[Studies on the brand traceability of milk powder based on NIR spectroscopy technology].
Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian
2013-10-01
Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.
Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy.
Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Topcu, Ali; Boyaci, Ismail Hakki
2016-12-01
A rapid and in situ method has been developed to detect and quantify adulterated milk powder through adding whey powder by using laser induced breakdown spectroscopy (LIBS). The methodology is based on elemental composition differences between milk and whey products. Milk powder, sweet and acid whey powders were produced as standard samples, and milk powder was adulterated with whey powders. Based on LIBS spectra of standard samples and commercial products, species was identified using principle component analysis (PCA) method, and discrimination rate of milk and whey powders was found as 80.5%. Calibration curves were obtained with partial least squares regression (PLS). Correlation coefficient (R(2)) and limit of detection (LOD) values were 0.981 and 1.55% for adulteration with sweet whey powder, and 0.985 and 0.55% for adulteration with acid whey powder, respectively. The results were found to be consistent with the data from inductively coupled plasma - mass spectrometer (ICP-MS) method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan
2018-06-05
Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.
NASA Astrophysics Data System (ADS)
Huang, C.; Yamabe-Mitarai, Y.; Harada, H.
2002-02-01
Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.
Fermented probiotic beverages based on acid whey.
Skryplonek, Katarzyna; Jasińska, Małgorzata
2015-01-01
Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.
Rabin, Barry H.; Korth, Gary E.; Wright, Richard N.; Williamson, Richard L.
1992-01-01
An apparatus for synthesizing a composite material such as titanium carbide and alumina from exothermic reaction of a sample followed by explosive induced consolidation of the reacted sample. The apparatus includes a lower base for holding a powdered composite sample, an igniter and igniter powder for igniting the sample to initiate an exothermic reaction and a piston for dynamically compressing the sample utilizing an explosive reaction.
Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef
2010-08-15
The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.
Dust generation in powders: Effect of particle size distribution
NASA Astrophysics Data System (ADS)
Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin
2017-06-01
This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.
Physical evaluation of a maize-based extruded snack with curry powder.
Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances
2004-02-01
Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.
Study on Antibacterial Property of PMMA Denture Base Materials with Negative Ion Powder
NASA Astrophysics Data System (ADS)
Liu, Meitian; Zhang, Xiaohui; Zhang, Jingting; Zheng, Qian; Liu, Bin
2018-01-01
To prepare the denture base resin with negative ion powder and evaluate the antibacterial effect of denture base resin with different contents of negative ion powder for clinical application. Method: Denture base material with negative ion powder was prepared by in-situ polymerization method, 50mm * 50mm * 2mm standard samples were prepared respectively. Antibacterial properties were tested with the film contact method. Experimental bacteria: Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC8099).Result:With the increase of the amount of negative ion powder, the inhibition rate of the composite material to Escherichia coli and Staphylococcus aureus showed an increasing trend, and the number of residual bacteria on the surface showed a decreasing trend. When the content of negative ion powder was 2%, the composite material Staphylococcus aureus and Escherichia coli were 77.9% and 80.3% respectively. When the addition ratio was 5%, the bactericidal rate of the composite material to Staphylococcus aureus and Escherichia coli reached 98.2% and 99.1% respectively. Conclusion: The denture base material containing more than 2%wt negative ion powder has strong sterilization.
Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand
2013-09-01
Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.
van der Laaken, Anton L.; Blatny, Janet Martha; Paauw, Armand
2013-01-01
Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 106 spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min. PMID:23811517
NASA Astrophysics Data System (ADS)
Saprykin, A. A.; Sharkeev, Yu P.; Ibragimov, E. A.; Babakova, E. V.; Dudikhin, D. V.
2016-07-01
Alloys based on the titanium-niobium system are widely used in implant production. It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At present alloys based on the titanium-niobium system are produced mainly using conventional metallurgical methods. The further subtractive manufacturing an end product results in a lot of wastes, increasing, therefore, its cost. The alternative of these processes is additive manufacturing. Selective laser melting is a technology, which makes it possible to synthesize products of metal powders and their blends. The point of this technology is laser melting a layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. Complex products and working prototypes are made on the base of this technology. The authors of this paper address to the issue of applying selective laser melting in order to synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set of 10x10 mm samples is made in various process conditions. The samples are made by an experimental selective laser synthesis machine «VARISKAF-100MB». The machine provides adjustment of the following process variables: laser emission power, scanning rate and pitch, temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of argon. The porosity and thickness of the sintered layer related to the laser emission power are shown at various scanning rates. It is revealed that scanning rate and laser emission power are adjustable process variables, having the greatest effect on forming the sintered layer.
Detection of plant-based adulterants in turmeric powder using DNA barcoding.
Parvathy, V A; Swetha, V P; Sheeja, T E; Sasikumar, B
2015-01-01
In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.
Confidence Hills Drill Powder in Scoop
2014-11-04
This image from NASA Curiosity rover shows a sample of powdered rock extracted by the rover drill from the Confidence Hills target -- the first rock drilled after Curiosity reached the base of Mount Sharp in September 2014.
Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.
Capek, Jaroslav; Vojtěch, Dalibor
2014-10-01
The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.
Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone
2005-06-01
The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.
NASA Astrophysics Data System (ADS)
Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena
2017-02-01
The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.
Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Ozutok, Fatma; Karaduman, Irmak; Demiri, Sani; Acar, Selim
2018-02-01
Herein we report Al-doped ZnO films (AZO) deposited on the ZnO seed layer by chemical bath deposition method. Al powder, Al oxide and Al chloride were used as sources for the deposition process and investigated for their different effects on the NH3 gas-sensing performance. The morphological and microstructural properties were investigated by employing x-ray powder diffraction, scanning electron microscopy analysis and energy-dispersive x-ray spectroscopy. The characterization studies showed that the AZO thin films are crystalline and exhibit a hexagonal wurtzite structure. Ammonia (NH3) gas-sensing measurements of AZO films were performed at different concentration levels and different operation temperatures from 50°C to 210°C. The sample based on powder-Al source showed a higher response, selectivity and short response/recovery time than the remaining samples. The powder Al sample exhibited 33% response to 10-ppm ammonia gas at 190°C, confirming a strong dependence on the dopant source type.
Direct analysis of herbal powders by pipette-tip electrospray ionization mass spectrometry.
Wang, Haixing; So, Pui-Kin; Yao, Zhong-Ping
2014-01-27
Conventional electrospray ionization mass spectrometry (ESI-MS) is widely used for analysis of solution samples. The development of solid-substrate ESI-MS allows direct ionization analysis of bulky solid samples. In this study, we developed pipette-tip ESI-MS, a technique that combines pipette tips with syringe and syringe pump, for direct analysis of herbal powders, another common form of samples. We demonstrated that various herbal powder samples, including herbal medicines and food samples, could be readily online extracted and analyzed using this technique. Various powder samples, such as Rhizoma coptidis, lotus plumule, great burdock achene, black pepper, Panax ginseng, roasted coffee beans, Fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae, were analyzed using pipette-tip ESI-MS and quality mass spectra with stable and durable signals could be obtained. Both positive and negative ion modes were attempted and various compounds including amino acids, oligosaccharides, glycosides, alkaloids, organic acids, ginosensides, flavonoids and lignans could be detected. Principal component analysis (PCA) based on the acquired mass spectra allowed rapid differentiation of closely related herbal species. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, Benjamin; Petridis, Loukas; Langan, Paul
2014-10-01
Commonly one-dimensional (1D) (spherically averaged) powder diffraction diagrams are used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. Moreover, this leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrilsmore » with crystalline segments as amorphous. Finally, the reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation.« less
A Science and Risk-Based Pragmatic Methodology for Blend and Content Uniformity Assessment.
Sayeed-Desta, Naheed; Pazhayattil, Ajay Babu; Collins, Jordan; Doshi, Chetan
2018-04-01
This paper describes a pragmatic approach that can be applied in assessing powder blend and unit dosage uniformity of solid dose products at Process Design, Process Performance Qualification, and Continued/Ongoing Process Verification stages of the Process Validation lifecycle. The statistically based sampling, testing, and assessment plan was developed due to the withdrawal of the FDA draft guidance for industry "Powder Blends and Finished Dosage Units-Stratified In-Process Dosage Unit Sampling and Assessment." This paper compares the proposed Grouped Area Variance Estimate (GAVE) method with an alternate approach outlining the practicality and statistical rationalization using traditional sampling and analytical methods. The approach is designed to fit solid dose processes assuring high statistical confidence in both powder blend uniformity and dosage unit uniformity during all three stages of the lifecycle complying with ASTM standards as recommended by the US FDA.
Characterization of composite materials based on cement-ceramic powder blended binder
NASA Astrophysics Data System (ADS)
Kulovaná, Tereza; Pavlík, Zbyšek
2016-06-01
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.
Characterization of composite materials based on cement-ceramic powder blended binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulovaná, Tereza; Pavlík, Zbyšek
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less
Raman-spectroscopy-based chemical contaminant detection in milk powder
NASA Astrophysics Data System (ADS)
Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon S.
2015-05-01
Addition of edible and inedible chemical contaminants in food powders for purposes of economic benefit has become a recurring trend. In recent years, severe health issues have been reported due to consumption of food powders contaminated with chemical substances. This study examines the effect of spatial resolution used during spectral collection to select the optimal spatial resolution for detecting melamine in milk powder. Sample depth of 2mm, laser intensity of 200mw, and exposure time of 0.1s were previously determined as optimal experimental parameters for Raman imaging. Spatial resolution of 0.25mm was determined as the optimal resolution for acquiring spectral signal of melamine particles from a milk-melamine mixture sample. Using the optimal resolution of 0.25mm, sample depth of 2mm and laser intensity of 200mw obtained from previous study, spectral signal from 5 different concentration of milk-melamine mixture (1%, 0.5%, 0.1%, 0.05%, and 0.025%) were acquired to study the relationship between number of detected melamine pixels and corresponding sample concentration. The result shows that melamine concentration has a linear relation with detected number of melamine pixels with correlation coefficient of 0.99. It can be concluded that the quantitative analysis of powder mixture is dependent on many factors including physical characteristics of mixture, experimental parameters, and sample depth. The results obtained in this study are promising. We plan to apply the result obtained from this study to develop quantitative detection model for rapid screening of melamine in milk powder. This methodology can also be used for detection of other chemical contaminants in milk powders.
EPR investigation of UV light effect on calcium carbonate powders with different grain sizes.
Kabacińska, Zuzanna; Krzyminiewski, Ryszard; Dobosz, Bernadeta
2014-06-01
This study is based on investigation of calcium carbonate powders with different grain sizes exposed to UV light. Calcium carbonate is widely used in many branches of industry, e.g. as a filler for polymer materials; therefore, knowing its properties, among them also its reaction to UV light, is essential. Samples of powdered calcium carbonate with average grain sizes of 69 and 300 nm and 2.1, 6, 16, 25 µm were used in this investigation. Measurements were performed at room temperature using EPR X-band spectrometer, and they have shown the additional signals induced by the light from Hg lamp. The effect of annealing of the micro-grain samples was also studied. The spectra of four micro-grain samples after irradiation are similar, but there are differences between them and the other two powders, which could be related to the different sizes of their grains. Further studies based on these preliminary results may prove useful in research of photodegradation of CaCO3-filled materials, as well as helpful in increasing the accuracy of dating of archaeological and geological objects. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
López-García, I; Viñas, P; Romero-Romero, R; Hernández-Córdoba, M
2007-08-06
Two procedures for the electrothermal atomic absorption spectrometric determination of molybdenum in milk and infant formulas using slurried samples are described. For powdered milk samples, 10% (m/v) slurries were prepared in a medium containing 25 and 75% (v/v) concentrated hydrogen peroxide and hydrofluoric acid, respectively, and introduced directly into the furnace. Palladium (200 microg mL(-1)) was used as the modifier and calibration was carried out using aqueous standards prepared in the same medium. The detection limit was 0.02 microg g(-1) for powdered milk samples suspended at 10% (m/v) (equivalent to 2 microg L(-1)). The relative standard deviation (R.S.D.) for five measurements was 1.9%, the characteristic mass being 25 pg. For liquid milk samples, a procedure was proposed based on preconcentration and removal of the matrix, using ionic exchange (Amberlite IRA 743) and elution of molybdenum with 5% (m/v) NaOH. In this case, a 30-fold improvement in the calibration slope was achieved, leading to a detection limit of 0.04 microg L(-1) for liquid samples diluted to 10%. The R.S.D. was 3.5%. Using a size-based separation procedure, it was found that molybdenum is present in its inorganic form or associated to low molecular weight substances in cow milk, while in breast milk it is associated to proteins. The reliability of the procedure was checked by comparing the results obtained with those found using a previous mineralization stage and by analyzing three certified reference materials, namely, BCR 063R (skim milk powder), NBS 1549 (non-fat milk powder) and NBS 8435 (whole milk powder).
[Identification of antler powder components based on DNA barcoding technology].
Jia, Jing; Shi, Lin-chun; Xu, Zhi-chao; Xin, Tian-yi; Song, Jing-yuan; Chen Shi, Lin
2015-10-01
In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine
Fast, reagentless and reliable screening of "white powders" during the bioterrorism hoaxes.
Włodarski, Maksymilian; Kaliszewski, Miron; Trafny, Elżbieta Anna; Szpakowska, Małgorzata; Lewandowski, Rafał; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Mularczyk-Oliwa, Monika
2015-03-01
The classification of dry powder samples is an important step in managing the consequences of terrorist incidents. Fluorescence decays of these samples (vegetative bacteria, bacterial endospores, fungi, albumins and several flours) were measured with stroboscopic technique using an EasyLife LS system PTI. Three pulsed nanosecond LED sources, generating 280, 340 and 460nm were employed for samples excitation. The usefulness of a new 460nm light source for fluorescence measurements of dry microbial cells has been demonstrated. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) have been used for classification of dry biological samples. It showed that the single excitation wavelength was not sufficient for differentiation of biological samples of diverse origin. However, merging fluorescence decays from two or three excitation wavelengths allowed classification of these samples. An experimental setup allowing the practical implementation of this method for the real time fluorescence decay measurement was designed. It consisted of the LED emitting nanosecond pulses at 280nm and two fast photomultiplier tubes (PMTs) for signal detection in two fluorescence bands simultaneously. The positive results of the dry powder samples measurements confirmed that the fluorescence decay-based technique could be a useful tool for fast classification of the suspected "white powders" performed by the first responders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Robbins, Rebecca J; Leonczak, Jadwiga; Li, Julia; Johnson, J Christopher; Collins, Tom; Kwik-Uribe, Catherine; Schmitz, Harold H
2012-01-01
An international collaborative study was conducted on an HPLC method with fluorescent detection (FLD) for the determination of flavanols and procyanidins in materials containing chocolate and cocoa. The sum of the oligomeric fractions with degree of polymerization 1-10 was the determined content value. Sample materials included dark and milk chocolates, cocoa powder, cocoa liquors, and cocoa extracts. The content ranged from approximately 2 to 500 mg/g (defatted basis). Thirteen laboratories representing commercial, industrial, and academic institutions in six countries participated in the study. Fourteen samples were sent as blind duplicates to the collaborators. Results from 12 laboratories yielded repeatability relative standard deviation (RSDr) values that were below 10% for all materials analyzed, ranging from 4.17 to 9.61%. The reproducibility relative standard deviation (RSD(R)) values ranged from 5.03 to 12.9% for samples containing 8.07 to 484.7 mg/g. In one sample containing a low content of flavanols and procyanidins (approximately 2 mg/g), the RSD(R) was 17.68%. Based on these results, the method is recommended for Official First Action for the determination of flavanols and procyanidins in chocolate, cocoa liquors, powder(s), and cocoa extracts.
Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel A; Herrero, Miguel; Cifuentes, Alejandro
2011-10-21
The present work describes a method based on solid-phase extraction (SPE) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of three quinolones (pipemidic acid, oxolinic acid and flumequine) and twelve fluoroquinolones (marbofloxacin, fleroxacin, pefloxacin, levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin, lomefloxacin, difloxacin, sarafloxacin, and moxifloxacin) in different infant and young children powdered milks. After suitable deproteination of the reconstituted powdered samples, a SPE procedure was developed providing recovery values higher than 84% (RSDs lower than 13%) for all the analytes, with limits of detection between 0.04 and 0.52 μg/kg. UPLC-MS/MS analyses were carried out in less than 10 min. Sixteen infant and young children powdered milk samples of different origin, type and composition bought at Spanish markets were analyzed. Residues of the selected antibiotics were not detected in any of the analyzed samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Ashour, M S; Abdelaziz, A A; Hefni, H; el-Tayeb, O M
1989-06-01
We examined a total of 54 samples, including 18 body lotions and 36 talcum powders, for their total aerobic bacterial, coliform and fungal counts. We also carried out anaerobic bacterial counts for talcum powder as well as tests to detect some potentially hazardous bacteria in all tested samples. Talcum powders were more heavily contaminated with bacteria and fungi than body lotions. More than 40% of the tested body lotions contained no viable bacteria or less than 100 c.f.u./g. while all the talcum powders tested contained more than 100 c.f.u./g. Thirty per cent of the talcum powders were contaminated with 10(4) c.f.u./g. and none of the body lotions were contaminated to that extent. No coliforms were recovered from any of the body lotions, while 17% of the talcum powder examined contained coliforms in the range of 230-500 c.f.u./g. Staphylococcus spp. were detected in 18 samples of both talcum powders and body lotions, three of these Staphylococci were of the aureus type. Three samples of talcum powder contained E. coli, two samples contained Enterobacter agglomerans and one sample contained Citrobacter freundii. Seventy per cent of the body lotions showed no fungal counts, while 83% of the talcum powders examined were contaminated with fungi and most of the contaminated talcum powders contained more than 100 fungal cells/g. With regard to the anaerobic bacterial counts for talcum powders, 50% of the samples showed no counts while the other 50% contained less than 100 c.f.u./g. Four samples were contaminated with Clostridium perfringens, although C. tetani was not recovered from any of the samples.
NASA Astrophysics Data System (ADS)
Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander
2018-03-01
This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.
In-situ monitoring of flow-permeable surface area of high explosive powder using small sample masses
Maiti, Amitesh; Han, Yong; Zaka, Fowzia; ...
2015-02-17
To ensure good performance of high explosive devices over long periods of time, initiating powders need to maintain their specific surface area within allowed margins during the entire duration of deployment. A common diagnostic used in this context is the Fisher sub-sieve surface area (FSSA). Furthermore, commercial permeametry instruments measuring the FSSA requires the utilization of a sample mass equal to the crystal density of the sample material, an amount that is often one or two orders of magnitude larger than the typical masses found in standard detonator applications. Here we develop a customization of the standard device that canmore » utilize just tens of milligram samples, and with simple calibration yield FSSA values at ac curacy levels comparable to the standard apparatus. This necessitated a newly designed sample holder, made from a material of low coefficient of thermal expansion, which is conveniently transferred between an aging chamber and a re-designed permeametry tube. This improves the fidelity of accelerated aging studies by allowing measurement on the same physical sample at various time - instants during the aging process, and by obviating the need for a potentially FSSA-altering powder re-compaction step. We used the customized apparatus to monitor the FSSA evolution of a number of undoped and homolog-doped PETN powder samples that were subjected to artificial aging for several months at elevated temperatures. These results, in conjunction with an Arrhenius-based aging model were used to assess powder-coarsening - rates under long-term storage.« less
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Li, Jia; Gao, Bei; Xu, Zhenming
2014-05-06
New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.
NASA Astrophysics Data System (ADS)
Corcel, Mathias; Devaux, Marie-Françoise; Guillon, Fabienne; Barron, Cécile
2017-06-01
Powders produced from plant materials are heterogeneous in relation to native plant heterogeneity, and during grinding, dissociation often occurred at the tissue scale. The tissue composition of powdery samples could be modified through dry fractionation diagrams and impact their end-uses properties. If tissue identification is often made on native plant structure, this characterization is not straightforward in destructured samples such powders. Taking advantage of the autofluorescence properties of cell wall components, multispectral image acquisition is envisioned to identify the tissular origin of particles. Images were acquired on maize stem sections and ground tissues isolated from the same stem by hand dissection. The variability in fluorescence intensity profiles was analysed using principal component analysis. The correspondence between fluorescence profiles and the different tissues observed in maize sections was assessed based on histology or known compositional heterogeneity. Similar variability was encountered in fluorescence profiles extracted from powder leading to the potential ability to predict tissular origin based on this autofluorescence multispectral signal.
Khalifa, Marouan; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-08
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C.
2012-01-01
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C. PMID:22873706
Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics
Li, Xiaoli; Zhang, Yuying; He, Yong
2016-01-01
This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701
Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2015-10-01
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Makhoul, Salim; Yener, Sine; Khomenko, Iuliia; Capozzi, Vittorio; Cappellin, Luca; Aprea, Eugenio; Scampicchio, Matteo; Gasperi, Flavia; Biasioli, Franco
2016-09-01
In this study, we demonstrated the suitability of direct injection mass spectrometry headspace analysis for rapid non-invasive quality control of semi-finished dairy ingredients, such as skim milk powder (SMP), whole milk powder (WMP), whey powder (WP) and anhydrous milk fat (AMF), which are widely used as ingredients in the food industry. In this work, for the first time, we applied proton transfer reaction-mass spectrometry (PTR-MS) with a time-of-flight (ToF) analyzer for the rapid and non-invasive analysis of volatile compounds in different samples of SMP, WMP, WP and AMF. We selected different dairy ingredients in various concrete situations (e.g. same producer and different expiration times, different producers and same days of storage, different producers) based on their sensory evaluation. PTR-ToF-MS allowed the separation and characterization of different samples based on the volatile organic compound (VOC) profiles. Statistically significant differences in VOC content were generally coherent with differences in sensory evaluation, particularly for SMP, WMP and WP. The good separation of SMP samples from WMP samples suggested the possible application of PTR-ToF-MS to detect possible cases of adulteration of dairy ingredients for the food industry. Our findings demonstrate the efficient and rapid differentiation of dairy ingredients on the basis of the released VOCs via PTR-ToF-MS analysis and suggest this method as a versatile tool (1) for the facilitation/optimization of the selection of dairy ingredients in the food industry and (2) and for the prompt innovation in the production of dairy ingredients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On
2017-11-01
A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.
Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi
2014-01-01
Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.
NASA Astrophysics Data System (ADS)
Retnaningsih, L.; Muliani, L.; Aggraini, P. N.; Hidayat, J.
2016-11-01
Research, fabrication and material selection for the application of Dye- sensitized solar cell (DSSC) has been performed on glass FTO (Flour Tin Oxide). The material is used in the form of TiO2 paste, TiO2 powder and ZnO powder. Dye-sensitized solar cell (DSSC), is a fotoelektrokimia-based solar cells where the absorption process light done by the dye molecules and the process of separation of inorganic semiconductor materials by charge of Titanium dioxide (TiO2) and Zinc oxide (ZnO). The purpose of this research is to know the exact composition of TiO2 and ZnO materials in order to produce the best efficiency with DSSC. On this research was done making prototype dye-sensitized solar cell using dye Z 907, and semiconductor nanoparticles TiO2 and ZnO powder that is made into a paste by mixing different composition in two variations of samples: A = ZnO (powder) + 40% TiO2 (powder) and B = 60% TiO2 (powder) (40%) + TiO2 (pasta) 60%. The second variation of this high efficiency is value at sample B i.e. TiO2 (powder) + 40% TiO2 (paste) of 60%.
Associating gunpowder and residues from commercial ammunition using compositional analysis.
MacCrehan, William A; Reardon, Michelle R; Duewer, David L
2002-03-01
Qualitatively identifying and quantitatively determining the additives in smokeless gunpowder to calculate a numerical propellant to stabilizer (P/S) ratio is a new approach to associate handgun-fired organic gunshot residues (OGSR) with unfired powder. In past work, the P/S values of handgun OGSR and cartridges loaded with known gunpowders were evaluated. In this study, gunpowder and residue samples were obtained from seven boxes of commercial 38 caliber ammunition with the goals of associating cartridges within a box and matching residues to unfired powders, based on the P/S value and the qualitative identity of the additives. Gunpowder samples from four of the seven boxes of ammunition could be easily differentiated. When visual comparisons of the cartridge powders were considered in addition to composition, powder samples from all seven boxes of ammunition could be reliably differentiated. Handgun OGSR was also collected and evaluated in bulk as well as for individual particles. In some cases, residues could be reliably differentiated based on P/S and additive identity. It was instructive to evaluate the composition of individual unfired gunpowder and OGSR particles. We determined that both the numerical centroid and dispersity of the P/S measurements provide information for associations and exclusions. Associating measurements from residue particles with those of residue samples collected from a test firing of the same weapon and ammunition appears to be a useful approach to account for any changes in composition that occur during the firing process.
Shi, Linli; Lin, Qingyu; Duan, Yixiang
2015-11-01
In view of the inevitable preprocessing of powder samples for LIBS detection, epoxy resin glue was investigated for the first time as a binder of powder samples due to its superior property of improved performance in laser induced breakdown spectroscopy (LIBS) technique as a quantitative analytical tool. For comparative studies of the epoxy resin and traditional polyethylene (PE) pellets in soil, sample detection, the signal intensities of Fe (I) at 404.58 nm, Ca (I) at 443.57 nm, and Cr (I) at 453.52 nm, were studied and subsequently, the calibration curves for these elements were constructed using the standard samples with variable concentrations. The signal intensities of epoxy resin samples were, on average, about 2 times greater than those obtained with the traditional PE pellet samples. Meanwhile, the resin samples showed better R square values of 0.981, 0.985 and 0.979 for curves of Fe (I) 404.58 nm, Ca (I) 443.57 nm, and Cr (I) 453.52 nm, compared to the 0.974, 0.950 and 0.934, of the PE pellet samples. Furthermore, the former represented lower limits of detection (LOD) for Fe, Ca and Cr. These experimental results indicated that this proposed novel method based on epoxy resin can attach samples of properties of high homogeneity, cohesiveness, smoothness and hardness, which are conducive to system stability, testing accuracy and signal enhancement. This method can make LIBS more practical in powder sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.
2014-09-01
Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.
The effect of calcination temperature on the formation and magnetic properties of ZnMn2O4 spinel
NASA Astrophysics Data System (ADS)
Hermanto, B.; Ciswandi; Afriani, F.; Aryanto, D.; Sudiro, T.
2018-03-01
The spinel based on transition-metal oxides has a typical composition of AB2O4. In this study, the ZnMn2O4 spinel was synthesized using a powder metallurgy technique. The Zn and Mn metallic powders with an atomic ratio of 1:2 were mechanically alloyed for 3 hours in aqueous solution. The mixed powder was then calcined in a muffle furnace at elevated temperature of 400, 500 and 600 °C. The X-ray Diffractometer (XRD) was used to evaluate the formation of a ZnMn2O4 spinel structure. The magnetic properties of the sample at varying calcination temperatures were characterized by a Vibrating Sample Magnetometer (VSM). The results show that the fraction of ZnMn2O4 spinel formation increases with the increase of calcination temperature. The calcination temperature also affects the magnetic properties of the samples.
Interaction of pulsed laser radiation with a powder complex based on the Al-Mg-C matrix
NASA Astrophysics Data System (ADS)
Voznesenskaya, A.; Khorkov, K.; Kochuev, D.; Zhdanov, A.; Morozov, V.
2018-01-01
Experimental work on laser melting of the Al powder composition has been carried out. The influence of the duration of the laser pulse on the result of processing the powder composition has been studied. In this work, the powder material was obtained by the joint mechanical activation of matrix material and filler particles in high-energy ball mills. The research work consisted of analyzing the starting material, the phase composition, the particle size distribution, and the morphology of the powder particles. The obtained samples also studied the phase composition, the presence of pores, cracks, the surface of the formed coating, the average height of the roller. The obtained samples were studied by X-ray diffractometry, Raman spectroscopy, and microsections of the structures obtained by optical microscopy. On the basis of the data obtained, conclusions were drawn about changes in the structural-phase composition, the nature of the distribution, the localization of alloying additives in the course of phase-to-phase transitions, and the change in the phase states of alloying additives.
Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.
Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On
2008-04-01
The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.
2017-01-01
This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (−) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed (p<0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar (p>0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher (p<0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities. PMID:28943770
Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn
2017-01-01
This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p <0.05) in the negative control samples, whereas the cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p <0.05) in samples containing natural calcium powder (treatments 1, 2, 3, and 4) than in the positive control. The combination of oyster shell calcium powder and egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.
Pukkila, J; Kokotti, H; Peltonen, K
1989-10-06
A method to estimate occupational exposure to emissions from the curing of polyester powder paints was developed. The method is based on the monitoring only of a certain marker compound in workroom air in order to make the determinations easier. Benzil, reproducibly emitted from all the powders tested, was chosen as the indicator for curing (220 degrees C)-derived emissions. A method for the air sampling and high-performance liquid chromatographic benzil is described. Aspects of the use of marker compounds are discussed.
Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi
2013-05-01
In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brandão, Ana D.; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso
2017-01-01
This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts. PMID:28772882
Brandão, Ana D; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso
2017-05-12
This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts.
Analysis of Brazing Effect on Hot Corrosion Behavior of a Nickel-Based Aerospace Superalloy
NASA Astrophysics Data System (ADS)
Esmaeili, N.; Ojo, O. A.
2018-06-01
The effects of brazing and use of composite powder mixture as interlayer material on hot corrosion resistance of brazed IN738 superalloy were studied. Brazing was observed to result in significant reduction in the hot corrosion resistance of the superalloy. However, application of composite powder mixture, which consists of additive superalloy powder, enhanced the hot corrosion resistance of brazed samples. It is also found that although the use of composite powder mixture increased hot corrosion resistance of brazed alloy, if the additive powder completely melts, which is possible during brazing, it can significantly reduce the hot corrosion resistance of the brazed joint. Elemental micro-segregation during solidification of the joint with completely melted powder mixture produces chromium-depleted zones and consequently reduces hot corrosion resistance, since a uniform distribution and adequate chromium concentration are necessary to combat hot corrosion. This has not been previously reported in the literature and it is crucial to the use of composite powder mixture for enhancing the properties of brazed superalloys.
Quantitative analysis of perfumes in talcum powder by using headspace sorptive extraction.
Ng, Khim Hui; Heng, Audrey; Osborne, Murray
2012-03-01
Quantitative analysis of perfume dosage in talcum powder has been a challenge due to interference of the matrix and has so far not been widely reported. In this study, headspace sorptive extraction (HSSE) was validated as a solventless sample preparation method for the extraction and enrichment of perfume raw materials from talcum powder. Sample enrichment is performed on a thick film of poly(dimethylsiloxane) (PDMS) coated onto a magnetic stir bar incorporated in a glass jacket. Sampling is done by placing the PDMS stir bar in the headspace vial by using a holder. The stir bar is then thermally desorbed online with capillary gas chromatography-mass spectrometry. The HSSE method is based on the same principles as headspace solid-phase microextraction (HS-SPME). Nevertheless, a relatively larger amount of extracting phase is coated on the stir bar as compared to SPME. Sample amount and extraction time were optimized in this study. The method has shown good repeatability (with relative standard deviation no higher than 12.5%) and excellent linearity with correlation coefficients above 0.99 for all analytes. The method was also successfully applied in the quantitative analysis of talcum powder spiked with perfume at different dosages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.
2004-01-01
A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.
NASA Astrophysics Data System (ADS)
Liu, Siqi; Wei, Wei; Bai, Zhiyi; Wang, Xichang; Li, Xiaohong; Wang, Chuanxian; Liu, Xia; Liu, Yuan; Xu, Changhua
2018-01-01
Pearl powder, an important raw material in cosmetics and Chinese patent medicines, is commonly uneven in quality and frequently adulterated with low-cost shell powder in the market. The aim of this study is to establish an adequate approach based on Tri-step infrared spectroscopy with enhancing resolution combined with chemometrics for qualitative identification of pearl powder originated from three different quality grades of pearls and quantitative prediction of the proportions of shell powder adulterated in pearl powder. Additionally, computer vision technology (E-eyes) can investigate the color difference among different pearl powders and make it traceable to the pearl quality trait-visual color categories. Though the different grades of pearl powder or adulterated pearl powder have almost identical IR spectra, SD-IR peak intensity at about 861 cm- 1 (v2 band) exhibited regular enhancement with the increasing quality grade of pearls, while the 1082 cm- 1 (v1 band), 712 cm- 1 and 699 cm- 1 (v4 band) were just the reverse. Contrastly, only the peak intensity at 862 cm- 1 was enhanced regularly with the increasing concentration of shell powder. Thus, the bands in the ranges of (1550-1350 cm- 1, 730-680 cm- 1) and (830-880 cm- 1, 690-725 cm- 1) could be exclusive ranges to discriminate three distinct pearl powders and identify adulteration, respectively. For massive sample analysis, a qualitative classification model and a quantitative prediction model based on IR spectra was established successfully by principal component analysis (PCA) and partial least squares (PLS), respectively. The developed method demonstrated great potential for pearl powder quality control and authenticity identification in a direct, holistic manner.
Liu, Siqi; Wei, Wei; Bai, Zhiyi; Wang, Xichang; Li, Xiaohong; Wang, Chuanxian; Liu, Xia; Liu, Yuan; Xu, Changhua
2018-01-15
Pearl powder, an important raw material in cosmetics and Chinese patent medicines, is commonly uneven in quality and frequently adulterated with low-cost shell powder in the market. The aim of this study is to establish an adequate approach based on Tri-step infrared spectroscopy with enhancing resolution combined with chemometrics for qualitative identification of pearl powder originated from three different quality grades of pearls and quantitative prediction of the proportions of shell powder adulterated in pearl powder. Additionally, computer vision technology (E-eyes) can investigate the color difference among different pearl powders and make it traceable to the pearl quality trait-visual color categories. Though the different grades of pearl powder or adulterated pearl powder have almost identical IR spectra, SD-IR peak intensity at about 861cm -1 (v 2 band) exhibited regular enhancement with the increasing quality grade of pearls, while the 1082cm -1 (v 1 band), 712cm -1 and 699cm -1 (v 4 band) were just the reverse. Contrastly, only the peak intensity at 862cm -1 was enhanced regularly with the increasing concentration of shell powder. Thus, the bands in the ranges of (1550-1350cm -1 , 730-680cm -1 ) and (830-880cm -1 , 690-725cm -1 ) could be exclusive ranges to discriminate three distinct pearl powders and identify adulteration, respectively. For massive sample analysis, a qualitative classification model and a quantitative prediction model based on IR spectra was established successfully by principal component analysis (PCA) and partial least squares (PLS), respectively. The developed method demonstrated great potential for pearl powder quality control and authenticity identification in a direct, holistic manner. Copyright © 2017. Published by Elsevier B.V.
Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana
2017-03-01
The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.
