric Materials
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Taylor, Patrick; Nemir, David
2014-01-01
Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.
NASA Astrophysics Data System (ADS)
Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.
2018-03-01
In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James; Gindhart, Amy; Blanton, Thomas
The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.
NASA Astrophysics Data System (ADS)
Bazhin, P. M.; Stolin, A. M.; Konstantinov, A. S.; Mukhina, N. I.; Pazniak, A.
2018-04-01
The results of an experimental study of TiB2-based powder material obtained under the combination of SHS processes with shear deformation are presented. The effects of the rotor velocity and the delay time before shear deformation application upon the structure of the synthesized powder are studied. The grain structure of titanium diboride is shown to become predominantly round with particles size of 1-5 μm with increasing the rotor velocity from 120 to 600 rpm. At the same time, particles of 200-400 nm size can be observed on the surface of the agglomerates.
Fine-scale structure and micromorphology of the Cricket Flat paleosol, Elgin, Oregon, USA
NASA Astrophysics Data System (ADS)
Murray, K.; Bader, N.
2013-12-01
The Cricket Flat paleosol is located about 9 km east of Elgin, Oregon on Oregon Route 82. The paleosol underlies an olivine basalt of the Powder River Volcanic Field, a sequence of Middle Miocene to Pliocene lavas that overlie the Columbia River Basalt Group in northeastern Oregon. The parent material of the paleosol is a felsic to intermediate lahar that contains leaf and twig fossils as well as tree casts. While some researchers have measured the bulk chemistry and clay mineralogy of this paleosol, no study of its micromorphology has been attempted. In this study we viewed polished thin sections with a petrographic microscope to examine both the parent material and the paleosol. Scanning electron microscopy was used to understand the composition of minerals. Soil texture was analyzed using point counts. Skeleton grains inherited from the parent are mainly plagioclase, orthoclase feldspar, quartz, and volcanic glass. Accessory minerals include titanite, epidote, apatite, and zircon. The paleosol has an argillic horizon with vertic features that are not apparent at the field scale. Diatoms, palynomorphs, and root traces are relatively common in the A horizon of the paleosol. Strong sepic plasmic fabrics and redoximorphic features suggest an environment that was at least seasonally waterlogged and subjected to shrink-swell processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng
Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less
Macromolecular powder diffraction : structure solution via molecular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebbler, J.; Von Dreele, R.; X-Ray Science Division
Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer.more » To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.« less
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Anatomy and dynamics of a floodplain, Powder River, Montana, U.S.A.
Pizzuto, J.E.; Moody, J.A.; Meade, R.H.
2008-01-01
Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains; during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 in from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s-1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers of nearly constant thickness. Mud layers alternated with sand layers, which were relatively thick near the channel. Together, these beds created a distinctive natural levee. In some locations, individual flood deposits began as a thin mud layer that gradually coarsened upwards to medium-grained sand. Coarsening-upwards sequences form initially as mud because only the uppermost layers of water in the channel supply the first overbank flows, which are rich in mud but starved of sand. At successively higher stages, fine sands and then medium sands increase in concentration in the floodwater and are deposited as fine- and medium-sand layers overlying the initial mud layer. Theoretical predictions from mathematical models of sediment transport by advection and diffusion indicate that these processes acting alone are unlikely to create the observed sand layers of nearly uniform thickness that extend across much of the floodplain. We infer that other transport processes, notably bedload transport, must be important along Powder River. Even with the centimeter-scale measurements of floodplain deposits, daily hydraulic data, and precise annual surface topographic surveys, we were unable to determine any clear correspondence between the gauged flow record of overbank floods and the depositional layers mapped in the floodplain. These results provide a detailed example of floodplain deposits and depositional processes that should prove useful for interpreting natural levee deposits in a variety of geologic settings. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.
2008-01-01
The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.
Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.
2014-01-01
Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near-surface geology and hydrology of the study area. The geophysical data are consistent between surveys using different techniques and between surveys carried out at different times from 2007 through 2011. This paper summarizes geophysical results from the 4-year monitoring study of the SDI system.
Salari, M; Rezaee, M; Chidembo, A T; Konstantinov, K; Liu, H K
2012-06-01
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.
Quantitative characterization of porosity in stainless steel LENS powders and deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan, D.F.; Puskar, J.D.; Brooks, J.A.
2006-07-15
Laser Engineered Net Shaping (LENS) utilizes a laser beam to melt fine powders to produce three-dimensional engineering structures line by line and layer by layer. When building these structures, defects including lack-of-fusion (LOF) at interlayer boundaries and intralayer porosity are sometimes observed. LOF defects can be minimized by adjusting processing parameters, but the sources of intralayer porosity are less apparent. In this paper, the amount and size distributions of 17-4PH and 304L powders and pores within the powder were characterized in parallel with the intralayer porosity in LENS deposits fabricated from the same materials. Intralayer porosity increased with increased powdermore » porosity; but was not well correlated with deposition parameters. The results demonstrate the importance of careful characterization and specification of starting powders on the quality of the final LENS deposits.« less
Preparation of refractory cermet structures for lithium compatibility testing
NASA Technical Reports Server (NTRS)
Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.
1973-01-01
High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.
Development of RTM and powder prepreg resins for subsonic aircraft primary structures
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.
1993-01-01
Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.
Terrace aggradation during the 1978 flood on Powder River, Montana, USA
Moody, J.A.; Meade, R.H.
2008-01-01
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes. Peak flood discharge was about 930??m3 s- 1, which lasted about eight??days. During this time, the flood transported 8.2??million tons of sediment into and 4.5??million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7??m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5??m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16??m and the higher terrace by 0.063??m. Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07??m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.
Low cost synthesis of TiO2-C nanocomposite powder for high efficiency visible light photocatalysis
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Nayak, J.
2018-04-01
Titanium dioxide-carbon nanocomposite powder was synthesized via a low cost chemical route using oleic acid and titanium tetra-isopropoxide. Since the carbon remained mainly on the surface of the TiO2 nanoparticles, the powder had black color. The composition of the powder was analyzed by X-ray photoelectron spectroscopy and the structure was studied with X-ray diffraction and transmission electron microscopy. The visible photocatalytic activity of the black TiO2 powder was investigated by studying the photo-bleaching of methylene blue under visible light. Our experimental observation showed that the black-TiO2 powder had a higher visible photocatalytic activity compared to the commercial TiO2 powder (P25 Degussa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ching-Fong
A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less
Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders
NASA Astrophysics Data System (ADS)
Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan
2018-03-01
Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.
Norwood, E-A; Le Floch-Fouéré, C; Briard-Bion, V; Schuck, P; Croguennec, T; Jeantet, R
2016-07-01
The market for dairy powders, including high added-value products (e.g., infant formulas, protein isolates) has increased continuously over the past decade. However, the processing and storage of whey protein isolate (WPI) powders can result in changes in their structural and functional properties. It is therefore of great importance to understand the mechanisms and to identify the structural markers involved in the aging of WPI powders to control their end use properties. This study was performed to determine the effects of different storage conditions on protein lactosylations, protein denaturation in WPI, and in parallel on their foaming and interfacial properties. Six storage conditions involving different temperatures (θ) and water activities (aw) were studied for periods of up to 12mo. The results showed that for θ≤20°C, foaming properties of powders did not significantly differ from nonaged whey protein isolates (reference), regardless of the aw. On the other hand, powders presented significant levels of denaturation/aggregation and protein modification involving first protein lactosylation and then degradation of Maillard reaction products, resulting in a higher browning index compared with the reference, starting from the early stage of storage at 60°C. These changes resulted in a higher foam density and a slightly better foam stability (whisking) at 6mo. At 40°C, powders showed transitional evolution. The findings of this study will make it possible to define maximum storage durations and to recommend optimal storage conditions in accordance with WPI powder end-use properties. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sua-iam, Gritsada; Makul, Natt
2013-10-15
For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moriwaki, Hiroshi; Kitajima, Shiori; Shirai, Koji; Kiguchi, Kenji; Yamada, Osamu
2011-01-30
The aim of this study is to investigate the utilization of the powder of porous titanium carbide (TiC) ceramics as a novel adsorbent or a material for solid-phase extraction (SPE). The adsorption and elution of inorganic and organic pollutants, Pb(II), 2,4,6-trichlorophenol (TCP), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA), to the material were evaluated. The cartridge packed with TiC ceramics powder was used for the extraction test of pollutants. The solution containing pollutants at 1.0 μg mL(-1) was passed through the TiC cartridge, and the substances were almost quantitatively removed. Furthermore, the pollutants retained in the cartridge were eluted with 3N HCl for Pb(II) and with methanol for organic pollutants. The recoveries of pollutants were over 80%. In addition, we used the TiC cartridge for the solid-phase extraction of water samples (500 mL each of the distilled water and the river water) by adding pollutants at determined concentrations. Every pollutant was adsorbed almost quantitatively, and eluted by 3N HCl or methanol. From these results, we concluded that the powder of porous TiC ceramics is a useful reusable adsorbent for the water cleanup and solid-phase extraction. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasse, T. R.; Schook, D. M.
2017-12-01
Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have significant inherited ages due to partial bleaching during sediment transport in this high plains river with high suspended sediment loads. The dendrochronology of the adjacent cottonwood trees then offers an independent measurement of the inherited age of the OSL samples.
Alternative High-Performance Ceramic Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.
This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting powders were consolidated via SPS. Ce was reduced to the trivalent oxidation state and the zirconolite was converted into undesirable perovskite. The zirconolite polymorphs found in the synthesized powders were recovered after a post-SPS heat treatment in air. These results demonstrated the potential of processing in controlling the phase assemblage in these waste forms. Hollandites with Cr 3+ trivalent cations were identified as potential hosts for Cs immobilization and are being investigated for Cs retention properties. Series of compositions Ba 1.15-xCs 2xCr 2.3Ti 5.7O 16, with increasing Cs loadings, were prepared by sol-gel process and characterized for structural parameters. Structural characterization was performed by a combination of powder XRD and neutron powder diffraction. Phase pure hollandite adapting monoclinic symmetry (I2/m) was observed for 0 ≤ x ≤ 0.55. These results were used to develop a new structural model to interpret Cs immobilization in these hollandites. Performance of these waste forms were evaluated for chemical durability and radiation resistance. Product consistency testing (PCT) and vapor hydration testing (VHT) were used for testing of chemical durability. Radiation resistance was tested using He + ions to simulatemore » $$\\alpha$$ particles and heavy ions such as Au 3+ to simulate a recoil. These results showed that these waste forms were chemically durable. The waste forms also amorphized to various degrees on exposure to simulated radiation.« less
Zeng, Rong-Gui; Jiang, Qie-Ying; Liao, Zheng-Gen; Zhao, Guo-Wei; Luo, Yun; Luo, Juan; Lv, Dan
2016-06-01
To study the improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology. The 1% hydrophobic silica nanoparticles were used as surface modifier, and andrographis extract powder was taken as a model drug. Three different techniques were used for coating model drugs, with angle of repose, compressibility, flat angle and cohesion as the comprehensive evaluation indexes for the powder flowability. The powder particle size and the size distribution were measured by Mastersizer 2000. FEI scanning electron microscope was used to observe the surface morphology and structure of the powder. The percentage of Si element on the powder surface was measured by energy dispersive spectrometer. The hygroscopicity of powder was determined by Chinese pharmacopoeia method. All of the three techniques can improve the flowability of powder extract. In particular, hygroscopicity of extract powder can also be improved by dispersion and then high-speed mixing, which can produce a higher percentage of Si element on the powder surface. The improvement principle may be correlated with a modifier adhered to the powder surface. Copyright© by the Chinese Pharmaceutical Association.
Phase transformations in xerogels of mullite composition
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Bansal, Narottam P.
1990-01-01
Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al203-2Si02). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al203, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.
NASA Astrophysics Data System (ADS)
Loginova, I. S.; Solonin, A. N.; Prosviryakov, A. S.; Adisa, S. B.; Khalil, A. M.; Bykovskiy, D. P.; Petrovskiy, V. N.
2017-12-01
In this work the morphology, the size and the chemical composition of the powders of steel 316L received by the two methods was studied: fusion dispersion by a gas stream and reduction of metal chlorides with the subsequent plasma atomization of the received powder particles. The powder particles received by the first method have a spherical shape (aspect ratio 1,0-1,2) with an average size of 77 μm and are characterized by the absence of internal porosity. Particles of the powder received by the second method also have a spherical shape and faultless structure, however, their chemical composition may vary in different particles. The average size of particles is 32 μm. Though the obtained powders had different properties, the experimental samples received by DLD technology demonstrated by equally high durability (Ultimate strength is 623±5 and of 623±18 MPa respectively) and plasticity (38 and 41% respectively). It is established that mechanical properties of DLD samples increase for 7-10% after treatment of the surface.
NASA Astrophysics Data System (ADS)
Sokolov, E. G.; Aref’eva, S. A.; Svistun, L. I.
2018-03-01
The influence of Co and W powders on the structure and the viscosity of composite solders Sn-Cu-Co-W used for the manufacture of the specially shaped diamond tools has been studied. The solders were obtained by mixing the metallic powders with an organic binder. The mixtures with and without diamonds were applied to steel rollers and shaped substrates. The sintering was carried out in a vacuum at 820 ° C with time-exposure of 40 minutes. The influence of Co and W powders on the viscosity solders was evaluated on the basis of the study of structures and according to the results of sintering specially shaped diamond tools. It was found that to provide the necessary viscosity and to obtain the uniform diamond-containing layers on the complex shaped surfaces, Sn-Cu-Co-W solder should contain 27–35 vol % of solid phase. This is achieved with a total solder content of 24–32 wt % of cobalt powder and 7 wt % of tungsten powder.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Longitudinal Stream Profile Morphology and Patterns of Knickpoint Propagation in the Bighorn Range
NASA Astrophysics Data System (ADS)
Safran, E. B.; Anderson, R. S.; Riihimaki, C. A.; Armstrong, J.
2005-12-01
The northern U. S. Rocky Mountains and the adjacent sedimentary basins are in a transient state of response to regional, Late Cenozoic exhumation. Assembling the history of landscape change there requires interpreting the morphology and genesis of transient landforms such as knickpoints in longitudinal stream profiles. We used concavity and normalized channel steepness indices to quantify the longitudinal profile morphology of >75 streams draining the east side of the Bighorn Range and the adjacent Powder River Basin. Our analyses show that individual units in the range-margin sedimentary cover rock exert a strong influence on longitudinal profile morphology. In the Tongue River and Crazy Woman Creek drainages, more than 50% of the streams examined had knickpoints localized within a resistant, siliceous dolomite. Knickpoints on most streams with drainage areas greater than ~100 km2 at the range front have migrated headward into the gneissic and plutonic core of the range. In the Clear Creek drainage, where the lateral extent of sedimentary cover rock is more restricted than in the adjacent drainages, knickpoints do not align with any particular unit. River profiles in the Powder River Basin beyond 10-20 km from the range front exhibit concavities of ~0.3-0.6 and normalized channel steepness indices of 40-60 (using 0.45 as a reference concavity). All profiles analyzed that extend into the mountain range exhibit at least one reach with exceptionally high (>2) concavity and relatively high (100-600) normalized channel steepness index, highlighting zones of transient adjustment to local base-level drop in the basin. Headwater reaches of range-draining streams exhibit variable but moderate values of concavity (0.15-0.9) and normalized channel steepness index (20-100). The varied morphology of these reaches reflects their passage across a relict surface of low relief but also the effects of glaciation and/or the signature of the narrow summit spine that caps the range.