Rao, Galla Narsing; Nagender, Allani; Satyanarayana, Akula; Rao, Dubasi Govardhana
2011-02-01
Quamachil aril powder samples were prepared and evaluated for chemical composition and sensory quality by packing in two packaging systems during storage for six months. The protein contents were 12.4 and 15.0% in white and pink aril powders respectively. The titrable acidity of white and pink aril powders were 2.4 and 4.8% respectively. Ca and Fe contents in white aril powder samples were 60 and 12 mg/100 g where as in pink aril powder 62 and 16 mg/100 g, respectively. The anthocyanin content in pink powder decreased from 50.5 to 11.2 and 14.1 mg/100 g in samples packed in polyethylene (PE) and metalised polyester polyethylene laminated pouches respectively. Total polyphenol amount increased in both the powders irrespective of packaging material. Sorption isotherms indicated that both white and pink aril powders were hygroscopic and equilibrated at low relative humidity of 28 and 32%, respectively.
A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders.
Torri, L; Piochi, M; Marchiani, R; Zeppa, G; Dinnella, C; Monteleone, E
2016-01-01
The present study aimed to present a sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders (GSP). The combined sensory evaluation approach, involving a descriptive and an affective test, respectively, was applied to evaluate the effect of the addition of grape skin powders from 2 grape varieties (Barbera and Chardonnay) at different levels [0.8, 1.6, and 2.4%; weight (wt) powder/wt curd] on the sensory properties and consumer acceptability of innovative soft cow milk cheeses. The experimental plan envisaged 7 products, 6 fortified prototypes (at rates of Barbera and Chardonnay of 0.8, 1.6, and 2.4%) and a control sample, with 1 wk of ripening. By means of a free choice profile, 21 cheese experts described the sensory properties of prototypes. A central location test with 90 consumers was subsequently conducted to assess the acceptability of samples. The GSP enrichment strongly affected the sensory properties of innovative products, mainly in terms of appearance and texture. Fortified samples were typically described with a marbling aspect (violet or brown as function of the grape variety) and with an increased granularity, sourness, saltiness, and astringency. The fortification also contributed certain vegetable sensations perceived at low intensity (grassy, cereal, nuts), and some potential negative sensations (earthy, animal, winy, varnish). The white color, the homogeneous dough, the compact and elastic texture, and the presence of lactic flavors resulted the positive drivers of preference. On the contrary, the marbling aspect, granularity, sandiness, sourness, saltiness, and astringency negatively affected the cheese acceptability for amounts of powder, exceeding 0.8 and 1.6% for the Barbera and Chardonnay prototypes, respectively. Therefore, the amount of powder resulted a critical parameter for liking of fortified cheeses and a discriminant between the 2 varieties. Reducing the GSP particle size and improving the GSP dispersion in the curd would reduce the effect of powder addition on sensory properties, thereby encouraging the use of these polyphenol-based fortifiers in cheeses. The proposed approach allowed the identification of sensory properties critical for product acceptability by consumers, thus helping the optimization of both fortifier characteristics and new cheese production and composition. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
1986-08-01
materials (2.2 w/o and 3.0 w/o MgO). The other two batches (2.8 w/o and 3.1 w/o MgO), of higher purity, were made using E-10 zirconia powder from...CID) powders Two methods have been used for the coprecipitation of doped zirconia powders from solutions of chemical precursors. (4) Method I, for...of powder, approximate sample size 3.2 Kg (6.4 Kg for zirconia powder ); 342 3. Random selection of sample; 4. Partial drying of sample to reduce caking
Cimino, Matthew T
2010-03-01
Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements. (c) Georg Thieme Verlag KG Stuttgart . New York.
Analysis of ultrasonic effect on powder and application to radioactive sample compaction
NASA Astrophysics Data System (ADS)
Kim, Jungsoon; Sim, Minseop; Kim, Jihyang; Kim, Moojoon
2018-07-01
The effect of ultrasound on powder compaction was analyzed. The decreasing in the friction coefficient of the powder sample is derived theoretically. The compaction rate was improved by the ultrasound. We applied the effect to the compaction of environmental radioactive soil samples. From γ-ray spectroscopy analysis, more radionuclides could be detectable in the sample compacted with ultrasound.
NASA Astrophysics Data System (ADS)
Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.
2012-11-01
This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.
Mostafaei, Amir; Hughes, Eamonn T; Hilla, Colleen; Stevens, Erica L; Chmielus, Markus
2017-02-01
Binder jet printing (BJP) is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1-3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017) [4].
Amorphous Silica Micro Powder Additive Influence on Tensile Strength of One-Ply Particle Board
NASA Astrophysics Data System (ADS)
Pitukhin, A. V.; Kolesnikov, G. N.; Panov, N. G.; Vasilyev, S. B.
2018-03-01
The methods and results of experimental investigation on the additive influence of amorphous silica micro powder when mixed in the glue for one-ply particle board are presented in the article. Wooden particles of coniferous and hardwood species as well as glue solution based on carbamide-formaldehyde resin were used for boards manufacturing. The amorphous silica micro powder contained particles on the average 8 μm by the size and specific surface 120…400 m2/g was used in experiment. The samples were tested to determine their physical-mechanical properties. It was found that 1 % amorphous silica micro powder additive increases the breaking point of one-ply particle board under tensile stress by 143 %.
Luminescence properties of Sm3+-doped alkaline earth ortho-stannates
NASA Astrophysics Data System (ADS)
Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas
2014-05-01
A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.
Phase composition and microstructure of WC-Co alloys obtained by selective laser melting
NASA Astrophysics Data System (ADS)
Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.
2018-03-01
Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.
High-throughput Raman chemical imaging for evaluating food safety and quality
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.
2014-05-01
A line-scan hyperspectral system was developed to enable Raman chemical imaging for large sample areas. A custom-designed 785 nm line-laser based on a scanning mirror serves as an excitation source. A 45° dichroic beamsplitter reflects the laser light to form a 24 cm x 1 mm excitation line normally incident on the sample surface. Raman signals along the laser line are collected by a detection module consisting of a dispersive imaging spectrograph and a CCD camera. A hypercube is accumulated line by line as a motorized table moves the samples transversely through the laser line. The system covers a Raman shift range of -648.7-2889.0 cm-1 and a 23 cm wide area. An example application, for authenticating milk powder, was presented to demonstrate the system performance. In four minutes, the system acquired a 512x110x1024 hypercube (56,320 spectra) from four 47-mm-diameter Petri dishes containing four powder samples. Chemical images were created for detecting two adulterants (melamine and dicyandiamide) that had been mixed into the milk powder.
Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder
Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M
2015-01-01
The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723
A new theory for X-ray diffraction.
Fewster, Paul F
2014-05-01
This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.
Masolo, Elisabetta; Meloni, Manuela; Garroni, Sebastiano; Mulas, Gabriele; Enzo, Stefano; Baró, Maria Dolors; Rossinyol, Emma; Rzeszutek, Agnieszka; Herrmann-Geppert, Iris; Pilo, Maria
2014-01-01
We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25. PMID:28344237
Incipient flocculation molding: A new ceramic-forming technique
NASA Astrophysics Data System (ADS)
Arrasmith, Steven Reade
Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder. Densities and microstructures were quite similar to those obtained by dry pressing and sintering these powders. Dried green samples with densities of ca. 57% of theoretical sintered to >96% of theoretical density. This research has demonstrated IFM as a viable ceramic forming process which has potential to be developed into an industrial process. Further research is needed to determine preferred molding parameters, other possible polymer-solvent systems, and investigate the use of other ceramic powders. The concepts developed for IFM may have potential applications in other ceramic forming processes, such as extrusion and rapid prototyping.
NASA Astrophysics Data System (ADS)
Murzakov, M.; Petrovskiy, V.; Birukov, V.; Dzhumaev, P.; Polski, V.; Markushov, Y.; Bykovskiy, D.
Researches of flat samples using laser cladding technology were carried out. Nickel-based powders with the addition of nanopowders of tantalum carbide and tungsten carbide with water-based hydroxyethylcellulose as the binder, were used for slip cladding. Powders are fused on under local argon protection. The experiments were carried out to determine minimal base metal penetration depth, microhardness distribution over cross section of substrate and deposited layers, enrichment level of cladding metal with base components depending on power density and deposition rate. Metallographic studies of obtained overlays were conducted using a high-precision analytical equipment.
NASA Astrophysics Data System (ADS)
Jiang, Chengpeng; Fan, Xi'an; Hu, Jie; Feng, Bo; Xiang, Qiusheng; Li, Guangqiang; Li, Yawei; He, Zhu
2018-04-01
During the past few decades, Bi2Te3-based alloys have been investigated extensively because of their promising application in the area of low temperature waste heat thermoelectric power generation. However, their thermal stability must be evaluated to explore the appropriate service temperature. In this work, the thermal stability of zone melting p-type (Bi, Sb)2Te3-based ingots was investigated under different annealing treatment conditions. The effect of service temperature on the thermoelectric properties and hardness of the samples was also discussed in detail. The results showed that the grain size, density, dimension size and mass remained nearly unchanged when the service temperature was below 523 K, which suggested that the geometry size of zone melting p-type (Bi, Sb)2Te3-based materials was stable below 523 K. The power factor and Vickers hardness of the ingots also changed little and maintained good thermal stability. Unfortunately, the thermal conductivity increased with increasing annealing temperature, which resulted in an obvious decrease of the zT value. In addition, the thermal stabilities of the zone melting p-type (Bi, Sb)2Te3-based materials and the corresponding powder metallurgy samples were also compared. All evidence implied that the thermal stabilities of the zone-melted (ZMed) p-type (Bi, Sb)2Te3 ingots in terms of crystal structure, geometry size, power factor (PF) and hardness were better than those of the corresponding powder metallurgy samples. However, their thermal stabilities in terms of zT values were similar under different annealing temperatures.
Rodrigues Júnior, Paulo Henrique; de Sá Oliveira, Kamila; de Almeida, Carlos Eduardo Rocha; De Oliveira, Luiz Fernando Cappa; Stephani, Rodrigo; Pinto, Michele da Silva; de Carvalho, Antônio Fernandes; Perrone, Ítalo Tuler
2016-04-01
FT-Raman spectroscopy has been explored as a quick screening method to evaluate the presence of lactose and identify milk powder samples adulterated with maltodextrin (2.5-50% w/w). Raman measurements can easily differentiate samples of milk powder, without the need for sample preparation, while traditional quality control methods, including high performance liquid chromatography, are cumbersome and slow. FT-Raman spectra were obtained from samples of whole lactose and low-lactose milk powder, both without and with addition of maltodextrin. Differences were observed between the spectra involved in identifying samples with low lactose content, as well as adulterated samples. Exploratory data analysis using Raman spectroscopy and multivariate analysis was also developed to classify samples with PCA and PLS-DA. The PLS-DA models obtained allowed to correctly classify all samples. These results demonstrate the utility of FT-Raman spectroscopy in combination with chemometrics to infer about the quality of milk powder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Device for preparing combinatorial libraries in powder metallurgy.
Yang, Shoufeng; Evans, Julian R G
2004-01-01
This paper describes a powder-metering, -mixing, and -dispensing mechanism that can be used as a method for producing large numbers of samples for metallurgical evaluation or electrical or mechanical testing from multicomponent metal and cermet powder systems. It is designed to make use of the same commercial powders that are used in powder metallurgy and, therefore, to produce samples that are faithful to the microstructure of finished products. The particle assemblies produced by the device could be consolidated by die pressing, isostatic pressing, laser sintering, or direct melting. The powder metering valve provides both on/off and flow rate control of dry powders in open capillaries using acoustic vibration. The valve is simple and involves no relative movement, avoiding seizure with fine powders. An orchestra of such valves can be arranged on a building platform to prepare multicomponent combinatorial libraries. As with many combinatorial devices, identification and evaluation of sources of mixing error as a function of sample size is mandatory. Such an analysis is presented.
Influences of powder granularity on crystallizing characteristics in mica-contained glass ceramic
NASA Astrophysics Data System (ADS)
Xu, L. N.; Kong, D. Y.; Tian, Q. B.; Lv, Z. J.
2017-09-01
A machinable mica-contained glass ceramic in the SiO2-Al2O3-MgO-F glassy system was prepared by ball milling and hot pressed sintering. Three kinds of powder sizes of base glass were chosen and the effects of the glass powder sizes on the crystallization were explored by x-ray diffraction and scanning electron microscopy techniques. The results indicate that mica crystal as a major phase and KFeSi2O6 and mullite as minor phases are crystallized. Applying pressure at 670°C has little influences on the types of crystal precipitated and the preferential growth of crystal. The powder sizes, however, have obvious effects on the morphology of precipitated mica crystals. In the glass sample with a powder size of d50=16.4 µm, the plate-shaped mica phase is precipitated. As the powder size decrease to 9.9 µm and 3.3 µm, however, the particle-shaped mica is formed instead of the plate-shaped crystals.
A study of cytocompatibility and degradation of iron-based biodegradable materials.
Oriňaková, Renáta; Oriňak, Andrej; Giretová, Mária; Medvecký, L'ubomír; Kupková, Miriam; Hrubovčáková, Monika; Maskal'ová, Iveta; Macko, Ján; Kal'avský, František
2016-02-01
Biodegradable metallic implants are of significant importance in the replacement of bones or the repair of bone defects. Iron-phosphate-coated carbonyl iron powder (Fe/P) was prepared by the phosphating method. Moreover, Fe/P-Mn alloy was produced by sintering the Fe/P powder mixed with manganese powder. Bare carbonyl iron samples and the Fe/P and Fe/P-Mn sintered samples were evaluated for their microstructure, cytotoxicity, and hemocompatibility. The microstructure of the sintered samples was examined using an optical microscope and scanning electron microscopic analysis. Corrosion behavior was evaluated by potentiodynamic polarization in Hank's solution. The in vitro biocompatibilities were investigated by cytotoxicity and hemolysis tests. The results obtained demonstrate that the addition of Mn resulted in higher surface inhomogeneity, porosity and roughness as well as in increased cytotoxicity. The phosphate coating has a moderately negative effect on the cytotoxicity. The corrosion rates determined from Tafel diagrams were ordered in the following sequence: Fe/P-Mn, Fe, Fe/P from high to low. The hemocompatibility of experimental samples was ordered in the following sequence: Fe/P, Fe/P-Mn, Fe from high to low. All samples were found to be hemocompatible. © The Author(s) 2015.
Time resolved fluorescence of cow and goat milk powder
NASA Astrophysics Data System (ADS)
Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.
2017-01-01
Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.
PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Gorti, Sarma B; Peter, William H
A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less
Melamine milk powder and infant formula sold in East Africa.
Schoder, Dagmar
2010-09-01
This is the first study proving the existence of melamine in milk powder and infant formula exported to the African market. A total of 49 milk powder batches were collected in Dar-es-Salaam (Tanzania, East Africa), the center of international trade in East Africa, which serves as a commercial bottleneck and shipment hub for sub-Saharan, Central, and East Africa. Two categories of samples were collected between October and December 2008, immediately after the melamine contamination of Chinese products became public: (i) market brands of all international companies supplying the East African market and (ii) illegally sold products from informal channels. Melamine concentration was determined with the AgraQuant Melamine Sensitive Assay. Despite the national import prohibition of Chinese milk products and unlabeled milk powder in Tanzania, 11% (22 of 200) of inspected microretailers sold milk powder on the local black market. Manufacturers could be identified for only 55% (27) of the 49 investigated batches. Six percent (3 of 49) of all samples and 11% (3 of 27) of all international brand name products tested revealed melamine concentrations up to 5.5 mg/kg of milk powder. This amount represents about twice the tolerable daily intake as suggested by the U.S Food and Drug Administration. Based on our study, we can assume that the number of affected children in Africa is substantial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peric, A.D.
Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing {sup 137}Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect ofmore » the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength resistance up to 13.5% higher than ones prepared with PEHD granules, solely. Improved Mechanical strength resistance of tested samples accommodates trend that functionally depends on the percentage of PEHD powder added in formulation.« less
NASA Technical Reports Server (NTRS)
Saha, C. P.; Bryson, C. E.; Sarrazin, P.; Blake, D. F.
2005-01-01
Many Mars in situ instruments require fine-grained high-fidelity samples of rocks or soil. Included are instruments for the determination of mineralogy as well as organic and isotopic chemistry. Powder can be obtained as a primary objective of a sample collection system (e.g., by collecting powder as a surface is abraded by a rotary abrasion tool (RAT)), or as a secondary objective (e.g, by collecting drill powder as a core is drilled). In the latter case, a properly designed system could be used to monitor drilling in real time as well as to deliver powder to analytical instruments which would perform complementary analyses to those later performed on the intact core. In addition, once a core or other sample is collected, a system that could transfer intelligently collected subsamples of power from the intact core to a suite of analytical instruments would be highly desirable. We have conceptualized, developed and tested a breadboard Powder Delivery System (PoDS) intended to satisfy the collection, processing and distribution requirements of powder samples for Mars in-situ mineralogic, organic and isotopic measurement instruments.
Powder-based 3D printing application for geomechanical testing
NASA Astrophysics Data System (ADS)
Williams, M.; Yoon, H.; Choens, R. C., II; Martinez, M. J.; Dewers, T. A.; Lee, M.
2017-12-01
3D printing of fractured and porous analog geomaterials has the potential to enhance hydrogeological and mechanical interpretations by generating engineered samples in testable configurations with reproducible microstructures and tunable surface and mechanical properties. For geoscience applications, 3D printing technology can be co-opted to print reproducible structures derived from CT-imaging of actual rocks and theoretical algorithms. In particular, the use of 3D printed samples allows us to overcome sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from material variability. In this work, gypsum powder-based 3D printing was used to print cylindrical core samples and block samples with a pre-existing flaw geometry. All samples are printed in three different directions to evaluate the impact of printing direction on mechanical properties. For the cylindrical samples, unconfined compression testing has been performed. For compressive strength, the samples printed perpendicular to the loading direction show stronger than those printed parallel to the loading and at 45 degree. Micro-CT images of the printed samples reveal the uneven spreading of binder, resulting in soft inner core surrounded by stronger outer shell. In particular, the layered feature with binder causes the strong anisotropic properties. This was also confirmed by the wave velocity. For the small block samples ( 6.1cm wide, 10cm high, and 1.25cm thick) with an inclined flaw, uniaxial tests coupled with an array of acoustic emission sensors and digital image correlation revealed that cracks were developed at/near the tip of flaw as expected. Although acoustic events were detected, localization was not detectable mainly due to strong attenuation. Advantage and disadvantage of power-based 3D printing for mechanical testing will be discussed and a few attempts will be presented to improve the applicability of powder-based printing technique. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro
2008-12-01
Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.
Processing and properties of Titanium alloy based materials with tailored porosity and composition
NASA Astrophysics Data System (ADS)
Cabezas-Villa, Jose Luis; Olmos, Luis; Lemus-Ruiz, Jose; Bouvard, Didier; Chavez, Jorge; Jimenez, Omar; Manuel Solorio, Victor
2017-06-01
This paper deals with powder processing of Ti6Al4V titanium alloy based materials with tailored porosity and composition. Ti6Al4V powder was mixed either with salt particles acting as space holder, so as to provide two-scale porosity, or with hard TiN particles that significantly modified the microstructure of the material and increased its hardness. Finally an original three-layer component was produced. Sample microstructure was observed by SEM and micro-tomography with special interest in pore size and shape, inclusion distribution and connectivity. Compression tests provided elastic modulus and yield stress as functions of density. These materials are representative of bone implants subjected to complex biological and mechanical conditions. These results thus open avenues for processing personalized implants by powder metallurgy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haiming; Lin, Yaojun; Seidman, David N.
The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less
Wen, Haiming; Lin, Yaojun; Seidman, David N.; ...
2015-09-09
The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less
Toward a better determination of dairy powders surface composition through XPS matrices development.
Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C
2015-01-01
The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Fei
Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.
Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A
2003-04-23
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.
NASA Astrophysics Data System (ADS)
Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.
2018-04-01
This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.
Rafferty, A; Alsebaie, A M; Olabi, A G; Prescott, T
2009-01-15
Alumina-zirconia composites were prepared by two routes: powder processing, and colloidal processing. Unstabilised zirconia powder was added to alumina in 5 wt%, 10 wt% and 20 wt% quantities. For the colloidal method, zirconium(IV) propoxide solution was added to alumina powder, also in 5 wt%, 10 wt% and 20 wt% quantities. Additions of glacial acetic acid were needed to form stable suspensions. Suspension stability was verified by pH measurements and sedimentation testing. For the powder processed samples Vickers hardness decreased indefinitely with increasing ZrO(2) additions, but for colloidal samples the hardness at first decreased but then increased again above >10 wt% ZrO(2). Elastic modulus (E) values decreased with ZrO(2) additions. However, samples containing 20 wt% zirconia prepared via a colloidal method exhibited a much higher modulus than the powder processed equivalent. This was due to the homogeneous dispersion of zirconia yielding a sample which was less prone to microcracking.
Durejko, Tomasz; Aniszewska, Justyna; Ziętala, Michał; Antolak-Dudka, Anna; Czujko, Tomasz; Varin, Robert A; Paserin, Vlad
2018-05-18
The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.
Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L
2016-06-03
This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tarai, U. K.; Robi, P. S.; Pal, Sukhomay
2018-04-01
A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.
Method for measuring recovery of catalytic elements from fuel cells
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley, NJ
2011-03-08
A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.
Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets
NASA Astrophysics Data System (ADS)
Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul
2017-11-01
A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d < 100 μm. Adding a ball milling step resulted in full density isotropic magnets for d > 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.
New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.
Tang, C C; Bushnell-Wye, G; Cernik, R J
1998-05-01
A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.
Methodology for Producing a Uniform Distribution of UO2 in a Tungsten Matrix
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; O'Conner, Andrew; Hickman, Rickman; Broadway, Jeramie; Belancik, Grace
2015-01-01
Current work at NASA's Marshall Space Flight Center (MSFC) is focused on the development CERMET fuel materials for Nuclear Thermal Propulsion (NTP). The CERMETs consist of uranium dioxide (UO2) fuel particles embedded in a tungsten (W) metal matrix. Initial testing of W-UO2 samples fabricated from fine angular powders performed reasonably well, but suffered from significant fuel loss during repeated thermal cycling due to agglomeration of the UO2 (1). The blended powder mixtures resulted in a non-uniform dispersion of the UO2 particles in the tungsten matrix, which allows rapid vaporization of the interconnected UO2 from the sample edges into the bulk material. Also, the angular powders create areas of stress concentrations due to thermal expansion mismatch, which eventually cracks the tungsten matrix. Evenly coating spherical UO2 particles with chemical vapor deposited (CVD) tungsten prior to consolidation was previously demonstrated to provide improved performance. However, the CVD processing technology is expensive and not currently available. In order to reduce cost and enhance performance, a powder coating process has been developed at MSFC to produce a uniform distribution of the spherical UO2 particles in a tungsten matrix. The method involves utilization of a polyethylene binder during mixing which leads to fine tungsten powders clinging to the larger UO2 spherical particles. This process was developed using HfO2 as a surrogate for UO2. Enough powder was mixed to make 8 discs (2cm diameter x 8mm thickness) using spark plasma sintering. A uniaxial pressure of 50 MPa was used at four different temperatures (2 samples at each temperature). The first two samples were heated to 1400C and 1500C respectively for 5 minutes. Densities for these samples were less than 85% of theoretical, so the time at temperature was increased to 20 minutes for the remaining samples. The highest densities were achieved for the two samples sintered at 1700C (approx. 92% of theoretical). Scanning electron microscopy (SEM) of the mixed powders and the sintered samples along with energy dispersive x-ray analysis was obtained. The SEM of the powders clearly show the fine W powder adhered to the larger HfO2 particles and a uniform distribution of HfO2 particles in a tungsten matrix upon densification. Vicker's Microhardness testing was also performed on all samples using 0.5, 1.0 and 2.0 kg loads. Five indents were made at each load level. All indents were placed in the tungsten matrix to assist as a proxy in measuring densification. The highest hardness value was obtained for the 1700C specimens. The hardness average for these samples was 312.14 MPa. This powder processing method has been applied to W/UO2 powders with the SEM of the powders appearing similar to the W/HfO2 powder images.
SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru
NASA Astrophysics Data System (ADS)
Albright, Douglas C.
2009-05-01
In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.
Ocfentanil overdose fatality in the recreational drug scene.
Coopman, Vera; Cordonnier, Jan; De Leeuw, Marc; Cirimele, Vincent
2016-09-01
This paper describes the first reported death involving ocfentanil, a potent synthetic opioid and structure analogue of fentanyl abused as a new psychoactive substance in the recreational drug scene. A 17-year-old man with a history of illegal substance abuse was found dead in his home after snorting a brown powder purchased over the internet with bitcoins. Acetaminophen, caffeine and ocfentanil were identified in the powder by gas chromatography mass spectrometry and reversed-phase liquid chromatography with diode array detector. Quantitation of ocfentanil in biological samples was performed using a target analysis based on liquid-liquid extraction and ultra performance liquid chromatography tandem mass spectrometry. In the femoral blood taken at the external body examination, the following concentrations were measured: ocfentanil 15.3μg/L, acetaminophen 45mg/L and caffeine 0.23mg/L. Tissues sampled at autopsy were analyzed to study the distribution of ocfentanil. The comprehensive systematic toxicological analysis on the post-mortem blood and tissue samples was negative for other compounds. Based on circumstantial evidence, autopsy findings and the results of the toxicological analysis, the medical examiner concluded that the cause of death was an acute intoxication with ocfentanil. The manner of death was assumed to be accidental after snorting the powder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Improved camera for better X-ray powder photographs
NASA Technical Reports Server (NTRS)
Parrish, W.; Vajda, I. E.
1969-01-01
Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.
NASA Astrophysics Data System (ADS)
Jandura, L.; Burke, K.; Kennedy, B.; Melko, J.; Okon, A.; Sunshine, D.
2009-12-01
The Sample Acquisition/Sample Processing and Handling (SA/SPaH) subsystem for the Mars Science Library (MSL) is a rover-based sampling system scheduled to launch in 2011. The SA/SPaH consists of a powdering drill and a scooping, sieving, and portioning device mounted on a turret at the end of a robotic arm. Also on the turret is a dust removal tool for clearing the surface of scientific targets, and two science instruments mounted on vibration isolators. The SA/SPaH can acquire powder from rocks at depths of 20 to 50 mm and can also pick up loose regolith with its scoop. The acquired sample is sieved and portioned and delivered to one of two instruments inside the rover for analysis. The functionality of the system will be described along with the targets the system can acquire and the sample that can be delivered. Top View of the SA/SPaH on the Rover
Bakri, Barbara; Weimer, Marco; Hauck, Gerrit; Reich, Gabriele
2015-11-01
Scope of the study was (1) to develop a lean quantitative calibration for real-time near-infrared (NIR) blend monitoring, which meets the requirements in early development of pharmaceutical products and (2) to compare the prediction performance of this approach with the results obtained from stratified sampling using a sample thief in combination with off-line high pressure liquid chromatography (HPLC) and at-line near-infrared chemical imaging (NIRCI). Tablets were manufactured from powder blends and analyzed with NIRCI and HPLC to verify the real-time results. The model formulation contained 25% w/w naproxen as a cohesive active pharmaceutical ingredient (API), microcrystalline cellulose and croscarmellose sodium as cohesive excipients and free-flowing mannitol. Five in-line NIR calibration approaches, all using the spectra from the end of the blending process as reference for PLS modeling, were compared in terms of selectivity, precision, prediction accuracy and robustness. High selectivity could be achieved with a "reduced" approach i.e. API and time saving approach (35% reduction of API amount) based on six concentration levels of the API with three levels realized by three independent powder blends and the additional levels obtained by simply increasing the API concentration in these blends. Accuracy and robustness were further improved by combining this calibration set with a second independent data set comprising different excipient concentrations and reflecting different environmental conditions. The combined calibration model was used to monitor the blending process of independent batches. For this model formulation the target concentration of the API could be achieved within 3 min indicating a short blending time. The in-line NIR approach was verified by stratified sampling HPLC and NIRCI results. All three methods revealed comparable results regarding blend end point determination. Differences in both mean API concentration and RSD values could be attributed to differences in effective sample size and thief sampling errors. This conclusion was supported by HPLC and NIRCI analysis of tablets manufactured from powder blends after different blending times. In summary, the study clearly demonstrates the ability to develop efficient and robust quantitative calibrations for real-time NIR powder blend monitoring with a reduced set of powder blends while avoiding any bias caused by physical sampling. Copyright © 2015 Elsevier B.V. All rights reserved.
Preparing rock powder specimens of controlled size distribution
NASA Technical Reports Server (NTRS)
Blum, P.
1968-01-01
Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.
A new theory for X-ray diffraction
Fewster, Paul F.
2014-01-01
This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975
Wu, Di; Cao, Fang; Feng, Shui-Juan; He, Yong
2008-05-01
In the present study, the JASCO Model FTIR-4 000 fourier transform infrared spectrometer (Japan) was used, with a valid range of 7 800-350 cm(-1). Seven brands of milk powder were bought in a local supermarket. Milk powder was compressed into a uniform tablet with a diameter of 5 mm and a thickness of 2 mm, and then scanned by the spectrometer. Each sample was scanned 40 times and the data were averaged. About 60 samples were measured for each brand, and data for 409 samples were obtained. NIRS analysis was based on the range of 4 000 to 6 666 cm(-1), while MIRS analysis was between 400 and 4 000 cm(-1). The protein content was determined by kjeldahl method and the factor 6.38 was used to convert the nitrogen values to protein. The protein content value is the weight of protein per 100 g of milk powder. The NIR data of the milk powder exhibited slight differences. Univariate analysis was not really appropriate for analyzing the data sets. From NIRS region, it could be observed that the trend of different curves is similar. The one around 4 312 cm(-1) embodies the vibration of protein. From MIRS region, it could be determined that there are many differences between transmission value curves. Two troughs around 1 545 and 1 656 cm(-1) stand for the vibration of amide I and II bands of protein. The smoothing way of Savitzky-Golay with 3 segments and zero polynomials and multiplicative scatter correction (MSC) were applied for denoising. First 8 important principle components (PCs), which were obtained from principle component analysis (PCA), were the optimal input feature subset. Least-squares support vector machines was applied to build the protein prediction model based on infrared spectral transmission value. The prediction result was better than that of traditional PLS regression model as the determination coefficient for prediction (R(p)2) is 0.951 7 and root mean square error for prediction (RMSEP) is 0.520 201. These indicate that LS-SVM is a powerful tool for spectral analysis. Moreover, the study compared the prediction results based on near infrared spectral data and mid-infrared spectral data. The results showed that the performance of the model with mid-infrared spectral data was better than the one with near infrared spectra data. It was concluded that infrared spectroscopy technique can do the quantification of protein content in milk powder fast and non-destructively and the process was simple and easy to operate. The results of this study can be used for the design of a simple and non-destructive spectra sensor for the quantitative of protein content in milk powder.
Optical Properties of Natural Minerals in the Far-Infrared
NASA Astrophysics Data System (ADS)
Long, Larry Lavern
The reflectivity of natural mineral powders were measured in the far infrared. The complex indices of refraction were then determined by Kramers-Kronig analysis or dispersive analysis. The samples were constructed by pressing the powdered sample into a 13 mm diameter pellet. A few of the samples that were measured were kaolin, illite, and montmorillonite, clay samples that could not be obtained in large single crystals. For calcite and gypsum crystals a comparison between the single crystal measurements and powder measurements was done to determine the effect of sample preparation on the measured spectra.
Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H
2016-07-01
United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Assessment of phosphate binding by sevelamer carbonate powder for oral suspension mixed in foods.
Hanus, Martin; Zhorov, Eugene; Brommage, Deborah; Plone, Melissa; Holmes-Farley, Stephen Randall
2012-01-01
This study investigated mixing sevelamer carbonate powder with foods and beverages other than water. Food samples, including applesauce, oatmeal, chicken, protein powder, scrambled eggs, ginger ale, and diet ginger ale, were subjected to an in vitro assay, and the difference in the amount of phosphate bound between samples pre-exposed to foods and samples where the drug was exposed to foods concurrently was determined Under these assay conditions, pre-exposure to sevelamer carbonate powder had no effect on the ability to bind phosphate. Clinical testing is needed to further evaluate this finding.
NASA Astrophysics Data System (ADS)
Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung
2017-05-01
We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.
Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa).
Šic Žlabur, Jana; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Bilić, Daniela Patricia; Voća, Sandra
2017-12-05
The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.
2018-03-01
The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.
2012-05-01
reactive milled (RM) experiments forming nickel aluminides [3,4,6,8–10,12,15,16,18,19], titanium - based alloys [5] and combustion reactions in metal...highly heterogeneous and is refined during processing until reaction occurs. The refinement process consists of the cold welding of powder grains within... welding at the surface of deforming particles, which pro-Table 2 Sample preparation measurements corresponding to the designed exper- iments presented
Lin, Po-Hung; Lin, Shun-Ku; Hsu, Ren-Jun; Cheng, Kuan-Chen; Liu, Jui-Ming
2016-01-01
To investigate the pattern of Traditional Chinese Medicine (TCM) usage for urolithiasis patients in Taiwan and to determine the most common Chinese herbal products used for urolithiasis. Retrospective review of urolithiasis patients treated with TCM treatment. One million randomly selected samples in the Taiwanese National Health Insurance Research Database between 1997 and 2008. Eighty-two thousand five hundred and fifty-one newly diagnosed urolithiasis patients. The correlation between TCM treatment, demographic factors, or medical conditions. A total of 62.6% of urolithiasis patients use TCM treatment. A younger age, female gender, polypharmacy, multiple comorbidities, and stone in the lower urinary tract result in a greater tendency to use TCM, after adjusting for demographic factors. Jia-Wei-Xiao-Yao-San Extract Powder and Ji-Sheng-Shen-Qi-Wan Extract Powder are the most frequently prescribed Chinese medicine formulae. This is the first study to examine the use of and the prescription pattern for TCM in urolithiasis patients using a random, national population-based sample. More than 62% of urolithiasis patients use TCM, and patients with polypharmacy, multiple comorbidities, and stone in the ureter are more likely to use TCM. The most frequently prescribed Chinese medicine formulae were Jia-Wei-Xiao-Yao-San Extract Powder and Ji-Sheng-Shen-Qi-Wan Extract Powder, which were reported to retard the progression of renal failure and alleviate flank pain or tenderness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaire, Marc, E-mail: allaire@bnl.gov; Moiseeva, Natalia; Botez, Cristian E.
The correlation coefficients calculated between raw powder diffraction profiles can be used to identify ligand-bound/unbound states of lysozyme. The discovery of ligands that bind specifically to a targeted protein benefits from the development of generic assays for high-throughput screening of a library of chemicals. Protein powder diffraction (PPD) has been proposed as a potential method for use as a structure-based assay for high-throughput screening applications. Building on this effort, powder samples of bound/unbound states of soluble hen-egg white lysozyme precipitated with sodium chloride were compared. The correlation coefficients calculated between the raw diffraction profiles were consistent with the known bindingmore » properties of the ligands and suggested that the PPD approach can be used even prior to a full description using stereochemically restrained Rietveld refinement.« less
NASA Astrophysics Data System (ADS)
D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.
2017-11-01
We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.
2018-01-01
The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.
Balanced mechanical resonator for powder handling device
NASA Technical Reports Server (NTRS)
Sarrazin, Philippe C. (Inventor); Brunner, Will M. (Inventor)
2012-01-01
A system incorporating a balanced mechanical resonator and a method for vibration of a sample composed of granular material to generate motion of a powder sample inside the sample holder for obtaining improved analysis statistics, without imparting vibration to the sample holder support.
Rocket Research at Georgia Tech.
1981-11-01
samples were prepared by dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a...Al, and Carnauba wax powders. Sandwiches with aluminum in the binder lamina. Both pre-oxidation and pre-stretching treatments of aluminum particles...two different processes. 1. Dry-pressing powder mixtures in which polymeric binder is replaced by carnauba wax powder. 2. Hand mixing small samples of
Spectral analysis of allogeneic hydroxyapatite powders
NASA Astrophysics Data System (ADS)
Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.
2017-01-01
In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.
Packing properties of starch-based powders under mild mechanical stress.
Zanardi, I; Gabbrielli, A; Travagli, V
2009-07-01
This study reports the ability to settle of commercial pharmaceutical grade starch samples, both native and pregelatinized. The experiments were carried out under different relative humidity (RH%) conditions and the packing properties were evaluated using both official pharmacopoeial monograph conditions and also modified conditions in order to give a deeper knowledge of tapping under mild mechanical stress. The technique adopted, simulating common pharmaceutical operating practices, appears to be useful to estimate some technologically relevant features of diluent powder materials. Moreover, a general mathematical function has been applied to the experimental data; this could be appropriate for adequately describing material settling patterns and offers practical parameters for characterizing starch powders within the context of a pharmaceutical quality system.
Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V
2016-05-15
The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagamadhu, M.; Jeyaraj, P.; Kumar, G. C. Mohan
2018-04-01
The dynamic characterization of materials plays a major role in the present area. The many researchers are worked on solid materials and its characterization, it can be tested using dynamic mechanical analyzer (DMA), however, no such work on powder a semiliquid samples. The powder and liquid samples can also easily characterization as like solid samples using DMA. These powder samples are analyzed with a material pocket method which can be used to accurately determine very low levels of variation in powder properties, due to the high sensitivity of DMA to glass transitions. No such DMA studies on hydrogel and Gum powders. The gum powders are used in various applications start from food industries, pharmacy, natural gums paste, biomedical applications etc. among all this applications gum Ghatti is one of the powders using for varies applications. Around 50 milligrams of Ghatti powders are placed inside material pocket and analyzed storage modulus (G'), loss modulus (G″) and tan delta (δ). Also, understand the curing and glass transition effect using water, glycerin and superplastic from room temperature to 200°C. The result shows that storage modulus decreases with increase in temperature in pure Ghatti powder. The surprising improvement in storage modulus was found with an increase in temperature with addition of water, glycerin, and superplastic. However, loss modulus and tan delta are also having very significant influence and also shows a clear peak of the tan delta. The loss modulus results were found to be improved by adding solidifying agents, along with this water and superplastic better influence. But glycerine found to be hydrogel in nature and thermodynamic properties are much influenced by frequency.
Physical characterization of whole and skim dried milk powders.
Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano
2017-10-01
The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.
Duct Protection Coating Concept Development and Test
1993-01-01
20 AEDC-TR-92 23 next to the virgin steel. At this time it was also learned that the "A" header has been previously painted. This raised several...mortar and pestle . Some samples were easier to powder than others and, therefore, the fineness of gnnd varied somewhat. In those cases where the rust...powder using a mortar and pestle . This rust is not as tenaciously held to the base metal as that found in the ducts. In general, the salt spray
USDA-ARS?s Scientific Manuscript database
Raman spectroscopy technique has proven to be a reliable method for detection of chemical contaminants in food ingredients and products. To detect each contaminant particle in a food sample, it is important to determine the effective depth of penetration of laser through the food sample and the corr...
Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples.
Cengiz, Mehmet Fatih; Gündüz, Cennet Pelin Boyacı
2013-10-01
In this study, acrylamide exposure from selected cereal-based baby food samples was investigated among toddlers aged 1-3 years in Turkey. The study contained three steps. The first step was collecting food consumption data and toddlers' physical properties, such as gender, age and body weight, using a questionnaire given to parents by a trained interviewer between January and March 2012. The second step was determining the acrylamide levels in food samples that were reported on by the parents in the questionnaire, using a gas chromatography-mass spectrometry (GC-MS) method. The last step was combining the determined acrylamide levels in selected food samples with individual food consumption and body weight data using a deterministic approach to estimate the acrylamide exposure levels. The mean acrylamide levels of baby biscuits, breads, baby bread-rusks, crackers, biscuits, breakfast cereals and powdered cereal-based baby foods were 153, 225, 121, 604, 495, 290 and 36 μg/kg, respectively. The minimum, mean and maximum acrylamide exposures were estimated to be 0.06, 1.43 and 6.41 μg/kg BW per day, respectively. The foods that contributed to acrylamide exposure were aligned from high to low as bread, crackers, biscuits, baby biscuits, powdered cereal-based baby foods, baby bread-rusks and breakfast cereals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optical properties of hydroxyapatite obtained by mechanical alloying
NASA Astrophysics Data System (ADS)
Silva, C. C.; Thomazini, D.; Pinheiro, A. G.; Lanciotti, F.; Sasaki, J. M.; Góes, J. C.; Sombra, A. S. B.
2002-09-01
Calcium phosphate based bioceramics, mainly in the form of hydroxyapatite (HA), have been in use in medicine and dentistry for the last 20 years. Applications include coatings of orthopaedic and dental implants, alveolar ridge augmentation, maxillofacial surgery, otolaryngology, and scaffolds for bone growth and as powders in total hip and knee surgery. These materials exhibit several problems of handling and fabrication, which can be overcome by mixing with a suitable binder. In this paper, mechanical alloying has been used successfully to produce nanocrystalline powders of HA using five different experimental procedures. The milled HA were studied by X-ray powder diffraction, infrared and Raman scattering spectroscopy. For four different procedures, HA was obtained after a couple of hours of milling (on an average, 20 h of milling depending on the reaction procedure). The XRD patterns indicate that the grain size is within the range of 29-103 nm. This milling process, used to produce HA, presents the advantage that melting is not necessary and the powder obtained is nanocrystalline with extraordinary mechanical properties. The material can be compacted and transformed in solid ceramic samples. The high efficiency of the process opens a way to produce commercial amount of nanocrystalline HA. Due to the nanocrystalline character of this powder, their mechanical properties have changed and for this reason a pressure of 1 GPa is enough to shape the sample into any geometry.
Lo Dico, Gianluigi Maria; Galvano, Fabio; Dugo, Giacomo; D'ascenzi, Carlo; Macaluso, Andrea; Vella, Antonio; Giangrosso, Giuseppe; Cammilleri, Gaetano; Ferrantelli, Vincenzo
2018-04-15
The Commission Regulation (EC) Regulation N. 488/2014, established the concentration limits for cadmium in specific products based on cocoa and chocolate products as from January 2019. Based on this information there is a need to determine ultratrace levels of elements that might be presents in cocoa and chocolate products. In this work, the concentrations of Arsenic, Antimony, Cadmium, Chromium, Lead, Selenium and Vanadium were evaluated in cocoa powder and chocolate by the validation of an ICP-MS method. Good selectivity/specificity, recovery, repeatability and within-laboratory reproducibility, LOD, LOQ, range of linearity, standard measurement uncertainty parameters for method validation were achieved, in accordance with Commission Regulation. The cocoa powder revealed the maximum metal concentrations of 0.303 ± 0.035 mg/kg for cadmium, 1.228 ± 0.146 mg/kg for lead and 0.094 ± 0.013 mg/kg for arsenic. A significant difference was found between cocoa powder and chocolate samples (p < .05). Copyright © 2017 Elsevier Ltd. All rights reserved.
Alves, Rita C; Pimentel, Filipa B; Nouws, Henri P A; Silva, Túlio H B; Oliveira, M Beatriz P P; Delerue-Matos, Cristina
2017-03-01
The extraction of Ara h 6 (a peanut allergen) from a complex chocolate-based food matrix was optimized by testing different temperatures, extraction times, and the influence of additives (NaCl and skimmed milk powder) in a total of 36 different conditions. Analyses were carried out using an electrochemical immunosensor. Three conditions were selected since they allowed the extraction of the highest levels of Ara h 6. These extractions were performed using 2g of sample and 20ml of Tris-HNO 3 (pH=8) containing: a) 0.1M NaCl and 2g of skimmed milk powder at 21°C for 60min; b) 1M NaCl and 1g of skimmed milk powder at 21°C for 60min; and c) 2g of skimmed milk powder at 60°C for 60min. Recoveries were similar or higher than 94.7%. This work highlights the importance to adjust extraction procedures regarding the target analyte and food matrix components. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raman spectroscopy-based detection of chemical contaminants in food powders
USDA-ARS?s Scientific Manuscript database
Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary sp...
NASA Technical Reports Server (NTRS)
Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt
2012-01-01
This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the bit is a thick-walled maraging steel collection tube allowing the powdered sample to be augured up the hole into the sample chamber. For robustness, the wall thickness of the DBA was maximized while still ensuring effective sample collection. There are four recesses in the bit tube that are used to retain the fresh bits in their bit box. The rotating bit is supported by a back-to-back duplex bearing pair within a housing that is connected to the outer DBA housing by two titanium diaphragms. The only bearings on the drill in the sample flow are protected by a spring-energized seal, and an integrated shield that diverts the ingested powdered sample from the moving interface. The DBA diaphragms provide radial constraint of the rotating bit and form the sample chambers. Between the diaphragms there is a sample exit tube from which the sample is transferred to the CHIMRA. To ensure that the entire collected sample is retained, no matter the orientation of the drill with respect to gravity during sampling, the pass-through from the forward to the aft chamber resides opposite to the exit tube.
Tanner, Timo; Antikainen, Osmo; Ehlers, Henrik; Yliruusi, Jouko
2017-06-30
With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression. A steel bar is dropped on a punch to compress microcrystalline cellulose and starch samples inside the die. The distance of the bar is being read by a high-accuracy laser displacement sensor which provides a reliable distance-time plot for the bar movement. In-die height and density of the compact can be seen directly from this data, which can be examined further to obtain information on velocity, acceleration and energy distribution during compression. The energy consumed in compact formation could also be seen. Despite the high vertical compression speed, the method was proven to be cost-efficient, accurate and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Chengjiang; Li, Gongke; Zhang, Zhuomin
2015-11-06
Covalent organic polymers (COPs) connected by covalent bonds are a new class of porous network materials with large surface area and potential superiority in sample pretreatment. In this study, a new hydrazone linked covalent organic polymer (HL-COP) adsorbent was well-designed and synthesized based on a simple Schiff-base reaction. The condensation of 1,4-phthalaldehyde and 1,3,5-benzenetricarbohydrazide as organic building blocks led to the synthesis of HL-COP with uniform particle size and good adsorption performance. This HL-COP adsorbent with high hydrophobic property and rich stacking π electrons contained abundant phenyl rings and imine (CN) groups throughout the entire molecular framework. The adsorption mechanism was explored and discussed based on π-π affinity, hydrophobic effect, hydrogen bonding and electron-donor-acceptor (EDA) interaction, which contributed to its strong recognition affinity to target compounds. Enrichment factors were 305-757 for six Sudan dyes by HL-COP micro-solid phase extraction (μ-SPE), indicating its remarkable preconcentration ability. Furthermore, the adsorption amounts by HL-COP μ-SPE were 1.0-11.0 folds as those by three commonly used commercial adsorbents. Then, HL-COP was applied as adsorbent of online μ-SPE coupled with high performance liquid chromatography (HPLC) for enrichment and analysis of trace Sudan dyes in food samples with detection limit of 0.03-0.15μg/L. The method was successfully applied for online analysis of chilli powder and sausage samples. Sudan II and Sudan III in one positive chilli powder sample were actually found and determined with concentrations of 8.3 and 6.8μg/kg, respectively. The recoveries of chilli powder and sausage samples were in range of 75.8-108.2% and 73.8-112.6% with relative standard deviations of 1.2-8.5% and 1.9-9.4% (n=5), respectively. The proposed method was accurate, reliable and convenient for the online simultaneous analysis of trace Sudan dyes in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Raman spectroscopy-based detection of chemical contaminants in food powders
NASA Astrophysics Data System (ADS)
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon; Bae, Abigail
2016-05-01
Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary spatial resolution needed to effectively detect the contaminant particles. This study examined the effective spatial resolution required for detection of maleic acid in tapioca starch and benzoyl peroxide in wheat flour. Each chemical contaminant was mixed into its corresponding food powder at a concentration of 1% (w/w). Raman spectral images were collected for each sample, leveled across a 45 mm x 45 mm area, using different spatial resolutions. Based on analysis of these images, a spatial resolution of 0.5mm was selected as effective spatial resolution for detection of maleic acid in starch and benzoyl peroxide in flour. An experiment was then conducted using the 0.5mm spatial resolution to demonstrate Raman imaging-based quantitative detection of these contaminants for samples prepared at 0.1%, 0.3%, and 0.5% (w/w) concentrations. The results showed a linear correlation between the detected numbers of contaminant pixels and the actual concentrations of contaminant.
Stadler, Richard H; Verzegnassi, Ludovica; Seefelder, Walburga; Racault, Lucie
2015-01-01
A comprehensive global database on semicarbazide (SEM) in foodstuffs and food ingredients is presented, with over 4000 data collected in foods such as seafood (crustaceans, fish powders), meat (beef, chicken powders), dairy products (e.g. raw milk, milk powders, whey, sweet buttermilk powder, caseinate, yoghurt, cheese), honey and other ingredients. The results provide evidence that the presence of SEM in certain dairy ingredients (whey, milk protein concentrates) is a by-product of chemical reactions taking place during the manufacturing process. Of the dairy ingredients tested (c. 2000 samples), 5.3% showed traces of SEM > 0.5 µg/kg. The highest incidence of SEM-positive samples in the dairy category were whey (powders, liquid) and milk protein concentrates (35% positive), with up to 13 µg/kg measured in a whey powder. Sweet buttermilk powder and caseinate followed, with 27% and 9.3% positives, respectively. SEM was not detected in raw milk, or in yoghurt or cheese. Of the crustacean products (shrimp and prawn powders) tested, 44% were positive for SEM, the highest value measured at 284 µg/kg. Fish powders revealed an unexpectedly high incidence of positive samples (25%); in this case, fraudulent addition of shellfish shells or carry-over during processing cannot be excluded. Overall, the data provide new insights into the occurrence of SEM (for dairy products and fish powders), substantially strengthening the arguments that SEM in certain food categories is not a conclusive marker of the use of the illegal antibiotic nitrofurazone.
NASA Astrophysics Data System (ADS)
Razzaqi, A.; Liaghat, Gh.; Razmkhah, O.
2017-10-01
In this paper, mechanical properties of Aluminum (Al) matrix nano-composites, fabricated by Powder Metallurgy (PM) method, has been investigated. Alumina (Al2O3) nano particles were added in amounts of 0, 2.5, 5, 7.5 and 10 weight percentages (wt%). For this purpose, Al powder (particle size: 20 µm) and nano-Al2O3 (particle size: 20 nm) in various weight percentages were mixed and milled in a blade mixer for 15 minutes in 1500 rpm. Then, the obtained mixture, compacted by means of a two piece die and uniaxial cold press of about 600 MPa and cold iso-static press (CIP), required for different tests. After that, the samples sintered in 600°C for 90 minutes. Compression and three-point bending tests performed on samples and the results, led us to obtain the optimized particle size for achieving best mechanical properties.
NASA Astrophysics Data System (ADS)
Kim, Byeong-Keun; Akram, Kashif; Kim, Cheong-Tae; Kang, Na-Roo; Lee, Jin-Won; Ryang, Jun-Hwan; Kwon, Joong-Ho
2012-08-01
For the identification of irradiated food, current analysis methods have limitations regarding presence and stability of radiation-induced markers. In this study, different spice blends with small quantity of different irradiated (0, 1 and 10 kGy) spice powders, such as red pepper, garlic or ginger, were investigated using PSL and TL techniques. In PSL-based screening analysis, the spice blends containing 10% of irradiated materials (1 or 10 kGy) were determined as intermediate or positive. In TL results, the blends containing 1% of 1 or 10 kGy-irradiated spices showed the typical TL glow curves that could be interpreted as positive. The blends with irradiated garlic powder provided more good results where identification was possible at 0.5% mixing of irradiated sample. However, the TL ratios of all spice blends were <0.1 and only TL glow curve shape and intensity may be used to discriminate the samples having irradiated component.
Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne
2016-01-01
Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321
Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester
Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.
2017-01-01
Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167
Yu, Chunhe; Hu, Bin
2012-02-15
A simple, rapid, sensitive, inexpensive and less sample consuming method of C(18)-stir bar sorptive extraction (SBSE)-high performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) was proposed for the determination of six sulfonamides in milk and milk powder samples. C(18) silica particles coated stir bar was prepared by adhesion method, and two kinds of adhesive glue, polydimethylsiloxane (PDMS) sol and epoxy glue were tried. It was found that the C(18)-coated stir bar prepared by PDMS sol as adhesive glue is more robust than that prepared by epoxy glue when liquid desorption was employed, in terms of both lifetime and organic solvent tolerance. The preparation of C(18) stir bar was simple with good mechanic strength and the stir bar could be reused for more than 20 times. Granular coating has relatively high specific surface area and is propitious to sorptive extraction based process. Compared to conventional PDMS SBSE coating, C(18) coating shows good affinity to the target polar/weak polar sulfonamides. To achieve optimum SBSE extraction performance, several parameters including extraction and desorption time, ionic strength, sample pH and stirring speed were investigated. The detection limits of the proposed method for six sulfonamides were in the range of 0.9-10.5 μg/L for milk and 2.7-31.5 μg/kg for milk powder. Good linearities were obtained for sulfonamides with the correlation coefficients (R) above 0.9922. Finally, the proposed method was successfully applied to the determination of sulfonamides in milk and milk powder samples and satisfied recoveries of spiked target compounds in real samples were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng
2018-02-01
A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.
Metal-Assisted Laser-Induced Gas Plasma for the Direct Analysis of Powder Using Pulse CO2 Laser
NASA Astrophysics Data System (ADS)
Khumaeni, A.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.
2017-01-01
Analysis of powder samples available in small quantities has been carried out using metal-assisted gas plasma by utilizing a transversely excited atmospheric (TEA) CO2 laser. The powder was homogeneously mixed with Si grease, and the mixed powder was painted on a metal subtarget. When a TEA CO2 laser was directly focused on the metal subtarget at atmospheric pressure of He gas, a high-temperature He gas plasma was induced. It is assumed that the powder particles were vaporized to be effectively atomized and excited in the gas plasma region. This method has been employed in the rapid analyses of elements in organic and inorganic powder samples present in small quantities. Detection of trace elements of Cr and Pb has been successfully made by using the supplement powder and loam soil, respectively. The detection limits of Pb in loam soil were approximately 20 mg/kg.
The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Yamamoto, Yukinori; Peter, William H
This paper investigated the die-pressing and sintering behavior of the low-cost CP-Ti and Ti-6Al- 4V powders made by the Armstrong Process . The Armstrong powders have an irregular coral like, dendritic morphology, with a dendrite size of approximately 2-5 m. As-received as well as milled powders were uniaxially pressed at designated pressures up to 690 MPa to form disk samples with different aspect ratios. In the studied pressure range, an empirical powder compaction equation was applied to linearize the green density pressure relationship, and powder compaction parameters were obtained. The Armstrong Ti-64 powder exhibited a significantly higher sinterability than themore » CP-Ti powder. This was explained to be due to the higher diffusivity of V at the sintering temperature. The Ti-64 samples with a green density of 71.0% increased to 99.6% after sintering at 1300oC for 1 hour. An ex-situ technique was used to track the powder morphology change before and after sintering.« less
Powder metallurgy technology of NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.
2008-05-01
Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.
Watterson, M J; Kent, D J; Boor, K J; Wiedmann, M; Martin, N H
2014-01-01
Dairy powder products (e.g., sweet whey, nonfat dry milk, acid whey, and whey protein concentrate-80) are of economic interest to the dairy industry. According to the US Dairy Export Council, customers have set strict tolerances (<500 to <1,000/g) for thermophilic and mesophilic spores in dairy powders; therefore, understanding proliferation and survival of sporeforming organisms within dairy powder processing plants is necessary to control and reduce sporeformer counts. Raw, work-in-process, and finished product samples were collected from 4 dairy powder processing facilities in the northeastern United States over a 1-yr period. Two separate spore treatments: (1) 80°C for 12min (to detect sporeformers) and (2) 100°C for 30min (to detect highly heat resistant sporeformers) were applied to samples before microbiological analyses. Raw material, work-in-process, and finished product samples were analyzed for thermophilic, mesophilic, and psychrotolerant sporeformers, with 77.5, 71.0, and 4.6% of samples being positive for those organisms, respectively. Work-in-process and finished product samples were also analyzed for highly heat resistant thermophilic and mesophilic sporeformers, with 63.7 and 42.6% of samples being positive, respectively. Sporeformer prevalence and counts varied considerably by product and plant; sweet whey and nonfat dry milk showed a higher prevalence of thermophilic and mesophilic sporeformers compared with acid whey and whey protein concentrate-80. Unlike previous reports, we found limited evidence for increased spore counts toward the end of processing runs. Our data provide important insight into spore contamination patterns associated with production of different types of dairy powders and support that thermophilic sporeformers are the primary organism of concern in dairy powders. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The determination of the energy values and the composition analysis of M-16 rifle black powders
NASA Astrophysics Data System (ADS)
Satee, R.; Dararutana, P.; Phutdhawong, W.
2017-09-01
The determination of the energy values, specifically the heat of combustion of various M-16 black powders was the important part of the bullet efficiency investigations. The calorimetric bomb is commonly used for these determinations. Four M-16 black powders from the different sources were used as samples for this research. It was found that, after using calorimetric bomb technique, the gross heating value in Joules/g of sample S1-S4 were 10,647, 10,416, 5,281 and 3,878 respectively. The chemical compositions of carbon (C), hydrogen (H), nitrogen (N) and sulfer (S) have also been determined. The results indicated that carbon and nitrogen compositions of sample S1 shown the highest values and provided little differences with sample S2 while sample S3 and S4 shown the lowest carbon and nitrogen percentage composition. The hydrogen composition of all samples was equally valued, however, only sample 3 and 4 displayed sulfur values while no sulfur values were detected from sample 1 and 2. From these results, the heat values and chemical composition of M-16 black powders were characterized their sources and the energy values might be estimated from the amount of carbon and nitrogen in the black powders. Thus, it would be possible to use this determination analysis in the forensic investigation.
Synchrotron powder diffraction on Aztec blue pigments
NASA Astrophysics Data System (ADS)
Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.
2008-01-01
Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.
Okuda, Tomoyuki
2017-01-01
Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.
NASA Astrophysics Data System (ADS)
Susilawati, Doyan, Aris; Khalilurrahman
2017-01-01
Have been successfully synthesized barium powder doping Manganese hexaferrite with the expected potential as anti-radar material. Synthesis was done by using the co-precipitation method, the variation of the variable x concentrations used were 0; 0.2; 0.4; and 0.6 and calcined at temperatures of 400, 600 and 800°C. Characterization powders of hexaferrite have used XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), LCR (inductance, capacitance, and resistance) meter, and VSM (Vibrating Sample Magnetometer). The higher the concentration and temperature of calcinations given affect the color of the powder. The test results using XRD indicates that it has formed barium hexaferrite phase with a hexagonal crystal structure. Tests using SEM showed that all the constituent elements barium powder hexaferrite by doping Manganese powders have been spread evenly. XRD test results were confirmed by a test using a TEM showing the crystal structure and the powder was sized nano particles. The results from the LCR meter showed that the barium powder hexaferrite by doping Manganese that has been synthesized classified in semiconductor materials. The result from VSM showed that the value of coercivity magnetic powder doped barium hexaferrite Manganese is smaller when compared with barium hexaferrite without doping and belong to the soft magnetic. Based on the results of the synthesis and characterization, we can conclude that the barium powder heksaferrite by doping Manganese potential as a material anti-radar.
NASA Astrophysics Data System (ADS)
Knight, Travis Warren
Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.
Low-Cost Chemical-Responsive Adhesive Sensing Chips.
Tan, Weirui; Zhang, Liyuan; Shen, Wei
2017-12-06
Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.
Manufacturing techniques for titanium aluminide based alloys and metal matrix composites
NASA Astrophysics Data System (ADS)
Kothari, Kunal B.
Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.
Mashile, Phodiso P; Mpupa, Anele; Nomngongo, Philiswa N
2018-04-01
Microcystin LR (MC-LR) is a highly toxic compound and it is known for its adverse health effect on both humans and animals. Due to the ineffectiveness of conventional water treatments methods, for the past decades, researchers have been developing cost-effective ways of removing MC-LR from water bodies. This study reports the application of powdered activated carbon (PAC) obtained from the waste tyre for the removal of MC-LR. The choice of the adsorbent was chosen due to its attractive properties. The prepared tyre-based PAC was found to have the large surface area (1111 m 2 g -1 ). The detection of MC-LR was achieved using high performance liquid chromatography (HPLC) coupled with a PDA detector. The experimental parameters (such as optimum pH, dosage and contact time) affecting the removal of MC-LR using tyre based-powdered activated carbon were optimized using response surface methodology (RSM). Maximum removal of MC-LR was achieved under the following optimum conditions; sample pH 4, carbon dosage concentration 10,000 mg L -1 and contact time of 34 min. Under optimum conditions, kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. The optimized method was applied for the removal of MC-LR in wastewater sample. The effluent and influent sample contained initial concentrations ranging from 0.52 to 8.54 μg L -1 and the removal efficiency was 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spore populations among bulk tank raw milk and dairy powders are significantly different.
Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin
2015-12-01
To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Sharissa Gay
2005-09-01
Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concernsmore » regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both permeametry and gas absorption methods, enabling the PSD to be linked to the SSA for these PETN powders. Consistent characterization of other PETN powders can be performed using the appropriate sample-specific preparation method, so that future studies can accurately identify the effect of changes in the PSD on the SSA and ultimately model EBW performance.« less
Juodeikiene, Grazina; Zadeike, Daiva; Viskelis, Pranas; Urbonaviciene, Dalia
2015-01-01
Summary In this study, the influence of lactic acid fermentation on the quality of tomato powder was evaluated. The effect of adding fermented tomato powder to ready-to-cook minced pork meat to improve its nutritional value and sensory characteristics was also analysed. The cell growth of Lactobacillus sakei (7.53 log CFU/g) was more intense in the medium containing tomato powder, compared to the growth of Pediococcus pentosaceus (6.35 log CFU/g) during 24 h of fermentation; however, higher acidity (pH=4.1) was observed in the tomato powder samples fermented with Pediococcus pentosaceus. The spontaneous fermentation of tomato powder reduced cell growth by 38% and pH values slightly increased to 4.17, compared to the fermentation with pure LAB. The lactofermentation of tomato powder increased the average β-carotene and lycopene mass fractions by 43.9 and 50.2%, respectively, compared with the nonfermented samples. Lycopene and β-carotene contents in the ready-to-cook minced pork meat were proportional to the added tomato powder (10 and 30%). After cooking, β-carotene and lycopene contents decreased, on average, by 24.2 and 41.2%, respectively. The highest loss (up to 49.2%) of carotenoids was found in samples with 30% nonfermented tomato powder. Tomato powder fermented with 10% Lactobacillus sakei KTU05-6 can be recommended as both a colouring agent and a source of lycopene in the preparation of ready-to-cook minced pork meat. PMID:27904345
Production of crispy bread snacks containing chicken meat and chicken meat powder.
Cakmak, Hulya; Altinel, Burak; Kumcuoglu, Seher; Kisla, Duygu; Tavman, Sebnem
2016-01-01
Chicken meat in two different forms (chicken meat and chicken meat powder) were added into white flour and whole wheat blend baguette bread formulations for protein enrichment and finally developing new and healthy snacks. The chicken meat and powder levels were 10% for white flour baguette, and 15% for whole wheat blend. The dried baguette samples were packaged under 100% N2, and physical, chemical, microbiological and sensorial properties were evaluated during 3 months of storage. Protein content of chicken meat powder added samples were found statistically higher than chicken meat added samples. Hardness of the snacks was significantly affected from type of chicken meat, such as values were higher for chicken meat added samples than chicken meat powder added samples. Lipid oxidation of the snacks was determined by TBA analysis, and TBA value for whole wheat mixture snack with 15% of chicken meat was the highest among all during storage. The highest overall acceptance score was obtained from white flour snack with 10% chicken meat. There was no coliform bacteria detected during storage and the results of yeast-mold count and aerobic plate count of snacks remained between the quantitative ranges.
NASA Astrophysics Data System (ADS)
Yahya, S. S.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Kresnodrianto, Mahiswara, E. P.
2018-05-01
Recently, nanofluids have been widely used in heat treatment industries as quench medium with better quenching performance. The thermal conductivity of nanofluids is higher compared to conventional quench medium such as polymer, water, brine, and petroleum-based oil. This characteristic can be achieved by mixing high thermal conductivity particles in nanometer scale with a fluid as base. In this research, carbon powder and distilled water were used as nanoparticles and base respectively. The carbon source used in this research was laboratory grade carbon powder, and activated carbon as a cheaper alternative source. By adjusting the percentage of dispersed carbon particles, thermal conductivity of nanofluids could be controlled as needed. To obtain nanoscale carbon particles, planetary ball mill was used to grind laboratory-grade carbon and active carbon powder to further decrease its particle size. This milling method will provide nanoparticles with lower production cost. Milling speed and duration were set at 500 rpm and 15 hours. Scanning electron microscope (SEM) and Energy Dispersive X-Ray (EDX) were carried out respectively to determine the particle size, material identification, particle morphology. The carbon nanoparticle content in nanofluids quench mediums for this research were varied at 0.1, 0.3, and 0.5 % vol. Furthermore, these mediums were used to quench AISI 1045 carbon steel samples which had been annealed at 1000 °C. Hardness testing and metallography observation were then conducted to check the effect of different quench medium in steel samples. Preliminary characterizations showed that the carbon particle dimension after milling was hundreds of nanometers, or still in sub-micron range. Therefore, the milling process parameters are need to be optimized further. EDX observation in laboratory-grade carbon powder showed that the powder was pure carbon as expected for, but in activated carbon has some impurities. The nanofluid itself, however, was stable, despite the hydrophobic characteristic of carbon. The effect of different carbon percentages in nanofluid could give an illustration for optimal ratio of nanofluid to achieve the desired material properties.
Investigation of metal ions sorption of brown peat moss powder
NASA Astrophysics Data System (ADS)
Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir
2017-11-01
For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.
Microstructure study of direct laser fabricated Ti alloys using powder and wire
NASA Astrophysics Data System (ADS)
Wang, Fude; Mei, J.; Wu, Xinhua
2006-11-01
A compositionally graded material has been fabricated using direct laser fabrication (DFL). Two types of feedstock were fed simultaneously into the laser focal point, a burn resistant (BurTi) alloy Ti-25V-15Cr-2Al-0.2C powder and a Ti-6Al-4V wire. The local composition of the alloy was changed by altering the ratio of powder to wire by varying the feed rate of the powder whilst maintaining a fixed feed rate of wire-feed. For the range of compositions between about 20% and 100% BurTi only the beta phase was observed and the composition and lattice parameter varied monotonically. The grain size was found to be much finer in these functionally graded samples than in laser fabricated Ti64. Some samples were made using the wire-feed alone, where it was found that the microstructure is different from that found when using powder feed alone. The results are discussed in terms of the power requirements for laser fabrication of powder and wire samples.
Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra
2016-05-03
A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method
Lu, Zhaolin
2017-01-01
Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925
Process observation in fiber laser-based selective laser melting
NASA Astrophysics Data System (ADS)
Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton
2015-01-01
The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the addition of cognitive functions to the manufacturing system to the extent that the system could track its own process. The results are based on analyzing and redesigning the optical train, in combination with a real-time signal acquisition system which provides a solution to certain technological barriers.
Selective laser sintering of cermet mixtures Ti and B4C
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Malikov, A. G.; Orishich, A. M.
2016-10-01
The work is dedicated to the creation of a new heterogeneous ceramic-composite materials based on boron carbide and titanium, using a laser, in order to further layer-growing 3D products from these materials. The paper discussed two methods for obtaining ceramic-composite material: laser sintering of boron carbide powder and a metal-melting the powder mixture. We study the microstructure of the samples at various energy process modes. An attempt was made to justify the applicability of the regime used for the cultivation of layered products.
Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Salvail, Pat; Panda, Binayak; Hickman, Robert R.
2007-01-01
The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.
Analysis of suspicious powders following the post 9/11 anthrax scare.
Wills, Brandon; Leikin, Jerrold; Rhee, James; Saeedi, Bijan
2008-06-01
Following the 9/11 terrorist attacks, SET Environmental, Inc., a Chicago-based environmental and hazardous materials management company received a large number of suspicious powders for analysis. Samples of powders were submitted to SET for anthrax screening and/or unknown identification (UI). Anthrax screening was performed on-site using a ruggedized analytical pathogen identification device (R.A.P.I.D.) (Idaho Technologies, Salt Lake City, UT). UI was performed at SET headquarters (Wheeling, IL) utilizing a combination of wet chemistry techniques, infrared spectroscopy, and gas chromatography/mass spectroscopy. Turnaround time was approximately 2-3 hours for either anthrax or UI. Between October 10, 2001 and October 11, 2002, 161 samples were analyzed. Of these, 57 were for anthrax screening only, 78 were for anthrax and UI, and 26 were for UI only. Sources of suspicious powders included industries (66%), U.S. Postal Service (19%), law enforcement (9%), and municipalities (7%). There were 0/135 anthrax screens that were positive. There were no positive anthrax screens performed by SET in the Chicago area following the post-9/11 anthrax scare. The only potential biological or chemical warfare agent identified (cyanide) was provided by law enforcement. Rapid anthrax screening and identification of unknown substances at the scene are useful to prevent costly interruption of services and potential referral for medical evaluation.
Transport Powder and Liquid Samples by Surface Acoustic Waves
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar
2009-01-01
Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.
Electromagnetic properties of photodefinable barium ferrite polymer composites
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun; Lee, Jaejin; Williams, John D.
2014-07-01
This article reports the magnetic and microwave properties of a Barium ferrite powder suspended in a polymer matrix. The sizes for Barium hexaferrite powder are 3-6 μm for coarse and 0.8-1.0 μm for the fine powder. Ratios 1:1 and 3:1 (by mass) of ferrite to SU8 samples were characterized and analyzed for predicting the necessary combinations of these powders with SU8 2000 Negative photoresist. The magnetization properties of these materials were equally determined and were analyzed using Vibrating Sample Magnetometer (VSM). The Thru, Reflect, Line (TRL) calibration technique was employed in determining complex relative permittivity and permeability of the powders and composites with SU8 between 26.5 and 40 GHz.
NASA Astrophysics Data System (ADS)
Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong
2018-01-01
Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.
Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan
2014-01-01
Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468
Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul
2013-03-25
A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture. Copyright © 2013 Elsevier B.V. All rights reserved.
Rheological, physical and sensorial evaluation of cookies supplemented with dairy powders.