NASA Astrophysics Data System (ADS)
Xiao, Wenya; Huang, Zhixiong; Ding, Jie
2017-12-01
In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.
NASA Astrophysics Data System (ADS)
Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping
2018-05-01
The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).
Influence of Cu-doping on the structural and optical properties of CaTiO{sub 3} powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, L.H.; Moura, A.P. de; La Porta, F.A., E-mail: felipe_laporta@yahoo.com.br
2016-09-15
Highlights: • Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders were successfully synthesized via a polymeric precursor method. • Effects of Cu incorporated on the Ca-site into the CaTiO{sub 3} lattice as host matrix has been investigated. • The optical behavior reveals that the Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders have potential applications in emerging technologies. - Abstract: Here, we report on the effect of chemical substitution on the structural and optical properties of Cu-doped CaTiO{sub 3} (CTO) polycrystalline powders synthesized by the polymeric precursor method. Our findings are discussed based on the structural order-disorder effects originating from the modification of the Ca{sub 1−x}Cu{submore » x}TiO{sub 3} microcrystal matrix. These results may elucidate the compositional modulation and methods of controlling the structural design, as well as reveal the changes in the optical behavior of this system at an atomic level.« less
NASA Astrophysics Data System (ADS)
Susilawati, Doyan, Aris; Khalilurrahman
2017-01-01
Have been successfully synthesized barium powder doping Manganese hexaferrite with the expected potential as anti-radar material. Synthesis was done by using the co-precipitation method, the variation of the variable x concentrations used were 0; 0.2; 0.4; and 0.6 and calcined at temperatures of 400, 600 and 800°C. Characterization powders of hexaferrite have used XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), LCR (inductance, capacitance, and resistance) meter, and VSM (Vibrating Sample Magnetometer). The higher the concentration and temperature of calcinations given affect the color of the powder. The test results using XRD indicates that it has formed barium hexaferrite phase with a hexagonal crystal structure. Tests using SEM showed that all the constituent elements barium powder hexaferrite by doping Manganese powders have been spread evenly. XRD test results were confirmed by a test using a TEM showing the crystal structure and the powder was sized nano particles. The results from the LCR meter showed that the barium powder hexaferrite by doping Manganese that has been synthesized classified in semiconductor materials. The result from VSM showed that the value of coercivity magnetic powder doped barium hexaferrite Manganese is smaller when compared with barium hexaferrite without doping and belong to the soft magnetic. Based on the results of the synthesis and characterization, we can conclude that the barium powder heksaferrite by doping Manganese potential as a material anti-radar.
Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying
Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu
2015-01-01
In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
NASA Technical Reports Server (NTRS)
Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.
2003-01-01
The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.
Effect of titanium on the structural and optical property of NiO nano powders
NASA Astrophysics Data System (ADS)
Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya
2018-05-01
Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.
Structures and properties of alumina-based ceramic for reconstructive oncology
NASA Astrophysics Data System (ADS)
Grigoriev, M. V.; Kulkov, S. N.
2016-08-01
The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.
Cerný, Radovan; Renaudin, Guillaume; Favre-Nicolin, Vincent; Hlukhyy, Viktor; Pöttgen, Rainer
2004-06-01
The new binary compound Mg(1 + x)Ir(1 - x) (x = 0-0.054) was prepared by melting the elements in the Mg:Ir ratio 2:3 in a sealed tantalum tube under an argon atmosphere in an induction furnace (single crystals) or by annealing cold-pressed pellets of the starting composition Mg:Ir 1:1 in an autoclave under an argon atmosphere (powder sample). The structure was independently solved from high-resolution synchrotron powder and single-crystal X-ray data: Pearson symbol oC304, space group Cmca, lattice parameters from synchrotron powder data a = 18.46948 (6), b = 16.17450 (5), c = 16.82131 (5) A. Mg(1 + x)Ir(1 - x) is a topologically close-packed phase, containing 13 Ir and 12 Mg atoms in the asymmetric unit, and has a narrow homogeneity range. Nearly all the atoms have Frank-Kasper-related coordination polyhedra, with the exception of two Ir atoms, and this compound contains the shortest Ir-Ir distances ever observed. The solution of a rather complex crystal structure from powder diffraction, which was fully confirmed by the single-crystal method, shows the power of powder diffraction in combination with the high-resolution data and the global optimization method.
Karen Ferguson
2007-01-01
The measurement of water quality and stream health in wilderness areas is made difficult by the need to use non-motorized modes of travel. In Wyoming, data on streams in the high-altitude Cloud Peak Wilderness are scarce. The monitoring of stream health of the Tongue, Powder and Big Horn Rivers at lower altitudes can be made more meaningful by the collection of...
Oil production and subsidence trends from InSAR over the Powder River Basin, WY
NASA Astrophysics Data System (ADS)
Devlin, K. R.; Borsa, A. A.; Neely, W.
2017-12-01
Interferometric synthetic aperture radar (InSAR) has proven to be a viable tool to study subsidence from numerous causes, including anthropogenic sources such as mining and drilling. The Powder River Basin (PRB) of northeastern Wyoming has been a historical region of hydrocarbon extraction, producing much of the coal, oil, natural gas, and coalbed methane used in the United States. Although coal production in the PRB is stagnant, oil and gas production has increased over the last decade. Using data from ESA's Sentinel-1 mission, we create a suite of interferograms to study the surface deformation history of the PRB . We examined two and a half years of data from 11-07-2014 to 06-24-2017 along a single track (129) covering the coalbed and a region of high oil well concentration and production . We assess the ability of InSAR to detect subsidence over increasing temporal baselines, and use the resulting error estimates to guide our interferogram processing. We then produce a surface deformation time series for the PRB from the interferograms and use these data to model volumetric changes of the subsurface. Our results provide constraints on natural resource extraction in the PRB and information about the suitability of using InSAR to monitor human activity.
Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.
1998-01-01
The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.
Moore, T.A.; Stanton, R.W.; Pocknall, D.T.; Glores, R.M.
1990-01-01
The differences between the depositional settings of the Smith and Anderson subbituminous coal beds (Paleocene, central Powder River Basin, U.S.A.) are interpreted on the basis of their petrographic composition and palynologic assemblages. The Smith coal bed is relatively thin ( 50 m) sandstone bodies of an abandoned meander-belt complex, the coal bed is generally thicker (> 7 m) and more widespread (> 15 km) in extent than the Smith coal bed. The sands provided a relatively stable, poorly compactable platform that was favorable to the growth of large, arborescent vegetation, such as the dominant ancestral Glyptostrobus, as well as ancestral Nyssa, Carya, and Betulaceae in a well-drained but moist swamp environment. The stability of the peat-forming environment resulted in a raised peat deposit of relatively uniform paleoflora and peat composition. In the thicker areas of the Anderson coal bed, the upward increase in carbonized plant components indicates a progressively drier or better-drained swamp environment. Intervals within the coal bed that overlie or are lateral to crevasse-splay deposits contain a high concentration of pollen attributable to Pterocarya and an absence of carbonized plant remains, an indication that ancestral Pterocarya preferred a water-saturated environment close to the edge of the swamp where detrial influx occurred. ?? 1990.
Micro structrual characterization and analysis of ball milled silicon carbide
NASA Astrophysics Data System (ADS)
Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.
2018-04-01
Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.
Lewis, Gary K.; Less, Richard M.
2001-01-01
A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.
Lewis, Gary K.; Less, Richard M.
2002-01-01
A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.
Grain Structure Control of Additively Manufactured Metallic Materials
Faierson, Eric J.
2017-01-01
Grain structure control is challenging for metal additive manufacturing (AM). Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED) technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.
Novel three-dimensional dandelion-like TiO{sub 2} structure with high photocatalytic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Xuelian; Xie Bin; Pan Nan
2008-03-15
Pure rutile phase crystalline TiO{sub 2} powder with novel 3D dandelion-like structure was synthesized by using a facile hydrothermal method with TiCl{sub 3} as the main starting material. In such a 3D structure, the nanometer-scale construction elements aggregate together and form a micrometer-scale artificial unit. The typical 3D dandelion structure has an average diameter of 1.5-2 {mu}m and is packed radially by nanorods with [001] preference growth direction. Each individual nanorod is hundreds of nanometers in length, and tens of nanometers in diameter. The obtained 3D dandelion-like TiO{sub 2} powder has a high photocatalytic activity, which is equivalent to thatmore » of the commercial available P25 titania powder. Mechanisms of the formation of the dandelion-like structure were also discussed. A different oxidation process of Ti(III) to Ti(IV) during hydrothermal was suggested. - Graphical abstract: Rutile-phase TiO{sub 2} powders with novel 3D dandelion-like structures were synthesized. This kind of 3D artificial hierarchical titania structure has the advantage of reserving the novel nanometer-scale properties while providing us the easiness of storing and handling as we routinely enjoyed for the micrometer-scale materials. A different oxidation process of Ti(III) to Ti(IV) during hydrothermal process was suggested.« less
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-12-22
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.
Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film
NASA Astrophysics Data System (ADS)
Kim, Kyung Tae; Kim, Dong Won; Kim, Soo Hyung; Kim, Chang Kee; Choi, Yoon Jeong
2017-09-01
Nickel (Ni) materials with a thickness of a few hundred nm were homogeneously coated on the surfaces of aluminum (Al) powders by an electroless plating process. The Ni-coated Al powders show characteristic interfacial structures mixed of Ni, Al and O instead of densely packed Al oxide at the surface. The explosion test of the Ni-coated Al powders utilizing flame ignition showed that the powders had a 3.6 times enhanced pressurization rate of 405 kPa/ms compared to 111 kPa/ms of uncoated Al powders. It was found that this is due to a feasible diffusion of oxygen atoms into the Al powders through the thin and rough interfacial layers present at the Ni/Al interface. These results clearly indicate that nano-sized Ni film introduced instead of surface oxide acts as a very profitable layer to achieve efficient combustion behaviors by a rapid oxidation of Al powders.
Structural, optical and photo thermal properties of Er3+:Y2O3 doped PMMA nanocomposite
NASA Astrophysics Data System (ADS)
Tabanli, Sevcan; Eryurek, Gonul
2018-02-01
Thermal decomposition technique was employed to synthesize of phosphors of yttria (Y2O3) doped with erbium (Er3+) ions. After the synthesized procedure, the nano-sized crystalline powders were annealed at 800oC for 24 h. Annealed powders were embedded in poly(methyl methacrylate) (PMMA) by free radical polymerization to fabricate nanocomposite polymer materials. The crystalline structure of the powder and doped PMMA nanocomposite samples were determined using X-ray diffraction technique. Scherrer's equation and the FW1/5/4/5M method were used to determine average crystalline size and grain size distributions, respectively. The spectroscopic properties of the powders and doped PMMA nanocomposites were studied by measuring the upconversion emission spectra under near-infrared laser excitation at room temperature. The laser-induced photo thermal behaviors of Er3+:Y2O3 nano-powders and doped PMMA nanocomposite were investigated using the fluorescence intensity ratio (FIR) technique.
NASA Astrophysics Data System (ADS)
Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.
2013-02-01
Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Nonvolatile RRAM cells from polymeric composites embedding recycled SiC powders.
De Girolamo Del Mauro, Anna; Nenna, Giuseppe; Miscioscia, Riccardo; Freda, Cesare; Portofino, Sabrina; Galvagno, Sergio; Minarini, Carla
2014-10-21
Silicon carbide powders have been synthesized from tires utilizing a patented recycling process. Dynamic light scattering, Raman spectroscopy, SEM microscopy, and X-ray diffraction have been carried out to gather knowledge about powders and the final composite structure. The obtained powder has been proven to induce resistive switching in a PMMA polymer-based composite device. Memory effect has been detected in two-terminal devices having coplanar contacts and quantified by read-write-erase measurements in terms of level separation and persistence.
Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
Cooper, Tom O.; Miller, William E.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Synthesis of attrition-resistant heterogeneous catalysts using templated mesoporous silica
Pham, Hien N.; Datye, Abhaya K.
2003-04-15
The present invention relates to catalysts in mesoporous structures. In a preferred embodiment, the invention comprises a method for encapsulating a dispersed insoluble compound in a mesoporous structure comprising combining a soluble oxide precursor, a solvent, and a surfactant to form a mixture; dispersing an insoluble compound in the mixture; spray-drying the mixture to produce dry powder; and calcining the powder to yield a porous structure comprising the dispersed insoluble compound.
Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.
Nemec, Patrik; Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622
NASA Technical Reports Server (NTRS)
Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.
2017-01-01
Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.
The antifriction behaviours of ?
NASA Astrophysics Data System (ADS)
Yan, Feng-yuan; Xue, Qun-ji
1997-03-01
In this paper, the antifriction behaviours of 0022-3727/30/5/010/img2 (3:1) molecules and their crystal powder were evaluated by different methods. It was found that the 0022-3727/30/5/010/img2 crystal powder possessed hexagonal close packed (hcp) crystal structure with a = 10.1 Å and c = 16.55 Å, and a transformation of crystal structure from hcp to face centred cubic (fcc) occurred easily during friction (burnishing). It was confirmed that two kinds of process, breakage of 0022-3727/30/5/010/img2 powder coagulated by nanoscale single crystals and rearrangement of the molecules along the friction direction, had occurred under the friction force. The extreme pressure (EP) performance of 0022-3727/30/5/010/img2 as an additive in paraffin liquid was investigated on an SRV oscillating wear machine. It was found that the extreme pressure load (EP value) of paraffin liquid was increased by dispersion of 0022-3727/30/5/010/img2 powder, accompanied by a slight improvement in the antifriction behaviour. it was confirmed that the improvement in EP value and antifriction behaviour of oil was dependent on the crystal structure of 0022-3727/30/5/010/img2 powder, but independent of the spherical molecular structure of 0022-3727/30/5/010/img8 or 0022-3727/30/5/010/img9. The burnishing experimental results also proved that the antifriction behaviour was determined by the crystal structure and had no relation to the molecular structure. It was also found that fullerenes possessed some physical properties similar to those of graphite. Since the formation of compact fullerenes with high shear strength during friction can be effectively prevented by some other lubricants, it is suggested that fullerenes should be mixed with other lubricants for tribological application.
Evaluating the effects of monthly river flow trends on Environmental Flow allocation
NASA Astrophysics Data System (ADS)
Torabi Haghighi, Ali; Klove, Bjorn
2010-05-01
The Natural river flow regime can be changed by the construction of hydraulic structures such as dams, hydropower plants, pump stations and so on. Due to the new river flow regime, some parts of water resources must be allocated to environmental flow (EF). There are more than 62 hydrological methods which have been proposed for calculating EF, although these methods don't have enough acceptability to be used in practical cases and The so other methods are preferred such as holistic,….. Most hydrological methods do not take basin physiography, climate, location of hydraulic structures, monthly river flow regime, historical trend of river (annually regime), purpose of hydraulic structures and so on, into consideration. In the present work, data from more than 180 rivers from Asia (71 rivers and 16 countries), Europe (79 Rivers and 23 countries), Americas (23 rivers and 10 countries) and Africa (12 rivers and 6 countries) were used to assess EF. The rivers were divided into 5 main groups of regular permanent rivers, semi regular permanent rivers, irregular permanent rivers, seasonal rivers and dry rivers, for each groups EF calculated by some hydrological methods and compared with the natural flow regime. The results showed that besides the amount of EF, the monthly distribution of flow is very important and should be considered in reservoir operation. In seasonal rivers and dry rivers, hydraulic structure construction can be useful for conserving aquatic ecosystems
Phase transformations in xerogels of mullite composition
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Bansal, Narottam P.
1988-01-01
Monophasic and diphasic xerogels have been prepared as precursors for mullite (3Al2O3-2SiO2). Monophasic xerogel was synthesized from tetraethyl orthosilicate and aluminum nitrate nanohydrate and the diphasic xerogel from colloidal suspension of silica and boehmite. The chemical and structural evolutions, as a function of thermal treatment, in these two types of sol-gel derived mullite precursor powders have been characterized by DTA, TGA, X-ray diffraction, SEM and infrared spectroscopy. Monophasic xerogel transforms to an Al-Si spinel from an amorphous structure at approximately 980 C. The spinel then changes into mullite on further heating. Diphasic xerogel forms mullite at approximately 1360 C. The components of the diphasic powder react independently up to the point of mullite formation. The transformation in the monophasic powder occurs rapidly and yields strongly crystalline mullite with no other phases present. The diphasic powder, however, transforms rather slowly and contains remnants of the starting materials (alpha-Al2O3, cristobalite) even after heating at high temperatures for long times (1600 C, 6 hr). The diphasic powder could be sintered to high density but not the monophasic powder in spite of its molecular level homogeneity.
Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R
2016-09-01
This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue
NASA Astrophysics Data System (ADS)
Schaffers, William Clemens
Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.
Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing
NASA Astrophysics Data System (ADS)
Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu
2017-07-01
For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.
Ahmed, Hamzah; Shimpi, Manishkumar R; Velaga, Sitaram P
2017-01-01
Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.
21 CFR 184.1375 - Iron, elemental.
Code of Federal Regulations, 2010 CFR
2010-04-01
... microscope, it appears as an amorphous powder free from particles having a crystalline structure. It is... pentacarbonyl. It occurs as a dark gray powder. When viewed under a microscope, it appears as spheres built up...
Phase modification of copper phthalocyanine semiconductor by converting powder to thin film
NASA Astrophysics Data System (ADS)
Ai, Xiaowei; Lin, Jiaxin; Chang, Yufang; Zhou, Lianqun; Zhang, Xianmin; Qin, Gaowu
2018-01-01
Thin films of copper phthalocyanine (CuPc) semiconductor were deposited on glass substrates by a thermal evaporation system using the CuPc powder in a high vacuum. The crystal structures of both the films and the powder were measured by the X-ray diffraction spectroscopy technique. It is observed that CuPc films only show one peak at 6.84°, indicating a high texture of α phase along (200) orientation. In comparison, CuPc powder shows a series of peaks, which are confirmed from the mixture of both α and β phases. The effects of substrate anneal temperature on the film structure, grain size and optical absorption property of CuPc films were also investigated. All the films are of α phase and the full width of half maximum for (200) diffraction peak becomes narrow with increasing the substrate temperatures. The average grain size calculated by the Scherrer's formula is 33.63 nm for the film without anneal, which is increased up to 58.29 nm for the film annealed at 200 °C. Scanning electron microscope was further measured to prove the growth of crystalline grain and to characterize the morphologies of CuPc films. Ultraviolet-visible absorption spectra were employed to study the structure effect on the optical properties of both CuPc films and powder. Fourier Transform infrared spectroscopy was used to identify the crystalline nature of both CuPc powder and film.
Laser stereolithography by multilayer cladding of metal powders
NASA Astrophysics Data System (ADS)
Jendrzejewski, Rafal; Rabczuk, Grazyna T.; Zaremba, R.; Sliwinski, Gerard
1998-07-01
3D-structures obtained by means of laser cladding of the metal alloy powders: bronze B10 and stellite 6 and the process parameters are studied experimentally. The structures are made trace-on-trace by remelting of the metal powder injected into the focusing region of the 1.2 kW CO2 laser beam. For the powder and sample feeding rates of 8-22 g/min and 0.4-1.2 m/min, respectively, and the applied beam intensities not exceeding 2 X 105 W cm-2 the process is stable and regular traces connected via fusion zones are produced for each material. The thickness of these zones does not exceed several per cent of the layer height. The process results in the efficient formation of multilayer structures. From their geometry the effect of energy coupling and interaction parameters are deduced. Moreover, the microanalysis by means of SEM- and optical photographs of samples produced under different experimental conditions confirms the expected mechanical properties, low porosity and highly homogenous structure of the multilayers. In addition to the known material stellite 6 the bronze B10 is originally proposed for a rapid prototyping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Minyan; Shen, Yi, E-mail: shenyiemail@163.com; Zhao, Li
Graphical abstract: The MoO{sub 3} powder, which exhibits highly dispersed floral aggregated-like structure built up by superimposed and staggered nanoflakes with a diameter of 1-1.5 {mu}m and a thickness of 0.1-0.2 {mu}m, has been successfully obtained when the molar ratio of EDTA/Mo{sup 6+} is 0.05:1. The EDTA inducer obviously enlarges the surface area and apparently enhances the reactivity of MoO{sub 3} powders, making it show greater absorptive capacity to the excitation light and better photochromic properties than the pure MoO{sub 3} powder. Highlights: {yields} EDTA as organic inducing agent. {yields} EDTA inducer at EDTA/Mo{sup 6+} molar ratio of 0.05:1 enablesmore » growth of flower-like microspheres. {yields} The formation of flower-like MoO{sub 3} makes its photochromic properties strongly enhanced. -- Abstract: In this study, the photochromic MoO{sub 3} powder with novel morphology has been synthesized via hydrothermal method, using ethylene diamine tetraacetice acid (EDTA) as organic inducing agent. The influence of EDTA on the morphology, structure and photochromic properties of MoO{sub 3} powder has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), as well as ultraviolet and visible spectroscopy (UV-vis) and color difference meter. When the molar ratio of EDTA/Mo{sup 6+} is 0.05:1, the EDTA-induced MoO{sub 3} powder is found to have 3D flower-like morphologies and excellent photochromic properties. Furthermore, the possible growth mechanism of the flower-like structure and the photochromic mechanism of MoO{sub 3} powder are also discussed in detail.« less
Lattice thermal expansion and solubility limits of neodymium-doped ceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming
2016-11-15
Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less
NASA Astrophysics Data System (ADS)
Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter
2007-03-01
We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1982-01-01
The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
Hovis, V.M. Jr.; Northcutt, W.G. Jr.
The present invention relates to a method for fabricating thin-walled high-density structures of tungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.
Method of manufacturing positive nickel hydroxide electrodes
Gutjahr, M.A.; Schmid, R.; Beccu, K.D.
1975-12-16
A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapton, J.R.; McKinley, P.W.
1977-08-01
This report summarizes and evaluates water-quality data collected at 35 stream sites in the coal region of southeastern Montana. Sarpy Creek, Armells Creek, and Rosebud Creek sometimes have dissolved-solids concentrations that cause water to be marginal for agricultural purposes. At times of rainfall and snowmelt, the runoff water mixes with the base-flow component to improve the overall quality. Water in the Tongue River generally showed a downstream degradation in which some changes were related to the lithology of the aquifers contributing water to streamflow. Water from Pumpkin Creek and Mizpah Creek is used mostly for cattle watering. To some extentmore » water is used for irrigation although the salinity hazard was often high. The chemical quality of the Powder River changed little during flow downstream. High sediment loads of the river acted as transporting agents for many of the plant nutrients and trace-element constituents.« less
Crystal structure of hydrocortisone acetate, C23H32O6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James A.; Gindhart, Amy M.; Blanton, Thomas N.
The crystal structure of hydrocortisone acetate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydrocortisone acetate crystallizes in space groupP2 1(#4) witha= 8.85173(3) Å,b= 13.53859(3) Å,c= 8.86980(4) Å,β= 101.5438(3)°,V= 1041.455(6) Å 3, andZ= 2. Both hydroxyl groups form hydrogen bonds to the ketone oxygen atom on the steroid ring system, resulting in a three-dimensional hydrogen bond network. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
NASA Astrophysics Data System (ADS)
Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz
2016-04-01
In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its calculated value was confirmed by direct measurements in the field. In our calculations we used VCmaster software. This Work funded by the National Science Centre allocated based on the number of decision: DEC-2011/01 / B / ST10 / 06959
Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites
NASA Technical Reports Server (NTRS)
Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.
1995-01-01
Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Fulton, J.L.; Linehan, J.C.
1993-03-01
The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less
NASA Astrophysics Data System (ADS)
Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing
2018-03-01
It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.
Wang, Wei; Zhou, Weibiao
2015-02-01
This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-01-01
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839
Multifunctional graded dielectrics fabricated using dry powder printing
NASA Astrophysics Data System (ADS)
Good, Austin J.; Roper, David; Good, Brandon; Yarlagadda, Shridhar; Mirotznik, Mark S.
2017-09-01
The ability to fabricate multifunctional devices that combine good structural properties with embedded electromagnetic functionality has many practical applications, including antireflective surfaces for structural radomes, load bearing conformal antennas, integrated RF transmission lines and passive beam forming networks. We describe here a custom made 3D printer that can print high dielectric constant ceramic powders within a low-loss structural composite substrate to produce mechanically robust parts with integrated graded dielectric properties. We fabricated a number of these parts and evaluated their anisotropic dielectric properties by determining the complete permittivity tensor of the printed samples as a function of local powder weight. This data was then experimentally validated using two practical examples: a Chebyshev antireflective stack and a 2D passive beamsteering network. The results of both electromagnetic systems displayed acceptable agreement between the simulated and measured results. This agreement shows that powder printing is a potential approach for fabricating spatially graded dielectric electromagnetic systems. This paper was submitted for review on 15 February 2017. The project is funded by the Office of Naval Research, Code 331.
A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures.
DeCost, Brian L; Holm, Elizabeth A
2016-12-01
This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM) images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article "Characterizing powder materials using keypoint-based computer vision methods" (B.L. DeCost, E.A. Holm, 2016) [1]. These data are freely available in a Mendeley Data archive "A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures" (B.L. DeCost, E.A. Holm, 2016) located at http://dx.doi.org/10.17632/tj4syyj9mr.1[2] for any academic, educational, or research purposes.
Rankl, James G.
1982-01-01
This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)
NASA Astrophysics Data System (ADS)
Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.
2015-03-01
High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.
Heat Treatment of Tantalum and Niobium Powders Prepared by Magnesium-Thermic Reduction
NASA Astrophysics Data System (ADS)
Orlov, V. M.; Prokhorova, T. Yu.
2017-11-01
Changes in the specific surface area and porous structure of tantalum and niobium powders, which were prepared by magnesium-thermic reduction of Ta2O5, Mg4Ta2O9, and Mg4Nb2O9 oxide compounds and subjected to heat treatments at temperatures of 600-1500°C, have been studied. It is noted that, owing to the mesoporous structure of the magnesium-thermic powders, the decrease in the surface area during heat treatment, first of all, is related to a decrease in the amount of pores less than 10 nm in size. The heat treatment of a reacting mass is shown to allow us to correct the specific surface area of the powder without any increase in the oxygen content in it. Data on the effect of heat treatment conditions on the specific charge of capacitor anodes are reported.
Interaction of pulsed laser radiation with a powder complex based on the Al-Mg-C matrix
NASA Astrophysics Data System (ADS)
Voznesenskaya, A.; Khorkov, K.; Kochuev, D.; Zhdanov, A.; Morozov, V.
2018-01-01
Experimental work on laser melting of the Al powder composition has been carried out. The influence of the duration of the laser pulse on the result of processing the powder composition has been studied. In this work, the powder material was obtained by the joint mechanical activation of matrix material and filler particles in high-energy ball mills. The research work consisted of analyzing the starting material, the phase composition, the particle size distribution, and the morphology of the powder particles. The obtained samples also studied the phase composition, the presence of pores, cracks, the surface of the formed coating, the average height of the roller. The obtained samples were studied by X-ray diffractometry, Raman spectroscopy, and microsections of the structures obtained by optical microscopy. On the basis of the data obtained, conclusions were drawn about changes in the structural-phase composition, the nature of the distribution, the localization of alloying additives in the course of phase-to-phase transitions, and the change in the phase states of alloying additives.
Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-01-01
A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure, sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage, hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at the hardening stage, the plastic deformation is composed of the structural deformation and the copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of sintering joints. PMID:28773833
Explosively generated shock wave processing of metal powders by instrumented detonics
NASA Astrophysics Data System (ADS)
Sharma, A. D.; Sharma, A. K.; Thakur, N.
2013-06-01
The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimer, R.L.; Adams, M.A.; Jurich, D.M.
1981-02-01
This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less
Reverse micelle synthesis of nanoscale metal containing catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Fulton, J.L.; Linehan, J.C.
1993-03-01
The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less
Time resolved fluorescence of cow and goat milk powder
NASA Astrophysics Data System (ADS)
Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.
2017-01-01
Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.
Stanton, Ronald W.; Warwick, Peter D.; Swanson, Sharon M.
2005-01-01
Tar yields from low-temperature carbonization correlate with the amount of crypto-eugelinite in samples selected to represent petrographically distinct coal facies of the Wyodak-Anderson coal zone. Tar yields from Fischer Assay range from <1 to 11 wt.% on a dry basis and correspond (r = 0.72) to crypto-eugelinite contents of the coal that range from 15 to 60 vol.%. Core and highwall samples were obtained from active surface mines in the Gillette field, Powder River Basin, Wyoming. Because the rank of the samples is essentially the same, differences in low-temperature carbonization yields are interpreted from compositional differences, particularly the crypto-eugelinite content. In the Wyodak-Anderson coal zone, crypto-eugelinite probably was derived from degraded humic matter which absorbed decomposition products from algae, fungi, bacteria, and liptinitic plant parts (materials possibly high in hydrogen). Previous modeling of the distribution of crypto-eugelinite in the discontinuous Wyodak-Anderson coal zone indicated that tar yields should be greater from coal composing the upper part and interior areas than from coal composing the lower parts and margins of the individual coal bodies. It is possible that hydrocarbon yields from natural coalification processes would be similar to yields obtained from laboratory pyrolysis. If so, the amount of crypto-eugelinite may also be an important characteristic when evaluating coal as source rock for migrated hydrocarbons.
Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.
1978-01-01
In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.
Human impacts on fluvial systems - A small-catchment case study
NASA Astrophysics Data System (ADS)
Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth
2010-05-01
Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.
WPI Nanosat-3 Final Report: PANSAT - Powder Metallurgy and Navigation Satellite
2006-02-06
catalyst for industrial innovation and the exchange of information and ideas in powder metallurgy technology and management . It also serves as an...and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1. AGENCY USE ONLY (Leave blank) 2...characterize a powder metallurgy (P/M) bus structure that has specific thermal management and instrument/component support properties. The traditional
NASA Astrophysics Data System (ADS)
Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd
2016-12-01
The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.
Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling
NASA Astrophysics Data System (ADS)
Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud
Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.
Mattingly, J.T.
1962-09-25
A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)
Advanced resin systems and 3D textile preforms for low cost composite structures
NASA Technical Reports Server (NTRS)
Shukla, J. G.; Bayha, T. D.
1993-01-01
Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.
NASA Astrophysics Data System (ADS)
Amosov, A. P.; Markov, Yu M.; Dobrovolskaya, R. A.; Nikolaeva, E. N.
2017-02-01
It is shown that the powder of very hard refractory titanium carbonitride (TiC0.5N0.5) is the basis of tungsten-free hard alloys which are prospective for application as inexpensive cutting tools. The finer the powder of titanium carbonitrideis, the moreenhanced properties of hard alloys, sintered from the powder, are. An opportunity to reduce the particle size of the titanium carbonitride powder obtained by energy-saving azide technology of self-propagating high-temperature synthesis at the cost of reducing the particle size of the initial titanium powderwas investigated. To ensure the safety of the grinding process of the initial metal titanium powder, it was offered to nitride a Ti powder partially into a TiN0.2 compound. Such partial nitriding was performed by the azidetechnology with lack of sodium azide (NaN3) as a nitriding reagent. After intensive grinding in the planetary ball mill, the TiN0.2 powder turned into a superfine powder with an ultrafine structure. This powder was capable of nitriding and carburizing in the azide technology with formation of superfine pure powder agglomerates which are composed of ultrafine and nano-particles of TiC0.5N0.5.
Fullerenic structures and such structures tethered to carbon materials
Goel, Anish; Howard, Jack B.; Vander Sande, John B.
2010-01-05
The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.
Fullerenic structures and such structures tethered to carbon materials
Goel, Anish; Howard, Jack B.; Vander Sande, John B.
2012-10-09
The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.
Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.
2003-01-01
Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.
Accurate masking technology for high-resolution powder blasting
NASA Astrophysics Data System (ADS)
Pawlowski, Anne-Gabrielle; Sayah, Abdeljalil; Gijs, Martin A. M.
2005-07-01
We have combined eroding 10 µm diameter Al2O3 particles with a new masking technology to realize the smallest and most accurate possible structures by powder blasting. Our masking technology is based on the sequential combination of two polymers:(i) the brittle epoxy resin SU8 for its photosensitivity and (ii) the elastic and thermocurable poly-dimethylsiloxane for its large erosion resistance. We have micropatterned various types of structures with a minimum width of 20 µm for test structures with an aspect ratio of 1, and 50 µm for test structures with an aspect ratio of 2.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...
Crystal structure of methylprednisolone acetate form II, C 24H 32O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheatley, Austin M.; Kaduk, James A.; Gindhart, Amy M.
The crystal structure of methylprednisolone acetate form II, C 24H 32O 6, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Methylprednisolone acetate crystallizes in space groupP2 12 12 1(#19) witha= 8.17608(2),b= 9.67944(3),c= 26.35176(6) Å,V= 2085.474(6) Å 3, andZ= 4. Both hydroxyl groups act as hydrogen bond donors, resulting in a two-dimensional hydrogen bond network in theabplane. C–H…O hydrogen bonds also contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1412.
JPRS Report, Science & Technology, USSR: Materials Science
1988-10-25
POROSHKOVAYA METALLURGIYA No 4, Apr 88] 17 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys [A.B... Mechanics Institute, UkSSR Academy of Sci- ences] [Abstract] An experimental study of the ZhS3DK cast heat-resistant Ni alloy was made concerning the two...References 2: both Russian. 2415/12232 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys
Jia, Jiangang; Siddiq, Abdur R; Kennedy, Andrew R
2015-08-01
Porous Ti with open porosity in the range of 70-80% has been made using Ti powder and a particulate leaching technique using porous, spherical, NaCl beads. By incorporating the Ti powder into a pre-existing network of salt beads, by tapping followed by compaction, salt dissolution and "sintering", porous structures with uniform density, pore and strut sizes and a predictable level of connectivity have been produced, showing a significant improvement on the structures made by conventional powder mixing processes. Parts made using beads with sizes in the range of 0.5-1.0 mm show excellent promise as porous metals for medical devices, showing structures and porosities similar to those of commercial porous metals used in this sector, with inter-pore connections that are similar to trabecular bone. The elastic modulus (0.86 GPa) is lower than those for commercial porous metals and more closely matches that of trabecular bone and good compressive yield strength is retained (21 MPa). The ability to further tailor the structure, in terms of the density and the size of the pores and interconnections has also been demonstrated by immersion of the porous components in acid. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kersting, E.; von Seggern, H.
2017-08-01
A new production route for europium doped cesium bromide (CsBr:Eu2+) imaging plates has been developed, synthesizing CsBr:Eu2+ powder from a precipitation reaction of aqueous CsBr solution with ethanol. This new route allows the control of features like homogeneous grain size and grain shape of the obtained powder. After drying and subsequent compacting the powder, disk-like samples were fabricated, and their resulting photostimulated luminescence (PSL) properties like yield and spatial resolution were determined. It will be shown that hydration of such disks causes the CsBr:Eu2+ powder to recrystallize starting from the humidity exposed surfaces to the sample interior up to a completely polycrystalline sample resulting in a decreasing PSL yield and an increasing resolution. Subsequent annealing leads to grain refinement combined with a large PSL yield increment and a minor effect on the spatial resolution. By first annealing the "as made" disk, one observes a strong increment of the PSL yield and almost no effect on the spatial resolution. During subsequent hydration, the recrystallization is hindered by minor structural changes of the grains. The related PSL yield drops slightly with increasing hydration time, and the spatial resolution drops considerably. The obtained PSL properties with respect to structure will be discussed with a simple model.
Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.
Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin
2018-02-06
The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.
Porosity and mechanical properties of zirconium ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buyakova, S., E-mail: sbuyakova@ispms.tsc.ru; Kulkov, S.; Tomsk Polytechnic University
2015-11-17
Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. Theremore » were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.« less
Implications of elastic wave velocities for Apollo 17 rock powders
NASA Technical Reports Server (NTRS)
Talwani, P.; Nur, A.; Kovach, R. L.
1974-01-01
Ultrasonic P- and S-wave velocities of lunar rock powders 172701, 172161, 170051, and 175081 were measured at room temperature and to 2.5 kb confining pressure. The results compare well with those of terrestrial volcanic ash and powdered basalt. P-wave velocity values up to pressures corresponding to a lunar depth of 1.4 km preclude cold compaction alone as an explanation for the observed seismic velocity structure at the Apollo 17 site. Application of small amounts of heat with simultaneous application of pressure causes rock powders to achieve equivalence of seismic velocities for competent rocks.
One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders
NASA Astrophysics Data System (ADS)
Tao, Ying; Yi, Danqing; Zhu, Baojun
2013-04-01
Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.
Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.
Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T
2010-01-01
The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.
Method of Making Fine Lithium Iron Phosphate/Carbon-Based Powders with an Olivine Type Structure
NASA Technical Reports Server (NTRS)
Singhal, Amit (Inventor); Dhamne, Abhijeet (Inventor); Skandan, Ganesh (Inventor)
2008-01-01
Processes for producing fine LiFePO.sub.4/C and nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders, where 1.ltoreq.x.ltoreq.0.1 and M is a metal cation. Electrodes made of either nanostructured LiFe.sub.xM.sub.1-xPO.sub.4 powders or nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders exhibit excellent electrochemical properties. That will provide high power density, low cost and environmentally friendly rechargeable Li-ion batteries.
Antimony isotopic composition in river waters affected by ancient mining activity.
Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise
2015-11-01
In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Fabrication of metallic glass structures
Cline, Carl F.
1986-01-01
Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.
Fabrication of metallic glass structures
Cline, C.F.
1983-10-20
Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qinqin, E-mail: liu_qin_qin@126.com; Yang, Juan; Rong, Xiaoqing
2014-10-15
Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 1–3 μm were synthesized using a sol–gel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the sol–gel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200more » nm showed negative thermal expansion between 150 °C and 600 °C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: • Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using sol–gel technique. • ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. • Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. • ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. • This synthesis technique can be easily extended to many other functional fibers.« less
Synchronisation and stability in river metapopulation networks.
Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M
2014-03-01
Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.
2015-07-01
Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-Garcia, M.E., E-mail: eucontre@zeus.umich.mx
2009-12-15
Macro-mesoporous powders of titania, alumina, and mixed titania-20%alumina systems were obtained by hydrothermal synthesis employing surfactant Tween-20 as structural directing agent in order to promote the textural properties of titania. The effect of the alumina in the titania phase and on textural properties was analyzed. The obtained powders presented a macroporous channel structure that was characterized by X-ray diffractometry, scanning and transmission electron microscopy, N{sub 2} adsorption-desorption analysis, pore size distribution, Fourier transform infrared spectrometry, and thermogravimetric analysis. It was found that alumina content retarded the anatase phase crystallization and increased the Brunauer-Emmet-Teller surface area from 136 to 210 m{supmore » 2}/g. The powders calcined at 400 deg. C are thermally stable and possess an interconnected macro-mesoporous hierarchical structure; the results indicate that this synthesis can be employed to prepare mixed titania-alumina with good textural properties.« less
Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.
Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc
2018-09-15
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, C. V.; Rao, L. V. Krishna; Satish, D. V.; Shim, J.; Ravikumar, R. V. S. S. N.
2015-11-01
The mild and simple solution method was used for the synthesis of Co2+- and Ni2+-doped CdO powders at room temperature. The prepared powders were characterized using powder X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), optical absorption, and Fourier transform infrared spectroscopy (FTIR). From the powder X-ray diffraction patterns, it has been observed that the prepared Co2+ and Ni2+ ion-doped CdO powders belong to the cubic phase, and the evaluated average crystalline sizes of the powders are 20 and 14 nm, respectively. The SEM images and the EDS spectra show that the prepared powders are distributed over different sizes in the grain boundaries. Optical absorption studies allow determination of site symmetry of the metal ion with its ligands. The crystal field (Dq) and inter-electronic repulsion (B and C) parameters have been evaluated from the optical absorption spectra. The FTIR spectra show the characteristic fundamental vibrations of the metal oxide and CdO.
NASA Astrophysics Data System (ADS)
Zandi, Pegah; Hosseini, Elham; Rashchi, Fereshteh
2018-01-01
Titanium dioxide Nano powder has been synthesized from titanium isopropoxide (TTIP) in chloride media by sol-gel method. In this research, the effect of the drying environment, from air to oven drying at 100 °C, calcination time and temperature on nano TiO2 grain size was investigated. The synthesized powder was analyzed by x-ray diffraction and scanning electron microscope. Based on the results, the powder has been crystallized in anatase and rutile phases, due to different calcination temperatures. At temperatures above 600 °C, the Titanium dioxide nano powder has been crystallized as rutile. The crystalline structure of titanium dioxide nano powder changed because of the different calcination temperatures and time applied. The average particle size of the powder dried in air was larger than the powder dried in oven. The minimum particle size of the powder dried in air was 50 nm and in the oven was 9 nm, observed and calculated Williamson-Hall equation. All in all, with overall increasing of calcination time and temperature the grain size increased. Moreover, in the case of temperature, after a certain temperature, the grain size became constant and didn't change significantly.
Prediction of the Effective Thermal Conductivity of Powder Insulation
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon
The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.
Thermal conductivity model for powdered materials under vacuum based on experimental studies
NASA Astrophysics Data System (ADS)
Sakatani, N.; Ogawa, K.; Iijima, Y.; Arakawa, M.; Honda, R.; Tanaka, S.
2017-01-01
The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.
High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdre, G.; Botton, G.A.; Brown, L.M.
The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edgemore » structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.« less
Velasquez, Lissette S.; Shira, Samantha; Berta, Alice N.; Kilbourne, Jacquelyn; Medi, Babu M.; Tizard, Ian; Ni, Yawei; Arntzen, Charles J.; Herbst-Kralovetz, Melissa M.
2011-01-01
The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in-situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen. Powder formulations, with or without NV VLP antigen, were similar in structure in dry form or when rehydrated in simulated nasal fluids. Immunogenicity of the dry powder VLP formulation was compared to equivalent antigen/adjuvant liquid formulations in animals. For the GelVac powder, we observed superior NV-specific serum and mucosal (aerodigestive and reproductive tracts) antibody responses relative to liquid formulations. Incorporation of TLR7 agonist gardiquimod in dry powder formulations did not enhance antibody responses, although its inclusion in liquid formulations did enhance VLP immunogenicity irrespective of the presence or absence of GelSite. We interpret these data as showing that GelSite-based dry powder formulations 1.) stabilize the immunogenic structural properties of VLPs and 2.) induce systemic and mucosal antibody titers which are equal or greater than those achieved by VLPs plus adjuvant in a liquid formulation. We conclude that in-situ gelation of the GelVac dry powder formulation at nasal mucosal surfaces delays mucociliary clearance and thereby prolongs VLP antigen exposure to immune effector sites. PMID:21640778
Bamiduro, Faith; Ji, Guozhao; Brown, Andy P.; Dupont, Valerie A.
2017-01-01
Abstract Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. PMID:28371521
Castilho, Miguel; Rodrigues, Jorge; Pires, Inês; Gouveia, Barbara; Pereira, Manuel; Moseke, Claus; Groll, Jürgen; Ewald, Andrea; Vorndran, Elke
2015-01-06
The development of polymer-calcium phosphate composite scaffolds with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the functional performance of brittle ceramic scaffolds by developing a promising biopolymer-ceramic network. For this purpose, two strategies, namely, direct printing of a powder composition consisting of a 60:40 mixture of α/β-tricalcium phosphate (TCP) powder and alginate powder or vacuum infiltration of printed TCP scaffolds with an alginate solution, were tracked. Results of structural characterization revealed that the scaffolds printed with 2.5 wt% alginate-modified TCP powders presented a uniformly distributed and interfusing alginate TCP network. Mechanical results indicated a significant increase in strength, energy to failure and reliability of powder-modified scaffolds with an alginate content in the educts of 2.5 wt% when compared to pure TCP, as well as to TCP scaffolds containing 5 wt% or 7.5 wt% in the educts, in both dry and wet states. Culture of human osteoblast cells on these scaffolds also demonstrated a great improvement of cell proliferation and cell viability. While in the case of powder-mixed alginate TCP scaffolds, isolated alginate gels were formed between the calcium phosphate crystals, the vacuum-infiltration strategy resulted in the covering of the surface and internal pores of the TCP scaffold with a thin alginate film. Furthermore, the prediction of the scaffolds' critical fracture conditions under more complex stress states by the applied Mohr fracture criterion confirmed the potential of the powder-modified scaffolds with 2.5 wt% alginate in the educts as structural biomaterial for bone tissue engineering.
Aluminum powder metallurgy processing
NASA Astrophysics Data System (ADS)
Flumerfelt, Joel Fredrick
In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.
Use of dye tracing in water-resources investigations in Wyoming, 1967-94
Wilson, J.F.; Rankl, J.G.