Sert, Durmuş; Demir, M Kürşat; Ertaş, Nilgün
2016-04-01
The effect of dairy powders (skim milk powder, butter milk powder, sodium caseinate, yoghurt powder, milk powder and colostrum powder) on cookie quality was studied. Cookies were tested for aw, calorimetric energy, diameter, thickness, spread ratio, breaking strength, colour, dough consistency and sensory evaluation. The lowest aw values were obtained for cookies containing colostrum powder; also the highest calorimetric energy values were obtained from the colostrum powder-added cookies. Diameter values of cookies with the addition of skim milk powder, butter milk powder, yoghurt powder and milk powder were higher than that of sodium caseinate and colostrum powder. The lowest spread ratio was measured in the cookie samples with added skim milk powder. The addition of yoghurt powder gave the highest breaking strength of cookies. Cookies with sodium caseinate addition exhibited the highest lightness (L*) values than the other cookies with different dairy powders. Cookies prepared with butter milk powder received the highest scores for colour, appearance, texture, crispness and overall acceptability. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Revathy, J. S.; Anooja, J.; Krishnaveni, R. B.; Gangadathan, M. P.; Varier, K. M.
2018-06-01
A light-weight multichannel analyser (MCA)-based γ -ray spectrometer, developed earlier at the Inter University Accelerator Centre, New Delhi, has been used as part of the PG curriculum, to determine the effective atomic numbers for γ attenuation of ^{137}Cs γ -ray in different types of samples. The samples used are mixtures of graphite, aluminum and selenium powders in different proportions, commercial and home-made edible powders, fruit and vegetable juices as well as certain allopathic and ayurvedic medications. A narrow beam good geometry set-up has been used in the experiments. The measured attenuation coefficients have been used to extract effective atomic numbers in the samples. The results are consistent with XCOM values wherever available. The present results suggest that the γ attenuation technique can be used as an effective non-destructive method for finding adulteration of food materials.
Clark, Melanie L.; Mason, Jon P.
2006-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.
NASA Astrophysics Data System (ADS)
Hernawati; Setiawan, N. A.; Shintawati, R.; Priyandoko, D.
2018-05-01
The purpose of this research was to know the role of red dragon fruit peel powder to total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and weight in the male hyperlipidaemic Balb-C mice (Mus musculus). This study used a completely randomized design (CRD) and four replicates for each dose treatments. Samples were 24 male mice that divided into six groups i.e. positive and negative controls, doses of 50; 100; 150 and 200 mg/kgBW/days red dragon fruit peel powder. Before being given treatment, mice were given feed containing high fat for 20 days until experiencing conditions hyperlipidaemia. The red dragon fruit peel powder was given at oral with used gavage for 30 days. Blood samples were taken from the tail on vena caudalis. Blood lipid samples were analysed at enzymatic with BIOLABO kits. The results of this study indicate that after administration of red dragon fruit peel powder total cholesterol levels, triglycerides and LDL-c decreased, along with increasing doses of red dragon fruit peel powder for 30 days. Furthermore showed that dragon fruit powder can increase HDL-c levels. The conclusion of this research was The red dragon fruit peel powder can improve blood lipid level of male Balb-c mice hyperlipidaemia.
Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy
Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane
2016-01-01
Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130
NASA Astrophysics Data System (ADS)
Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.
2017-03-01
The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.
Mayville, Francis C; Wigent, Rodney J; Schwartz, Joseph B
2006-01-01
The purpose of this work was to determine the total amount of water contained in dry powder and wet bead samples of microcrystalline cellulose, MCC, (Avicel PH-101), taken from various stages of the extrusion/marumerization process used to make beads and to determine the kinetic rates of water release from each sample. These samples were allowed to equilibrate in controlled humidity chambers at 25 degrees C. The total amount of water in each sample, after equilibration, was determined by thermogravimetric analysis (TGA) as a function of temperature. The rates of water release from these samples were determined by using isothermal gravimetric analysis (ITGA) as a function of time. Analysis of the results for these studies suggest that water was released from these systems by several different kinetic mechanisms. The water release mechanisms for these systems include: zero order, second order, and diffusion controlled kinetics. It is believed that all three kinetic mechanisms will occur at the same time, however; only one mechanism will be prominent. The prominent mechanism was based on the amount of water present in the sample.
Detecting the Water-soluble Chloride Distribution of Cement Paste in a High-precision Way.
Chang, Honglei; Mu, Song
2017-11-21
To improve the accuracy of the chloride distribution along the depth of cement paste under cyclic wet-dry conditions, a new method is proposed to obtain a high-precision chloride profile. Firstly, paste specimens are molded, cured, and exposed to cyclic wet-dry conditions. Then, powder samples at different specimen depths are grinded when the exposure age is reached. Finally, the water-soluble chloride content is detected using a silver nitrate titration method, and chloride profiles are plotted. The key to improving the accuracy of the chloride distribution along the depth is to exclude the error in the powderization, which is the most critical step for testing the distribution of chloride. Based on the above concept, the grinding method in this protocol can be used to grind powder samples automatically layer by layer from the surface inward, and it should be noted that a very thin grinding thickness (less than 0.5 mm) with a minimum error less than 0.04 mm can be obtained. The chloride profile obtained by this method better reflects the chloride distribution in specimens, which helps researchers to capture the distribution features that are often overlooked. Furthermore, this method can be applied to studies in the field of cement-based materials, which require high chloride distribution accuracy.
Zherebtsov, Dmitry; Radionova, Ludmila
2018-01-01
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples. PMID:29735932
Baitimerov, Rustam; Lykov, Pavel; Zherebtsov, Dmitry; Radionova, Ludmila; Shultc, Alexey; Prashanth, Konda Gokuldoss
2018-05-07
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples.
Degradation of chitosan by gamma ray with presence of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid
2014-02-01
The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah
The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan evenmore » at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.« less
Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
Guitar, A; Vigna, G; Luppo, M I
2009-04-01
Thermohydrogen processing (THP), a technique in which hydrogen is used as a temporary alloying element, can refine the microstructure and improve the final mechanical properties of the Ti-6 Al-4V alloy. THP allows microstructural modification of titanium alloys near net shape such as biomaterial components obtained by powder metallurgy and castings, since it does not require mechanical working. Two THP, called THP-A and THP-B, have been evaluated in samples of Ti-6Al-4V with a coarse and lamellar microstructure typical of castings and powder metallurgy. The THP-A is based in the eutectoid decomposition of the beta(H) phase to alpha phase and hydride phase. The THP-B is based in the isothermal decomposition of alpha('') martensite phase, obtained by quenching of hydrogenated samples. The refinement of the microstructure due to THP has been evaluated by means of optical and electron microscopy. Tensile tests showed that while both processes were able to increase the strength of the alloy as compared with the starting material, the ductility in samples subjected to THP-B was severely reduced.
Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan
2012-01-01
We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.
NASA Astrophysics Data System (ADS)
Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.
2014-06-01
Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry
NASA Astrophysics Data System (ADS)
Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch
2011-01-01
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.
Design of Wear-Resistant Austenitic Steels for Selective Laser Melting
NASA Astrophysics Data System (ADS)
Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.
2018-03-01
Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying
Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu
2015-01-01
In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708
Ding, X; Liang, X; Chao, Y; Han, X
2000-06-01
To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.
Miola, Marta; Cochis, Andrea; Kumar, Ajay; Arciola, Carla Renata; Rimondini, Lia; Verné, Enrica
2018-06-06
To promote osteointegration and simultaneously limit bacterial contamination without using antibiotics, we designed innovative composite cements containing copper (Cu)-doped bioactive glass powders. Cu-doped glass powders were produced by a melt and quenching process, followed by an ion-exchange process in a Cu salt aqueous solution. Cu-doped glass was incorporated into commercial polymethyl methacrylate (PMMA)-based cements with different viscosities. The realized composites were characterized in terms of morphology, composition, leaching ability, bioactivity, mechanical, and antibacterial properties. Glass powders appeared well distributed and exposed on the PMMA surface. Composite cements showed good bioactivity, evidencing hydroxyapatite precipitation on the sample surfaces after seven days of immersion in simulated body fluid. The leaching test demonstrated that composite cements released a significant amount of copper, with a noticeable antibacterial effect toward Staphylococcus epidermidis strain. Thus, the proposed materials represent an innovative and multifunctional tool for orthopedic prostheses fixation, temporary prostheses, and spinal surgery.
Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.
Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D
2003-01-01
Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.
Dutel, Guy-Daniel; Langlois, Patrick; Tingaud, David; Vrel, Dominique; Dirras, Guy
2017-04-01
Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS) are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.
Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter
2007-03-28
MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.
Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E
2012-10-01
The applicability of irregular prealloyed Ti-6Al-4V powder for the fabrication of titanium products by pressing and sintering and its employment as a master alloy to obtain the Ti-3Al-2.5V alloy was studied. To this end, the starting powders were characterised by dilatometry, differential thermal analysis and XRD. Green samples were obtained by cold uniaxial pressing, and the evolution of the microstructure over the sintering temperature range 900-1400°C was studied. The variation of the final density and mechanical properties with the sintering temperature was considered. Based on the study carried out, it can be stated that more reliable powders are needed to open the titanium market to new applications. A relative density of 95% and diverse microstructural features and mechanical properties equivalent to those of biomedical devices can be obtained by the pressing and sintering route. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of Cu Reinforced SiC Particulate Composites
NASA Astrophysics Data System (ADS)
Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed
2015-02-01
This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.
Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures
NASA Astrophysics Data System (ADS)
Peng, Qin; Yang, Bin; Friedrich, Bernd
2018-01-01
A new simple powder metallurgy process by sintering TiH2 powders was used to manufacture porous Ti components. The effects of the processing parameters (pressure of cold isostatic pressing and sintering temperature) and the TiH2/Ti ratio in the powder mixtures on the impurities, the linear shrinkage and the pore properties (including overall and open porosities) were comprehensively determined. The addition of TiH2 as a reactant has been found beneficial for the synthesis of porous Ti components. The formation mechanisms of pores were demonstrated based on the dehydrogenation process of TiH2 during sintering, resulting in highest reactivity due to the "in statu nascendi" generation of the metal. In addition, the hardness and corrosion resistance of all the sintered samples were evaluated, related to the overall and open porosities. As a result, an optimal composition of Ti-40 wt.% TiH2 was defined, as its maximum open porosity was about 23%.
NASA Astrophysics Data System (ADS)
Wang, Lingqian; Zhou, Jiansong; Yu, Youjun; Guo, Chun; Chen, Jianmin
2012-06-01
NiCr + Cr3C2 + Ag + BaF2/CaF2 composite coatings were produced on stainless steel (1Cr18Ni9Ti) substrates by laser cladding. Corresponding powders were prepared by high-energy ball milling technique. The friction and wear behavior at room temperature was investigated through sliding against the Si3N4 ball. The morphologies of the wear debris, worn surfaces of both samples and the Si3N4 ball were analyzed by scanning electron microscopy and three dimensional non-contact surface mapping. Results showed that milling time had a great effect on the size, morphology, uniformity of the powders as well as the microstructure and properties of laser cladding coatings. The wear mechanism of the coatings is dominated by abrasive wear, plastic deformation and slight adhesive wear. The consecutive evolution trend of friction coefficient, wear rate as well as microhardness of the serials of coatings produced with powders of different sizes was presented.
Effects of Sample Preparation on the Infrared Reflectance Spectra of Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.
2015-05-22
While reflectance spectroscopy is a useful tool in identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-packedmore » as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.« less
Effects of sample preparation on the infrared reflectance spectra of powders
NASA Astrophysics Data System (ADS)
Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.; Su, Yin-Fong; Blake, Thomas A.; Forland, Brenda M.
2015-05-01
While reflectance spectroscopy is a useful tool for identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-loaded as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample can have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.
Acrylamide levels in selected Colombian foods.
Pacetti, Deborah; Gil, Elizabeth; Frega, Natale G; Álvarez, Lina; Dueñas, Pilar; Garzón, Angélica; Lucci, Paolo
2015-01-01
Acrylamide (AA) levels in conventional (n = 112) and traditional (n = 43) Colombian foods were analysed by gas chromatography with mass spectrometry (GC/MS) detection. Samples included: infant powdered formula, coffee and chocolate powders, corn snacks, bakery products and tuber-, meat- and vegetable-based foods. There was a wide variability in AA levels among different foods and within different brands of the same food, especially for coffee powder, breakfast cereals biscuits and French fries samples. Among the conventional foods tested, the highest mean AA value was found in bakery products, such as biscuit (1104 µg kg(-1)) and wafer (1449 µg kg(-1)), followed by potato chips (916 µg kg(-1)). On the other hand, among the traditional foods, higher AA amounts were detected in fried platano (2813 µg kg(-1)) and yuca (3755 µg kg(-1)) compared to other products. Interestingly, the arepa, a traditional Colombian bakery product made with corn flour, showed a lower AA content (< 75 µg kg(-1)) when compared with similar bakery products tested, such as soft bread (102-594 µg kg(-1)), which is a made with wheat flour.
Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng
2017-06-01
Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Powder Handling Device for Analytical Instruments
NASA Technical Reports Server (NTRS)
Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)
2006-01-01
Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.
Selective Laser Melting of Metal Powder Of Steel 3161
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Tomilina, T. M.
2016-08-01
In this article the results of experimental study of the structure and mechanical properties of materials obtained by selective laser melting (SLM), metal powder steel 316L was carried out. Before the process of cultivation of samples as the input control, the morphology of the surface of the powder particles was studied and particle size analysis was carried out. Also, 3D X-ray quality control of the grown samples was carried out in order to detect hidden defects, their qualitative and quantitative assessment. To determine the strength characteristics of the samples synthesized by the SLM method, static tensile tests were conducted. To determine the stress X-ray diffraction analysis was carried out in the material samples.
NASA Technical Reports Server (NTRS)
Jandura, Louise
2010-01-01
The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...
2018-06-06
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
Cagliero, Cecilia; Nan, He; Bicchi, Carlo; Anderson, Jared L
2016-08-12
Nine crosslinked polymeric ionic liquid (PIL)-based SPME sorbent coatings were designed and screened in this study for the trace level determination of acrylamide in brewed coffee and coffee powder using gas chromatography-mass spectrometry (GC-MS). The structure of the ionic liquid (IL) monomer was tailored by introducing different functional groups to the cation and the nature of the IL crosslinker was designed by altering both the structure of the cation as well as counteranions. The extraction efficiency of the new PIL coatings towards acrylamide was investigated and compared to a previously reported PIL sorbent coating. All PIL fibers exhibited excellent analytical precision and linearity. The PIL fiber coating consisting of 50% 1,12-di(3-vinylbenzylbenzimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide as IL crosslinker in 1-vinyl-3-(10-hydroxydecyl)imidazolium bis[(trifluoromethyl)sulfonyl]imide IL monomer resulted in a limit of quantitation of 0.5μgL(-1) with in-solution SPME sampling. The hydroxyl moiety appended to the IL cation was observed to significantly increase the sensitivity of the PIL coating toward acrylamide. The quantitation of acrylamide in brewed coffee and coffee powder was performed using the different PIL-based fibers by the method of standard addition after a quenching reaction using ninhydrin to inhibit the formation of interfering acrylamide in the GC inlet, mainly by asparagine thermal degradation. Excellent repeatability with relative standard deviations below 10% were obtained on the real coffee samples and the structure of the coatings appeared intact by scanning electron microscopy after coffee sampling proving the matrix-compatibility of the PIL sorbent coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
Roller compaction of moist pharmaceutical powders.
Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K
2010-05-31
The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder
NASA Astrophysics Data System (ADS)
Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa
2010-11-01
Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.
Nazarenko, Yevgen; Zhen, Huajun; Han, Taewon; Lioy, Paul J.
2012-01-01
Background: The market of nanotechnology-based consumer products is rapidly expanding, and the lack of scientific evidence describing the accompanying exposure and health risks stalls the discussion regarding its guidance and regulation. Objectives: We investigated the potential for human contact and inhalation exposure to nanomaterials when using nanotechnology-based cosmetic powders and compare them with analogous products not marketed as nanotechnology based. Methods: We characterized the products using transmission electron microscopy (TEM) and laser diffraction spectroscopy and found nanoparticles in five of six tested products. TEM photomicrographs showed highly agglomerated states of nanoparticles in the products. We realistically simulated the use of cosmetic powders by applying them to the face of a human mannequin head while simultaneously sampling the released airborne particles through the ports installed in the mannequin’s nostrils. Results: We found that a user would be exposed to nanomaterial predominantly through nanoparticle-containing agglomerates larger than the 1–100-nm aerosol fraction. Conclusions: Predominant deposition of nanomaterial(s) will occur in the tracheobronchial and head airways—not in the alveolar region as would be expected based on the size of primary nanoparticles. This could potentially lead to different health effects than expected based on the current understanding of nanoparticle behavior and toxicology studies for the alveolar region. PMID:22394622
Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A
2016-08-15
In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor
1990-06-01
cases. The aluminum powder was finer than 325 mesh (nominal 4 ptm diameter). The titanium diboride powder also had a median particle diameter of 4 g ~m...Al Before Heat Treatment. Sample Density Hardness Flex ( g /mL) (Rockwell A) Strength 70/30 B4 C/Al/dry 2.62±.03 81±3 57±5 ksi 70/30 B4 C/AI/wet/A 2.57...0.4 w/o nitrogen, 160 ppm calcium, 140 ppm chromium. 270 ppm iron, and 330 ppm nickel. The surface area was 7 m 2 / g . Initial dispersion and filter
NASA Astrophysics Data System (ADS)
Maciel, Glauco S.; Rakov, Nikifor; Fokine, Michael; Carvalho, Isabel C. S.; Pinheiro, Carlos B.
2006-08-01
Crystalline ceramic powders of Er3Al5O12 were obtained by low temperature direct combustion synthesis. Irradiating the sample with a low-power continuous-wave infrared (1.48μm) diode laser led to ultraviolet, violet, blue, green, and red (380, 410, 456, 495, 525, 550, and 660nm) emissions. The strong upconversion luminescence appeared to the eyes as an intense green color. The presence of efficient four- and three-photon frequency upconversion processes makes this material an excellent candidate for use in photonic devices based on upconverter phosphors.
NASA Astrophysics Data System (ADS)
Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.
2012-04-01
The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common sources for Co, Mg, Fe, Ca, Cr, Ni, Sn, Li and Sb and Na, V, Cl, Mn, Al, Br and K. The PCA/FA identified 3 dominant factors as responsible for the data structure, explaining 84.5% of the total variance in the dataset.
West, Matthew J; Went, Michael J
2008-01-15
The application of powders to fingerprints has long been established as an effective and reliable method for developing latent fingerprints. The powders adhere to the ridge pattern of the fingerprint only, thus allowing the image to be visualised. Fingerprints developed in situ at a crime scene routinely undergo lifting with specialist tapes to facilitate subsequent laboratory analysis. As with all recovered evidence these samples would be stored in evidence bags to allow secure transit from the scene to the laboratory and also to preserve the chain of evidence. In this paper, the application of Raman spectroscopy for the analysis of exogenous material in latent fingerprints is reported for contaminated fingerprints that had been treated with powders and also subsequently lifted with adhesive tapes. A selection of over the counter (OTC) analgesics were used as samples for the analysis and contaminated fingerprints were deposited on clean glass slides. The application of aluminium or iron based powders to contaminated fingerprints did not interfere with the Raman spectra obtained for the contaminants. In most cases background fluorescence attributed to the sebaceous content of the latent fingerprint was reduced by the application of the powder thus reducing spectral interference. Contaminated fingerprints developed with powders and then lifted with lifting tapes were also examined. The combination of these two techniques did not interfere with the successful analysis of exogenous contaminants by Raman spectroscopy. The lifting process was repeated using hinge lifters. As the hinge lifters exhibited strong Raman bands the spectroscopic analysis was more complex and an increase in the number of exposures to the detector allowed for improved clarification. Raman spectra of developed and lifted fingerprints recorded through evidence bags were obtained and it was found that the detection process was not compromised in any way. Although the application of powders did not interfere with the detection process the time taken to locate the contaminant was increased due to the physical presence of more material within the fingerprint. The presence of interfering Raman bands from lifting tapes is another potential complication. This, however, could be removed by spectral subtraction or by the choice of lifting tapes that have only weak Raman bands.
The quality of irradiated red ginseng powder following transport from Korea to the United States
NASA Astrophysics Data System (ADS)
Kwon, J. H.; Lee, J.; Waje, C.; Ahn, J. J.; Kim, G. R.; Chung, H. W.; Kim, D. H.; Lee, J. W.; Byun, M. W.; Kim, K. S.; Kim, K. S.; Park, S. H.; Lee, E. J.; Ahn, D. U.
2009-07-01
Irradiated red ginseng powder (2.4 kg) in commercial bottles was transported from Korea to Iowa State University (USA) via air- (10 days) and sea-cargos (50 days) to prove its qualities and identity. The microbial loads of transported samples by both methods after 5 kGy irradiation were reduced from 10 6 to 10 3 CFU/g in total aerobic bacteria and from 20 CFU/g (minimum detection level) to negative in coliforms, respectively, which are in accordance with Korean microbial standard for ginseng powders. Sea-transported irradiated samples showed the increased thiobarbituric acid reactive substances (TBARS) and Hunter's a (red) value, but sensory qualities of all the red ginseng samples were not significantly different depending on irradiation and transportation means. Irradiated samples could be identified from the non-irradiated ones by the analysis of photostimulated luminescence, thermoluminescence, and electron spin resonance. This trial proved the feasibility of inter-country transportation of irradiated red ginseng powder.
Effect of surface hydroxyl groups on heat capacity of mesoporous silica
NASA Astrophysics Data System (ADS)
Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent
2018-05-01
This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.
Sorption of radionuclides by cement-based barrier materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kefei, E-mail: likefei@tsinghua.edu.cn; Pang, Xiaoyun
2014-11-15
This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapidmore » and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.« less
Compact, Non-Pneumatic Rock-Powder Samplers
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi; Chang, Zensheu; Jones, Christopher; Aldrich, Jack
2008-01-01
Tool bits that automatically collect powdered rock, permafrost, or other hard material generated in repeated hammering action have been invented. The present invention pertains to the special case in which it is desired to collect samples in powder form for analysis by x-ray diffraction and possibly other techniques. The present invention eliminates the need for both the mechanical collection equipment and the crushing chamber and the pneumatic collection equipment of prior approaches, so that it becomes possible to make the overall sample-acquisition apparatus more compact.
Processing of laser formed SiC powder
NASA Technical Reports Server (NTRS)
Haggerty, J. S.; Bowen, H. K.
1985-01-01
Superior SiC characteristics can be achieved through the use of ideal constituent powders and careful post-synthesis processing steps. High purity SiC powders of approx. 1000 A uniform diameter, nonagglomerated and spherical were produced. This required major revision of the particle formation and growth model from one based on classical nucleation and growth to one based on collision and coalescence of Si particles followed by their carburization. Dispersions based on pure organic solvents as well as steric stabilization were investigated. Although stable dispersions were formed by both, subsequent part fabrication emphasized the pure solvents since fewer problems with drying and residuals of the high purity particles were anticipated. Test parts were made by the colloidal pressing technique; both liquid filtration and consolidation (rearrangement) stages were modeled. Green densities corresponding to a random close packed structure (approx. 63%) were achieved; this highly perfect structure has a high, uniform coordination number (greater than 11) approaching the quality of an ordered structure without introducing domain boundary effects. After drying, parts were densified at temperatures ranging from 1800 to 2100 C. Optimum densification temperatures will probably be in the 1900 to 2000 C range based on these preliminary results which showed that 2050 C samples had experienced substantial grain growth. Although overfired, the 2050 C samples exhibited excellent mechanical properties. Biaxial tensile strengths up to 714 MPa and Vickers hardness values of 2430 kg/sq mm 2 were both more typical of hot pressed than sintered SiC. Both result from the absence of large defects and the confinement of residual porosity (less than 2.5%) to small diameter, uniformly distributed pores.
Mechanical Properties of Graphene-Rubber Nanocomposites
NASA Astrophysics Data System (ADS)
Anhar, N. A. M.; Ramli, M. M.; Hambali, N. A. M. A.; Aziz, A. A.; Mat Isa, S. S.; Danial, N. S.; Abdullah, M. M. A. B.
2017-11-01
This research focused on development of wearable sensor device by using Prevulcanized Natural Rubber (PV) and Epoxidized Natural Rubber (ENR 50) latex incorporated with graphene oxide (GO), graphene paste, graphene powder and reduced graphene oxide (rGO) powder. The compounding formulation and calculation were based on phr (parts per hundred rubber) and all the samples were then tested for mechanical properties using Instron 5565 machine. It was found that the sonication effects on tensile strength may have better quality of tensile strength compared to non-sonicated GO. For PV incorporate GO, the optimum loading was best determined at loading 1.5 phr with or without sonication and similar result was recorded for PV/G. For ENR 50 incorporate graphene paste and rGO powder nanocomposite shows the best optimum was at 3.0 phr with 24 hours’ sonication.
Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo
2010-01-01
A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases. PMID:27877354
Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro
2009-03-01
The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.
Park, S H; Lim, H S; Hwang, S Y
2012-10-01
The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.
Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations
NASA Astrophysics Data System (ADS)
Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar
2017-01-01
Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.
Imaging powders with the atomic force microscope: from biominerals to commercial materials.
Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D
1991-09-13
Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.
Whey powders are a rich source and excellent storage matrix for dairy bacteriophages.
Wagner, Natalia; Brinks, Erik; Samtlebe, Meike; Hinrichs, Jörg; Atamer, Zeynep; Kot, Witold; Franz, Charles M A P; Neve, Horst; Heller, Knut J
2017-01-16
Thirteen whey powders and 5 whey powder formulations were screened for the presence of dairy bacteriophages using a representative set of 8 acid-producing Lactococcus lactis and 5 Streptococcus thermophilus, and 8 flavour-producing Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides strains. Lytic L. lactis phages were detected in all samples, while S. thermophilus and Leuconostoc phages were present in 50% or 40% of the samples, respectively. Maximal phage titers were 6×10 7 plaque-forming units (pfu)/g of whey powder for L. lactis phages, 1×10 7 pfu/g for Leuconostoc phages and 1×10 5 pfu/g for S. thermophilus phages. In total, 55 phages were isolated and characterized. Thirty one of the 33 lactococcal phages tested belonged to the wide-spread 936 phage group. In the course of this study, a PCR detection method for Leuconostoc phages (Ali et al., 2013) was adapted to new phage isolates. Furthermore, a remarkably high stability of phages in whey powder samples was documented during a long-term storage period of 4 years. Copyright © 2016 Elsevier B.V. All rights reserved.
Microstructure and thermoelectric properties of CuInSe2/In2Se3 compound
NASA Astrophysics Data System (ADS)
Wang, Kang; Feng, Jing; Ge, Zhen-Hua; Qin, Peng; Yu, Jie
2018-01-01
CuInSe2 powders were synthesized by solvothermal method, and then the CuInSe2/In2Se3 bulk samples were fabricated by spark plasma sintering (SPS) technique. To investigate the phase composition, the powders were determined by X-ray diffraction (XRD). The microstructures of the powders and bulk samples were observed by scanning electron microscopy (SEM). The transportation of the electronic properties and thermal conductivity were measured at room temperature to 700 K. According to the results, the CuInSe2 powders appeared in flower-like patterns which ranged from 3 μm to 6 μm. CuInSe2 powders were synthesized at 180∘C with a chalcopyrite structure. The Seebeck coefficient increased significantly in composite thermoelectric materials up to 200μVṡK-1 at 623 K. The thermal conductivity of the sample significantly decreases from the room temperature to 700 K. The CuInSe2 bulk composite by solvothermal method achieves the highest ZT value of 0.187 at 700 K.
Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal
2015-11-01
The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin
2010-08-01
Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.
Typing DNA profiles from previously enhanced fingerprints using direct PCR.
Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian
2017-07-01
Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold ® DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimizing laser crater enhanced Raman scattering spectroscopy
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.
2018-05-01
The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.
Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun; Williams, John
2014-12-01
In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.
NASA Astrophysics Data System (ADS)
Deev, Artem; Kuznetsov, Pavel; Zhukov, Anton; Bobyr, Vitaliy
Additive technologies, which obtained the wide spreading in the last decade, allow producing items of any shape from metal materials practically without additional mechanical treatment. This approach based on the layer by layer melting of powder material accordingly to the premade 3D-CAD model, provides the geometrical accuracy which mostly depends on the size of the used material. In the present study, as material a 410 L steel powder was chosen, for which the basic dependencies between the selective laser melting (SLM) parameters and the mechanical properties were determined. Trial batches of standard samples for uniaxial tension and impact strength tests (according to the ASTM A370 and ASTM E8 M standards) were produced. It was shown that in the as build (after SLM) the fracture appeared to be brittle with the impact strength 3-5 J/cm2. The carried out heat treatment of quenching-tempering cycle and subsequent tests provide the viscous fracture and evaluation of impact strength up to 20-30 J/cm2. Presumably, this is due to a refinement of the grain structure and the inner stresses reduction of the samples, which also acknowledges the execution EBSD analysis, which points to the presence of quenched and tempered martensite. The presence of high inner stresses can be attributed to two α-γ-α transformations that were revealed by dilatometry investigation. In the range of cooling or heating rates from 1 to 500 °C/s temperatures of phase transformation are shifted.
He, Chao; Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou
2018-01-01
A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required.
Tian, Chaochao; Li, Gang; Mei, Yahe; Zhang, Quanguo; Jiao, Youzhou
2018-01-01
A coproduction tests of quaternary (Q) phase(6CaO·4Al2O3·MgO·SiO2) -3CaO·3Al2O3·CaSO4 cement clinker and an experimental study on the relationship between the mineral production capability and the physiochemical properties are conducted in a two-stage multiphase reaction test bed with Changguang coal. X-ray diffractometer (XRD) analyses are performed on the coproduction clinker samples. The results demonstrate that, with the reduction in particle sizes of the coal powder and the additives and expanded screening level differences between them, both the proportion of Q phase and the mass of 3CaO·3Al2O3·CaSO4 in the clinker increase accordingly. When mixed coal powder particles are prepared through reducing particle sizes and expanding screening level differences between coal powder and additives, the additives CaO and MgO are more likely to be enclosed by coal powder to form globular polymerized particles. In addition, this preparation aids in polymerization and promotes even distribution of CaO, MgO and coal minerals, thus facilitating clinker mineral formation reactions of inorganic substances in the mixed coal powder. Target minerals, such as 2CaO·SiO2 and Q phase, are found in both industrial high-calcium limestone and low-calcium limestone coproduction clinker samples. A diffraction peak of free CaO is also evident in both samples. Compared with a coproduction clinker sample of high-calcium limestone, that of low-calcium limestone exhibits higher diffraction peaks for 2CaO·SiO2 and Q phase. With the current state of the art, it is not yet the optimum choice to substitute CaCO3 for CaO in Q-phase cement clinker coproduction. Before the technology matures and gains practical application, further study on the form and the mixing process of calcium-based additives for cement clinker coproduction will be required. PMID:29634732
NASA Astrophysics Data System (ADS)
Wijaya, H.; Wardayanie, N. I.; Widjajanti, R.; Silitonga, R. F.
2018-01-01
Aflatoxin M1 (AFM1) is a hydroxylated metabolite of aflatoxin B1 (AFB1) produced by lactating animals due to consuming AFB1-contaminated feed. AFM1 can be found in dairy products because it is resistant to heat during processing. This study aimed to detect AFM1 in powdered milk and sweetened condensed milk sold in several cities in Java. The amount of powdered milk sample was 20, while the amount of sweetened condensed milk sample was 16. AFM1 detection in powdered milk and sweetened condensed milk was conducted by HPLC-fluorescence method. The results showed that the concentration of AFM1 in powdered milk ranged from undetectable to 0.549 μg/kg and the highest data (55%) was distributed in concentration range of >0.05 μg/kg - 0.2 μg/kg. On the other hand, AFM1 levels in sweetened condensed milk ranged from undetectable to 0.056 μg/kg and 43.75% data was distributed in concentration range of >0.025 μg/kg - 0.05 μg/kg. All powdered milk and sweetened condensed milk samples have met the maximum level of AFM1 according to Indonesian regulation.
The ExoMars Sample Preparation and Distribution System
NASA Astrophysics Data System (ADS)
Schulte, Wolfgang; Hofmann, Peter; Baglioni, Pietro; Richter, Lutz; Redlich, . Daniel; Notarnicola, Marco; Durrant, Stephen
2012-07-01
The Sample Preparation and Distribution System (SPDS) is a key element of the ESA ExoMars Rover. It is a set of complex mechanisms designed to receive Mars soil samples acquired from the subsurface with a drill, to crush them and to distribute the obtained soil powder to the scientific instruments of the `Pasteur Payload', in the Rover Analytical Laboratory (ALD). In particular, the SPDS consists of: (1) a Core Sample Handling System (CSHS), including a Core Sample Transportation Mechanism (CSTM) and a Blank Sample Dispenser; (2) a Crushing Station (CS); (3) a Powder Sample Dosing and Distribution System (PSDDS); and (4) a Powder Sample Handling System (PSHS) which is a carousel carrying pyrolysis ovens, a re-fillable sample container and a tool to flatten the powder sample surface. Kayser-Threde has developed, undercontract with the ExoMars prime contractor Thales Alenia Space Italy, breadboards and an engineering model of the SPDS mechanisms. Tests of individual mechanisms, namely the CSTM, CS and PSDDS were conducted both in laboratory ambient conditions and in a simulated Mars environment, using dedicated facilities. The SPDS functionalities and performances were measured and evaluated. In the course of 2011 the SPDS Dosing Station (part of the PSDDS) was also tested in simulated Mars gravity conditions during a parabolic flight campaign. By the time of the conference, an elegant breadboard of the Powder Sample Handling System will have been built and tested. The next step, planned by mid of 2012, will be a complete end-to-end test of the sample handling and processing chain, combining all four SPDS mechanisms. The possibility to verify interface and operational aspects between the SPDS and the ALD scientific instruments using the available instruments breadboards with the end-to-end set-up is currently being evaluated. This paper illustrates the most recent design status of the SPDS mechanisms, summarizes the test results and highlights future development activities, including potential involvement of the ExoMars science experiments.
Processing study of high temperature superconducting Y-Ba-Cu-O ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, A.; Wachtman, J.B. Jr.; Ward, C.
Processing of the YBa{sub 2}Cu{sub 3}O{sub 6+x} superconducting phase by employing different precursor powder preparation techniques (ball milling, attrition milling) and samples formed by different sintering conditions are discussed. The superconducting phase has been identified by powder x-ray diffraction. The effect of different powder processing and pressing conditions on the structure, density, resistivity and a.c. magnetic susceptibility were studied. Though there is no variation in T{sub c} for all the samples, attrition milled samples show a much lower resistance and less temperature dependence compared to ball milled samples above the superconducting transition temperature up to room temperature. Ball milled samplesmore » were loosely packed with more voids compared to attrition milled samples which are more densely packed with a needle-like structure.« less
Flotation-separation of aluminum from some water samples using powdered marble waste and oleic acid.
Ghazy, Shaban el-Sayed; Samra, Salem el-Sayed; Mahdy, Abd el-Fattah Mohammed; el-Morsy, Sherin Mohammed
2003-10-01
Bench-scale experiments were conducted in the laboratory, aiming to remove aluminum from water. They were based on the use of powdered marble wastes (PMW), which are inexpensive and produced in large quantity, and thus potentially cause environmental problems, as an effective inorganic sorbent and oleic acid (HOL) as surfactant. The main parameters (solution pHs, sorbent, surfactant and aluminum concentrations, shaking time, ionic strength and the presence of foreign ions) that influence the sorptive-flotation process were examined. Good results were obtained under the optimum conditions, for which nearly 100% of aluminum at pH 7 and at room temperature (approximately 25 degrees C) was removed. The procedure was successfully applied to the recovery of aluminum spiked to some natural water samples. Moreover, a sorption and flotation mechanism is suggested.
Low temperature method for the production of calcium phosphate fillers
Calafiori, Anna Rita; Marotta, Marcello; Nastro, Alfonso; Martino, Guglielmo
2004-01-01
Background Calcium phosphate manufactured samples, prepared with hydroxyapatite, are used as either spacers or fillers in orthopedic surgery, but these implants have never been used under conditions of mechanical stress. Similar conditions also apply with cements. Many authors have postulated that cements are a useful substitute material when implanted in vivo. The aim of this research is to develop a low cristalline material similar to bone in porosity and cristallinity. Methods Commercial hydroxyapatite (HAp) and monetite (M) powders are mixed with water and compacted to produce cylindrical samples. The material is processed at a temperature of 37–120 degrees C in saturated steam to obtain samples that are osteoconductive. The samples are studied by X-ray powder diffraction (XRD), Vickers hardness test (HV), scanning electron microscopy (SEM), and porosity evaluation. Results The X-ray diffractions of powders from the samples show patterns typical of HAp and M powders. After thermal treatment, no new crystal phase is formed and no increase of the relative intensity of the peaks is obtained. Vicker hardness data do not show any relationship with treatment temperature. The total porosity decreases by 50–60% according to the specific thermal treatment. Scanning electron microscopy of the surfaces of the samples with either HAp 80%-M 20% (c) or Hap 50%-M 50% (f), show cohesion of the powder grains. Conclusions The dissolution-reprecipitation process is more intesive in manufactured samples (c) and (f), according to Vickers hardness data. The process occurs in a steam saturated environment between 37 degrees and 120 degrees C. (c) (f) manufactured samples show pore dimension distributions useful to cellular repopulation in living tissues. PMID:15035671
NASA Astrophysics Data System (ADS)
Gorospe, A. B.; Herrera, M. U.
2017-04-01
Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.
2008-01-01
oriented grain-boundaries. In this work we show considerable evidence for such weak-coupling by study of the dependence of magnetization in bulk and...powdered samples. Bulk sample magnetization curves show very little hysteresis while remanent magnetization shows almost no sample size dependence...K Fig. 2 (Color online) Magnetization hysteresis loops at 5 and 20 K for the bulk LaO0.89F0.11FeAs. Inset shows the temperature dependence of
Lu, Xikun; Brennan, Margaret A; Serventi, Luca; Liu, Jianfu; Guan, Wenqiang; Brennan, Charles S
2018-10-30
This study reports the effects of addition of mushroom powder on the nutritional properties, predictive in vitro glycaemic response and antioxidant potential of durum wheat pasta. Addition of the mushroom powder enriched the pasta as a source of protein, and soluble and insoluble dietary fibre compared with durum wheat semolina. Incorporation of mushroom powder significantly decreased the extent of starch degradation and the area under the curve (AUC) of reducing sugars released during digestion, while the total phenolic content and antioxidant capacities of samples increased. A mutual inhibition system between the degree of starch gelatinisation and antioxidant capacity of the pasta samples was observed. These results suggest that mushroom powder could be incorporated into fresh semolina pasta, conferring healthier characteristics, namely lowering the potential glycaemic response and improving antioxidant capacity of the pasta. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Infrared-optical transmission and reflection measurements on loose powders
NASA Astrophysics Data System (ADS)
Kuhn, J.; Korder, S.; Arduini-Schuster, M. C.; Caps, R.; Fricke, J.
1993-09-01
A method is described to determine quantitatively the infrared-optical properties of loose powder beds via directional-hemispherical transmission and reflection measurements. Instead of the integration of the powders into a potassium bromide (KBr) or a paraffin oil matrix, which would drastically alter the scattering behavior, the powders are placed onto supporting layers of polyethylene (PE) and KBr. A commercial spectrometer is supplemented by an external optics, which enables measurements on horizontally arranged samples. For data evaluation we use a solution of the equation of radiative transfer in the 3-flux approximation under boundary conditions adapted to the PE or KBr/powder system. A comparison with Kubelka-Munk's theory and Schuster's 2-flux approximation is performed, which shows that 3-flux approximation yields results closest to the exact solution. Equations are developed, which correct transmission and reflection of the samples for the influence of the supporting layer and calculate the specific extinction and the albedo of the powder and thus enables us to separate scattering and absorption part of the extinction spectrum. Measurements on TiO2 powder are presented, which show the influence of preparation techniques and data evaluation with different methods to obtain the albedo. The specific extinction of various TiO2 powders is presented.
USDA-ARS?s Scientific Manuscript database
This study investigated the potential of point scan Raman spectral imaging method for estimation of different ingredients and chemical contaminant concentration in food powder. Food powder sample was prepared by mixing sugar, vanillin, melamine and non-dairy cream at 5 different concentrations in a ...
Production of Nanocrystalline Ni-20Cr Coatings for High-Temperature Applications
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Singh, Harpreet; Singh, Narinder
2014-04-01
Presynthesized nanocrystalline Ni-20Cr powder was deposited on SA 516 and T91 boiler steels by a high-velocity oxy-fuel spraying process. Ni-20Cr powder was synthesized by the ball milling approach. The high-temperature oxidation behavior of bare and coated samples was then studied under cyclic isothermal conditions at 900 °C for 50 cycles. The kinetics of oxidation was established using weight change measurements for the bare and coated boiler steels. Uncoated and coated samples of T91 steel were exposed to the superheated zone of a power plant boiler at 750 °C under cyclic conditions for 15 cycles. Each cycle consisted of 100 h of heating followed by 1 h of cooling. Attempts were made to study the kinetics of erosion-corrosion using weight change and thickness loss data for the samples. Different characterization techniques were used to study the oxidized and eroded-corroded samples, including x-ray diffraction, scanning electron microscopy/energy-dispersive spectroscopy, and x-ray mapping analyses. The Ni-20Cr alloy powder coating was found to offer excellent oxidation resistance to the base steels and was successful in reducing the weight gain of SA 516 steel by 98.5 % and that of T91 steel by 65 %. The coating was observed to reduce the erosion-corrosion rate of T91 steel by 86 % in terms of thickness loss. This indicates that the investigated nanostructured coating can be a better choice over conventional coating for erosion-corrosion control of boiler tubes.
Effect of Te doping on FeSe superconductor synthesized by powder-in-tube
NASA Astrophysics Data System (ADS)
Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.
2017-04-01
FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.
Zhai, Haiyun; Huang, Lu; Chen, Zuanguang; Su, Zihao; Yuan, Kaisong; Liang, Guohuan; Pan, Yufang
2017-01-01
A novel solid-phase extraction chip embedded with array columns of molecularly imprinted polymer-coated silanized graphene oxide (GO/SiO2-MISPE) was established to detect trace rhodamine B (RB) in chili powder. GO/SiO2-MISPE monolithic columns for RB detection were prepared by optimizing the supporting substrate, template, and polymerizing monomer under mild water bath conditions. Adsorption capacity and specificity, which are critical properties for the application of the GO/SiO2-MISPE monolithic column, were investigated. GO/SiO2-MIP was examined by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy. The recovery and the intraday and interday relative standard deviations for RB ranged from 83.7% to 88.4% and 2.5% to 4.0% and the enrichment factors were higher than 110-fold. The chip-based array columns effectively eliminated impurities in chili powder, indicating that the chip-based GO/SiO2-MISPE method was reliable for RB detection in food samples using high-performance liquid chromatography. Accordingly, this method has direct applications for monitoring potentially harmful dyes in processed food. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of a dye-binding method for the determination of available lysine in skim milk powders.
Aalaei, Kataneh; Rayner, Marilyn; Tareke, Eden; Sjöholm, Ingegerd
2016-04-01
A dye-binding method using Acid Orange 12 was investigated regarding its suitability for the quantification of available lysine, as a means of monitoring the Maillard reaction in skim milk powders. The method was evaluated by analyzing a wide range of milk powders produced by three different drying methods and stored under various conditions. A pilot-scale freeze-dryer, spray-dryer and drum-dryer were used to produce skim milk powders and the samples were stored at two temperatures (20 °C and 30 °C) and two relative humidities (33% and 52%) under strictly controlled conditions. Moreover to validate the method, two protein isolates; bovine serum albumin and casein were investigated for their available lysine content. The results demonstrate the suitability of this method for measuring the available lysine in skim milk powders with good precision and high reproducibility. The relative standard deviations obtained from the 125 freeze-dried powders were 1.8%, and those from the 100 drum-dried samples were all 1.9%. The highest variation was found for the spray-dried powders, which showed relative standard deviations between 0.9% and 6.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in; Jotania, Rajshree, E-mail: rbjotania@gmail.com
2016-05-06
The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carriedmore » out by SEM analysis.« less
NASA Astrophysics Data System (ADS)
Orfali, Wasim A.
This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.
Determination of optical band gap of powder-form nanomaterials with improved accuracy
NASA Astrophysics Data System (ADS)
Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul
2017-10-01
Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.
Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying
NASA Astrophysics Data System (ADS)
Omuro, Keisuke; Miura, Harumatsu
1991-05-01
Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
Olevsky, Eugene A.; Aleksandrova, Elena V.; Ilyina, Alexandra M.; Dudina, Dina V.; Novoselov, Alexander N.; Pelve, Kirill Y.; Grigoryev, Eugene G.
2013-01-01
This paper reviews research articles published in the former USSR and post-soviet countries on the consolidation of powder materials using electric current that passes through the powder sample and/or a conductive die-punch set-up. Having been published in Russian, many of the reviewed papers are not included in the mainstream electronic databases of the scientific articles and thus are not known to the scientific community. The present review is aimed at filling this information gap. In the paper, the electric current-assisted sintering techniques based on high- and low-voltage approaches are presented. The main results of the theoretical modeling of the processes of electromagnetic field-assisted consolidation of powder materials are discussed. Sintering experiments and related equipment are described and the major experimental results are analyzed. Sintering conditions required to achieve the desired properties of the sintered materials are provided for selected material systems. Tooling materials used in the electric current-assisted consolidation set-ups are also described. PMID:28788337
Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere
NASA Astrophysics Data System (ADS)
Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.
2015-03-01
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.
Pandey, Ashutosh; Roy, M K; Pandey, Anjana; Zanella, Marco; Sperling, Ralph A; Parak, Wolfgang J; Samaddar, A B; Verma, H C
2009-03-01
Eu+++ and Tb+++ ions have been incorporated into nanodimensional yttrium oxide host matrices via a sol-gel process using Y5O(OPr(i))13 as precursor (OPr(i) = isopropoxy). The as-synthesized white powders have been annealed at different temperatures. Photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) have been used as tools for documenting the characteristics of these powders. For Eu+++-doped powders, a comparison of the Eu+++, 5D0-->7F1, and 5D0-->7F2 peak intensities in the emission spectra reveals that the dopant ions are occupying unsymmetrical sites in the host yttrium oxide in all the samples. For Tb+++-doped powders, the characteristic terbium 5D3-->7Fn and 5D-->7Fn (n = 2-6) transitions were visible only in the samples that had been annealed above 500 degrees C. Samples of the doped particle powders were suspended in chloroform by fragmenting the powder with and without sonification under the presence of trioctylphosphine oxide, or a mixture of oleic acid and dioctyl ether. The resulting clear colorless (for Eu+++) and light green translucent (for Tb+++) solutions of the suspended particles showed red and green luminescence upon UV excitation, respectively. In addition, suspension in water has been achieved by fragmenting the powder in the presence of dichloroacetic acid. Transmission electron micrograph investigation of the soluble particles shows single dispersed particles along with agglomerates. The changes in the luminescence due to fragmentation of the particle powder and due the influence of the surfactant of the suspended colloidal particles are discussed.
Lima, Lídia J R; van der Velpen, Vera; Wolkers-Rooijackers, Judith; Kamphuis, Henri J; Zwietering, Marcel H; Nout, M J Rob
2012-04-01
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.
Lima, Lídia J. R.; van der Velpen, Vera; Wolkers-Rooijackers, Judith; Kamphuis, Henri J.; Nout, M. J. Rob
2012-01-01
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks. PMID:22327588
[Isolation and identification of Cronobacter (Enterobacter sakazakii) strains from food].
Dong, Xiaohui; Li, Chengsi; Wu, Qingping; Zhang, Jumei; Mo, Shuping; Guo, Weipeng; Yang, Xiaojuan; Xu, Xiaoke
2013-05-04
This study aimed to detect and quantify Cronobacter in 300 powdered milk samples and 50 non-powdered milk samples. Totally, 24 Cronobacter (formerly Enterobacter sakazakii) strains isolated from powdered milk and other foods were identified and confirmed. Cronobacter strains were detected quantitatively using most probable number (MPN) method and molecular detection method. We identified 24 Cronobacter strains using biochemical patterns, including indole production and dulcitol, malonate, melezitose, turanose, and myo-Inositol utilization. Of the 24 strains, their 16S rRNA genes were sequenced, and constructed phylogenetic tree by N-J (Neighbour-Joining) with the 16S rRNA gene sequences of 17 identified Cronobacter strains and 10 non-Cronobacter strains. Quantitative detection showed that Cronobacter strains were detected in 23 out of 350 samples yielding 6.6% detection rate. Twenty-four Cronobacter strains were isolated from 23 samples and the Cronobacter was more than 100 MPN/100g in 4 samples out of 23 samples. The 24 Cronobacter spp. isolates strains were identified and confirmed, including 19 Cronobacter sakazakii strains, 2 C. malonaticus strains, 2 C. dubliensis subsp. lactaridi strains, and 1 C. muytjensii strain. The combination of molecular detection method and most probable number (MPN) method could be suitable for the detection of Cronobacter in powdered milk, with low rate of contamination and high demand of quantitative detection. 24 isolated strains were confirmed and identified by biochemical patterns and molecular technology, and C. sakazakii could be the dominant species. The problem of Cronobacter in powdered milk should be a hidden danger to nurseling, and should catch the government and consumer's attention.
Van Nong, Hoang; Hung, Le Xuan; Thang, Pham Nam; Chinh, Vu Duc; Vu, Le Van; Dung, Phan Tien; Van Trung, Tran; Nga, Pham Thu
2016-01-01
In this report, we present the research results on using the conventional method and microwave technology to extract curcuminoid from turmeric roots originated in different regions of Northern Vietnam. This method is simple, yet economical, non-toxic and still able to achieve high extraction performance to get curcuminoid from turmeric roots. The detailed results on the Raman vibration spectra combined with X-ray powder diffraction and high-performance liquid chromatography/mass spectrometry allowed the evaluation of each batch of curcumin crystalline powder sample received, under the conditions of applied fabrication technology. Also, the absorption and fluorescence spectroscopies of the samples are presented in the paper. The information to be presented in this paper: absorption and fluorescence spectroscopies of the samples; new experimental study results on applied technology to mass-produce curcumin from turmeric rhizomes; comparative study results between fabricated samples and marketing curcumin products-to state the complexity of co-existing crystalline phase in curcumin powder samples. We noticed that, it is possible to use the vibration line at ~959 cm(-1)-characteristic of the ν C=O vibration, and the ~1625 cm(-1) line-characteristic of the ν C=O and ν C=C vibration in curcumin molecules, for preliminary quality assessment of naturally originated curcumin crystalline powder samples. Data on these new optical spectra will contribute to the bringing of detailed information on natural curcumin in Vietnam, serving research purposes and applications of natural curcumin powder and nanocurcumin in Vietnam, as well as being initial materials for the pharmaceutical, cosmetics or functional food industries.
Improved Properties of Pb Based BLZT Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-11-01
Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba0.795La0.005Pb0.20Ti0.90Zr0.10O3) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 °C for 4h, 1325 °C for 15min+1200 °C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 °C. Shifting in Tc to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.
Yang, Chan; Xu, Bing; Zhang, Zhi-Qiang; Wang, Xin; Shi, Xin-Yuan; Fu, Jing; Qiao, Yan-Jiang
2016-10-01
Blending uniformity is essential to ensure the homogeneity of Chinese medicine formula particles within each batch. This study was based on the blending process of ebony spray dried powder and dextrin(the proportion of dextrin was 10%),in which the analysis of near infrared (NIR) diffuse reflectance spectra was collected from six different sampling points in combination with moving window F test method in order to assess the blending uniformity of the blending process.The method was validated by the changes of citric acid content determined by the HPLC. The results of moving window F test method showed that the ebony spray dried powder and dextrin was homogeneous during 200-300 r and was segregated during 300-400 r. An advantage of this method is that the threshold value is defined statistically, not empirically and thus does not suffer from threshold ambiguities in common with the moving block standard deviatiun (MBSD). And this method could be employed to monitor other blending process of Chinese medicine powders on line. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.
2017-11-01
A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.
Bahrani, Sonia; Ghaedi, Mehrorang; Khoshnood Mansoorkhani, Mohammad Javad; Ostovan, Abbas
2017-01-01
A selective and rapid method was developed for quantification of curcumin in human plasma and food samples using molecularly imprinted magnetic multiwalled carbon nanotubes (MMWCNTs) which was characterized with EDX and FESEM. The role of sorbent mass, volume of eluent and sonication time on response in solid phase microextraction procedure were optimized by central composite design (CCD) combined with response surface methodology (RSM) using Statistica. Preliminary experiments reveal that among different solvents, methanol:dimethyl sulfoxide (4:1V/V) led to efficient and quantitative elution of analyte. A reversed-phase high performance liquid chromatographic technique with UV detection (HPLC-UV) was applied for detection of curcumin content. The assay procedure involves chromatographic separation on analytical Nucleosil C18 column (250×4.6mm I.D., 5μm particle size) at ambient temperature with acetonitrile-water adjusted at pH=4.0 (20:80, v/v) as mobile phase at flow rate of 1.0mLmin -1 , while UV detector was set at 420nm. Under optimized conditions, the method demonstrated linear calibration curve with good detection limit (0.028ngmL -1 ) and R 2 =0.9983. The proposed method was successfully applied to biological fluid and food samples including ginger powder, curry powder, and turmeric powder. Copyright © 2016. Published by Elsevier B.V.
Raman spectral imaging for quantitative contaminant evaluation in skim milk powder
USDA-ARS?s Scientific Manuscript database
This study uses a point-scan Raman spectral imaging system for quantitative detection of melamine in milk powder. A sample depth of 2 mm and corresponding laser intensity of 200 mW were selected after evaluating the penetration of a 785 nm laser through milk powder. Horizontal and vertical spatial r...
Raman spectral imaging technique on detection of melamine in skim milk powder
USDA-ARS?s Scientific Manuscript database
A point-scan Raman spectral imaging system was used for quantitative detection of melamine in milk powder. A sample depth of 2 mm and corresponding laser intensity of 200 mW were selected after evaluating the penetration of a 785 nm laser through milk powder. Horizontal and vertical spatial resoluti...
Synthesis of nano-forsterite powder by making use of natural silica sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurbaiti, Upik, E-mail: upik-nurbaiti@mail.unnes.ac.id; Department of Physics, Faculty of Mathematics and Natural Sciences Semarang State University Jl. Raya Sekaran GunungPati, Semarang 50221; Suud, Fikriyatul Azizah
2016-02-08
Nano-forsterite powder with natural silica sand and magnesium powder as the raw materials have been succesfully synthesized. The silica sand was purified followed by a coprecipitation process to obtain colloidal silica. The magnesium powder was dissolved in a chloric acid solution to obtain MgCl{sub 2} solution. The nanoforsterite powder was synthesised using a sol-gel method which included the mixing the colloidal silica and the MgCl{sub 2} solution with various aging and filtering processes. The samples were dried at 100 °C using a hot plate and then the dried powders were calcinated at 900 °C for 2 hours. The samples weremore » characetised for their elements and phase compositions using X-ray Flourescence (XRF) and X-ray Diffraction (XRD) methods, respectively. The diffraction data were qualitatively analyzed using Match!2 software and quantitatively using Rietica software. The crystallite size was verified using Transmission Electron Microscopy (TEM). Results of XRD data analysis showed that the forsterite content reached up to 90.5% wt. The TEM average crystallite size was approximately 53(6) nm.« less
The Effect of Oat Fibre Powder Particle Size on the Physical Properties of Wheat Bread Rolls
Kurek, Marcin; Wyrwisz, Jarosław; Piwińska, Monika; Wierzbicka, Agnieszka
2016-01-01
Summary In response to the growing interest of modern society in functional food products, this study attempts to develop a bakery product with high dietary fibre content added in the form of an oat fibre powder. Oat fibre powder with particle sizes of 75 µm (OFP1) and 150 µm (OFP2) was used, substituting 4, 8, 12, 16 and 20% of the flour. The physical properties of the dough and the final bakery products were then measured. Results indicated that dough with added fibre had higher elasticity than the control group. The storage modulus values of dough with OFP1 most closely approximated those of the control group. The addition of OFP1 did not affect significantly the colour compared to the other samples. Increasing the proportion of oat fibre powder resulted in increased firmness, which was most prominent in wheat bread rolls with oat fibre powder of smaller particle sizes. The addition of oat fibre powder with smaller particles resulted in a product with the rheological and colour parameters that more closely resembled control sample. PMID:27904392
NASA Astrophysics Data System (ADS)
Loginova, I. S.; Solonin, A. N.; Prosviryakov, A. S.; Adisa, S. B.; Khalil, A. M.; Bykovskiy, D. P.; Petrovskiy, V. N.
2017-12-01
In this work the morphology, the size and the chemical composition of the powders of steel 316L received by the two methods was studied: fusion dispersion by a gas stream and reduction of metal chlorides with the subsequent plasma atomization of the received powder particles. The powder particles received by the first method have a spherical shape (aspect ratio 1,0-1,2) with an average size of 77 μm and are characterized by the absence of internal porosity. Particles of the powder received by the second method also have a spherical shape and faultless structure, however, their chemical composition may vary in different particles. The average size of particles is 32 μm. Though the obtained powders had different properties, the experimental samples received by DLD technology demonstrated by equally high durability (Ultimate strength is 623±5 and of 623±18 MPa respectively) and plasticity (38 and 41% respectively). It is established that mechanical properties of DLD samples increase for 7-10% after treatment of the surface.
Nouri, A; Hodgson, P D; Wen, C E
2010-04-01
The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Devatkal, Suresh K; Naveena, B M
2010-06-01
Effects of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat stored at 4+/-1 degrees C was evaluated. Five treatments evaluated include: control (only meat), MS (meat+2% salt), KRP (meat+2% salt+2% kinnow rind powder), PRP (meat+2% salt+2% pomegranate rind powder) and PSP (meat+2% salt+2% pomegranate seed powder). Addition of salt resulted in reduction of redness scores. Lightness increased in control and unchanged in others during storage. Redness scores declined and yellowness showed inconsistent changes during storage. Thiobarbituric acid reactive substances (TBARS) values were higher (P<0.05) in MS followed by control and KRP samples compared to PRP and PSP samples throughout storage. The PSP treated samples showed lowest TBARS values than others. Percent reduction of TBARS values was highest in PSP (443%) followed by PRP (227%) and KRP (123%). Salt accelerated the TBARS formation and by-products of kinnow and pomegranate fruits counteracted this effect. The overall antioxidant effect was in the order of PSP>PRP>KRP>control>MS. Therefore, these powders have potential to be used as natural antioxidants to minimize the auto-oxidation and salt induced lipid oxidation in raw ground goat meat. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony
2017-10-01
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid
2017-12-01
Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were the reasons for variation of magnetic properties.
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-05-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only
Okada, Kiyoshi; Hasegawa, Fumikazu; Kameshima, Yoshikazu; Nakajima, Akira
2007-08-01
Mixing bioactive ceramic powders with polymers is an effective method for generating bioactivity to the polymer-matrix composites but it is necessary to incorporate up to 40 vol% of bioactive ceramic powder. However, such a high mixing ratio offsets the advantages of the flexibility and formability of polymer matrix and it would be highly advantageous to lower the mixing ratio. Since surface loading of ceramic powders in the polymer is thought to be an effective way of reducing the mixing ratio of the ceramic powder while maintaining bioactive activity, CaSiO(3)/poly-lactic acid (PLA) composites were prepared by three methods; (1) casting, (2) spin coating and (3) hot pressing. In methods (1) and (2), a suspension was prepared by dissolving PLA in chloroform and dispersing CaSiO(3) powder in it. The suspension was cast and dried to form a film in the case of method (1) while it was spin-coated on a PLA substrate in method (2). In method (3), CaSiO(3) powder was surface loaded on to a PLA substrate by hot-pressing. The bioactivity of these samples was investigated in vitro using simulated body fluid (SBF). Apatite formation was not observed in the samples prepared by method (1) but some apatite formation was achieved by mixing polyethylene glycol (PEG) with the PLA, producing a porous polymer matrix. In method (2), apatite was clearly observed after soaking for 7 days. Enhanced apatite formation was observed in method (3), the thickness of the resulting apatite layers becoming about 20 microm after soaking for 14 days. Since the amount of CaSiO(3) powder used in these samples was only < or =0.4 vol%, it is concluded that this preparation method is very effective in generating bioactivity in polymer-matrix composites by loading with only very small amounts of ceramic powder.
Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy
NASA Astrophysics Data System (ADS)
Basak, Amrita; Das, Suman
2018-01-01
Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.
Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder
NASA Astrophysics Data System (ADS)
Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.
2013-07-01
UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the formation of more stable UAl3 within the diffusion layer [14]. In addition, Si will not notably influence the reactor neutronics due to its low absorption cross section for thermal neutrons of σabs = 0.24 barn. Aluminum has σabs = 0.23 barn.Williams [28], Bierlein [29], Green [30] and de Luca [31] showed the first time in the 1950s that alloying Aluminum with some Silicon reduces the Uranium-Aluminum diffusion kinetics in can-type fuel elements. However, up to now uncertainties remained about the most promising Si concentration and the involved mechanisms.Ground powder - possibility 4 - introduces a high density of defects like dislocations, oxide layers and impurities into UMo grains. Fuel prepared with this kind of powder exhibits a larger porosity. It may also be combined with an AlSi matrix. As a consequence, the degree of swelling due to high-burn up is reduced compared to fuel with atomized powder [5,6,25].This study focuses on the metallurgical characterization of as-fabricated samples prepared with ground UMo and UMoX (X = Ti, Nb, Pt) powders and atomized UMo powder. The influence of some Si into the Al matrix and the presence of oxide layers on the UMo is discussed. Details of the differences of samples with ground UMo from atomized UMo will be discussed.The examined samples originate from non-irradiated spare fuel plates from the IRIS-TUM irradiation campaign [5,6]. The samples containing ground UMoX powders and atomized UMo powders with Si addition into the matrix have been produced for this study [32]. Powder mixing: The UMo powder is mixed with Al powder. Compact production: UMo-Al powder is poured into a mould and undergoes compaction under large force. Plate-processing: An AlFeNi frame is placed on an AlFeNi plate and the UMo-Al compact is placed into the frame. Afterwards it is covered with a second AlFeNi plate. This assembly is hot-rolled to reduce the total thickness to 1.4 mm. Subsequently, a blister test (1-2 h at 400-450 °C) ensures that the fuelplate is sealed. After this step, the UMo particles are tightly covered with Al as shown in Fig. 1. To access the meat layer, small samples have been cut from the fuel plates. The AlFeNi cladding has been removed using abrasive paper and diamond polishing paste. Cross sections were prepared from each sample and examined using SEM/EDX and XRD. Laboratory scale XRD Laboratory sealed-tube XRD on a STOE-STADIP diffractometer equipped with an incident beam focusing monochromator and used in reflection geometry with respect to the sample. MoK-α radiation has been used. Details on the systems used can be found in [39]. mu;-XRD using micro-focused synchrotron radiation at the Swiss Light Source μ-XAS beamline (PSI, Switzerland). At SLS, the beam size was 3 × 3 μm2, the energy was 19.7 keV. Further details on the experimental procedure can be found in [40]. Only very small sample volumes are probed with this technique, therefore the results may not be representative for the whole miniplate. The standard deviation of the lattice parameters obtained with this method is ±0.01 Å in case not different given. High-energy XRD (HE-XRD) in transmission mode using synchrotron radiation at the "High Energy Diffraction and Scattering Beamline ID15B" of ESRF. An X-ray energy of 87 keV has been used, the beam size was 0.3 × 0.3 mm2. Details on the experimental procedure are presented in [41,42]. It was possible to determine the average mass fractions of the phases present inside the sample using this technique. The standard deviation of the lattice parameters obtained with this method is ±0.001 Å in case not different given. laser granulometry to determine the size distribution of the particles, XRD for phase identification. Granulometry measurements showed that a significant amount of very fine particles of a few μm to 10 μm size are present in the first class of powder.In both cases, laboratory XRD analyses evidenced only two phases: γ-UMo and UO2. In contrast to observations on the final fuel plates, there are no signs of α-U. Comparing XRD data of atomized UMo powder (taken form the IRIS4 experiment) and ground UMo powder with almost the same Mo content, the peaks are broader in XRD patterns of ground UMo and there is a higher background [44]. This points that the lattice structure of the UMo inside the ground powder is strongly disordered during the grinding process.Complementary investigations were performed in these ground UMo powder samples using HE-XRD. The obtained data can therefore directly be compared to those measured on pre-oxidized atomized UMo powders [45] and IRIS-TUM fuel plates [41]. For both powder samples the γ-UMo lattice constant has been estimated to 3.433 ± 0.002 Å which corresponds to about 7.2 wt% for Mo in the alloy according to Dwight's law [46]. The existence of two UMo phases inside these ground particles (as in atomized case) could not be investigated because of the huge peak broadening (presence of micro distortions). Whatever the sample granulometry, the analysis of the HE-XRD data showed a non-negligible nitride contamination in ground powders (see Fig. 2). Two uranium nitride phases are indeed found in these samples: UN and U2N3+x[47]. Note that the presence of UN has also been found in the as-fabricated plates. These results confirm the high reactivity of UMo with both Oxygen and Nitrogen in the grinding conditions. As a comparison for temperatures in the 200-250 °C range, it seems that UNx phases are more difficult to grow: they were not present in outer layers obtained by heat treatment under air on atomized particles [45]. Finally it can be seen in Table 3 that the weight fractions of UO2 and U2N3+x phases are lower in the sample with larger UMo particles. This suggests the existence of an oxide, nitride outer shell around UMo ground particle with thickness that does not strongly evolve with particle size. This constant outer shell thickness has also been found in pre-oxidized atomized powders [45].The UMoX powder used for the samples MAFIA-I-18 - MAFIA-I-21 has not been investigated prior to plate fabrication. However, since the grinding process is essentially the same as for the pure UMo powder, similar characteristics are assumed. Thin oxide layers with a thickness ⩽1 μm on some of the particles that were not intentionally oxidized. Although the UMo powder was stored and handled under an inert atmosphere over the whole production process, some residual oxygen has reacted with the UMo. Already this thin oxide layers exhibits cracks (Fig. 5). Thicker oxide layers with a thickness up to 5 μm on the UMo particles that were oxidized purposely. This kind of oxide layer is very brittle and shows large cracks (Fig. 6). The oxidized UMo particles tend to detach with the matrix as gaps between the UMo particles and the oxide layer could be observed (Fig. 6). This is most obvious at spots where a UMo particle has been pulled out during polishing. A part of the oxide layer remained inside the resulting hole (Fig. 7). Atomized UMo powder 2 wt%Si in Al matrix, alloyed AlSi 2 wt%Si in Al matrix, mixed AlSi 5 wt%Si in Al matrix, mixed AlSi 7 wt%Si in Al matrix, mixed AlSi Ground UMo powder 2 wt%Si in Al matrix, alloyed AlSi The influence of an oxide layer around the UMo particles on the formation of the SiRL during fuel plate production is further discussed. The growth of a Si rich layer surrounding the UMo particles in the 2 wt%Si alloyed powder (oxidized UMo), as well as the 5 wt% and 7 wt%Si mixed powder (non-oxidized UMo) during production of the miniplates. The presence of Si precipitates in the Al-matrix (large precipitates in case of mixture, small si particles in alloy). No oxide layer: If no oxide layer is present around the UMo particles a homogeneous SiRL grows at the interface UMo-Al (Fig. 15a). Brittle oxide layer: An oxide layer is present around the UMo particles, the SiRL grows always between the UMo particle and the oxide layer (Fig. 15b). In this case the the SiRL is thin and not homogeneous. As presumed by Ripert et al. [7] it is essential that the oxide layer reveals cracks perpendicular the UMo particle surface to make path for the Si diffusion. Dense oxide layer: In case of a thin (≈1 μm) but compact oxide layer no SiRL is formed even at high Si concentrations inside the matrix (Fig. 15c). The observed effects are pronounced when the thickness of the oxide layer is increased, as shown in Fig. 16: UMo particles covered with a thicker oxide layer (>1 μm) inside an Aluminum matrix with 5 wt%Si (mixed Al-Si powder). The oxide layer is dense at the left side of the particle, no Si can be found there (Fig. 16a). In contrast, the brittle and cracked oxide layer on the right side made path for a Si diffusion but the SiRL is thinner than in the sites where the UMo particle is not covered with an oxide layer. EDX maps at different positions of the sample showed that in general no SiRL forms around UMo particles covered by oxide layers with a thickness greater than 1 μm (Fig. 16b). This behavior is identical for the samples with 5 wt%Si and 7 wt%Si added to the Aluminum matrix (mixed Al-Si powder). Obviously the presence of a (dense) oxide layer hampers the formation of a SiRL. different UXSiY phases with strongly overlapping peaks can be found in the SiRL, these phases are characterized by small sizes of the crystallites (a few tens of nanometers) and/or cell parameter gradients. Two different crystallographic phases have been usually identified: U(Al,Si)3 displaying a small lattice parameter of a0 = 4.16 Å. This indicates that about 40% of the Al lattice sites are occupied by Si atoms. The second phase is isostructural to U3Si54 with a different lattice parameter [59-61]. Although the U-Si-Al phase diagram contains a variety of phases, none of the phases reported in literature [62] could be used to fully refine the measured diagram. Therefore, three different hypotheses are suggested to explain the occurence of this unknown phase: The observed compound consists of two phases: Conventional U3Si5 and USi2, as has been suggested by the authors before [58]. However, only one literature source (Brown et al.) describing the occurrence of USi2 below 450 °C could be found [63,64]. Furthermore, it has not been possible to reproduce the experiments described by Brown et al. Therefore, this hypothesis remains doubtful [59]. The observed phase may be a new unknown phase. For example, a cubic phase with lattice constant a0 = 3.96 Å can be used to refine the observed peaks. This hypothesis can neither be confirmed nor refused based on the existing data. The observed phase can be a U3Si5 variant containing Mo and/or Al atoms. This hypothesis is supported by the authors. Hence in the following sections this structure will be denoted as U3Si5. No traces of SiRL phases are found inside the sample with 2 wt%Si mixed-powder matrix (MAFIA-I-3), all the Si remained inside the matrix. A SiRL is present inside the samples with 2.1 wt%Si alloyed powder matrix (MAFIA-I-4) and 5 wt%Si (MAFIA-I-5) and 7 wt%Si (MAFIA-I-7) mixed powder matrix. However, between 76% and 96% of the Si remained inside the matrix in form of precipitates or Si particles. The SiRL is formed readily when the Si is present inside the matrix in form of precipitates (i.e. Al-Si alloy matrix, MAFIA-I-4 and IRIS-TUM 8502) compared to particles (i.e. Al-Si mixed powder matrix, MAFIA-I-3, MAFIA-I-5 and MAFIA-I-7). This behavior can best be observed on the sample prepared with ground powder and with 2.1 wt%Si alloyed powder matrix (IRIS-TUM-8502): The matrix contains no Si, only SiRL phases are found. Since the sample with 5 wt%Si mixed powder matrix (MAFIA-I-5) has the lowest SiRL fraction but by far the highest UO2 content, it is concluded that the presence of UO2 around the UMo kernels tends to hamper the formation of a SiRL. UMo/Al samples prepared with ground powder contain irregularly shaped UMo kernels. They are in general oxidized and also contain oxide stringers. These samples have a high porosity content of around 8 vol%. In contrast, UMo/Al samples prepared with atomized powder contain spherical UMo kernels. Only the surface of the UMo kernels is oxidized in some cases. Thick oxide layers must be grown intentionally while thinner layers are the result of oxidation during the whole process. The oxide layer is in general brittle and exhibits cracks. The Uranium-oxide content of all examined samples (atomized and ground) varies between 2 and 13 wt%. gamma;-UMo present in the fresh UMo powder destabilizes to transform to an α-U-like phase, U2Mo, and two γ-UMo phases with different Mo content during the fuel plate production. For ground powder, α-U content varies in 28-38 wt%, for atomized powder in 11-14 wt%. The degree of γ-phase destabilization is therefore higher for ground powder. Ternary addition of Nb, Ti or Pt to the UMo did not impact the extent of decomposition. The γ-phase decomposition in the atomized and ground powder does not follow the expected in the U8wt%Mo TTT diagram between 400 and 450 °C [41]. According to Repas et al. [65], the route is γ-UMoa → γ-UMob + α-U → γ-UMoc+α-U + U2Mo . γ-UMoa,b,c differ in the Mo content where γ-UMoa has the lowest and γ-UMoc has the highest Mo content. We observe a new route of decomposition of ground powder into two different γ-UMo phases. One of them has approximately the original Mo content and the other has a higher Mo content. Further U2Mo and a phase with deformed lattice parameters compared to pure α-U have been observed. The latter is known as α' in literature.For atomized powder, also two different γ-UMo phases and traces of U2Mo have been found. However, a different α-U like phase has been identified: α″ [41,53-55].Repas et al. used as cast samples that have been examined with conventional XRD and different metallographic methods [65]. The difference to our data can be explained by the superior resolution of the here used HE-XRD diffraction. Most probably, conventional lab X-ray sourcces could not resolve fine differences in the lattice parameters of α-U and may not enable to separate two γ-UMo phase. To overcome this uncertainty it is highly desirable to examine the TTT diagram of UMo with high resolution. When Si is added into the matrix - by using alloyed Al-Si powder as a matrix or blending Al and Si powder - in general a SiRL is formed at the interface between the UMo and the Al matrix. An exception can be found in MAFIA-I-3 in which the overall Si content was to low to form a SiRL. The SiRL consists of U(Al,Si)3 and U3Si5. The SiRL forms less readily in case of mixed Al-Si than in case of alloyed Al-Si powder. In the latter case (MAFIA-I-4), a Si depleted zone has been observed around the UMo particles. For ground powder in combination with an Al-Si alloyed matrix, the entire Si from the matrix has reacted with the UMo forming SiRL phases. The presence of a dense oxide layer around the UMo kernels can prevent the formation of a SiRL. However, as soon as the oxide layer is cracked a SiRL forms between the UMo and the oxide layer. A dense oxide layer isolates the UMo from the Si inside the matrix and occurring cracks make path for the diffusion of Si towards the UMo. U3Si 5 is also called USi2-x or USi1.66 in literature.
Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method
NASA Astrophysics Data System (ADS)
Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar
2017-01-01
Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.
Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M
2004-11-01
A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.
Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine
NASA Astrophysics Data System (ADS)
Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming
2013-09-01
Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.
[The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].
Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi
2013-01-01
The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.
NASA Astrophysics Data System (ADS)
Flipon, B.; de la Cruz, L. Garcia; Hug, E.; Keller, C.; Barbe, F.
2017-10-01
Samples of 316L austenitic stainless steel with bimodal grain size distributions are elaborated using two distinct routes. The first one is based on powder metallurgy using spark plasma sintering of two powders with different particle sizes. The second route applies the reverse-annealing method: it consists in inducing martensitic phase transformation by plastic strain and further annealing in order to obtain two austenitic grain populations with different sizes. Microstructural analy ses reveal that both methods are suitable to generate significative grain size contrast and to control this contrast according to the elaboration conditions. Mechanical properties under tension are then characterized for different grain size distributions. Crystal plasticity finite element modelling is further applied in a configuration of bimodal distribution to analyse the role played by coarse grains within a matrix of fine grains, considering not only their volume fraction but also their spatial arrangement.
NASA Astrophysics Data System (ADS)
Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza
2016-10-01
The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.
The decontamination of industrial casein and milk powder by irradiation
NASA Astrophysics Data System (ADS)
Żegota, H.; Małolepszy, B.
2008-09-01
The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g -1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g -1. The counts of coliforms have not exceeded the value of 2.48 log cfu g -1. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF =exp[ -D/ Do) α]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.
Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.
Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin
2018-02-06
The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.
System Would Acquire Core and Powder Samples of Rocks
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Randolph, James; Bao, Xiaoqi; Sherrit, Stewart; Ritz, Chuck; Cook, Greg
2006-01-01
A system for automated sampling of rocks, ice, and similar hard materials at and immediately below the surface of the ground is undergoing development. The system, denoted a sample preparation, acquisition, handling, and delivery (SPAHD) device, would be mounted on a robotic exploratory vehicle that would traverse the terrain of interest on the Earth or on a remote planet. The SPAHD device would probe the ground to obtain data for optimization of sampling, prepare the surface, acquire samples in the form(s) of cores and/or powdered cuttings, and deliver the samples to a selected location for analysis and/or storage.
Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,
1979-08-01
23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3
[Determination method of polysorbates in powdered soup by HPLC].
Takeda, Y; Abe, Y; Ishiwata, H; Yamada, T
2001-04-01
A method for qualitative and quantitative analyses of polysorbates in powdered soup by HPLC was studied. Polysorbates in samples were extracted with acetonitrile after rinsing with n-hexane to remove fats and oils. The extract was cleaned up using a Bond Elut silica gel cartridge (500 mg). The cartridge was washed with ethyl acetate and polysorbates were eluted with a small amount of acetonitrile-methanol (1:2) mixture. The eluate was treated with cobalt thiocyanate solution to form a blue complex with polysorbate. In order to determine polysorbate, the complex was subjected to HPLC with a GPC column, using a mixture of acetonitrile-water (95:5) as a mobile phase, with a detection wavelength of 620 nm. The recoveries of polysorbate 80 added to powdered soups were more than 75% and the determination limit was 0.04 mg/g. When the proposed method was applied to the determination of polysorbates in 16 commercial samples of powdered soup for instant noodles and seasoning consomme, no polysorbates were detected in any sample.
Consumer acceptance and stability of spray dried betanin in model juices.
Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer
2015-11-15
Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Halder, Nilanjan; Misra, Kamakhya Prakash
2016-05-01
Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.
Ceramic components manufacturing by selective laser sintering
NASA Astrophysics Data System (ADS)
Bertrand, Ph.; Bayle, F.; Combe, C.; Goeuriot, P.; Smurov, I.
2007-12-01
In the present paper, technology of selective laser sintering/melting is applied to manufacture net shaped objects from pure yttria-zirconia powders. Experiments are carried out on Phenix Systems PM100 machine with 50 W fibre laser. Powder is spread by a roller over the surface of 100 mm diameter alumina cylinder. Design of experiments is applied to identify influent process parameters (powder characteristics, powder layering and laser manufacturing strategy) to obtain high-quality ceramic components (density and micro-structure). The influence of the yttria-zirconia particle size and morphology onto powder layering process is analysed. The influence of the powder layer thickness on laser sintering/melting is studied for different laser beam velocity V ( V = 1250-2000 mm/s), defocalisation (-6 to 12 mm), distance between two neighbour melted lines (so-called "vectors") (20-40 μm), vector length and temperature in the furnace. The powder bed density before laser sintering/melting also has significant influence on the manufactured samples density. Different manufacturing strategies are applied and compared: (a) different laser beam scanning paths to fill the sliced surfaces of the manufactured object, (b) variation of vector length (c) different strategies of powder layering, (d) temperature in the furnace and (e) post heat treatment in conventional furnace. Performance and limitations of different strategies are analysed applying the following criteria: geometrical accuracy of the manufactured samples, porosity. The process stability is proved by fabrication of 1 cm 3 volume cube.
The impact of dispersion on selective laser melting of titanium and niobium fine powders mixture
NASA Astrophysics Data System (ADS)
Razin, A.; Ovchinnikov, V.; Akhmetshin, R.; Krinitcyn, M.; Fedorov, V.; Akhmetshina, V.
2016-11-01
This paper is dedicated to the study of selective laser melting process of metal powders. Experiments were performed in the Research Center Modern Manufacturing Technologies of TPU with the fine powders of titanium and niobium. The research was carried out on 3D laser printer designed at TPU. In the framework of experiments aimed at determining possibilities of obtaining niobium-titanium alloy by SLS (selective laser sintering) there were studied the basic processes of laser melting and their effect on the quality of final samples and products. We determined operation modes of 3D printers which allow obtaining high quality of printed sample surface. The research results show that rigid requirements related to powder dispersiveness and proportions are needed to achieve better quality of products.
Rock sampling. [apparatus for controlling particle size
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.
NASA Astrophysics Data System (ADS)
Sadooghi, Ali; Payganeh, Gholamhassan
2018-02-01
Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.
Fabrication and study of double sintered TiNi-based porous alloys
NASA Astrophysics Data System (ADS)
Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim
2017-05-01
Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.
Yamamura, S; Momose, Y
2001-01-16
A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.
Usha, Carounanidy; Rao, Sathyanarayanan Rama; George, Geena Mary
2018-01-01
Resin composite restorative materials can mimic the natural color and shade of the tooth. However, exogenous colorants from food and drinks can stain them due to adsorption. The influence of Indian food colorants and spices on resin composite restorations has not been evaluated extensively. This study aims to evaluate the staining capacity of microhybrid and nanohybrid resin-based composites, to saffron extract, tandoori powder, and turmeric powder. Forty samples of microhybrid (Kulzer Charisma) and nanohybrid (3M Filtek Z350) resin composites were prepared using an acrylic template of dimension 5 mm × 3 mm. They were randomly divided into four groups and immersed into solutions of saffron extract, tandoori powder, and turmeric powder. Distilled water was used as the control group. Color values (LFNx01, aFNx01, bFNx01) were measured by colorimeter using the CIE LFNx01aFNx01bFNx01 system before and after 72 h of immersion. Color differences ΔEFNx01ab were statistically analyzed. Two-way ANOVA and post-hoc Tukey (honest significant difference) test were done using IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp. : All the immersion media changed the color of the resin composites to varying degrees. However, turmeric solution showed the maximum mean color variation ΔEFNx01ab of 14.8 ± 2.57 in microhybrid resin composites and 16.8 ± 3.50 in nanohybrid resin composites. Microhybrid and nanohybrid resin composites tend to stain to Indian food colorants, especially to turmeric powder.
NASA Astrophysics Data System (ADS)
Dai, Mengyan; Liu, Jianghai; Cui, Jianlin; Chen, Chunsheng; Jia, Peng
2017-10-01
In order to solve the problem of the quantitative test of spectrum and color of aerosol, the measurement method of spectrum of aerosol based on human visual system was proposed. The spectrum characteristics and color parameters of three different aerosols were tested, and the color differences were calculated according to the CIE1976-L*a*b* color difference formula. Three tested powders (No 1# No 2# and No 3# ) were dispersed in a plexglass box and turned into aerosol. The powder sample was released by an injector with different dosages in each experiment. The spectrum and color of aerosol were measured by the PRO 6500 Fiber Optic Spectrometer. The experimental results showed that the extinction performance of aerosol became stronger and stronger with the increase of concentration of aerosol. While the chromaticity value differences of aerosols in the experiment were so small, luminance was verified to be the main influence factor of human eye visual perception and contributed most in the three factors of the color difference calculation. The extinction effect of No 3# aerosol was the strongest of all and caused the biggest change of luminance and color difference which would arouse the strongest human visual perception. According to the sensation level of chromatic color by Chinese, recognition color difference would be produced when the dosage of No 1# powder was more than 0.10 gram, the dosage of No 2# powder was more than 0.15 gram, and the dosage of No 3# powder was more than 0.05 gram.
[Aluminium content in foods with aluminium-containing food additives].
Ogimoto, Mami; Suzuki, Kumi; Kabashima, Junichiro; Nakazato, Mitsuo; Uematsu, Yoko
2012-01-01
The aluminium (Al) content of 105 samples, including bakery products made with baking powder, agricultural products and seafoods treated with alum, was investigated. The amounts of Al detected were as follows (limit of quantification: 0.01 mg/g): 0.01-0.37 mg/g in 26 of 57 bakery products, 0.22-0.57 mg/g in 3 of 6 powder mixes, 0.01-0.05 mg/g in all three agricultural products examined, 0.03-0.90 mg/g in 4 of 6 seafood samples, 0.01-0.03 mg/g in 3 of 11 samples of instant noodles, 0.04-0.14 mg/g in 3 of 4 samples of vermicelli, 0.01 mg/g in 1 of 16 soybean products, but none in soybeans. Amounts equivalent to the PTWI of a 16 kg infant were detected in two samples of bakery products, two samples of powder mixes and one sample of salted jellyfish, if each sample was taken once a week. These results suggest that certain foods, depending on the product and the intake, might exceed the PTWI of children, especially infants.
Spices as a source of lead exposure: a market-basket survey in Sri Lanka.
Senanayake, M P; Perera, R; Liyanaarachchi, L A; Dassanayake, M P
2013-12-01
We performed a laboratory analysis of spices sold in Sri Lanka for lead content. Samples of curry powder, chili powder and turmeric powder from seven provinces, collected using the market basket survey method, underwent atomic absorption spectrometry. Blanks and standards were utilised for instrument calibration and measurement accuracy. The results were validated in two different laboratories. All samples were found to have lead levels below the US Food and Drug Administration's action level of 0.5 μg/g. Spices sold in Sri Lanka contain lead concentrations that are low and within the stipulated safety standards.
A Study of Production of Miscibility Gap Alloys with Controlled Structures
NASA Technical Reports Server (NTRS)
Parr, R. A.; Johnston, M. H.; Burka, J. A.; Davis, J. H.; Lee, J. A.
1983-01-01
Composite materials were directionally solidified using a new technique to align the constituents longitudinally along the length of the specimen. In some instances a tin coating was applied and diffused into the sample to form a high transition temperature superconducting phase. The superconducting properties were measured and compared with the properties obtained for powder composites and re-directionally solidified powder compacts. The samples which were compacted and redirectionally solidified showed the highest transition temperature and wildest transition range. This indicates that both steps, powder compaction and resolidification, determine the final superconducting properties of the material.
X-ray diffraction studies of shocked lunar analogs
NASA Technical Reports Server (NTRS)
Hanss, R. E.
1979-01-01
The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.
Sauzier, Georgina; Bors, Dana; Ash, Jordan; Goodpaster, John V; Lewis, Simon W
2016-09-01
The investigation of explosive events requires appropriate evidential protocols to recover and preserve residues from the scene. In this study, a central composite design was used to determine statistically validated optimum recovery parameters for double-base smokeless powder residues on steel, analysed using total vaporisation (TV) SPME/GC-MS. It was found that maximum recovery was obtained using isopropanol-wetted swabs stored under refrigerated conditions, then extracted for 15min into acetone on the same day as sample collection. These parameters were applied to the recovery of post-blast residues deposited on steel witness surfaces following a PVC pipe bomb detonation, resulting in detection of all target components across the majority of samples. Higher overall recoveries were obtained from plates facing the sides of the device, consistent with the point of first failure occurring in the pipe body as observed in previous studies. The methodology employed here may be readily applied to a variety of other explosive compounds, and thus assist in establishing 'best practice' procedures for explosive investigations. Copyright © 2016 Elsevier B.V. All rights reserved.
Fabrication of porous silicon nitride ceramics using binder jetting technology
NASA Astrophysics Data System (ADS)
Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.
2016-07-01
This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.
NASA Technical Reports Server (NTRS)
Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.
2003-01-01
A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.
Au, Dawn; Wang, Lijing; Yang, Dajian; Mok, Daniel K W; Chan, Albert S C; Xu, Hongxi
2012-01-01
Light and polarized microscope was applied to authenticate 32 Cordyceps and 6 artificial counterfeits and 8 fermented Cordyceps as well as 7 Cordyceps capsules available in Hong Kong markets. Results showed that transverse sections of stroma and powder of larvae can be used to differentiate C. sinensis from its counterfeits. The fermented Cordyceps are in powder form. Among the eight fermented Cordyceps collected, half of them were pure; three were a mixture of fermented Cordyceps and soya beans; one was a mixture of unknown plant tissues and soya beans. For the seven Cordyceps capsules, the powders of five samples were a mixture of fermented Cordyceps and soya beans; the powders of other two were a mixture of C. sinensis stroma powder and fermented Cordyceps. The study indicated that the microscopy is an unambiguous method that requests fewer sample for the authentication of valuable Chinese medicine-C. sinensis and its related products. Copyright © 2011 Wiley Periodicals, Inc.
Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y
2001-02-01
The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.
Marek, Steve R; Donovan, Martin J; Smyth, Hugh D C
2011-05-01
Batch-to-batch variability, whereby distinct batches of dry powder inhaler formulations, though manufactured with identical components and specifications, may exhibit significant variations in aerosol performance, is a major obstacle to consistent and reproducible drug delivery for inhalation therapy. This variability may arise from processing or manufacturing effects that have yet to be investigated. This study focused on the potential effects of mild compression forces experienced during powder manufacture and transport (such as during the filling of, or storage in, a hopper) on the flowability and aerosol performance of a lactose-based dry powder inhaler formulation. Different grades of inhalation lactose were subjected to typical compression forces by either placing a weight of known mass on the sample or by using a Texture Analyzer to apply a constant force while measuring the distance of compaction. Powder flowability was evaluated with a rotating drum apparatus by imaging the avalanching of the powder over time. The average avalanche angle and avalanche time were used to determine the flowability of each sample, both before and after compression treatment. Aerosol performance of treated and untreated lactose/budesonide blends (2% (w/w)) was assessed in dispersion studies using a next generation impactor. At compression forces in excess of 5 kPa, the flowability of milled lactose was decreased relative to the untreated sample. Compression of lactose prior to blending caused a decrease in in vitro aerosol dispersion performance. However, dispersion performance was unchanged when compression occurred subsequent to drug blending. In contrast, inhalation grade sieved lactose, differing from the milled grade with a lower concentration of lactose fines (<10 μm) and larger overall particle sizes, exhibited no statistical differences in either flowability or dispersion performance across all experimental treatments. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to mild processing pressures is hypothesized to be the cause of these observed performance variations. It was shown that simulations of storage and transport in an industrial scale hopper can induce significant variations in formulation performance, and it is speculated that this could be a source of batch-to-batch variations. Copyright © 2011 Elsevier B.V. All rights reserved.
Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.
Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S
2017-01-01
The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Medina, Fransisco
Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.
Liu, Xiaoyan; Li, Huihui; Xu, Zhigang; Peng, Jialin; Zhu, Shuqiang; Zhang, Haixia
2013-10-03
A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012-0.120 ng g(-1) for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N=10 were from 0.04 to 0.40 ng g(-1) for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7-103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Bolong, Wu; Fengxia, Zhang; Xiaoning, Ma; Fengjuan, Zhou; Brunelle, Sharon L
2016-01-01
A potentiometric method for determination of chloride was validated against AOAC Standard Method Performance Requirement (SMPR(®)) 2014.015. Ten AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) matrixes, including National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1849a, were tested in duplicate on 6 independent days. The repeatability (RSDr) ranged from 0.43 to 1.34%, and the intermediate reproducibility (RSDiR) ranged from 0.80 to 3.04%. All results for NIST SRM 1849a were within the range of the certified concentration (701 ± 17 mg/100 g). Recovery was demonstrated with two overspike levels, 50 and 100%, in the 10 SPIFAN matrixes. Samples were tested in duplicate on 3 different days, and all results were within the SMPR requirement of 95 to 105%. The LOQs of the method for powdered products and ready-to-feed or reconstituted products were 20 mg/100 g and 2.2 mg/100 mL, respectively. A wide analytical range from the LOQ to 99.5% chlorine content can be reached with an appropriate dilution factor, but in practice, the upper analytical value observed in routine matrix testing was approximately 1080 mg/100 g in skim milk powder. This is a rapid, simple, and reliable chlorine-testing method applicable to infant formula, adult nutritionals, and ingredients used in these dairy-based products, such as skim milk powder, desalted whey powder, whey protein powder, and whole milk powder.
Chemiluminescence measurements on irradiated garlic powder by the single photon counting technique
NASA Astrophysics Data System (ADS)
Narvaiz, P.
1995-02-01
The feasibility of identifying irradiated garlic powder measuring chemiluminescence by liquid scintillation spectrometry was studied. Samples packed in 100 μm thick polyethylene bags were irradiated in a 60Co semi-industrial facility, with doses of 10 and 30 kGy. Control and irradiated samples were stored at 20 ± 4°C and 70 ± 10% RH in darkness for 2 years. Assays were performed to establish the best sample concentration and pH of the buffer solution in which garlic powder was to be suspended for its measurement. The water content of garlic samples was also analyzed throughout storage time, as it related to the stability of the species causing luminescence. Chemiluminescence values diminished in every sample over storage time following an exponential pattern. Irradiated samples showed values significantly higher than those of the control samples, according to the radiation dose, throughout the storage period. This does not necessarily imply that the identification of the irradiated samples would be certain, since values of control samples coming from different origins have been found to fluctuate within a rather wide range. Nonetheless, in principle, the method looks promising for the measurement of chemiluminescence in irradiated samples
Lead Content of Sindoor, a Hindu Religious Powder and Cosmetic: New Jersey and India, 2014-2015.
Shah, Manthan P; Shendell, Derek G; Strickland, Pamela Ohman; Bogden, John D; Kemp, Francis W; Halperin, William
2017-10-01
To assess the extent of lead content of sindoor, a powder used by Hindus for religious and cultural purposes, which has been linked to childhood lead poisoning when inadvertently ingested. We purchased 95 samples of sindoor from 66 South Asian stores in New Jersey and 23 samples from India and analyzed samples with atomic absorption spectrophotometry methods for lead. Analysis determined that 79 (83.2%) sindoor samples purchased in the United States and 18 (78.3%) samples purchased in India contained 1.0 or more micrograms of lead per gram of powder. For US samples, geometric mean concentration was 5.4 micrograms per gram compared with 28.1 micrograms per gram for India samples. The maximum lead content detected in both US and India samples was more than 300 000 micrograms per gram. Of the examined US sindoor samples, 19% contained more than 20 micrograms per gram of lead (US Food and Drug Administration [FDA] limit); 43% of the India samples exceeded this limit. Results suggested continued need for lead monitoring in sindoor in the United States and in sindoor carried into the United States by travelers from India, despite FDA warnings.
NASA Astrophysics Data System (ADS)
Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas
2009-01-01
Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.
Developing New Methods for Microsampling and Sm/Nd Dating of Zoned Garnet
NASA Astrophysics Data System (ADS)
Pollington, A. D.; Baxter, E. F.
2007-12-01
Garnets provide one of the Earth Science community's most useful tools for studying rates, duration and timing of crustal processes. In this study we describe new techniques for fine sampling of multiple growth zones of garnet and Sm/Nd dating of each individual zone. We test these techniques on large (>5cm) garnets from a shear zone in the Tauern Window of Austria where we seek to quantify the growth history of garnet in a manner similar to dating tree rings. Microsampling permits a more precise quantification of duration, episodicity and kinetics of metamorphic reactions. Past studies of garnet growth duration - based on core and rim garnet ages - have been limited by sampling methods for extracting discrete, and accurate, growth zones. Modeling of radial growth symmetry in garnet shows that previous studies may underestimate garnet growth duration by as much as 50%. We are able to dramatically improve microsampling by using microdrilling guided by chemical maps of the garnet composition. This provides much improved precision and accuracy in sampling. By using chemical mapping of the garnet we can be sure that we are correctly sampling narrow (~500 micron wide) growth (i.e. age) zones rather than smearing and averaging multiple growth zones together. In principle, tens of growth zones (and ages) spanning the entire interval of garnet growth may be sampled and resolved. Microdrilled domains, the results of which are an ultrafine powder, are drilled and collected in water. Due to the adverse geochronological effect of unavoidable micro-inclusions in garnet, we have tested several partial dissolution techniques to cleanse the garnet of inclusions and yield higher 147Sm/144Nd and hence, more precise ages. Analysis of a finely crushed bulk Tauern Window garnet sample after HF/HClO3 cleansing indicates that 147Sm/144Nd at least as high as 0.89 is attainable in this particular sample, but cleansing efforts on microdrilled powders have thus far failed to yield such high ratios suggesting that the powders respond in unexpectedly different ways to our standard garnet cleansing procedures. Preliminary Sm/Nd age analysis of bulk garnet confirms a ~25Ma age for garnet growth. Progress in our inclusion cleansing procedures on microdrilled powders will be reported.
NASA Astrophysics Data System (ADS)
Golovkova, E. A.; Ekimov, E. A.; Ivanov, A. S.; Kruglov, V. S.; Pal', A. F.; Ryabinkin, A. N.; Serov, A. O.; Starostin, A. N.; Tsetlin, M. B.
2017-11-01
The use of high pressure ( 8 GPa) in the formation of composite quasi-crystalline materials from powders made it possible to create practically poreless samples with a density close to the maximum known for this type of quasi-crystals. For samples with a nickel binder, sintered at a temperature of 550°C, a very low coefficient of friction was obtained, which retain its value during the testing.
Piezoelectric and Electrostrictive Materials for Transducer Applications.
1984-05-01
the stress is applied to sample using a simple lever arm to provide high load at the center point of a piston of hardened steel. To avoid poisson ratio...relatively simple ’screening test’ for PZT powders, powder samples were prepared from six different PZT transducer formulations supplied by the Navy...to 6000C showed the largest broadening. Heat treatment of this sample to 1.1000C reduced the broadening markedly indicating that simple chemical co
Nascimento, Paloma Andrade Martins; Barsanelli, Paulo Lopes; Rebellato, Ana Paula; Pallone, Juliana Azevedo Lima; Colnago, Luiz Alberto; Pereira, Fabíola Manhas Verbi
2017-03-01
This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR method are that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.
Shah, Manthan P; Shendell, Derek G; Meng, Qingyu; Ohman-Strickland, Pamela; Halperin, William
2018-04-23
The performances of a portable X-Ray Fluorescence (XRF) lead paint analyzer (RMD LPA-1, Protec Instrument Corp., Waltham, MA) and a commercially available colorimetric lead test kit (First Alert Lead Test Kit, eAccess Solutions, Inc., Palatine, IL) were evaluated for use by local or state health departments as potential cost-effective rapid analysis or "spot test" field techniques for tentative identification of lead content in sindoor powders. For both field-sampling methods, sensitivity, specificity and predictive values varied widely for samples containing <300,000 μg/g lead. For samples containing ≥300,000 μg/g lead, the aforementioned metrics were 100% (however, the CIs had a wide range). In addition, both field sampling methods showed clear, consistent positive readings only for samples containing ≥300,000 μg/g lead. Even samples with lead content as high as 5,110 μg/g were not positively identified by either field analysis technique. The results of this study suggest the XRF analyzer and colorimetric lead test kit cannot be used as a rapid field test for sindoor by health department inspectors.
Optimization of sintering conditions for cerium-doped yttrium aluminum garnet
NASA Astrophysics Data System (ADS)
Cranston, Robert Wesley McEachern
YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.
Depth of penetration of a 785nm wavelength laser in food powders
NASA Astrophysics Data System (ADS)
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Schmidt, Walter F.
2015-05-01
Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume is detected by Raman system. The aim of this study was to investigate the penetration depth of a 785nm laser (maximum power output 400mw) into three different food powders, namely dry milk powder, corn starch, and wheat flour. The food powders were layered in 5 depths between 1 and 5 mm overtop a Petri dish packed with melamine. Melamine was used as the subsurface reference material for measurement because melamine exhibits known and identifiable Raman spectral peaks. Analysis of the sample spectra for characteristics of melamine and characteristics of milk, starch and flour allowed determination of the effective penetration depth of the laser light in the samples. Three laser intensities (100, 200 and 300mw) were used to study the effect of laser intensity to depth of penetration. It was observed that 785nm laser source was able to easily penetrate through every point in all three food samples types at 1mm depth. However, the number of points that the laser could penetrate decreased with increasing depth of the food powder. ANOVA test was carried out to study the significant effect of laser intensity to depth of penetration. It was observed that laser intensity significantly influences the depth of penetration. The outcome of this study will be used in our next phase of study to detect different chemical contaminants in food powders and develop quantitative analysis models for detection of chemical contaminants.
Aflatoxins in spices marketed in Portugal.
Martins, M L; Martins, H M; Bernardo, F
2001-04-01
Seventy-nine prepackaged samples of 12 different types of spice powders (five cardamom, five cayenne pepper, eight chilli, five cloves, seven cumin, five curry) powder, five ginger, five mustard, 10 nutmeg, 12 paprika, five saffron and seven white pepper) were selected from supermarkets and ethnic shops in Lisbon (Portugal) for estimation of aflatoxins by immunoaffinity column clean-up followed by HPLC. Aflatoxin B1 (AFB1) was detected in 34 samples of prepackaged spices (43.0%). All of the cayenne pepper samples were contaminated with levels ranging from 2 to 32 microg AFB1/kg. Three nutmeg samples contained levels ranging from 1 to 5 microg/kg, three samples had levels ranging from 6 to 20 microg/kg, and there were two with 54 microg/kg and 58 microg/ kg. Paprika contained levels of aflatoxin B1 ranging from 1 to 20 microg/kg. Chilli, cumin, curry powder, saffron and white pepper samples had levels ranging from 1 to 5 microg/kg. Aflotoxins were not detected in cardamon, cloves, ginger and mustard. None of the samples analysed contained aflatoxins B2, G1 and G2.
Xi, Meili; Feng, Yuqing; Li, Qiong; Yang, Qinnan; Zhang, Baigang; Li, Guanghui; Shi, Chao; Xia, Xiaodong
2015-04-01
The aim of the study was to investigate the prevalence, distribution, and diversity of Escherichia coli in goat-milk-powder plants in Shaanxi, China. Three plants manufacturing goat milk powder in Shaanxi province were visited once for sampling during 2012 and 2013. Samples were taken for isolation of E. coli. Isolates were characterized by antimicrobial susceptibility testing and detection of virulence genes. All isolates were further examined by pulsed-field gel electrophoresis analysis. In total, 53 E. coli strains were isolated from 32 positive samples out of 534 samples. Among E. coli isolates, resistance was most frequently observed to trimethoprim-sulfamethoxazole (75.5%), whereas all isolates were sensitive to gatifloxacin, kanamycin, amikacin, and amoxicillin-clavulanate. The 6 virulence genes of pathogenic E. coli were not detected. Pulsed-field gel electrophoresis results showed that E. coli strains in plants were genetically diverse and milk storage tank could be an important contamination source. This study could provide useful information for plants manufacturing goat milk powder to establish proper management practices that help minimize the chance of microbial contamination. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Identification of mothball powder composition by float tests and melting point tests.
Tang, Ka Yuen
2018-07-01
The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can identify camphor mothballs but melting point tests cannot. We suggest melting point tests for identifying mothball powder and tiny fragments while float tests are recommended for intact mothball and large fragments.
Melamine detection in infant formula powder using near- and mid-infrared spectroscopy.
Mauer, Lisa J; Chernyshova, Alona A; Hiatt, Ashley; Deering, Amanda; Davis, Reeta
2009-05-27
Near- and mid-infrared spectroscopy methods (NIR, FTIR-ATR, FTIR-DRIFT) were evaluated for the detection and quantification of melamine in infant formula powder. Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration: R(2) > 0.99, RMSECV ≤ 0.9, and RPD ≥ 12. Factorization analysis of spectra was able to differentiate unadulterated infant formula powder from samples containing 1 ppm melamine with no misclassifications, a confidence level of 99.99%, and selectivity > 2. These nondestructive methods require little or no sample preparation. The NIR method has an assay time of 1 min, and a 2 min total time to detection. The FTIR methods require up to 5 min for melamine detection. Therefore, NIR and FTIR methods enable rapid detection of 1 ppm melamine in infant formula powder.
Technological aspects of lactose-hydrolyzed milk powder.
Torres, Jansen Kelis Ferreira; Stephani, Rodrigo; Tavares, Guilherme M; de Carvalho, Antônio Fernandes; Costa, Renata Golin Bueno; de Almeida, Carlos Eduardo Rocha; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa; Schuck, Pierre; Perrone, Ítalo Tuler
2017-11-01
Few reports describe the effect of lactose hydrolysis on the properties of milk powder during production and storage. Hence, the aim of this study was to evaluate the effects of five different levels of enzymatic lactose hydrolysis during the production and storage of milk powder. As the lactose hydrolysis rate increased, adhesion to the drying chamber also increased, due to higher levels of particle agglomeration. Additionally, more brown powder was obtained when the lactose hydrolysis rate was increased, which in turn negatively affected rehydration ability. Using Raman spectroscopy, crystallization of the lactose residues in various samples was assessed over 6weeks of accelerated aging at a room temperature environment with 75.5% of air moisture. Products with 25% or greater lactose hydrolysis showed no signs of crystallization, in contrast to the non-hydrolyzed sample. Copyright © 2017. Published by Elsevier Ltd.
Effect of charcoal doping on the superconducting properties of MgB 2 bulk
NASA Astrophysics Data System (ADS)
Kim, N. K.; Tan, K. S.; Jun, B.-H.; Park, H. W.; Joo, J.; Kim, C.-J.