1996-01-01
During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataev, I.A.; Mul, D.O.; Bataev, A.A.
2016-02-15
The non-vacuum electron beam cladding technique was used to fabricate layers alloyed with Ti, Mo and C on the surface of low-alloyed steel. Two types of experiments were carried out. In the first experiment, a mixture of Ti and graphite powders was used for cladding; in the second, a mixture of Ti, Mo and graphite powders was used for cladding. CaF{sub 2} powder or a mixture of CaF{sub 2} and LiF powders was used as flux. The thickness of the cladded layers was in the range of 2–2.2 mm. The structure of the layers was studied using optical microscopy, scanningmore » electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness after cladding of the layers fabricated by cladding of Ti and graphite powders was 8–9 GPa, while the microhardness of layers with Mo additions reached 11–12 GPa. The highest wear resistance at sliding friction and friction in abrasive environment was reached in the samples fabricated using Ti, Mo and graphite mixture due to the higher hardness and the martensite–austenite structure of the matrix. The wear resistance against fixed abrasive particles was 2.4 times higher compared to that of carburized and quenched steel. - Highlights: • Ti, C and Mo mixture of powders was cladded using non-vacuum electron beam treatment. • The depth of the cladded layers was 2.0 … 2.2 mm. • The microhardness of layer with Mo, Ti and C additions reached ~ 11 … 12 GPa. • The hardening of the layers caused by the formation of TiC particles and martensitic matrix • Wear resistance of cladded coatings was 2.4 higher than carburized steel.« less
The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures
NASA Astrophysics Data System (ADS)
Talyzin, Alexandr V.; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás
2013-12-01
The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of ``negative thermal expansion'' and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04631a
The High Resolution Powder Diffraction Beam Line at ESRF.
Fitch, A N
2004-01-01
The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.
NASA Astrophysics Data System (ADS)
Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.
2015-10-01
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.
NASA Technical Reports Server (NTRS)
1998-01-01
As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.
Red Cloud’s War: An Insurgency Case Study for Modern Times
2011-03-16
region. All these tribes were master horseman , and over time became skilled and fearsome mounted warriors. It is important to note how much different...much of the land as ”sacred ground” to be defended to the death . The Powder River Country from the Big Horn Mountains to the Black Hills loomed large...too inviting for the hostiles, and running this daily gauntlet of death resulted in many casualties. On the other hand, one terrain advantage for
Railroads and shippers clash over coal dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, L.
2007-11-15
In an effort to reduce coal spillage from railcars, mines in the Powder River Basin (PRB) now load coal with a loaf profile but, reportedly, beginning in 2008, Burlington Northern Santa Fe (BNSF) will announce guidelines requiring all PRB coal loads to be sprayed with a chemical surfactant. If this does not fix the problem, greater measures will be taken. At the time of going to press, the details of how this would be implemented and regulated were unresolved. 1 photo.
Kitty Field, Campbell County, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.R.
1970-01-01
Kitty production and success, when viewed on a per well basis, is quite erratic. The geology, simplified in this study, is quite erratic and complex, awaiting further study to place it in the correct perspective. It should be remembered that ''Kitty'' a pre-Bell Creek field discovery, remained dormant for approx. 2 yr because of adverse economic factors. An aggressive and optimistic approach for geologists will be needed for further exploration and exploitation of the Muddy potential in the Powder River Basin of Wyoming. (10 refs.)
Red Cloud’s War: A Failure to Effectively Coordinate the Instruments of National Power
2016-06-10
conflict within the US Government. In any historical account , it is difficult to set distinct dates as boundaries. Cause and effect can be separated by...issues the army still faced with regards to its Civil War volunteers. Finally, the financial cost of the campaign was significant. A report in January...1868 estimated that the 1865 Powder River campaign cost the government over $30 million.19 The campaign exposed some of the opinions and attitudes
Zherebtsov, Dmitry; Radionova, Ludmila
2018-01-01
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples. PMID:29735932
Baitimerov, Rustam; Lykov, Pavel; Zherebtsov, Dmitry; Radionova, Ludmila; Shultc, Alexey; Prashanth, Konda Gokuldoss
2018-05-07
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples.
NASA Astrophysics Data System (ADS)
Lin, Jyung-Dong; Wu, Zhao-Lun
In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.
New life of recycled rare earth-oxides powders for lighting applications.
NASA Astrophysics Data System (ADS)
Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa
2018-03-01
In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.
NASA Astrophysics Data System (ADS)
He, P.; Hoffmann, J.; Möslang, A.
2018-04-01
The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.
Miller, C.H.
1979-01-01
Exploitation of vast coal and other resources in the Powder River Basin has caused recent, rapid increases in population and in commercial and residential development and has prompted land utilization studies. Two aspects of land utilization were studied for this report: (1) the seismic and geotechnical properties of a landslide and (2) the seismic, magnetic, and geotechnical properties of clinker deposits. (1) The landslide seismic survey revealed two layers in the slide area. The upper (low-velocity) layer is a relatively weak mantle of colluvium and unconsolidated and weathered bedrock that ranges in thickness from 3.0 to 7.5 m and has an average seismic velocity of about 390 m/s. It overlies high-velocity, relatively strong sedimentary bedrock that has velocities greater than about 1330 m/s. The low-velocity layer is also present at the other eight seismic refraction sites in the basin; a similar layer has also been reported in the Soviet Union in a landslide area over similar bedrock. The buried contact of the low- and high-velocity layers is relatively smooth and is nearly parallel with the restored topographic surface. There is no indication that any of the high-velocity layer (bedrock) has been displaced or removed. The seismic data also show that the shear modulus of the low-velocity layer is only about one-tenth that of the high-velocity layer and the shear strength (at failure) is only about one-thirtieth. Much of the slide failure is clearly in the shear mode, and failure is, therefore, concluded to be confined to the low-velocity layer. The major immediate factor contributing to landslide failure is apparently the addition of moisture to the low-velocity layer. The study implies that the low-velocity layer can be defined over some of the basin by seismic surveys and that they can help predict or delineate potential slides. Preventative actions that could then be taken include avoidance, dewatering, prevention of saturation, buttressing the toe, and unloading the head. The low-velocity layer is usually less than about 5 m thick and may be excavated by dozing, whereas the bedrock must be blasted. Thus, it would seem economically feasible to underpin a structure to nonweathered bedrock or, perhaps, to remove the low-velocity layer prior to construction. (2) Many coal beds in the Powder River Basin have burned along their outcrops, and the resulting intense heat has baked and fused the overlying clastic (sedimentary) rocks into clinkers. The clinkers are very magnetic and a buried edge of a single layer of burn can easily be located by magnetic prospecting methods. Location of the edge is very important in estimating unburned coal deposits, locating clinker quarries, and planning drilling of seismic reflection lines. The clinkers are very porous and highly fractured,-and seismic and geotechnical tests show that they have relatively low strength and competency. Many of the laboratory tests, however, are inherently biased because the clinkers are so highly fractured that only competent samples are selected. The laboratory tests, for example, show that clinkers must be loosened by heavy ripping tractors or blasting, whereas the field data and practical experience indicate that clinkers may be mined with light equipment. Heavy structures such as coal silos and bridge abutments may have to be sited on clinkers. However, differential settlement may occur, with failure in the shear mode, because chimneys of relatively greater strength occur among the weaker clinkers. Preliminary data indicate that the chimneys may be located by magnetic or possibly seismic surveys. Special foundation-preparation techniques could be used or, perhaps, the chimneys could be avoided altogether at a construction site.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
NASA Astrophysics Data System (ADS)
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-08-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-01-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059
Nouri, A; Hodgson, P D; Wen, C E
2010-04-01
The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Garcia, Rafael; Hirata, Gustavo A.; Thomas, Alan C.; Ponce, Fernando A.
2006-10-01
Thermal decomposition in a horizontal quartz tube reactor of a polymer [-(CH 6N 4O) 3Ga(NO 3) 3-] in a nitrogen atmosphere, yield directly nano-structured gallium nitride (GaN) powder. The polymer was obtained by the reaction between high purity gallium nitrate (Ga(NO 3) 3) dissolved in toluene and carbohydrazide as an azotic ligand. The powder synthesized by this method showed a yellow color and elemental analysis suggested that the color is due to some carbon and oxygen impurities in the as-synthesized powder. Electron microscopy showed that the as-synthesized powders consist of a mixture of various porous particles containing nanowires and nano-sized platelets. The size of the crystallites can be controlled by annealing processes under ammonia. Photoluminescence analysis at 10 K on as-synthesized powders showed a broad red luminescence around 668 nm under UV laser excitation (He-Cd laser, 325 nm). However after annealing process the red luminescence disappears and the typical band edge emission of GaN around 357 nm (3.47 eV) and the UV band were the dominant emissions in the PL spectra.
Barrett, Dominic A.; Leslie, David M.
2012-01-01
Examination of age structures and sex ratios is useful in the management of northern river otters (Lontra canadensis) and other furbearers. Reintroductions and subsequent recolonizations of river otters have been well documented, but changes in demographics between expanding and established populations have not been observed. As a result of reintroduction efforts, immigration from Arkansas and northeastern Texas, and other efforts, river otters have become partially reestablished throughout eastern and central Oklahoma. Our objective was to examine age structures of river otters in Oklahoma and identify trends that relate to space (watersheds, county) and time (USDA Animal and Plant Health Inspection Service county trapping records). We predicted that river otters in western areas of the state were younger than river otters occurring farther east. From 2005–2007, we obtained salvaged river otter carcasses from federal and state agencies, and we live-captured other river otters using leg hold traps. Seventy-two river otters were sampled. Overall, sex ratios were skewed toward females (1F∶0.8M), but they did not differ among spatiotemporal scales examined. Teeth were removed from salvaged and live-captured river otters (n = 63) for aging. One-year old river otters represented the largest age class (30.2%). Proportion of juveniles (<1 y old) in Oklahoma (19.0%) was less than other states. Mean age of river otters decreased from east-to-west in the Arkansas River and its tributaries. Mean age of river otters differed between the Canadian River Watershed (0.8 y) and the Arkansas River Watershed (2.9 y) and the Canadian River Watershed and the Red River Watershed (2.4 y). Proportion of juveniles did not differ among spatiotemporal scales examined. Similar to age structure variations in other mammalian carnivores, colonizing or growing western populations of river otters in Oklahoma contained younger ages than more established eastern populations.
Crystal structure of choline fenofibrate (Trilipix®), (C5H14NO) (C17H14ClO4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.
2016-04-04
The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space groupPbca(#61) witha= 12.341 03(2),b= 28.568 70(6),c= 12.025 62(2) Å,V= 4239.84(1) Å 3, andZ= 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to theac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.
Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
Screenable contact structure and method for semiconductor devices
Ross, Bernd
1980-08-26
An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.
Computational Study of Colloidal Droplet Interactions with Three Dimensional Structures
2015-05-18
on the meshless SPH method for droplet impact on and sorption into a powder bed considering free surface flow above the powder bed surface ...considering free surface flow above the powder bed surface , infiltration of the liquid in the porous matrix, and the interfacial forces on the free moving...infiltration of the liquid in the porous matrix, and the interfacial forces on the free moving surface . The model has been used to study the effect of impact
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.
Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S
2012-07-01
Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.
The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.
Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander
2016-12-01
The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.
Effect of milling and leaching on the structure of sintered silicon
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Glasgow, T. K.; Herbell, T. P.
1980-01-01
The effects of attrition milling and acid leaching on the sintering behavior and the resultant structures of two commercial silicon powders were investigated. Sintering was performed in He for 16 hours at 1200, 1250, and 1300 C. Compacts of as-received Si did not densify during sintering. Milling reduced the average particle size to below 0.5 microns and enhanced densification (1.75 g/cc). Leaching milled Si further enhanced densification (1.90 g/cc max.) and decreased structural coarsening. After sintering, the structure of the milled and leached powder compacts appears favorable for the production of reaction bonded silicon nitride.
Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells.
Lee, Jaehyeong; Lee, Soo-Ho; Hahn, Jae-Sub; Sun, Ho-Jung; Park, Gyungse; Shim, Joongpyo
2014-12-01
Chalcopyrite CuInSe2 (CIS) nanoparticles were synthesized in oleic acid, 1-octadecene, oleyl amine and tetraethylene glycol at temperature above 200 degrees C. Depending on the solvent used and reaction temperature, the obtained nanoparticles had different shapes, sizes, chemical compositions, and crystal and thermal properties. CIS powders synthesized in oleic acid, 1-octadecene and oleyl amine above 200 degrees C exhibited chalcopyrite structure. On the other hand, powders prepared in tetraethylene glycol contained a mixture of CIS and CuSe compounds. The CIS powder obtained in oleyl amine had a high thermal stability over 500 degrees C. CIS thin films prepared from nanoparticles were heat-treated in order to observe changes in their property. After 10 min heat-treatment at 500 degrees C, their crystal structure and chemical composition were slightly changed, and their band gap energies were ca. 1.01 eV except in the case of powders prepared in tetraethylene glycol.
Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini
2016-06-01
Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).
NASA Astrophysics Data System (ADS)
Halder, Nilanjan; Misra, Kamakhya Prakash
2016-05-01
Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.
SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis
Cepeda-Pérez, Elisa; López-Luke, Tzarara; Salas, Pedro; Plascencia-Villa, Germán; Ponce, Arturo; Vivero-Escoto, Juan; José-Yacamán, Miguel; de la Rosa, Elder
2016-01-01
In the present work, we report a dry-based application technique of Au/SiO2 clouds in powder for rapid ex vivo adenocarcinoma diagnosis through surface-enhanced Raman scattering (SERS); using low laser power and an integration time of one second. Several characteristic Raman peaks frequently used for the diagnosis of breast adenocarcinoma in the range of the amide III are successfully enhanced by breading the tissue with Au/SiO2 powder. The SERS activity of these Au/SiO2 powders is attributed to their rapid rehydration upon contact with the wet tissues, which promotes the formation of gold nanoparticle aggregates. The propensity of the Au/SiO2 cloud structures to adsorb biomolecules in the vicinity of the gold nanoparticle clusters promotes the necessary conditions for SERS detection. In addition, electron microscopy, together with elemental analysis, have been used to confirm the structure of the new Au/SiO2 cloud material and to investigate its distribution in breast tissues. PMID:27375955
Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong
2012-11-15
Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less
Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall
2011-12-01
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less
Lin, Chih-Ming; Liu, Hsin-Tzu; Zhong, Shi-Yao; Hsu, Chia-Hung; Chiu, Yi-Te; Tai, Ming-Fong; Juang, Jenh-Yih; Chuang, Yu-Chun; Liao, Yen-Fa
2016-01-01
Nanosized aluminum-doped zinc oxide Zn1−xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near 250 °C, which were then heated to 500 °C for subsequent thermal processes to obtain preliminary powders. The obtained preliminary powders were then calcined at 500 °C for three hours. The structure and morphology of the products were measured and characterized by angle-dispersive X-ray diffraction (ADXRD) and scanning electron microscopy (SEM). ADXRD results showed that AZO-NPs with Al content less than 11% exhibited würtzite zinc oxide structure and there was no other impurity phase in the AZO-NPs, suggesting substitutional doping of Al on Zn sites. The Zn0.97Al0.03O powders (A3ZO-NPs) with grain size of about 21.4 nm were used for high-pressure measurements. The in situ ADXRD measurements revealed that, for loading run, the pressure-induced würtzite (B4)-to-rocksalt (B1) structural phase transition began at 9.0(1) GPa. Compared to the predicted phase-transition pressure of ~12.7 GPa for pristine ZnO nanocrystals of similar grain size (~21.4 nm), the transition pressure for the present A3ZO-NPs exhibited a reduction of ~3.7 GPa. The significant reduction in phase-transition pressure is attributed to the effects of highly selective site occupation, namely Zn2+ and Al3+, were mainly found in tetrahedral and octahedral sites, respectively. PMID:28773683
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
NASA Astrophysics Data System (ADS)
Dakhel, A. A.; Bououdina, M.