2008-09-01
The effect of charcoal doping on the superconducting properties of in situ processed MgB 2 bulk samples was investigated. To understand the size effect of the dopant the charcoal powder was attrition milled for 1 h, 3 h and 6 h using ZrO 2 balls. The milled charcoal powders were mixed with magnesium and boron powders to a nominal composition of Mg(B 0.975C 0.025) 2. The Mg(B 0.975C 0.025) 2 compacts were heat-treated at 900 °C for 0.5 h in flowing Ar atmosphere. Magnetic susceptibility for the samples showed that the superconducting transition temperature ( Tc) decreased as the size of the charcoal powder decreased. The critical current density ( Jc) of Mg(B 0.975C 0.025) 2 prepared using large size charcoal powder was lower than that of the undoped MgB 2. However, a crossover of Jc value was observed at high magnetic fields of about 4 T in Mg(B 0.975C 0.025) 2 prepared using small size charcoal powder. Carbon diffusion into the boron site was easier and gave the Jc increase effect when the small size charcoal was used as a dopant.
Kim, Il-Suk; Jin, Sang-Keun; Mandal, Prabhat Kumar; Kang, Suk-Nam
2011-10-01
Low fat pork sausages were formulated with tomato powder at 0% (C), 0.8% (T1), 1.2% (T2) and 1.5% (T3) levels in basic formula. With the increase in tomato powder concentration the lightness of the sausage decreased but the redness and yellowness increased significantly (p < 0.05). The pH values of T2 and T3 were significantly (p < 0.05) lower than the others, whereas, water holding capacity of T2 and T3 was significantly (p < 0.05) higher. Thiobarbituric acid reactive substances, cohesiveness and springiness values of treated groups were significantly (p < 0.05) lower than those of control samples, however, hardness values of sausages with tomato powder were significantly (p < 0.05) higher. The scores of overall acceptability in tested groups were significantly (p < 0.05) higher than those of control samples after 30 days of storage. The low fat pork sausage with tomato powder up to 1.5% was found to be well acceptable up to 30 days at refrigerated storage. This new product will have special value due to the functional additive lycopene in tomato powder.
NASA Astrophysics Data System (ADS)
Gavriliuk, A. G.; Voitkovsky, V. S.; Sidorov, V. A.; Filonenko, V. P.; Tsiok, O. B.; Khvostantsev, L. G.
1998-05-01
Nanocrystalline Fe15Cu85 pseudoalloy has been subjected to pulsed heating up to 1500 K at high pressure (8 GPa). Two regimes were studied: the direct heating using electrodischarge through the sample and indirect heating with the use of cylindrical heater around the sample. The temperature and time conditions in both types of experiments were adjusted to be equivalent. The discharge parameters (stored energy, discharge time, and magnitude of current pulse) were sufficient to move defects by conduction electrons, but insufficient to melt the sample. The properties of treated samples were studied using Mössbauer absorption spectra and x-ray diffraction for three types of samples: (a) primary powder treated by high pressure up to 8 GPa, (b) powder subjected to indirect pulsed heating at 8 GPa, (c) powder treated by electrical pulses at 8 GPa. The x-ray diffraction pattern of primary powder exhibits peaks of copper, iron, and copper oxide (CuO). The Mössbauer spectrum of primary powder exhibits six peaks of alpha iron and some peaks near zero velocity due to the small iron clusters in the copper matrix and ultrafine clusters of paramagnetic phase x-Fe2O3. The transformation of CuO to Cu2O takes place in the course of indirect heating, the Mössbauer spectrum being almost unchanged. The direct electrodischarge heating causes the appearance of new magnetic phase with the magnetic field on iron nucleus 505 kOe, which corresponds to α-Fe2O3. The formation of α-Fe2O3 was confirmed by x-ray diffraction. At the same time the transformation of CuO to Cu2O is incomplete. These experiments demonstrate that high density current pulses, causing the electron wind, can be a useful tool to influence the structure of nanocrystalline powder.
Characterization of powdered fish heads for bone graft biomaterial applications.
Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda
2013-01-01
The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.
Mühlbauer, Martin J.
2018-01-01
The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055
Santos, A; Ajbary, M; Morales-Flórez, V; Kherbeche, A; Piñero, M; Esquivias, L
2009-09-15
This paper presents the results of the carbonation reaction of two sample types: larnite (Ca(2)SiO(4)) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO(2) for 15 min. This indicates that for this reaction time, 1t of larnite could eliminate about 550 kg of CO(2). The grain size, porosity, and specific surface area are the factors controlling the reaction.
Numerical simulation of residual stress in laser based additive manufacturing process
NASA Astrophysics Data System (ADS)
Kalyan Panda, Bibhu; Sahoo, Seshadev
2018-03-01
Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.
Modification of isoflavone profiles in a fermented soy food with almond powder.
Park, MinHee; Jeong, Min Kyu; Kim, MiJa; Lee, JaeHwan
2012-01-01
Isoflavone profiles of a fermented soy food, cheonggukjang, were modified using almond powder. Isoflavones were analyzed by high performance liquid chromatography (HPLC) with an ultraviolet detector. Malonyl derivatives of isoflavones decreased and aglycones of isoflavones increased in samples with almond powder for 48 h. As added, almond powder increased from 0%, 5%, and 10% (w/w), amounts of aglycones increased to 21.11%, 26.63%, and 32.45% for 48 h, respectively. β-Glucosidase activity in 5% and 10% almond added samples was significantly higher than samples without addition of almond (P < 0.05). The content of succinyl daidzin and succinyl genistin, new metabolites from isoflavones, in almond-added cheonggukjang was significantly lower than control samples, implying that β-glucosidase activity from almond affected negatively the formation of succinyl derivatives (P < 0.05). Principal component analysis (PCA) for isoflavone distribution showed that first principal component (PC1) and second principal component (PC2) expressed 64.78% and 22.26% of the data variability, respectively. Biotransformation of isoflavones in any fermented soy foods can be achieved using natural products containing high β-glucosidase activity such as almond. The results of this study can help to modify the structural transformation of phytochemicals in any fermented soy foods using natural products. Adjusting the content of almond powder can achieve wanted profiles, for example, high aglycones content. Also, content of metabolites such as succinyl derivatives can be controlled using proper amounts of almond and fermentation time. © 2011 Institute of Food Technologists®
Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T
2014-01-01
The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.
2014-07-01
corrosion studies (16). A schematic of the SWAP process and example of the powder produced is included in figure 4. This alloy contains amounts of Al ...advanced powder -based alloy and ZAXE1711 (both from Japan) were produced using a Spinning Water Atomization Process (SWAP) to yield powder particles with...and ZAXE1711 Mg alloy powders and (b) morphology of coarse Mg alloy powder prepared by SWAP
NASA Astrophysics Data System (ADS)
Ageev, E. V.; Altukhov, A. Yu; Malneva, Yu V.; Novikov, A. N.
2018-03-01
The results of the wear resistance investigation of electro sparking coatings, applied using electrode material from electroerosive powders of hard alloy VK-8 (90%) with the addition of powder of high-speed steel of grade R6M5 (10%), are presented. Electro spark coatings were formed on samples of 30KhGSA steel using these electrodes and installation UR-121. The coefficient of friction and the wear rate of the surface of the sample and counterbody were measured on an automated friction machine “Tribometer” (CSM Instruments, Switzerland), controlled by a computer, according to the standard “ball-disk” test scheme.
The synthesis of nanostructured SiC from waste plastics and silicon powder
NASA Astrophysics Data System (ADS)
Ju, Zhicheng; Xu, Liqiang; Pang, Qiaolian; Xing, Zheng; Ma, Xiaojian; Qian, Yitai
2009-09-01
Waste plastics constitute a growing environmental problem. Therefore, the treatment of waste plastics should be considered. Here we synthesize 3C-SiC nanomaterials coexisting with amorphous graphite particles utilizing waste plastics and Si powder at 350-500 °C in a stainless steel autoclave. 3C-SiC could be finally obtained after refluxing with aqueous HClO4 (70 wt%) at 180 °C. X-ray powder diffraction patterns indicate that the product is 3C-SiC with the calculated lattice constant a = 4.36 Å. Transmission electron microscopy (TEM) images show that the SiC samples presented two morphologies: hexagonal platelets prepared by the waste detergent bottles or beverage bottles and nanowires prepared by waste plastic bags respectively. The corresponding selected area electron diffraction (SAED) pattern indicates that either the entire hexagonal platelet or the nanowire is single crystalline. High-resolution TEM shows the planar surfaces of the SiC platelet correspond to {111} planes; the lateral surfaces are {110} planes and the preferential growth direction of the nanowires is along [111]. The output of SiC was ~39% based on the amount of Si powder.
NASA Astrophysics Data System (ADS)
Liu, Fei; He, Yong; Wang, Li
2007-11-01
In order to implement the fast discrimination of different milk tea powders with different internal qualities, visible and near infrared (Vis/NIR) spectroscopy combined with effective wavelengths (EWs) and BP neural network (BPNN) was investigated as a new approach. Five brands of milk teas were obtained and 225 samples were selected randomly for the calibration set, while 75 samples for the validation set. The EWs were selected according to x-loading weights and regression coefficients by PLS analysis after some preprocessing. A total of 18 EWs (400, 401, 452, 453, 502, 503, 534, 535, 594, 595, 635, 636, 688, 689, 987, 988, 995 and 996 nm) were selected as the inputs of BPNN model. The performance was validated by the calibration and validation sets. The threshold error of prediction was set as +/-0.1 and an excellent precision and recognition ratio of 100% for calibration set and 98.7% for validation set were achieved. The prediction results indicated that the EWs reflected the main characteristics of milk tea of different brands based on Vis/NIR spectroscopy and BPNN model, and the EWs would be useful for the development of portable instrument to discriminate the variety and detect the adulteration of instant milk tea powders.
Pistón, Mariela; Mollo, Alicia; Knochen, Moisés
2011-01-01
A fast and efficient automated method using a sequential injection analysis (SIA) system, based on the Griess, reaction was developed for the determination of nitrate and nitrite in infant formulas and milk powder. The system enables to mix a measured amount of sample (previously constituted in the liquid form and deproteinized) with the chromogenic reagent to produce a colored substance whose absorbance was recorded. For nitrate determination, an on-line prereduction step was added by passing the sample through a Cd minicolumn. The system was controlled from a PC by means of a user-friendly program. Figures of merit include linearity (r2 > 0.999 for both analytes), limits of detection (0.32 mg kg−1 NO3-N, and 0.05 mg kg−1 NO2-N), and precision (sr%) 0.8–3.0. Results were statistically in good agreement with those obtained with the reference ISO-IDF method. The sampling frequency was 30 hour−1 (nitrate) and 80 hour−1 (nitrite) when performed separately. PMID:21960750
NASA Astrophysics Data System (ADS)
Zhitova, E. S.; Ivanyuk, G. Yu.; Krivovichev, S. V.; Yakovenchuk, V. N.; Pakhomovsky, Ya. A.; Mikhailova, Yu. A.
2017-12-01
Pyroaurite [Mg6Fe2 3+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group R3̅ m, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3 R polytype. The ratio of di- and trivalent cations M 2+: M 3+ was determined as 3.1-3.2 (Kovdor) and 3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600-3500 cm-1) and carbonate groups (absorption bands in the region of 1346-1058 cm-1). Based on the data obtained, the studied samples should be identified as pyroaurite-3 R (hydrotalcite group).
Illicit Drug Use in a Community-Based Sample of Heterosexually Identified Emerging Adults
ERIC Educational Resources Information Center
Halkitis, Perry N.; Manasse, Ashley N.; McCready, Karen C.
2010-01-01
In this study we assess lifetime and recent drug use patterns among 261 heterosexually identified 18- to 25-year-olds through brief street intercept surveys conducted in New York City. Marijuana, hallucinogens, powder cocaine, and ecstasy were the most frequently reported drugs for both lifetime and recent use. Findings further suggest significant…
Ni Based Powder Reconditioning and Reuse for LMD Process
NASA Astrophysics Data System (ADS)
Renderos, M.; Girot, F.; Lamikiz, A.; Torregaray, A.; Saintier, N.
LMD is an additive manufacturing process based on the injection of metallic powder into a melt-pool created by a heat laser source on a substrate. One of the benefits of this technology is the reduction of the wasted material since it is a near-shape process. Moreover one of the main drawbacks is the relatively low efficiency of the trapped powder, which can be loss than 5% in some cases. The non-trapped powder represents a significant cost in the LMD process, since powder metal material is very expensive and usually is not reused. This article proposes a methodology of the reconditioning and posterior reuse of a nickel base powder commonly used in the aerospace industry, with the main objectives of cost saving, higher environmental cleanup and increase of the overall efficiency in the LMD process. The results are checked by the development of a prototype part built up from reused powder.
Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts
2014-01-01
To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the cell walls; thus, the electrolyte is leaked from cells. PMID:24572014
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Nilanjan; Misra, Kamakhya Prakash
2016-05-06
Using titanium isopropoxide as the precursor, Titanium dioxide (TiO{sub 2}) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO{sub 2} samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increasemore » with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO{sub 2} nano powder samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolokang, A.S., E-mail: Sylvester.Bolokang@transnet.net; DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001; Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark 0127
2015-02-15
It is well known that nitriding of titanium is suitable for surface coating of biomaterials and in other applications such as anti-reflective coating, while oxygen-rich titanium oxynitride has been applied in thin film resistors and photocatalysis. Thus in this work anatase was reduced with pure titanium powder during annealing in argon. This was done to avoid any metallic contamination and unwanted residual metal doping. As a result, interesting and different types of particle morphology were synthesized when the pre-milled elemental anatase and titanium powders were mixed. The formation of metastable face centred cubic and monoclinic titanium monoxide was detected bymore » the X-ray diffraction technique. The phases were confirmed by energy dispersive X-ray spectroscopy analysis. Raman analysis revealed weak intensity peaks for samples annealed in argon as compared to those annealed under nitrogen. - Graphical abstract: Display Omitted - Highlights: • Reaction of TiO{sub 2} and Ti induced metastable FCC and monoclinic TiO{sub x}. • Compositions of mixed powder were prepared from the unmilled and pre-milled powders. • Nitridation of TiO{sub x} yielded TiO{sub x}N{sub y} phase. • Mixed morphology was observed on all three powder samples.« less
Recovery of latent fingerprints and DNA on human skin.
Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael
2010-11-01
The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%). © 2010 American Academy of Forensic Sciences.
Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)
NASA Astrophysics Data System (ADS)
Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro
2018-01-01
Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.
Thurber, Kent R.; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418
Thurber, Kent R; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.
Steinhaus, Martin; Schieberle, Peter
2005-07-27
Application of the aroma extract dilution analysis on an extract of white pepper powder showing an intense fecal, cowshed-like off-flavor revealed 3-methylindole (fecal, swine-manure) and 4-methylphenol (fecal, horse-like) with the highest flavor dilution (FD) factors among the 22 odor-active compounds detected. In addition, high FD factors and/or undesirable odor qualities suggested 3-methylphenol (phenolic), butanoic acid (cheese-like), and 2- and 3-methylbutanoic acid (cheese-like) as well as pentanoic acid and hexanoic acid (cheese-like odors) as contributors to the malodor. Although the intensities of the off-note were clearly different in 50 commercial samples of white pepper, quantitation of 3-methylindole and 3- and 4-methylphenol as well as of the five short-chain acids by means of stable isotope dilution assays showed similar concentrations in most of the samples. Storage of a freshly ground white pepper powder for up to 7 months revealed a significant decrease in the typical odor qualities of white pepper and an increase in the fecal odor note with storage time. Because the concentrations of the odorants mentioned above were not much changed during storage, possibly very volatile odorants, such as alpha-pinene, which are able to mask the malodor, are lost during storage of, in particular, pepper powders. On the basis of odor activity values, which were calculated using breakthrough thresholds, in particular, 3-methylindole, 4-methylphenol, 3-methylphenol, and butanoic acid could be suggested as the main sources of the fecal off-flavor.
Plasma sprayed coatings on crankshaft used steels
NASA Astrophysics Data System (ADS)
Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.
2017-08-01
Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.
Lipinski, B.A.; Sams, J.I.; Smith, B.D.; Harbert, W.
2008-01-01
Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam's inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin. ?? 2008 2008 Society of ExplorationGeophysicists. All rights reserved.
NASA Astrophysics Data System (ADS)
Ito, Mikio; Kawahara, Kenta; Araki, Keita
2014-04-01
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.
Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products. PMID:29708973
Lohumi, Santosh; Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Kandpal, Lalit Mohan; Bae, Hyungjin; Rahman, Anisur; Cho, Byoung-Kwan
2018-01-01
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com; Milutinović, Aleksandra N.; Jovalekić, Čedomir D.
2015-03-15
Highlights: • Nano powder of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by a soft mechanochemicaly after 10 h milling. • Phase formation controlled by XRD, Raman and IR spectroscopy. • Spectroscopy measurements indicate that the prepared samples have spinel structure. • The average particles size are found to be around 20 nm. • The degree of inversion is δ = 0.36 for NZF obtained from hydroxides for 10 h. - Abstract: Nano crystalline samples of nickel–zinc ferrite, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} were prepared by mechanochemical route in a planetary ball mill starting from two mixtures of the appropriate quantitiesmore » of the powders: case (1) oxide powders: NiO, ZnO and α-Fe{sub 2}O{sub 3} in one case, and in the second case (2) hydroxide powders: Ni(OH){sub 2}, Zn(OH){sub 2} and Fe(OH){sub 3}. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, IR and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.« less
Thixoforming of Stellite Powder Compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, S. C.; Atkinson, H. V.; Kapranos, P.
2007-04-07
Thixoforming involves processing metallic alloys in the semi-solid state. The process requires the microstructure to be spheroidal when part-solid and part-liquid i.e. to consist of solid spheroids surrounded by liquid. The aim of this work was to investigate whether powder compacts can be used as feedstock for thixoforming and whether the consolidating pressure in the thixoformer can be used to remove porosity from the compact. The powder compacts were made from stellite 6 and stellite 21 alloys, cobalt-based alloys widely used for e.g. manufacturing prostheses. Isothermal heat treatments of small samples in the consolidated state showed the optimum thixoforming temperaturemore » to be in the range 1340 deg. C-1350 deg. C for both materials. The alloys were thixoformed into graphite dies and flowed easily to fill the die. Porosity in the thixoformed components was lower than in the starting material. Hardness values at various positions along the radius of the thixoformed demonstrator component were above the specification for both alloys.« less
NASA Astrophysics Data System (ADS)
Hara, K.; Okuyama, E.; Yonemura, A.; Uchida, T.; Okamoto, N.
2006-09-01
The analysis of particle formation and the doping of luminescent impurities during the two-stage vapor-phase synthesis of GaN powder were carried. GaN particles were grown very fast during the second stage of this method, and the increment in particle size was larger for higher reaction temperature in the region between 800 and 1000 °C. The analysis on the behaviour of particle growth based on the reaction kinetics suggested that the growth almost finishes in a few seconds with an extremely high rate at the early stage at 1000 °C, whereas the growth lasts with relatively low rates for a time longer than the actual growth duration for the case of lower temperature synthesis. GaN powders doped with various impurity atoms were synthesized by supplying impurity sources with GaCl during the second stage. The samples doped with Zn, Mg and Tb showed emissions characteristic for each doped impurity.
The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti
NASA Astrophysics Data System (ADS)
Ren, Chai; Koopman, Mark; Fang, Z. Zak; Zhang, Huan
2016-11-01
Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten's room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.
Preparation of Ti3Al intermetallic compound by spark plasma sintering
NASA Astrophysics Data System (ADS)
Ito, Tsutomu; Fukui, Takahiro
2018-04-01
Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.
Natural occurrence of ochratoxin A contamination in commercial black and white pepper products.
Jalili, M; Jinap, S; Radu, S
2010-10-01
The concentration of ochratoxin A (OTA) in 120 commercial pepper (84 pre-packed and 36 bulk samples), which consist of local and imported white and black pepper in powder and seed form in Malaysia were determined. The objective of the study was to investigate and compare OTA concentration in black pepper and white pepper being commercialized in Malaysia. Determination method was based on HPLC with fluorescence detection coupled with immunoaffinity column clean-up step. Mobile phase consisted of acetonitrile-water-acetic acid (49.5:49.5:1.0, v/v/v), and flow rate was 1 ml/min. The LOD was 0.02 ng/g, and the average recovery values of OTA ranged from 79.5 to 92.0% in black pepper and 81.2-90.3% in white pepper. A total of 57 samples (47.5%) were contaminated with OTA ranging from 0.15 to 13.58 ng/g. The results showed that there was a significant difference between type of pepper and brands. OTA concentration in black pepper was significantly higher than white pepper (p < 0.05). The highest concentration of ochratoxin, 13.58 ng/g, was detected in a sample of black pepper seed followed by 12.64 ng/g in a sample of black pepper powder, both were bulk samples purchased from open market.
Evaluation of milk powder quality by protein oxidative modifications.
Scheidegger, Dana; Radici, Paola M; Vergara-Roig, Víctor A; Bosio, Noelia S; Pesce, Silvia F; Pecora, Rolando P; Romano, José C P; Kivatinitz, Silvia C
2013-06-01
The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ahn, Jae-Jun; Akram, Kashif; Lee, Jeongeun; Kim, Kyong-Su; Kwon, Joong-Ho
2012-04-01
Thermoluminescence (TL) analysis was applied to identify gamma-irradiated garlic powder in Korean barbeque sauce before and after pasteurization (85 °C, 30 min), when blended in different ratios (1%, 3%, and 5%). The sauce sample with nonirradiated garlic powder gave a background glow curve. However, the sample blended with irradiated ingredient (1 and 10 kGy) showed typical TL glow curves at temperatures of 150 to 200 °C. The identification properties of sauce samples were more influenced by blending ratios than by irradiation doses, showing that 3% and 5% added samples produced glow curves at 150 to 250 °C. After pasteurization of the samples containing the irradiated ingredient, TL glow intensity decreased but did not change its shape or temperature range. As a result, the pasteurization of Barbeque sauces containing irradiated ingredients had reduced TL glow intensity, but the shape and temperature range of glow curve were still able to provide information required for confirming irradiation treatment. To monitor the irradiated food in international market, thermoluminescence (TL) analysis is considered most promising identification technique because of its sensitivity and long-term stability. In this study the applicability of TL analysis to detect an irradiated ingredient (garlic powder) added in low quantity to a food matrix (sauce) was investigated. The effect of processing (pasteurization) on TL results was also evaluated. © 2012 Institute of Food Technologists®
Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer
Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro
2015-01-01
We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909
Mancini, Simone; Preziuso, Giovanna; Dal Bosco, Alessandro; Roscini, Valentina; Parisi, Giuliana; Paci, Gisella
2017-11-01
Effects of ginger powder were evaluated on fatty acid (FA) profile, lipid peroxidation (TBARS) and antioxidant capacity (ABTS, DPPH and FRAP) of rabbit burgers. Burgers were manufactured as control samples (only meat) and two additions of ginger powder (1% and 2%) and stored raw at 4°C for 7days. At day 1, 4 and 7 of storage burgers were analysed both as raw and cooked. Ginger powder affected all the tested parameters; both PUFAω3 and PUFAω6 were incremented in raw and cooked samples leading to decreased atherogenicity and thrombogenicity indexes and increased hypo/hypercholesterolemic index and peroxidability index. Lipid peroxidation values of raw and cooked burgers added with ginger were lower than control burgers, at the same time, ABTS, DPPH and FRAP values were incremented by the addition of ginger powder. The results obtained demonstrate the antioxidant capacity of ginger powder as rabbit meat products additive and highlight the capacity of this spice to maintain its characteristics after burgers' cooking. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com; Jovalekić, Čedomir; Sekulić, Dalibor L.
2013-10-15
Graphical abstract: - Highlights: • Sintered NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from mixture powders. • XRD and Raman measurements indicate that the prepared samples have spinel structure. • The activation energy ΔE are 0.653 and 0.452 eV for NiFe{sub 2}O{sub 4} samples. • Ferrite from Ni(OH){sub 2}/Fe{sub 2}O{sub 3} has lower DC conductivity than from Ni(OH){sub 2}/Fe(OH){sub 3} powders. • The values of dielectric constant of samples NiFe{sub 2}O{sub 4} are 70 and 200, respectively. - Abstract: Nickel ferrite, NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from a mixture of (1) Ni(OH){submore » 2} and α-Fe{sub 2}O{sub 3} and (2) Ni(OH){sub 2} and Fe(OH){sub 3} powders in a planetary ball mill for 25 h. The powder samples were sintered at 1100 °C for 2 h and were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). Impedance spectroscopy techniques were used to study the effect of grain and grain boundary on the electrical properties of the prepared samples. A difference in dielectric constant (ε) and dielectric loss tangent (tan δ) of NiFe{sub 2}O{sub 4} samples obtained by the same methods but starting from different initial components was observed.« less
Room temperature luminescence and ferromagnetism of AlN:Fe
NASA Astrophysics Data System (ADS)
Li, H.; Cai, G. M.; Wang, W. J.
2016-06-01
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
The microwave surface impedance of MgB2 thin films
NASA Astrophysics Data System (ADS)
Purnell, A. J.; Zhukov, A. A.; Nurgaliev, T.; Lamura, G.; Bugoslavsky, Y.; Lockman, Z.; MacManus-Driscoll, J. L.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.; Hao, Ling; Gallop, J. C.; Cohen, L. F.
2003-01-01
In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB2. The powder sample has a Tc = 39 K and the films have Tc = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with Tc = 38 K degraded to a Tc of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage.
NASA Astrophysics Data System (ADS)
Radsick, Timothy Carl
The purpose of this study was to develop phosphorous-based chemicals that could be used to modify the interparticle pair potential of several oxide ceramic particles, thereby enabling their use in colloidal processing schemes. Several procedures for the synthesis of 11-12 carbon alpha,o-functionalized monoalkyl phosphates and phosphonates were developed. Because of its simplicity and its use of mild reagents, a procedure based on the Michaelis-Arbuzov rearrangement was selected to produce the bulk of the chemicals used in this study. Carboxyl- and hydroxyl-terminated monoalkyl phosphonates were adsorbed onto alumina and zirconia powders using either aqueous-based or solvent-based methods to produce a monolayer of "brushlike" steric molecules. In the aqueous-based methods, powders were processed at pH values below their isoelectric point in order to produce a positive charge on the powder, thereby attracting the negatively charged phosphate or phosphonate group onto the powder surface to form the steric monolayer. In solvent-based methods, powder was suspended in an acetone solution of the phosphonates, heated at reflux, washed, dried and heat treated at 120°C under vacuum. The zeta potential of the coated powders was measured to quantify the degree of steric layer adsorption and the shift in the isoelectric point. Slurries of coated alumina and zirconia were prepared having 20 vol % powder. Rheological behavior was studied by measuring viscosity as a function of shear rate for slurries of various pH values and counterion concentrations. Slurries with powder processed via the solvent method were the least sensitive to changes in slurry pH and were straightforward to prepare. It is thought that the solvent-based coating procedure produced a stronger, multi-dentate powder-phosphonate bond than that of the aqueous-based procedure. Dispersed and coagulated slurries were able to be prepared over a wide pH range, including at the isoelectric point of the uncoated powders where a flocculated slurry would typically occur. Slurries were consolidated using pressure filtration. Compressive stress-strain behavior and packing efficiencies were determined. Through consolidation, powder volume fraction was increased to a maximum of 56%, yet through vibration the slurry could be induced to flow, enabling its use in Colloidal Isopressing.
Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas
2014-05-01
In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (<20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites
NASA Astrophysics Data System (ADS)
Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.
2012-03-01
This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.
Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites
NASA Technical Reports Server (NTRS)
Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.
1993-01-01
As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.
Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead
NASA Astrophysics Data System (ADS)
Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.
2018-03-01
Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.
Millimeter wave and terahertz dielectric properties of biological materials
NASA Astrophysics Data System (ADS)
Khan, Usman Ansar
Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to polarization and birefringence effects, it was determined that one can not utilize the dielectric properties of powder-containing packages to differentiate hoax attacks and serious security threats.
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
Experimental Study of Structure/Behavior Relationship for a Metallized Explosive
NASA Astrophysics Data System (ADS)
Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick
2017-06-01
Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Promping, J.; Prakongsil, P.; Picha, R.; Traikool, T.
2017-09-01
This research is designed to determine the efficacy of DBD plasma to reduce the microbial contamination of pepper and sesame powder. The AC high voltage power supply was used with voltages of up to 20 kV and the frequency of 5.5 kHz was applied to the DBD. The gap of DBD electrodes was set at 5 mm. In raw initial samples, the total aerobic count of pepper (Piper nigrum) was found at quite a high level at 5.40 × 105 CFU/g. Coliform bacteria was also found in both the sesame (Sesamum indicum Linn.) powder and pepper (Piper nigrum) powder. Both kinds of samples were treated with plasma for 2, 4, 6 and 10 minutes. Results indicated that plasma treatment at 2-10 minutes reduced the total aerobic count of pepper allowed to achieve the acceptable microbial level for spices. The plasma treatment times in this experiment were also effective in reducing faecal coliform bacteria in both pepper and sesame powders (MPN/g <3) as indicated in the standard. Plasma from dielectric barrier charge can reduce Staphylococcus epidermidis in sesame powder which was artificially contaminated with 3.50 × 102 CFU/g resulting in 0.15-0.5 log cycle reductions of microbial load.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.
2018-01-01
This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.
NASA Astrophysics Data System (ADS)
Ratnawulan, Fauzi, Ahmad; AE, Sukma Hayati
2017-08-01
Copper oxide powder was prepared from Copper iron from South Solok, Indonesia. The samples was dried and calcined for an hour at temperatures of 145°C, 300°C,850°C, 1000°C. Phase transformation and crystallite size of the calcined powders have been investigated as a function of calcination temperature by room-temperature X-ray diffraction (XRD). It was seen that the tenorite, CuO was successfully obtained. With increasing calcining temperature, CuO transformed from malachite Cu2(CO3)(OH)2 to tenorite phase (CuO) and crystallite size of prepared samples increased from 36 nm to 76 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öztürk, Hande; Noyan, I. Cevdet
A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less
Öztürk, Hande; Noyan, I. Cevdet
2017-08-24
A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less
Tămăşan, M; Ozyegin, L S; Oktar, F N; Simon, V
2013-07-01
The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H3PO4. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin - Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals - β-MgTCP [(Ca, Mg)3 (PO4)2] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. Copyright © 2013 Elsevier B.V. All rights reserved.
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.
2017-01-01
Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453
NASA Astrophysics Data System (ADS)
Kersting, E.; von Seggern, H.
2017-08-01
A new production route for europium doped cesium bromide (CsBr:Eu2+) imaging plates has been developed, synthesizing CsBr:Eu2+ powder from a precipitation reaction of aqueous CsBr solution with ethanol. This new route allows the control of features like homogeneous grain size and grain shape of the obtained powder. After drying and subsequent compacting the powder, disk-like samples were fabricated, and their resulting photostimulated luminescence (PSL) properties like yield and spatial resolution were determined. It will be shown that hydration of such disks causes the CsBr:Eu2+ powder to recrystallize starting from the humidity exposed surfaces to the sample interior up to a completely polycrystalline sample resulting in a decreasing PSL yield and an increasing resolution. Subsequent annealing leads to grain refinement combined with a large PSL yield increment and a minor effect on the spatial resolution. By first annealing the "as made" disk, one observes a strong increment of the PSL yield and almost no effect on the spatial resolution. During subsequent hydration, the recrystallization is hindered by minor structural changes of the grains. The related PSL yield drops slightly with increasing hydration time, and the spatial resolution drops considerably. The obtained PSL properties with respect to structure will be discussed with a simple model.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.
2018-01-01
This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.
Pei, Xiao Yan; Yan, Lin; Zhu, Jiang Hui; Li, Ning; Guo, Yun Chang; Fu, Ping; Jia, Hua Yun; Zhang, Xiu Li; Yang, Xiao Rong; Yang, Da Jin
2016-02-01
To determine Cronobacter spp. contamination in infant and follow-up powdered formula in China. All of 2282 samples were collected from the retail markets in China from January 2012 to December 2012, and analyzed for Cronobacter spp. by the Chinese National Food Safety Standard. Characterization of the isolates was analyzed by pulsed-field gel electrophoresis (PFGE) with XbaI and SpeI restriction enzymes. Cronobacter spp. strains were isolated from 25 samples, and the positive rates in infant powdered formulas and follow-up powdered formulas were 0.90% (10/1011) and 1.18% (15/1271), respectively. Analysis of variable data regarding different purchasing store formats, seasonality, and production locations as well as comparison of infant versus follow-up formulas did not reveal statistically significant factors. During the sampling period, one of six surveillance zones did exhibit a statistically significant trend towards higher positive rate. PFGE characterization of Cronobacter spp. to elucidate genetic diversity revealed only three pairs of Cronobacter spp. out of 25 having the same PFGE patterns. The current investigation indicated a lower positive rate of Cronobacter spp. in the powdered formula in China. This evidence suggested contamination originating from multiple different sources during the manufacturing process. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Bovens, M; Csesztregi, T; Franc, A; Nagy, J; Dujourdy, L
2014-01-01
The basic goal in sampling for the quantitative analysis of illicit drugs is to maintain the average concentration of the drug in the material from its original seized state (the primary sample) all the way through to the analytical sample, where the effect of particle size is most critical. The size of the largest particles of different authentic illicit drug materials, in their original state and after homogenisation, using manual or mechanical procedures, was measured using a microscope with a camera attachment. The comminution methods employed included pestle and mortar (manual) and various ball and knife mills (mechanical). The drugs investigated were amphetamine, heroin, cocaine and herbal cannabis. It was shown that comminution of illicit drug materials using these techniques reduces the nominal particle size from approximately 600 μm down to between 200 and 300 μm. It was demonstrated that the choice of 1 g increments for the primary samples of powdered drugs and cannabis resin, which were used in the heterogeneity part of our study (Part I) was correct for the routine quantitative analysis of illicit seized drugs. For herbal cannabis we found that the appropriate increment size was larger. Based on the results of this study we can generally state that: An analytical sample weight of between 20 and 35 mg of an illicit powdered drug, with an assumed purity of 5% or higher, would be considered appropriate and would generate an RSDsampling in the same region as the RSDanalysis for a typical quantitative method of analysis for the most common, powdered, illicit drugs. For herbal cannabis, with an assumed purity of 1% THC (tetrahydrocannabinol) or higher, an analytical sample weight of approximately 200 mg would be appropriate. In Part III we will pull together our homogeneity studies and particle size investigations and use them to devise sampling plans and sample preparations suitable for the quantitative instrumental analysis of the most common illicit drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Surface doping with Al in Ba-hexaferrite powders (abstract)
NASA Astrophysics Data System (ADS)
Turilli, G.; Paoluzi, A.; Lucenti, M.