2015-06-01
Cadmium oxide codoped with Cu and Ni ions powders was synthesised by thermal co-decomposition of a mixture of cadmium, copper, and nickel acetylacetonates. The mass ratio of Cu/Cd was fixed, while the Ni/Cd mass ratio was varied systematically. The purpose of the present study is to prepare powders having room-temperature ferromagnetic (RT-FM) properties. X-ray fluorescence (XRF) and X-ray diffraction (XRD) confirm the purity and the formation of single nanocrystalline structure of the as-prepared powders. The energy bandgap of the as-prepared powders was found to vary slightly and then increases by 3.96-38.02 % after post-H2-treatment. Magnetic measurements reveal that all as-prepared doped CdO powders gained partial (RT-FM) properties. Furthermore, the created RT-FM is dependent on the Ni% doping level. After annealing under H2 gas, a strong enhancement of RT-FM was observed, especially for 1.2 % Ni-doping-level powder where the whole powder became ferromagnetic with coercivity, remanence, and saturation magnetisation of 249.2 Oe, 4.52 memu/g, and 14.57 memu/g, respectively, representing an increase by ~241.3, 1062, and 1700 %, respectively, in comparison with the as-prepared sample. Thus, it was proved, for the first time, the possibility of producing of codoped CdO with RT-FM, where the magnetic characteristics can be tailored by doping and post-treatment under H2 atmosphere, thus a new potential candidate for dilute magnetic semiconductor (DMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili
2013-10-15
Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less
Fish assemblage structure and habitat associations in a large western river system
Smith, C.D.; Quist, Michael C.; Hardy, R. S.
2016-01-01
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.
Development of Ceramic Systems for High temperature Coatings
NASA Technical Reports Server (NTRS)
Eslamloo-Grami, Maryame
2003-01-01
Professor Eslamloo-Grami will synthesize ceramic powders of various compositions based on pyrochlore, perovskite, and magnetoplumbite structures by doping with various oxides. Sol-gel and combustion synthesis routes will be used for powder syntheses. The powders will be characterized for particle size, surface area, microstructure, sintering etc. Thermal conductivity of the hot pressed specimens will also be measured at various temperatures. At the end, a project report will be prepared describing in details the experimental methods, results, discussion, and future research.
Appetite-Enhancing Effects of Curry Oil.
Ogawa, Kakuyou; Ito, Michiho
2016-01-01
Inhalation of scent compounds with phenylpropanoidal structures, such as trans-cinnamaldehyde, is expected to increase the appetite. The scent of curry powder is well known for its appetite-enhancing effect on humans. In this work, we show that the appetite of mice after inhalation of curry powder essential oil or benzylacetone showed a similar increase. The components of curry oil, trans-cinnamaldehyde, trans-anethole, and eugenol, each showed appetite-enhancing effects; therefore, these three scent compounds may be the active compounds in curry powder oil.
Zilka, Miri; Dudenko, Dmytro V.; Hughes, Colan E.; Williams, P. Andrew; Sturniolo, Simone; Franks, W. Trent; Pickard, Chris J.
2017-01-01
This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated. PMID:28944393
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.
2018-03-01
The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post,J.; Bish, D.; Heaney, P.
2007-01-01
Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, L.; Miller, S.N.; Schmidtmann, E.T.
Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM + data were initially classified intomore » spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximate to 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.« less
Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming
Pierce, B.S.
1996-01-01
Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.
Zhan, Xiao; Gao, Bao-yu; Liu, Bin; Xu, Chun-hua; Yue, Qin-yan
2010-05-01
Two types of inorganic polymer coagulants, polyferric chloride (PFC) and polyaluminum chloride (PAC), were chosen to treat the Yellow River water. Different dosages were investigated in order to investigate the turbidity, UV24, DOC and permanganate index removal efficiency and their coagulation mechanisms based on the Zeta potentials. The natural organic matter removal by the combination of coagulation and adsorption with powder activated carbon were analyzed based on different coagulant and adsorbent dosages and dosing orders. The effects of combination of coagulation and adsorption on the residual chlorine decay were analyzed. The results showed that the two coagulants had high turbidity removal efficiency ( > 90%). The UV254, DOC, permanganate index removal efficiency were 29.2%, 26.1% and 27.9% respectively for PAC coagulation and were 32.3%, 23.3% and 32.9% respectively for PFC. Electric neutralization played an important role in the PAC coagulation process while both adsorption bridging and electric neutralization performed when PFC was used. The removal percentage of organic matter increased with the increase coagulant and adsorbent. The adsorption after coagulation process gave the better UV254 and DOC removal efficiency than the coagulation after adsorption. The UV254 and DOC removal efficiency were 95.2% and 99.9% for PAC coagulation after adsorption and were 90.1% and 99.9% for PFC coagulation first. But adding powder activated carbon can improve floc settlement performance and maintained persistent disinfection effect.
Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.
2005-01-01
Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.
Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, T.; Steffensen, K.D.; Travnichek, Vincent H.
2012-01-01
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un-notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivashchenko, R.K.; Fedorenko, V.K.; Kadryov, V.K.
In this work an attempt was made, by lowering the temperature in the detonation zone, decreasing the particle flight velocity, and employing starting powders in which the WC particle size 20-40 mum predominated, to obtain detonation-deposited VK20 alloy coatings approaching closely in structure and phase composition hard-metal composites produced by the powder metallurgy method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yago, G.I.; Vasil`ev, V.M.; Panasyuk, O.A.
The structure of the initial iron powders, the type of alloying impurities, and the conditions of compaction and heat treatment of materials have been studied from the standpoint of their effect on the magnetic properties. Ways of enhancing the properties of magnetically-soft iron-based powder materials are recommended and methods of studying them are suggested.
Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan
2016-02-01
Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors
NASA Technical Reports Server (NTRS)
Moeti, I.; Karikari, E.; Chen, J.
1998-01-01
High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.
Crystal structure of paliperidone palmitate (INVEGA SUSTENNA®), C39H57FN4O4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James A.; Dmitrienko, Artem O.; Gindhart, Amy M.
2017-08-29
The crystal structure of paliperidone palmitate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Paliperidone palmitate crystallizes in space groupP2 1/c(#14) witha= 34.415 40(35),b= 10.093 49(7),c= 10.904 92(9) Å,β= 94.3917(9)°,V= 3776.94(6) Å 3, andZ= 4. The conformation of the paliperidone fragment differs from that of the parent compound. The palmitate chain exhibits a slight twist close to the ester group. Several C–H•••O hydrogen bonds contribute to the crystal packing, which is dominated by van der Waals interactions. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1614.
Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagherazzi, G.; Canton, P.; Benedetti, A.
Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}
One-dimensional coordination polymers of whole row rare earth tris-pivalates
NASA Astrophysics Data System (ADS)
Tsymbarenko, Dmitry; Martynova, Irina; Grebenyuk, Dimitry; Shegolev, Vsevolod; Kuzmina, Natalia
2018-02-01
Fourteen 1D coordination polymers of rare earth pivalates [Ln(Piv)3]∞ (Ln = Y, La, Pr, Nd, Sm-Lu) were synthesized and characterized by powder X-ray diffraction, IR spectroscopy, TGA, and conventional elemental analysis. Crystal structures of [La(Piv)3]∞, [Yb(Piv)3]∞, [Lu(Piv)3]∞ were determined by means of single crystal X-ray analysis at 120 K, those of [Y(Piv)3]∞ and [Ho(Piv)3]∞ - from powder XRD data at 293 K. Transformation of [Ln(Piv)3]∞ structure and Piv- anions coordination mode along the whole row has been derived from powder XRD and IR spectroscopy results, and shown to crucially affect the relative location of 1D chains in the crystal structure, as well as the Ln···Ln distance within the single chain. Negative thermal expansion along 1D [Ln(Piv)3]∞ chain was revealed for Ln = Tm, Yb, Lu. Enforcement of 1D polymeric structure with the decrease of Ln ionic radius has been established from solid-state DFT calculations.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.
2018-01-01
The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.
Chemical Reduction of Nd 1.85 Ce 0.15 CuO 4− δ Powders in Supercritical Sodium Ammonia Solutions
Dias, Yasmin; Wang, Hui; Zhou, Haiqing; ...
2015-01-01
Nd 1.85 Ce 0.15 CuO 4− δ powders are chemically reduced in supercritical sodium ammonia solutions from room temperature to 350°C. The crystallographic structure of the reduced powders is investigated from Rietveld refinement of X-ray powder diffraction. The atomic positions are maintained constant within experimental errors while temperature factors of all atoms increase significantly after the chemical treatments, especially of Nd/Ce atoms. The ammonothermally reduced Nd 1.85 Ce 0.15 CuO 4− δ powders show diamagnetic below 24 K which is contributed to the lower oxygen content and higher temperature factors of atoms in the treated compound. Themore » ammonothermal method paves a new way to reduce oxides in supercritical solutions near room temperature.« less
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
Klammert, Uwe; Vorndran, Elke; Reuther, Tobias; Müller, Frank A; Zorn, Katharina; Gbureck, Uwe
2010-11-01
Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg(3)(PO(4))(2)) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20-40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2-7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.
Monte Carlo simulation of light reflection from cosmetic powders on the skin
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Motoda, Masafumi; Igarashi, Takanori; Nakao, Keisuke
2011-07-01
The reflection and scattering properties of light incident on skin covered with powder particles have been investigated. A three-layer skin structure with a spot is modeled, and the propagation of light in the skin and the scattering of light by particles on the skin surface are simulated by means of a Monte Carlo method. Under the condition in which only single scattering of light occurs in the powder layer, the reflection spectra of light from the skin change dramatically with the size of powder particles. The color difference between normal skin and spots is found to diminish more when powder particles smaller than the wavelength of light are used. It is shown that particle polydispersity suppresses substantially the extreme spectral change caused by monodisperse particles with a size comparable to the light wavelength.
Ultrasonic hot powder compaction of Ti-6Al-4V.
Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes
2017-07-01
Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.
Deformation analysis and prediction of bank protection structure with river level fluctuations
NASA Astrophysics Data System (ADS)
Hu, Rui; Xing, Yixuan
2017-04-01
Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.
Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor
Flores, R.M.; Rice, C.A.; Stricker, G.D.; Warden, A.; Ellis, M.S.
2008-01-01
Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C1/(C2 + C3) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane ??13C and ??D, carbon dioxide ??13C, and water ??D values indicate gas was generated primarily from microbial CO2 reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO2 reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane ??13C is distributed along the basin margins where ??D is also depleted, indicating that both CO2-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and decrease of methane composition of the coal-bed gas. Other geologic factors, such as burial, thermal and maturation history, lateral and vertical continuity, and coalification of the coal beds, also played a significant role in controlling methanogenic pathways and provided new perspectives on gas evolution and emplacement. The early-stage gas produced by CO2 reduction has mixed with transitional thermogenic gas in the deeper, central parts of the Powder River Basin to form 'old' gas, whereas along the basin margins the overprint of gas from methyl-type fermentation represents 'new' gas. Thus, a clear understanding of these geologic factors is necessary to relate the microbiological, biogeochemical, and hydrological processes involved in the generation of coal-bed gas.
Improvement in synthesis of (K 0.5Na 0.5)NbO 3 powders by Ge 4+ acceptor doping
Zhao, Yajing; Chen, Yan; Chen, Kepi
2016-11-17
In this study, the effects of doping with GeO 2 on the synthesis temperature, phase structure and morphology of (K 0.5Na 0.5)NbO 3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO 2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.
Imaging powders with the atomic force microscope: from biominerals to commercial materials.
Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D
1991-09-13
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.
Farag, Aïda M.; Harper, David D.
2012-01-01
The production water from coalbed natural gas (CBNG) extraction contains many constituents. The U.S. Environmental Protection Agency has established aquatic life criteria for some of these constituents, and it is therefore possible to evaluate their risk to aquatic life. However, of the major ions associated with produced waters, chloride is the only one with an established aquatic life criterion (U.S. Environmental Protection Agency, 1988). The focus of this research was NaHCO3, a compound that is a major constituent of coalbed natural gas produced waters in the Tongue and Powder River Basins. This project included laboratory experiments, field in situ experiments, a field mixing zone study, and a fishery presence/absence assessment. Though this investigation focuses on the Tongue and Powder River Basins, the information is applicable to other watersheds where sodium bicarbonate is a principle component of product water either from CBNG or from traditional or unconventional oil and gas development. These data can also be used to separate effects of saline discharges from those potentially posed by other constituents. Finally, this research effort and the additional collaboration with USGS Water Resources and Mapping, Bureau of Land Management, US Environmental Protection Agency, State of Montana, State of Wyoming, Montana State University, University of Wyoming, and others as part of a Powder River Aquatic Task Group, can be used as a model for successful approaches to studying landscapes with energy development. The laboratory acute toxicity experiments were completed with a suite of organisms, including 7 species of fish, 5 species of invertebrates, and 1 amphibian species. Experiments performed on these multiple species resulted in LC50s that ranged from 1,120 to greater than (>) 8,000 milligrams sodium bicarbonate per liter (mg NaHCO3/L) (also defined as 769 to >8,000 milligrams bicarbonate per liter (mg HCO3-/L) or total alkalinity expressed as 608 to >4,181 milligrams calcium carbonate per liter (mg CaCO3/L)) that varied across species and lifestage within a species. The age at which fish were exposed to NaHCO3 significantly affected the severity of toxic responses for some organisms. The chronic toxicity of NaHCO3 was defined in experiments that lasted from 7—60 days post-hatch. For these experiments, sublethal effects such as growth and reproduction, in addition to significant reductions in survival were included in the final determination of effects. Chronic toxicity was observed at concentrations that ranged from 450 to 800mg NaHCO3/L (also defined as 430 to 657 mg HCO3-/L or total alkalinity expressed as 354 to 539 mg CaCO3/L) and the specific concentration depended on the sensitivity of the four species of invertebrates and fish exposed. Sublethal investigations during chronic studies revealed percent decrease in the activity of sodium-potassium adenosine triphosphatase (Na/K ATPase, an enzyme involved in ionoregulation) and the age of the fish at the onset of the decrease may affect the ability of fathead minnow to survive exposures to NaHCO3. A database of toxicity evaluations of NaHCO3 on aquatic life has been constructed. Using these data, sample acute and chronic criteria of 459 and 381 mg NaHCO3/L, respectively, can be calculated for the protection of aquatic life. The final derivation and implementation of such criteria is, of course, left to the discretion of the concerned management agencies. A combination of in situ experiments, static-renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory, demonstrated that untreated coalbed natural gas (CBNG) product water from the Tongue and Powder River Basins reduces survival of fathead minnow and pallid sturgeon. More precisely, the survival of early-lifestage fathead minnow, especially those less than 6-days post hatch (dph), likely is reduced significantly in the field when concentrations of NaHCO3 rise above 1,500 mg/L. However, age was not a factor for pallid sturgeon and they were sensitive to product water regardless of age. Treatment with the Higgins Loop™ technology and dilution of untreated water increased survival in the laboratory. Both of these situations reduced ammonia in addition to the concentrations of NaHCO3. These experiments addressed the acute toxicity of effluent waters being added to the main stem rivers, but did not address issues related to the volumes of water that may be added to the watershed. Mixing zones of the three outfalls studied ranged from approximately 800—1,200 m below the confluence and the areas within these mixing zones with acutely lethal concentrations of NaHCO3 (as defined by the presence of concentrated dye) are limited. The areas with concentrations of NaHCO3 more than the concentrations likely to cause significant mortality, and more than the calculated sample water-quality criteria in the Tongue and Powder River Basins appear to be limited to tributaries and parts of mixing zones with considerable additions of untreated effluent.
COMPLETED STRUCTURE. View is eastsoutheast of downstream side of bridge, ...
COMPLETED STRUCTURE. View is east-southeast of downstream side of bridge, from beyond confluence of Trinity and South Fork Trinity Rivers - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA
Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys
NASA Astrophysics Data System (ADS)
Das, Sujit; Robi, P. S.
2018-04-01
Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimura, K.; Miyajima, Y.; Sonehara, M.
2016-05-15
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less
NASA Astrophysics Data System (ADS)
Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.
2016-05-01
This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.
NASA Astrophysics Data System (ADS)
Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang
2016-01-01
High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.
NASA Astrophysics Data System (ADS)
Carvalho, A. M. G.; Alves, C. S.; Trevizoli, P. V.; dos Santos, A. O.; Gama, S.; Coelho, A. A.
2018-03-01
The Gd5.09Ge2.03Si1.88 compound, as well as other magnetocaloric materials, certainly will not be used in their un-manufactured as-cast condition in future magnetic refrigeration applications or other devices. In this work, we have studied the Gd5.09Ge2.03Si1.88 compound processed in different ways, mainly, the as-cast powder, the annealed powder, and the pressed and sintered powder. The annealed powder (1370 K/20 h) does not present the monoclinic phase and the first-order magneto-structural transition observed in the as-cast powder. The pressed and sintered powder also do not present the first-order transition. Furthermore, the compacting pressure shifts the second-order magnetic transition to lower temperatures. The behavior of cell parameters as a function of the compacting pressure indicates that T C is directly affected by parameter c change.
Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar
2018-04-01
Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.
Consensus Conference Findings on Supragingival and Subgingival Air Polishing.
Cobb, Charles M; Daubert, Diane M; Davis, Karen; Deming, Jodi; Flemmig, Thomas F; Pattison, Anna; Roulet, Jean-François; Stambaugh, Roger V
2017-02-01
A consensus conference was convened to evaluate and address issues of safety and efficacy when using glycine powder in an air-powder jet device for supra- and subgingival applications during dental prophylaxis and periodontal maintenance. The conference reported the following conclusions: 1) Supra- and subgingival air polishing using glycine powder is safe and effective for removal of biofilms from natural tooth structure and restorative materials; 2) there is no evidence of soft-tissue abrasion when using glycine powder in an air-polishing device; 3) in periodontal probing depths of 1 mm to 4 mm, glycine-powder air polishing, using a standard air-polishing nozzle, is more effective at removing subgingival biofilm than manual or ultrasonic instruments; and 4) at probing depths of 5 mm to 9 mm, using a subgingival nozzle, glycine powder air polishing is more effective at removing subgingival biofilm than manual or ultrasonic instrumentation. This conference statement, supported by an industry grant, was drafted by a panel of distinguished dental professionals.
Optimisation of powders for pulmonary delivery using supercritical fluid technology.
Rehman, Mahboob; Shekunov, Boris Y; York, Peter; Lechuga-Ballesteros, David; Miller, Danforth P; Tan, Trixie; Colthorpe, Paul
2004-05-01
Supercritical fluid technology exploited in this work afforded single-step production of respirable particles of terbutaline sulphate (TBS). Different crystal forms of TBS were produced consistently, including two polymorphs, a stoichiometric monohydrate and amorphous material as well as particles with different degrees of crystallinity, size, and morphology. Different solid-state and surface characterisation techniques were applied in conjunction with measurements of powder flow properties using AeroFlow device and aerosol performance by Andersen Cascade Impactor tests. Improved fine particle fraction (FPF) was demonstrated for some powders produced by the SCF process when compared to the micronised material. Such enhanced flow properties and dispersion correlated well with the reduced surface energy parameters demonstrated by these powders. It is shown that semi-crystalline particles exhibited lower specific surface energy leading to a better performance in the powder flow and aerosol tests than crystalline materials. This difference of the surface and bulk crystal structure for selected powder batches is explained by the mechanism of precipitation in SCF which can lead to surface conditioning of particles produced.
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
NASA Astrophysics Data System (ADS)
Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan
2016-02-01
Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).
Processing, properties and applications of composites using powder-coated epoxy towpreg technology
NASA Technical Reports Server (NTRS)
Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.
1993-01-01
Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.
Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.
Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E
2010-03-01
Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.
Funk, Jason M.; Reutter, David C.; Rowe, Gary L.
2003-01-01
In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water supplied by the Bob McEwen Treatment Plant suggests that treatment processes employed by the plant (chlorination, activated carbon) reduced pesticide concentrations to levels well below USEPA drinking-water standards. In particular, the percentage of pesticides remaining in treated water samples decreased significantly for several frequently occurring pesticides when the plant replaced the use of powdered activated carbon with granular activated carbon in November 1999. For example, the median percentage of atrazine remaining after treatment that included powdered activated carbon was 63 percent, whereas the median percentage of atrazine remaining after the switch to granular activated carbon was 2.4 percent.
Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama
Wendell R. Haag; Melvin L. Jr. Warren
2010-01-01
1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...
Determinants of community structure of zooplankton in heavily polluted river ecosystems
NASA Astrophysics Data System (ADS)
Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin
2016-02-01
River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutina, Yulia N., E-mail: iuliiamaliutina@gmail.ru; Lazurenko, Daria V., E-mail: pavlyukova-87@mail.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenchedmore » fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.« less
Laser stereolithography by multilayer sintering of metal powders
NASA Astrophysics Data System (ADS)
Jendrzejewski, Rafal; Serbinski, W.; Sliwinski, Gerard
1997-10-01
Process parameters of the lser stereolithography by means of metal powder sintering are experimentally investigated for the bronze B10, Fe-Cr and Al-Ni alloys, pure Sn, and Cu. The multilaye structures ae prepared trace-on-trace by remelting of the previously deposited mela powder under the cw CO2 laser irradiation in an Ar flow environment. Severl trces of a hiehght of 0.1 - 0.9 mm connected via fusion zones are produced for each samle which results inan efficient formautlion f avolumetric structures of dimensins usfficient for microanalysis ndconsiderationof th emultlayer goemtry. For th beam intensities of about 105 W/cm2 and smaple feeding rates of 0.8 - 1.8 m/min th fusin zone thickness donot 4xceed several percent of th layer height. Rsutls indicate, that th epowderized Fe-Cr anAl-Ni alloys and also bronze B10 are well suited for a fast prorotyping due to th low porosity, homogeneous structure and good mechaniclpropetis acheivable.
NASA Astrophysics Data System (ADS)
Rabeeh, Bakr Mohamed
Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.
Magnetic, hyperthermic and structural properties of zn substituted CaFe2O4 powders
NASA Astrophysics Data System (ADS)
Kheradmand, Abbas; Vahidi, Omid; Masoudpanah, S. M.
2018-03-01
In the present study, we have synthesized single phase Ca1 - x Zn x Fe2O4 powders by hydrothermal method. The cation distribution between the tetrahedral and octahedral sites in the spinel structure and the magnetic properties as a function of the zinc substitution have been investigated by X-ray diffraction (XRD), infrared spectroscopy and vibrating sample magnetometer methods. The obtained XRD pattern indicated that the synthesized particles had single phase cubic spinel structure with no impurity. The magnetic measurements showed that the saturation magnetization increased from 83 to 98 emu/g with the addition of zinc due to the decrease of inversity. The particle size observed by electron microscopy decreased from 1.38 to 0.97 µm with the increase of zinc addition. The Ca0.7Zn0.3Fe2O4 powders exhibited appropriate heating capability for hyperthermia applications with the maximum AC heating temperature of 20 °C and specific loss power of 9.29 W/g.
Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine
2014-12-01
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.
NASA Astrophysics Data System (ADS)
Du, S. W.; Aydelotte, B.; Fondse, D.; Wei, C.-T.; Jiang, F.; Herbold, E.; Vecchio, K.; Meyers, M. A.; Thadhani, N. N.
2009-12-01
A double-tube implosion geometry is used to explosively shock consolidate intermetallic-forming Ni-Al, Ta-Al, Nb-Al, Mo-Al and W-Al powder mixtures for fabricating bulk structural energetic materials, with mechanical strength and ability to undergo impact-initiated exothermic reactions. The compacts are characterized based on uniformity of micro structure and degree of densification. Mechanical properties of the compacts are characterized over the strain-rate range of 10-3 to 104 s-1. The impact reactivity is determined using rod-on-anvil experiments, in which disk-shaped compacts mounted on a copper projectile, are impacted against a steel anvil in using a 7.62 mm gas gun. The impact reactivity of the various explosively-consolidated reactive powder mixture compacts is correlated with overall kinetic energy and impact stress to determine their influence on threshold for reaction initiation. The characteristics of the various compacts, their mechanical properties and impact-initiated chemical reactivity will be described in this paper.
NASA Astrophysics Data System (ADS)
Zhukov, Anton; Barakhtin, Boris; Kuznetsov, Pavel
By the method of selective laser melting of powder materials nanostructured stainless steels 17-4PH, 316L, 321 were obtained. In all experiments the recorded hardness increase depending on the construction parameters. Obtained relationship of hardness increase with the carbon ratio, which explained by the chemical composition of the metal in the melting zone. It is suggested that the effect of hardness increase is associated with structural changes as to the formation and dissolution of hardening nanophases. Methods of metallography were performed in structural studies. Traces of interlayer segregation were detected inside the grains as turbulent eddies in the bands of different saturation tone caused by the migration of convective (mass transfer) metal atoms. It was visible signs of crystallization through the grain places the image (dendrite crystals). These facts revealed structural features suggest that the adhesion layers of melted powder was initiated by the colder layers and going mechanism epitaxy by coherently oriented groups of atoms from layers of melting.
[Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].
Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing
2013-08-01
This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroesi, Laszlo, E-mail: l.korosi@chem.u-szeged.hu; Papp, Szilvia; Oszko, Albert
2012-04-15
Highlights: Black-Right-Pointing-Pointer The synthesis of ITO powders and thin films from PVP-containing sols is presented. Black-Right-Pointing-Pointer The nano- and microstructures of ITO are more compact when PVP is used. Black-Right-Pointing-Pointer PVP acts both as a steric stabilizer of the sol and as a pre-sintering agent. Black-Right-Pointing-Pointer The PVP-induced enhanced sintering results in ITO with lower electrical resistance. Black-Right-Pointing-Pointer The surface composition of the ITO films is independent of the initial PVP content. -- Abstract: Indium tin hydroxide (ITH) xerogel powders and thin films with different polyvinylpyrrolidone (PVP) contents (0-22%, w/w) were prepared by a classical sol-gel method. To obtain nanocrystallinemore » indium tin oxide (ITO), the ITH xerogels were calcined at 550 Degree-Sign C. The effect of the initial polymer content on the structure of the ITO powders was studied by means of N{sub 2}-sorption measurements, small-angle X-ray scattering (SAXS), transmission and scanning electron microscopy. The N{sub 2}-sorption measurements revealed that the ITO powders obtained contained micropores and both their porosity and specific surface area decreased with increasing PVP content of the ITH xerogels. The SAXS measurements confirmed the enhanced sintering of the particles in the presence of PVP. The calculated mass fractal dimensions of the ITO powders increased significantly, indicating a significant compaction in structure. The pre-sintered structure could be achieved at relatively low temperature, which induced a significant decreasing (three orders of magnitude) in the electrical resistance of the ITO films.« less
NASA Astrophysics Data System (ADS)
Popov, V. V.; Menushenkov, A. P.; Khubbutdinov, R. M.; Yastrebtsev, A. A.; Svetogorov, R. D.; Zubavichus, Ya V.; Trigub, A. L.; Sharapov, A. S.; Pisarev, A. A.; Kurilkin, V. V.; Tsarenko, N. A.; Arzhatkina, L. A.
2017-12-01
Influence of synthesis conditions (type of atmosphere: reduction or oxidation, annealing temperature) on the chemical composition and structure of the compounds formed in the “HfO2 - CeO2/Ce2O3” system has been investigated by X-ray absorption fine structure spectroscopy combined with Raman spectroscopy, X-ray diffraction and thermogravimetric analysis. It was revealed that isothermal annealing of precursor at temperatures less than 1000°C in air leads to formation of Ce0.5Hf0.5O2 powders with cubic fluorite-type structure (space group Fm-3m). Further increase of annealing temperatures above 1000°C causes decomposition of formed crystal structure into two phases: cubic and monoclinic. Annealing in reduction hydrogen atmosphere causes formation of Ce4+ 2x Ce3+ 2-2x Hf2O7+x compounds with intermediate oxidation state of cerium, where value of x depends on the reducing conditions and treatment parameters. Annealing in vacuum at 1400°C strongly reduces the content of Ce4+ in a powder samples and leads to formation of pyrochlore structure (space group Fd-3m) with predominant +3 oxidation state of cerium.
Ellis, M.S.; Nichols, D.J.
2002-01-01
In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.
Nichols, D.J.; Ellis, M.S.
2003-01-01
In 1999, 1 Gt (1.1 billion st) of coal was produced in the United States. Of this total, 37% was produced in Wyoming, Montana and North Dakota. Coals of Tertiary age from these states typically have low ash contents. Most of these coals have sulfur contents that are in compliance with Clean Air Act standards and most have low concentrations of the trace elements that are of environmental concern. The U.S. Geological Survey (USGS) National Coal Resource Assessment for these states includes geologic, stratigraphic, palynologic and geochemical studies and resource calculations for major Tertiary coal zones in the Powder River, Williston, Greater Green River, Hanna and Carbon Basins. Calculated resources are 595 Gt (655 billion st). Results of the study are available in a USGS Professional Paper and a USGS Open-File Report, both in CD-ROM format.
Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river
Eitzmann, J.L.; Paukert, C.P.
2010-01-01
We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.
NASA Astrophysics Data System (ADS)
Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin
2012-10-01
Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.;
2002-01-01
Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.
Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K
2014-09-01
Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Nilanjan; Misra, Kamakhya Prakash
2016-05-06
Using titanium isopropoxide as the precursor, Titanium dioxide (TiO{sub 2}) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO{sub 2} samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increasemore » with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO{sub 2} nano powder samples.« less
NASA Astrophysics Data System (ADS)
Faksawat, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.
2017-09-01
The aim of this work was to compare characteristics of hydroxyapatite synthesized by precipitation and ball milling techniques. The cuttlefish bone powder was a precursor in calcium source and the di ammonium hydrogen orthophosphate powders was a precursor in phosphate source. The hydroxyapatite was synthesized by the both techniques such as precipitation and ball milling techniques. The phase formation, chemical structure and morphology of the both hydroxyapatite powders have been examined by X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FTIR) and field emission scanning electron microscope (FESEM), respectively. The results show that the hydroxyapatite synthesized by precipitation technique formed hydroxyapatite phase slower than the hydroxyapatite synthesized by ball milling technique. The FTIR results show the chemical structures of sample in both techniques are similar. The morphology of the hydroxyapatite from the both techniques were sphere like shapes and particle size was about in nano scale. The average particle size of the hydroxyapatite by ball milling technique was less than those synthesized by precipitation technique. This experiment indicated that the ball milling technique take time less than the precipitation technique in hydroxyapatite synthesis.
Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere
NASA Astrophysics Data System (ADS)
Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.
2015-03-01
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.
1985-10-01
125 381.23 95 461.85 117 (Natrona County) Evanston, WY 519’.76 122 401.16 100 325.23 82 ( Uinta County) Lander/Riverton, WY 489.62 115 357.31 89 295.74...Index to $ Cheyenne Cheyenne, WY (Laramie County) $331.69 - Casper, WY (Natrona County) 365.12 110 Evanston, WY ( Uinta County) 330.41 100 Lander...area. The Burlington Northern Railroad operates class "A" north-south trackage from the Powder River coal basin near Gillette south to Denver and then
Characterization of Metal Powders Used for Additive Manufacturing.
Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A
2014-01-01
Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.
Effect of mechanical denaturation on surface free energy of protein powders.
Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R
2016-10-01
Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite
NASA Astrophysics Data System (ADS)
Post, J. E.; Bish, D. L.; Heaney, P. J.
2006-05-01
Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.
Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction
NASA Astrophysics Data System (ADS)
Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.
2018-05-01
The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.
Meade, Robert H.; Moody, John A.
2013-01-01
Powder River’s second largest flood of record (1919–2012) moved through northeastern Wyoming and southeastern Montana during May 1978. Within a ninety-kilometer reach of the channel in southeastern Montana, the most prominent planform effects of the flood were the growth of meander bends by bank erosion (this was most intense just downriver of bend apexes, causing 1–2 channel widths of lateral displacement) and the erosion of new cutoff channels through the necks of two large and two small meanders. Surveys of cross sections, made before and after the flood, show the responses of the channel to the flood waters, which ranged from minimal (bedrock control) to large (maximum channel curvature in unconsolidated bank and terrace deposits). Geomorphic work done during two weeks of extreme flooding in May 1978, as measured by cross-channel erosion and new sediment deposition, was approximately equal in magnitude to the work done during the two decades (1978–1998) that followed the flood.
Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka
Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less
Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
Shareef, M Y; Messer, P F; van Noort, R
1993-01-01
In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.
Thermal and damping behaviour of magnetic shape memory alloy composites
NASA Astrophysics Data System (ADS)
Glock, Susanne; Michaud, Véronique
2015-06-01
Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.
D. Caamano; P. Goodwin; J. M. Buffington
2010-01-01
Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...
Luminescence properties of Sm3+-doped alkaline earth ortho-stannates
NASA Astrophysics Data System (ADS)
Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas
2014-05-01
A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.
Structures and properties of materials recovered from high shock pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nellis, W.J.
1994-03-01
Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less
Poinern, Gérrard Eddy Jai; Brundavanam, Ravi Krishna; Thi Le, Xuan; Nicholls, Philip K.; Cake, Martin A.; Fawcett, Derek
2014-01-01
Hydroxyapatite (HAP) is a biocompatible ceramic that is currently used in a number of current biomedical applications. Recently, nanometre scale forms of HAP have attracted considerable interest due to their close similarity to the inorganic mineral component of the bone matrix found in humans. In this study ultrafine nanometre scale HAP powders were prepared via a wet precipitation method under the influence of ultrasonic irradiation. The resulting powders were compacted and sintered to form a series of ceramic pellets with a sponge-like structure with varying density and porosity. The crystalline structure, size and morphology of the powders and the porous ceramic pellets were investigated using advanced characterization techniques. The pellets demonstrated good biocompatibility, including mixed cell colonisation and matrix deposition, in vivo following surgical implantation into sheep M. latissimus dorsi. PMID:25168046
Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z
2018-04-01
The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.
Processing study of high temperature superconducting Y-Ba-Cu-O ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, A.; Wachtman, J.B. Jr.; Ward, C.
Processing of the YBa{sub 2}Cu{sub 3}O{sub 6+x} superconducting phase by employing different precursor powder preparation techniques (ball milling, attrition milling) and samples formed by different sintering conditions are discussed. The superconducting phase has been identified by powder x-ray diffraction. The effect of different powder processing and pressing conditions on the structure, density, resistivity and a.c. magnetic susceptibility were studied. Though there is no variation in T{sub c} for all the samples, attrition milled samples show a much lower resistance and less temperature dependence compared to ball milled samples above the superconducting transition temperature up to room temperature. Ball milled samplesmore » were loosely packed with more voids compared to attrition milled samples which are more densely packed with a needle-like structure.« less
Kumar, Rajiv; Bakshi, S. R.; Joardar, Joydip; Parida, S.; Raja, V. S.; Singh Raman, R. K.
2017-01-01
Structural changes during the deformation-induced synthesis of nanocrystalline Fe–10Cr–3Al alloy powder via high-energy ball milling followed by annealing and rapid consolidation by spark plasma sintering were investigated. Reduction in crystallite size was observed during the synthesis, which was associated with the lattice expansion and rise in dislocation density, reflecting the generation of the excess grain boundary interfacial energy and the excess free volume. Subsequent annealing led to the exponential growth of the crystallites with a concomitant drop in the dislocation density. The rapid consolidation of the as-synthesized nanocrystalline alloy powder by the spark plasma sintering, on the other hand, showed only a limited grain growth due to the reduction of processing time for the consolidation by about 95% when compared to annealing at the same temperature. PMID:28772633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.
The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less
Withler, Ruth E.
2017-01-01
Population structure of three ecotypes of Oncorhynchus nerka (sea-type Sockeye Salmon, lake-type Sockeye Salmon, and Kokanee) in the Fraser River and Columbia River drainages was examined with microsatellite variation, with the main focus as to whether Kokanee population structure within the Fraser River drainage suggested either a monophyletic or polyphyletic origin of the ecotype within the drainage. Variation at 14 microsatellite loci was surveyed for sea-type and lake-type Sockeye Salmon and Kokanee sampled from 121 populations in the two river drainages. An index of genetic differentiation, FST, over all populations and loci was 0.087, with individual locus values ranging from 0.031 to 0.172. Standardized to an ecotype sample size of 275 individuals, the least genetically diverse ecotype was sea-type Sockeye Salmon with 203 alleles, whereas Kokanee displayed the greatest number of alleles (260 alleles), with lake-type Sockeye Salmon intermediate (241 alleles). Kokanee populations from the Columbia River drainage (Okanagan Lake, Kootenay Lake), the South Thompson River (a major Fraser River tributary) drainage populations, and the mid-Fraser River populations all clustered together in a neighbor-joining analysis, indicative of a monophyletic origin of the Kokanee ecotype in these regions, likely reflecting the origin of salmon radiating from a refuge after the last glaciation period. However, upstream of the mid-Fraser River populations, there were closer relationships between the lake-type Sockeye Salmon ecotype and the Kokanee ecotype, indicative of the Kokanee ecotype evolving independently from the lake-type Sockeye Salmon ecotype in parallel radiation. Kokanee population structure within the entire Fraser River drainage suggested a polyphyletic origin of the ecotype within the drainage. Studies employing geographically restricted population sampling may not outline accurately the phylogenetic history of salmonid ecotypes. PMID:28886033
Genetic studies on populations of large river fishes provide a potentially useful but underutilized research and assessment tool. Population genetic research on freshwater systems has provided meaningful insight into stock structure, hybridization issues, and gene flow/migration...
Powder diffraction and crystal structure prediction identify four new coumarin polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.
Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less
Powder diffraction and crystal structure prediction identify four new coumarin polymorphs
Shtukenberg, Alexander G.; Zhu, Qiang; Carter, Damien J.; ...
2017-05-15
Coumarin, a simple, commodity chemical isolated from beans in 1820, has, to date, only yielded one solid state structure. Here, we report a rich polymorphism of coumarin grown from the melt. Four new metastable forms were identified and their crystal structures were solved using a combination of computational crystal structure prediction algorithms and X-ray powder diffraction. With five crystal structures, coumarin has become one of the few rigid molecules showing extensive polymorphism at ambient conditions. We demonstrate the crucial role of advanced electronic structure calculations including many-body dispersion effects for accurate ranking of the stability of coumarin polymorphs and themore » need to account for anharmonic vibrational contributions to their free energy. As such, coumarin is a model system for studying weak intermolecular interactions, crystallization mechanisms, and kinetic effects.« less
Local Explosion Monitoring using Rg
NASA Astrophysics Data System (ADS)
O'Rourke, C. T.; Baker, G. E.
2016-12-01
Rg is the high-frequency fundamental-mode Rayleigh wave, which is only excited by near-surface events. As such, an Rg detection indicates that a seismic source is shallow, generally less than a few km depending on the velocity structure, and so likely man-made. Conversely, the absence of Rg can indicate that the source is deeper and so likely naturally occurring. We have developed a new automated method of detecting Rg arrivals from various explosion sources at local distances, and a process for estimating the likelihood that a source is not shallow when no Rg is detected. Our Rg detection method scans the spectrogram of a seismic signal for a characteristic frequency peak. We test this on the Bighorn Arch Seismic Experiment data, which includes earthquakes, active source explosions in boreholes, and mining explosions recorded on a dense network that spans the Bighorn Mountains and Powder River Basin. The Rg passbands used were 0.4-0.8 Hz for mining blasts and 0.8-1.2 Hz for borehole shots. We successfully detect Rg across the full network for most mining blasts. The lower-yield shots are detectable out to 50 km. We achieve <1% false-positive rate for the small-magnitude earthquakes in the region. Rg detections on known non-shallow earthquake seismograms indicates they are largely due to windowing leakage at very close distances or occasionally to cultural noise. We compare our results to existing methods that use cross-correlation to detect retrograde motion of the surface waves. Our method shows more complete detection across the network, especially in the Powder River Basin where Rg exhibits prograde motion that does not trigger the existing detector. We also estimate the likelihood that Rg would have been detected from a surface source, based on the measured P amplitude. For example, an event with a large P wave and no detectable Rg would have a high probability of being a deeper event, whereas we cannot confidently determine whether an event with a small P wave and no Rg detection is shallow or not. These results allow us to detect Rg arrivals, which indicate a shallow source, and to use the absence of Rg to estimate the likelihood that a source in a calibrated region is not shallow enough to be man-made.
Spark plasma sintering of pure and doped tungsten as plasma facing material
NASA Astrophysics Data System (ADS)
Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.
2014-04-01
In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com
2016-05-06
The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less
Iacovacci, V; Lucarini, G; Innocenti, C; Comisso, N; Dario, P; Ricotti, L; Menciassi, A
2015-12-01
This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.
Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang
2015-01-01
Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.
van de Streek, Jacco; Neumann, Marcus A
2014-12-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.
van de Streek, Jacco; Neumann, Marcus A.
2014-01-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom. PMID:25449625
Method for fabricating beryllium structures
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1977-01-01
Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.
Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev
2015-02-25
A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
NASA Astrophysics Data System (ADS)
Hung, Kun Ming; Hsieh, Ching Shieh; Yang, Wein Duo; Tsai, Hui Ju
2007-03-01
Nanometric-sized barium titanate powders were prepared by using titanium isopropoxid as the raw material and acetylacetone as a chelating agent, in a strong alkaline solution (pH > 13) through the sol-precipitation method. The preparatory variables affect the extent of cross-linking in the structure, change the mode of condensation of the gels, and even control the particle size of the powder. The reaction rate of forming powder, at a higher temperature such as 100°C and more water content (the molar ratio of water to titanium isopropoxide is 25) or fewer acetylacetone (the molar ratio of acetylacetone to titanium isopropoxide is 1), is rapid and the particle size formed is finer at 60 80 nm. On the contrary, that of forming powder, at lower temperature (40°C) and less water content (molar ratio of water/titanium isopropoxide = 5) or higher acetylacetone (acetylacetone/titanium isopropoxide = 7), is slow and the particle size of the powder is larger. The optimal preparatory conditions were obtained by using the experimental statistical method; as a result, nanometric-sized BaTiO3 powder with an average particle size of about 50 nm was prepared.
Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin
2014-01-01
In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702
Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin
2014-01-01
In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.
Hunt, Charles B.
1969-01-01
John Wesley Powell clearly recognized that the spectacular features of the Colorado River - its many grand canyons - were dependent upon the structural history of the mountainous barriers crossed by the river. He conceived of three different historical relationships between rivers and structural features: (1) Newly uplifted land surfaces have rivers that flow down the initial slope of the uplift; these relationships he termed consequent. (2) A river may be older than an uplift that it crosses because it has been able to maintain its course by eroding downward as the uplift progresses; this relationship he named antecedent. (3) An uplifted block may have been buried by younger deposits upon which a river becomes established. The river, in cutting downward, uncovers the uplifted block and becomes incised into it; this relationship he called superimposed.The geologic history of the Colorado River involves all three relationships. In addition, although the position of the river course through a particular structural barrier may have been the result of superposition, the depth of the canyon at that point may be largely due to renewed uplift of the barrier; such deepening of the canyon, therefore, is due to antecedence. The problem of the Colorado River remains today very much as G. K. Gilbert stated it nearly 100 years ago: "How much is antecedent and how much is superimposed?" The question must be asked separately for each stretch of the river.
Quantifying climatic controls on river network topology across scales
NASA Astrophysics Data System (ADS)
Ranjbar Moshfeghi, S.; Hooshyar, M.; Wang, D.; Singh, A.
2017-12-01
Branching structure of river networks is an important topologic and geomorphologic feature that depends on several factors (e.g. climate, tectonic). However, mechanisms that cause these drainage patterns in river networks are poorly understood. In this study, we investigate the effects of varying climatic forcing on river network topology and geomorphology. For this, we select 20 catchments across the United States with different long-term climatic conditions quantified by climate aridity index (AI), defined here as the ratio of mean annual potential evaporation (Ep) to precipitation (P), capturing variation in runoff and vegetation cover. The river networks of these catchments are extracted, using a curvature-based method, from high-resolution (1 m) digital elevation models and several metrics such as drainage density, branching angle, and width functions are computed. We also use a multiscale-entropy-based approach to quantify the topologic irregularity and structural richness of these river networks. Our results reveal systematic impacts of climate forcing on the structure of river networks.