1991-04-01
Barium M-hexaferrites were intensively studied in order to improve their magnetic characteristics for application as permanent magnets using different ion substitutions. However, substitutions that improve the BHmax energy product have not been found. We propose a new method in order to modify the extrinsic magnetic characteristics of Ba-hexaferrite powders without reducing drastically the magnetization and the magnetic anisotropy. This method consists in the surface doping of the hexaferrite particles, giving as a result a modification of the energy pinning of the domain walls at the grain boundary. Ba ferrite powders having a mean diameter of 3.2 μm have been dry mixed with Al2O3 powders with a diameter <0.5 μm. From the mixed powder a series of 10 cylindrically shaped samples was obtained by isostatically pressing the powders. The samples were thermically treated from 900 to 1200 °C, together with 10 cylindrical samples of pure hexaferrite, for 1 h each. For all the samples we have measured the Curie temperature (Tc), the anisotropy field (HA), the coercive field (Hc), and the saturation magnetization σ. The main results are that up to 1000 °C the Al diffusion is mainly localized at the surface of the grain so that the main part of the grain is undoped as confirmed by the Tc and HA values that are the same as those found in pure hexaferrites. From 900 to 1000 °C the saturation magnetization decreases of the 3% while Hc increases of the 9% with respect to the pure hexaferrite. This result seems to confirm the validity of the proposed method. Above 1000 °C Al begin to diffuse in the grain and above 1200 °C it is possible to say, from thermomagnetic analysis, that Al has diffused uniformly throughout the grain. In this last temperature range the Al substitution leads to a 10% reduction in σ as expected1 while Hc only increases 12%. These preliminary results suggest that the method of surface doping of the powders could be used in order to increase or decrease the H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Grant; Keegan, E.; Young, E.
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Griffiths, Grant; Keegan, E.; Young, E.; ...
2018-01-06
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Li, Weiyong; Worosila, Gregory D
2005-05-13
This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.
Whitfield, Pamela S.
2016-04-29
Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less
Synthesis and characterization of Mn-Bi alloy
NASA Astrophysics Data System (ADS)
Mishra, Ashutosh; Patil, Harsha; Jain, G.; Mishra, N.
2012-06-01
High purity MnBi low temperature phase has been prepared and analyzed using X-ray diffraction, Lorentz-Polarization Factor and Fourier transforms infrared measurement. After synthesis of samples structural characterization has done on samples by X-ray diffraction, which shows that after making the bulk sample is in no single phase MnBi has been prepared by sintering Mn and Bi powders. By Lorentz-Polarization Factor is affecting the relative intensity of diffraction lines on a powder form. And by FTIR which shows absorption peaks of MnBi alloys.
Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition
NASA Astrophysics Data System (ADS)
Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.
2017-04-01
Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.
Schiffres, Scott N; Malen, Jonathan A
2011-06-01
A novel 3ω thermal conductivity measurement technique called metal-coated 3ω is introduced for use with liquids, gases, powders, and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3ω exceeds alternate 3ω based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases), using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques, including transient hot-wire, steady-state methods, and solid-wire 3ω are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3ω was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity. © 2011 American Institute of Physics
Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials
NASA Astrophysics Data System (ADS)
Wang, Xiaolin
Synthesis and processing of novel materials with various advanced approaches have attracted much attention of engineers and scientists for the past thirty years. Many advanced materials display a number of exceptional properties and can be produced with different novel processing techniques. For example, AlN is a promising candidate for electronic, optical and opto-electronic applications due to its high thermal conductivity, high electrical resistivity, high acoustic wave velocity and large band gap. Large bulk AlN crystal can be produced by sublimation of AlN powder. Novel nonostructured multicomponent refractory metal-based ceramics (carbides, borides and nitrides) show a lot of exceptional mechanical, thermal and chemical properties, and can be easily produced by pyrolysis of suitable preceramic precursors mixed with metal particles. The objective of this work is to study sublimation and synthesis of AlN powder, and synthesis of SiC-based metal ceramics. For AlN sublimation crystal growth, we will focus on modeling the processes in the powder source that affect significantly the sublimation growth as a whole. To understand the powder porosity evolution and vapor transport during powder sublimation, the interplay between vapor transport and powder sublimation will be studied. A physics-based computational model will be developed considering powder sublimation and porosity evolution. Based on the proposed model, the effect of a central hole in the powder on the sublimation rate is studied and the result is compared to the case of powder without a hole. The effect of hole size on the sublimation rate will be studied. The effects of initial porosity, particle size and driving force on the sublimation rate are also studied. Moreover, the optimal growth condition for large diameter crystal quality and high growth rate will be determined. For synthesis of SiC-based metal ceramics, we will focus on developing a multi-scale process model to describe the dynamic behavior of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.
Kunioka, Masao; Ninomiya, Fumi; Funabashi, Masahiro
2009-01-01
The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH)2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the 14C radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO2 (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2. PMID:20057944
NASA Astrophysics Data System (ADS)
Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.
2018-02-01
Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.
Samadi, Fatemeh; Sarafraz-Yazdi, Ali; Es'haghi, Zarrin
2018-05-30
A vortex assisted dispersive solid phase extraction approach (VADSPE) based on crab shell powder as biodegradable and biocompatible μ-sorbent was developed for simultaneous analysis of three benzodiazepines (BZPs): Oxazepam, Flurazepamand Diazepam, in biological matrixes included blood, nail, hair and urine samples. The effective parameters in VADSPE process, including the volume of uptake solvent, the dosage of sorbent, extraction time and back extraction time, were optimized using response surface methodology(RSM) based on central composite design(CCD). The suggested technique allows successful trapping of BZPs in a single-step extraction. Under the optimized extraction conditions, the proposed approach was exhibited low limits of detection (0.003-1.2 μg·mL -1 ), an acceptable linearity (0.04-20 μg·mL -1 ). Method performance was assessed by recovery experiments at spiking levels of 10 μg·mL -1 (n = 5) for BZPs in blood, nail, hair and urine samples. Relative recoveries were determined by HPLC, which were between 36%and 95.6%. Copyright © 2018. Published by Elsevier B.V.
[Comparison of organic component and di-n-butyl phthalate between human milk and cow milk products].
Liu, Hui-jie; Cao, Jia; Shu, Wei-qun
2011-01-01
To explore types of organic components and pollution level of di-n-butyl phthalate (DBP) between human milk and cow milk products. Forty healthy postpartum women with an average age of (27.44 ± 3.43) years old were selected, and a 5 ml sample of breast milk were collected. Four different brands of fresh cow milk and 1 brand of milk powder were randomly selected in the market. A total of 15 samples were collected with 3 from each brand, and the qualitative analysis of types of organic components and quantitative analysis of DBP were conducted by gas-chromatography and mass-spectrometry (GC/MS) method. A total of 176 different types of organic components were detected in 40 samples of human milk (averaged at (10.58 ± 4.16) types per sample); 37 different types were detected in 12 samples of fresh cow milk (averaged at (8.67 ± 1.61) types per sample); while 31 types of organic components were detected in 3 samples of milk powder (averaged at (12.67 ± 0.58) types per sample). It was obvious that the types of organic components in milk powder were significantly higher than the other two groups (t = 2.09, 4.00, P < 0.05). The most frequent organic component in human milk and cow milk was 9-octadecenoic acid (45.00% (18/40) in human milk; 53.33% (8/15) in cow milk). DBP concentrations were (57.78 ± 35.42) µg/L, (20.76 ± 6.60) µg/L and (0.45 ± 0.05) mg/kg (equal to (66.78 ± 7.60) µg/L) in human milk, fresh cow milk and milk powder, respectively. The DBP concentration in fresh cow milk was significantly lower than those in human milk and milk powder (t = 37.02, 46.02, P < 0.05). Both human milk and cow milk contain different types of organic pollutants, some of which have toxic effects on reproduction and human development.
NASA Astrophysics Data System (ADS)
Gherca, Daniel; Pui, Aurel; Cornei, Nicoleta; Cojocariu, Alina; Nica, Valentin; Caltun, Ovidiu
2012-11-01
We focused on obtaining MFe2O4 nanoparticles using ricin oil solution as surfactant and on their structural characterization and magnetic properties. The annealed samples at 500 °C in air for 6 h were analyzed for the crystal phase identification by powder X-ray diffraction using CuKα radiation. The particle size, the chemical composition and the morphology of the calcinated powders were characterized by scanning electron microscopy. All sintered samples contain only one phase, which has a cubic structure with crystallite sizes of 12-21 nm. From the infrared spectra of all samples were observed two strong bands around 600 and 400 cm-1, which correspond to the intrinsic lattice vibrations of octahedral and tetrahedral sites of the spinel structure, respectively, and characteristic vibration for capping agent. The magnetic properties of fine powders were investigated at room temperature by using a vibrating sample magnetometer. The room temperature M-H hysteresis loops show ferromagnetic behavior of the calcined samples, with specific saturation magnetization (Ms) values ranging between 11 and 53 emu/g.
Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing
NASA Astrophysics Data System (ADS)
Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu
2017-07-01
For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.
Combining LaRC-TPI powder with carbon fiber by electrostatic fluidized bed coating
NASA Technical Reports Server (NTRS)
Varughese, Babu; Muzzy, John; Baucom, Robert M.
1989-01-01
Thermoplastic polyimide prepreg tow is produced rapidly and efficiently by applying the LaRC-TPI matrix as an electrostatically charged and fluidized powder to electrically grounded and spread carbon fiber tow. The powder is melted after coating to insure adhesion to the fibers and to reduce tow friction. Excellent wetout in towpreg samples is obtained resulting in very flexible prepregs. Processing conditions of this towpreg produced with LaRC-TPI powders from Rogers Corp. and Mitsui Toatsu Chemicals are described. Mechanical properties of the towpreg and unidirectional laminates are presented in detail.
Effects influencing the grain connectivity in ex-situ MgB 2 wires
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Hušeková, K.; Dobročka, E.
2010-03-01
Single-core MgB 2/Fe ex-situ wires have been made by powder-in-tube (PIT) using: (i) commercial Alfa Aesar (AA) powder deformed by variable modes, (ii) AA powder oxidized by air milling and heat treatment and (iii) AA powder chemically treated by acetic and benzoic acid. All samples were finally annealed at 950 °C/0.5 h in Argon. The effect of deformation, oxidation and chemical treatment on the transport properties of MgB 2 wires was tested. Differences in critical currents, transition temperatures and normal state resistivity are shown and discussed.
NASA Astrophysics Data System (ADS)
Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.
2017-02-01
A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.
Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders
NASA Astrophysics Data System (ADS)
Samantaray, S.; Mishra, D. K.; Roul, B. K.
2017-05-01
Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.
Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition
NASA Astrophysics Data System (ADS)
Hu, Ping; Pan, De-an; Wang, Xin-feng; Tian, Jian-jun; Wang, Jian; Zhang, Shen-gen; Volinsky, Alex A.
2011-03-01
Nanocrystalline ZnFe 2O 4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe 2O 4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe 3O 4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.
Luminescence of powdered uranium glasses
NASA Technical Reports Server (NTRS)
Eubanks, A. G.; Mcgarrity, J. M.; Silverman, J.
1974-01-01
Measurement of cathodoluminescence and photoluminescence efficiencies in powdered borosilicate glasses having different particle size and different uranium content. Excitation with 100 to 350 keV electrons and with 253.7 nm light was found to produce identical absolute radiant exitance spectra in powdered samples. The most efficient glass was one containing 29.4 wt% B2O3, 58.8 wt% SiO2, 9.8 wt% Na2O and 2.0 wt% UO2.
NASA Astrophysics Data System (ADS)
Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.
2015-01-01
The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed samples due to RTA in correlation with their phase composition and microstructure were analyzed and discussed.
NASA Astrophysics Data System (ADS)
Gillespie, James Bryce
1982-03-01
A specific method of determining the complex refractive index of powdered materials using attenuated total reflectance (ATR) spectroscopy was investigated. A very precise laser/goniometric ATR system was assembled and applied to powdered samples of carbon blacks, graphite, kaolin clay, quartz, calcite, and sodalime glass beads. The reflectivity data fell into two categories: (1) data representative of a medium having a unique effective refractive index and (2) data representative of a scattering medium having no unique refractive index. Data of the first kind were obtained from all the carbon black, graphite, and kaolin clay samples. The Fahrenfort-Visser solution of the Fresnel equations was applied to the goniometric reflectivity data for these samples to obtain the complex refractive index of these effective media. The complex refractive index obtained in this manner is not that of the bulk material but is instead a value which may be related to the bulk material value through some refractive index mixing rule. A systematic experiment using carbon black of particle size 0.0106 mm diameter was conducted to determine the applicability of several mixture rules for the volume packing fraction range of .2 to .6 which is most often encountered. The Bruggemann effective medium theory produced credible results while the Lorentz-Lorenz rule and the empirical Biot-Arago rule were invalid in this volume packing region. The Bruggemann rule was applied to lampblack, Mogul-L carbon black, graphite, and kaolin clay to obtain the complex refractive indices of these materials from the ATR spectroscopy data. Goniometric reflectivity data representative of an inhomogeneous scattering medium were obtained from all the powdered quartz, powdered calcite, and sodalime glass beads samples. These samples all contained particles with diameters nearly as large as the wavelength. These data demonstrate that the ATR technique, coupled with an effective medium analysis, may be used to obtain optical constants of powdered materials only when the particles are small compared to the wavelength.
Nayak, Ranganath N; Dixitraj, P T; Nayak, Aarati; Bhat, Kishore
2015-09-01
This study aimed at evaluating the anti-microbial activity of spore powder of Ganoderma lucidum on Prevotella intermedia isolated from subgingival plaque from chronic periodontitis patients. Written informed consent was obtained from each subject enrolled in the study. The Institutional Ethics Committee granted the ethical clearance for the study. This study included 20 patients diagnosed with chronic periodontitis. Pooled subgingival plaque samples were collected using sterile curettes from the deepest sites of periodontal pockets. The collected samples were then transported in 1 mL of reduced transport fluid. The organisms were cultured and confirmed. These organisms were then used for minimum inhibitory concentration (MIC) procedure. Mean of the MIC value obtained was calculated. Thirteen out of the 20 clinical samples were tested that showed sensitivity at various concentrations. Five samples showed sensitivity at all concentrations. Twelve samples showed sensitivity at 8 mcg/ml. Eleven samples showed sensitivity at 4 mcg/ml, 8 samples showed sensitivity at 2 mcg/ml, and 5 samples showed sensitivity even at 1 mcg/ml. Mean MIC value of G. lucidum spore powder for P. intermedia obtained was 3.62 mcg/ml. G. lucidum with its multipotential bioactivity could be used as an anti-microbial, in conjunction with conventional therapy in periodontal disease.
Room temperature luminescence and ferromagnetism of AlN:Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn
2016-06-15
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
Sager, M; McCulloch, C R; Schoder, D
2018-07-30
Milk powder is a food for malnourished African children and for healthy infants of women with HIV/AIDS. High demand and low purchasing power has resulted in a huge informal, black market in Sub-Saharan Africa. Forty-three milk powder batches were analyzed for 43 chemical elements using ICP-MS One sample (2.3%) was contaminated at a lead concentration of 240 µg/kg dry weight exceeding the European threshold (130 µg/kg dry weight). Macroelement contents revealed a trend decreasing in concentration through skimmed, full cream products to infant formulae. Concentration ranges by dry weight differed in respect of uncertainty intervals of ±10%. Median Ca, K and P concentrations declined from 11.14 g/kg to 3.21 g/kg, 14.11 g/kg to 4.95 g/kg and 9.12 g/kg to 2.75 g/kg dry mass, respectively. Milk powder samples obtained from the Tanzanian black market were comparable in respect of nutritional and chemical content to international branded full cream products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhou, Jinhui; Xue, Xiaofeng; Li, Yi; Zhang, Jinzhen; Zhao, Jing
2007-01-01
An optimized reversed-phase high-performance liquid chromatography method was developed to detect the trans-10-hydroxy-2-decenoic acid (10-HDA) content in royal jelly cream and lyophilized powder. The sample was extracted using absolute ethanol. Chromatographic separation of 10-HDA and methyl 4-hydroxybenzoate as the internal standard was performed on a Nova-pak C18 column. The average recoveries were 95.0-99.2% (n = 5) with relative standard deviation (RSD) values of 1.3-2.1% for royal jelly cream and 98.0-100.0% (n = 5) with RSD values of 1.6-3.0% for lyophilized powder, respectively. The limits of detection and quantitation were 0.5 and 1.5 mg/kg, respectively, for both royal jelly cream and lyophilized powder. The method was validated for the determination of practical royal jelly products. The concentration of 10-HDA ranged from 1.26 to 2.21% for pure royal jelly cream samples and 3.01 to 6.19% for royal jelly lyophilized powder samples. For 30 royal jelly products, the 10-HDA content varied from not detectable to 0.98%.
NASA Astrophysics Data System (ADS)
Lu, S. L.; Tang, H. P.; Ning, Y. P.; Liu, N.; StJohn, D. H.; Qian, M.
2015-09-01
An array of eight long Ti-6Al-4V rods (diameter: 12 mm; height: 300 mm) have been additively manufactured, vertically and perpendicular to the powder bed, by selective electron beam melting (SEBM). The purpose was to identify and understand the challenges of fabricating Ti-6Al-4V samples or parts from a deep powder bed (more than 200-mm deep) by SEBM and the necessity of applying post heat treatment. The resulting microstructure and mechanical properties of these Ti-6Al-4V rods were characterized along their building ( i.e., axial) direction by dividing each rod into three segments (top, middle, and bottom), both before ( i.e., as-built) and after hot isostatic pressing (HIP). The as-built microstructure of each rod was inhomogeneous; it was coarsest in the top segment, which showed a near equilibrium α- β lamellar structure, and finest in the bottom segment, which featured a non-equilibrium mixed structure. The tensile properties varied along the rod axis, especially the ductility, but all tensile properties met the requirements specified by ASTM F3001-14. HIP increased the relative density from 99.03 pct of the theoretical density (TD) to 99.90 pct TD and homogenized the microstructure thereby leading to highly consistent tensile properties along the rod axis. The temperature of the stainless steel substrate used in the powder bed was monitored. The as-built inhomogeneous microstructure is attributed to the temperature gradient in the deep powder bed. Post heat treatment is thus necessary for Ti-6Al-4V samples or parts manufactured from a deep powder bed by SEBM. This differs from the additive manufacturing of small samples or parts from a shallow powder bed (less than 100-mm deep) by SEBM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakov, Nikifor, E-mail: nikifor.gomez@univasf.edu.br; Vieira, Simone A.; Guimarães, Renato B.
2014-03-15
Frequency upconversion (UC) luminescence via cooperative energy transfer (CET) process between pairs of Yb{sup 3+} and Tb{sup 3+} ions was investigated in Tb{sup 3+}:Yb{sup 3+}:Y{sub 2}SiO{sub 5} crystalline ceramic powders prepared by combustion synthesis. Surface morphology and structure of the powders were investigated by scanning electronic microscopy and X-ray powder diffraction. Photoluminescence experiments were performed in Tb{sup 3+}-singly doped samples using ultraviolet light (λ=255 nm) and in Tb{sup 3+}:Yb{sup 3+} co-doped samples using a near-infrared (NIR) diode laser (λ=975 nm). Upon excitation with the NIR diode laser, UC luminescence with an intense emission band centered at ∼549 nm, corresponding tomore » the 4f intraband {sup 5}D{sub 4}→{sup 7}F{sub 5} transition of Tb{sup 3+}, along with less intense emission bands at ∼490, ∼590 and ∼620 nm, corresponding to other {sup 5}D{sub 4}→{sup 7}F{sub J} transitions, was detected. The CET rate was estimated by analyzing the dynamics of UC luminescence with rate equations model of the electronic populations. -- Graphical Abstract: Left: Cooperative upconversion luminescence spectra of three powder samples prepared by combustion synthesis. Right: The SEM image of the powder showing that it consists of agglomerated flake-like shaped particles of various sizes. Full scale bar is 20 μm. Highlights: • Yttrium orthosilicate (Y{sub 2}SiO{sub 5}) powders were prepared by combustion synthesis. • Cooperative upconversion is observed for the first time in Tb{sup 3+}–Yb{sup 3+} doped Y{sub 2}SiO{sub 5}. • Energy transfer and back-transfer rates between Tb{sup 3+} and Yb{sup 3+} pairs were estimated.« less
Telang, Sucheta; Berseth, Carol Lynn; Ferguson, Paul W; Kinder, Julie M; DeRoin, Mark; Petschow, Bryon W
2005-10-01
To evaluate the growth of resident aerobic mesophilic flora and added Enterobacter sakazakii in fresh, unfortified human milk; fresh human milk fortified with two commercial powdered fortifiers differing in iron content; and infant formula prepared from powder. Eight mothers provided preterm breast milk samples. Breast milk samples were divided into three aliquots: unfortified, fortified with fortifier containing 1.44 mg iron/14 kcal, and fortified with fortifier containing 0.4 mg iron/14 kcal. Aliquots of formula were prepared. Breast milk and formula aliquots were divided into two test samples. Half were inoculated with low amounts of E sakazakii; half were not. All test samples were maintained at room temperature (22 degrees C), serially diluted, and plated onto agars after 0, 2, 4, and 6 hours. Plates were incubated at 35 degrees C and enumerated. Data were analyzed using repeated measures analysis of variance. P<.05 was considered significant. There were no differences in colony counts of aerobic bacteria among uninoculated or among inoculated human milk samples at any time; counts did not increase significantly over 6 hours. There were no differences in colony counts of E sakazakii among inoculated human milk samples at any time; counts did not increase significantly over 6 hours. Aerobic bacteria and E sakazakii colony counts from infant formula did not increase significantly over 6 hours. During 6 hours at 22 degrees C, fresh human milk and formula had negligible bacterial growth; fortifying human milk with powdered fortifiers did not affect bacterial growth.
Shi, Yan; Zheng, Tian-Jiao; Wei, Feng; Lin, Rui-Chao; Ma, Shuang-Cheng
2016-07-01
An HPLC-ELSD method with good specificity and good accuracy was used for the studies of fingerprint and quantification of multi-components for cattle bile powder. The chromatographic analysis was carried out on a Phenomenex Gemini C₁₈ column (4.6 mm×250 mm, 5 μm) with a column temperature of 40 ℃ and a liquid flow-rate of 1.0 mL•min⁻¹ using 10 mmol ammonium acetate solution and acetonitrile as the mobile phase with a linear gradient. An ELSD was used with a nitrogen flow-rate of 2.8 L•h⁻¹, at a drift tube temperature of 110 ℃. The average contents of glycocholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid were (25.2±17.0)%, (4.1±3.4)%, (24.5±20.0)% and (5.2±3.8)% respectively, and the total content of the four bile acids was (59.0±26.0)%. Beyond that, the preprocessing and pattern recognition analysis of the chromatographic fingerprints of samples were applied with chemometric method. The results of this chemometric analysis indicated that the samples from market and self-made samples were different signally, and four regions were noteworthy due to their great impact with poor chromatographic signal. All in one, because this HPLC-ELSD method was simple and accurate, it was suitable for the quality assessment and quality control of cattle bile powder and could be the technological base for its standard perfection. Copyright© by the Chinese Pharmaceutical Association.
Powder based superdielectric materials for novel Capacitor design
2017-06-01
SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN by Clayton W. Petty June 2017 Thesis Advisor: Jonathan Phillips Second Reader: Anthony...thesis 4. TITLE AND SUBTITLE POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN 5. FUNDING NUMBERS 6. AUTHOR(S) Clayton W...unlimited. POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN Clayton W. Petty Lieutenant, Junior Grade, United States Navy B.S
NASA Technical Reports Server (NTRS)
Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.
2003-01-01
The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.
[Study on Archaeological Lime Powders from Taosi and Yinxu Sites by FTIR].
Wei, Guo-feng; Zhang, Chen; Chen, Guo-liang; He, Yu-ling; Gao, Jiang-tao; Zhang, Bing-jian
2015-03-01
Archaeological lime powders samples from Taosi and Yinxu sites, natural limestone and experimentally prepared lime mortar were investigated by means of Fourier transform infrared spectrometry (FTIR) to identify the raw material of lime powders from Taosi and Yinxu sites. Results show that ν2/ν4 ratio of calcite resulted from carbonation reaction of man-made lime is around 6.31, which is higher than that of calcite in natural limestone and reflects the difference in the disorder of calcite crystal structure among the natural limestone and prepared lime mortar. With additional grinding, the values of v2 and ν4 in natural limestone and prepared lime mortar decrease. Meanwhile, the trend lines of ν2 versus ν4 for calcite in experimentally prepared lime mortar have a steeper slope when compared to calcite in natural limestone. These imply that ν2/ν4 ratio and the slope of the trend lines of ν2 versus ν4 can be used to determine the archaeological man-made lime. Based on the experiment results, it is possible that the archaeological lime powder from Taosi and Yinxu sites was prepared using man-made lime and the ancient Chinese have mastered the calcining technology of man-made lime in the late Neolithic period about 4 300 years ago.
Laser Powder Cladding of Ti-6Al-4V α/β Alloy
Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel
2017-01-01
Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935
Jian, Long-Hai; Hu, Chun; Yu, Hong; Wang, Ke; Ji, Shen
2013-07-01
A rapid method of Liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) combined with pyridinium chlorochromate (PCC) oxidation has been developed to determine chemical structures of two novel isomers in bear bile powder. Derivatives of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) were semi-synthesized by PCC oxidation, then were analyzed by LC-Q-TOF-MS. Separation was carried out on a reverse column with the mobile phase of acetonitrile-0.1% formic acid (45:55). The data of Q-TOF-MS was acquired by MS, MS/MS, positive and negative modes. Since UDCA and CDCA were stereochemical isomeric at an alcohol position, two oxidation products were same and have been confirmed by LC-Q-TOF-MS. Other two products were also determined based on the PCC oxidation theory. Samples of bear bile powder were dissolved by methanol and measured by LC-Q-TOF-MS. Two unknown peaks were found and identified by matching their retention times and accurate mass spectra ions with PCC oxidation productS. Finally, the structures of two new bile acids in bear bile powder were confirmed as 3alpha-hydroxy-7-oxo-5beta-cholanic acid, 7alpha-hydroxy-3-oxo-5beta-cholanic acid, respectively.
Laser Powder Cladding of Ti-6Al-4V α/β Alloy.
Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel
2017-10-15
Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.
Investigation into process-induced de-aggregation of cohesive micronised API particles.
Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike
2015-09-30
The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.
2016-01-01
Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294
Analysis of macromolecules, ligands and macromolecule-ligand complexes
Von Dreele, Robert B [Los Alamos, NM
2008-12-23
A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.
77. Photocopied 1983, from original drawing (DP49630), Picatinny Arsenal, July ...
77. Photocopied 1983, from original drawing (DP-49630), Picatinny Arsenal, July 11, 1946. 'D.B. DOUBLE BASE RIFLE AND CANNON POWDER PROCESS: GLAZED (NOT COATED) DOUBLE BASE POWDER FLOW DIAGRAM.' - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ
76. Photocopied 1983, from original drawing (DP49629), Picatinny Arsenal, July ...
76. Photocopied 1983, from original drawing (DP-49629), Picatinny Arsenal, July 11, 1946. 'D.B. DOUBLE BASE RIFLE AND CANNON POWDER PROCESS: GLAZED (NOT COATED) DOUBLE BASE POWDER FLOW DIAGRAM.' - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ
Luchese, Cláudia Leites; Sperotto, Natalia; Spada, Jordana Corralo; Tessaro, Isabel Cristina
2017-11-01
Intelligent packaging is an emerging area of food technology that can provide better preservation and be of further convenience for consumers. It is recommended that biodegradable materials be used to develop low-impact designs for better packaging, which could benefit the environment by simply expanding their use to new areas. In this work, corn starch, glycerol and blueberry powder (with and without prior fruit bleaching) were used to produce films by casting. Blueberry powder, a co-product from juice processing, which is rich in anthocyanins, was added in the films to evaluate its potential as a colorimetric indicator, due to the ability of anthocyanin to change color when placed in an acidic or basic environment. After the films were immersed in different buffer solutions, visual color changes were observed, where the films became reddish at acidic pH and bluish at basic pH. The ΔE* values were greater than 3, suggesting a visually perceptible change to the human eye. The samples with fruit bleaching (CB) were visually darker (lower luminance values), while the samples without bleaching (SB) had a lighter color and higher brightness, represented by larger L* values. These results indicate the potential of blueberry powder as a pH indicator for intelligent food packaging or even for sensing food deterioration. Copyright © 2017 Elsevier B.V. All rights reserved.
Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan
2008-05-01
Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.
Powder-Collection System for Ultrasonic/Sonic Drill/Corer
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles
2005-01-01
A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage
Turmeric powder and starch: selected physical, physicochemical, and microstructural properties.
Kuttigounder, Dhanalakshmi; Lingamallu, Jaganmohan Rao; Bhattacharya, Suvendu
2011-01-01
Turmeric powder and its starch were characterized for physical, physicochemical, and microstructural characteristics. X-ray diffractogram indicated that turmeric starch to be of B type. Dried and cured-dried turmeric powder samples showed higher water-holding capacity (3.62 and 4.78 g/g, respectively) compared to isolated starch (1.07 g/g) at 30 °C. Non-Newtonian shear-thinning characteristics were observed with turmeric powder dispersion containing 10% (w/w) solids. A power law model fitted well to correlate the shear-rate and shear-stress data (r= 0.993 to 0.999, P≤ 0.01) for both samples. Apparent viscosities of isolated turmeric starch and cured-dried turmeric powder dispersion containing 10% (w/w) solids were 1.29 ± 0.03 and 7.57 ± 0.39 mPa s, respectively. Microstructure of starch particles showed a smooth flat outer surface. The approximate length and breadth of isolated elliptical starches were 25 and 10 μm while the thickness was about 5 μm. Isolation and characterization of starch from an unconventional source like turmeric rhizome indicate a potential application as a functional ingredient in foods and pharmaceutical industries including agglomerated products. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Chen, Song; Zhu, De-gui
2017-12-01
Zinc oxide is a typical functional oxide that has been widely researched for various industry applications due to its peculiar physical characteristics. However, to achieve its potential in promising applications, much work has been diligently performed to improve the physical properties of ZnO. In this work, an aqueous suspension route was used to prepare BiOCl/ZnO composite powders, and sintering processes were applied to investigate the influence of sintering temperature on the phase evolutions, microstructures, and photoelectric characteristics of BiOCl/ZnO composite powders. The results indicated that the photoelectric properties mainly depend on the relevant content of BiOCl in the composite powders and the sintering temperature. The photoelectric measurements in K2SO4 solutions show that the photoelectric properties of the samples with the appropriate BiOCl content (0.3mol% and 2.0mol%) are better than those of ZnO and commercial TiO2 (P25) powders, but the photoelectric measurements in NaOH solutions indicate that the photoelectric characteristics of the as-sintered samples are only better than those of P25.
METHOD OF PREPARATION OF MATERIAL FOR NEUTRON BOMBARDMENT
Ura, C.L.; Sisman, O.; Briggs, R.B.
1959-02-01
A method is presented for forming slugs or cartridges of sample material to be proeessed in a neutronic reactor. Aceording to this invention, the sample material is originally in the fcrm of powder. The powder is placed within a tube formed of a metallic foil. The material encased in the foil is then placed in a die and compressed under sufficient pressure to form a rigid cartridge. The cartridge is then sealed in a metallic can. As a result of this process, crumbling of the compact during handling is eliminated and it is not necessary to clean ana relubricate the die after compression of each cartridge. ~ A method is presented for producing small spherical shot-type pellets from ceramic or refractory materials. According to this process the material to be pelletized is first formed into a powder. The powdered material is then suspended in a liquid carrier or vehicle. Small drops of the suspension, produced by a capillary-drop apparatus, are deposited on the surfacc of a liquid repellent powder, which causes the drops to assume a spherical shape. The liquid is then evaporated from the spherical pellets and tbe pellets are collected and fired to produce the finished product.
Fan, Sufang; Li, Qiang; Zhang, Xiaoguang; Cui, Xiaobin; Zhang, Dongsheng; Zhang, Yan
2015-05-01
A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1 , B2 , G1 , and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound-assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2-2.0 and 0.5-4.0 μg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83-108.1% for all samples, matrix effects were in range of 34.1-104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1 , B2 , G1 , and G2 in real samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique
2015-01-01
Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Legoix, Léonard; Milhé, Mathieu; Gatumel, Cendrine; Berthiaux, Henri
2017-06-01
An original methodology for studying powder flow in a cylindrical convective blender has been developed. A free-flowing and a cohesive powder were studied, at a fixed stirring speed, in rolling regime. For both powders, three apparent flow mechanisms were evidenced: convection in the volume swept by the blades, diffusion/shearing between the agitated zone and the stagnant one, as well as in the stagnant zone itself, and avalanches at the powder bed surface between agitated and stagnant zones. After defining six zones in the blender, tracing experiments were carried out by placing appropriate tracers in different starting zones and sampling the whole bed at different stirring times, which lead to mixing kinetics of the powders into themselves. A Markov chains model of the blender allowed the quantification of the three mechanisms respective magnitude by fitting the experimental data. This simple model has a good agreement with the free-flowing powder data, but is not able to represent well the observations for the cohesive powder. Bed consolidation should probably be taken into account for this kind of powders and thus a linear Markov model is not sufficient.
NASA Astrophysics Data System (ADS)
Barnwal, Ajay Kumar; Mondal, D. P.; Kumar, Rajeev; Prasanth, N.; Dasgupta, R.
2018-03-01
Cu-Zn-Al foams of varying porosity fractions using mechanical alloyed powder have been made through powder metallurgy route. Here, NH4 (HCO3) was used as a space holder. Mechanically alloyed Cu-Zn-Al is made using a planetary ball mill taking the ratio of Cu/Zn/Al = 70:25:5 (by weight ratio). The ball/powder ratios were varied in the four ranges 10:1, 15:1, 20:1, and 25:1. Green compacts of milled powder and space holder samples were sintered at three stages at three different temperatures 350, 550, and 850 °C for 1 h at each stage. The crystalline size and particle size as a function of ball/powder ratios were examined. The compressive deformation responses of foams are varied with relative density and the ball/powder ratio. The plateau stress and energy absorption of these foams increase with an increase in relative density but decreases with increase in ball/powder ratio, even though crystalline size decreases. This has further been explained on the basis of particle morphology as a function of ball/powder ratio.
Final Report for X-ray Diffraction Sample Preparation Method Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, T. M.; Meznarich, H. K.; Valero, T.
WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.
Development of a pungency measuring system for red-pepper powder
USDA-ARS?s Scientific Manuscript database
Capsaicinoids are the main components that determine the spiciness level of red-pepper powders. Current pungency measurement is mostly dependent on HPLC measurement technique, which is a sample-destructive, labor-intensive, time-consuming, and expensive method. In this research, a nondestructive on-...
Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P
1999-09-01
In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.
Aspects of the tribological behaviour of powders recycled from rapid steel treated sub-zero
NASA Astrophysics Data System (ADS)
Radu, S.; Ciobanu, M.
2017-02-01
The recycling of high-alloyed steels represents a significant opportunity in Powder Metallurgy as it permits the use of raw materials with relatively low prices compared to the conventional methods. Recycling can be achieved by two methods: from spraying debris resulted from worn cutting tools and processes obtained from processing chip drilling and re-sharpening of tools. The research aims to confirm that wastes from rapid steels can become, by the successive processing, metal powders that can thereafter be used for cutting tools of lathe type removable plate. After pressing and sintering the recycling powder, cylindrical samples were obtained that were subsequently applied a subcritical annealing. Wear tests conducted on a tribometer type TRB-01-02541 confirmed that their wear resistance is superior to the same samples that were sintered, hardened and tempered in oil. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16.
Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.;
2010-01-01
The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14
Microstructure control of SOFC cathode material: The role of dispersing agent
NASA Astrophysics Data System (ADS)
Ismail, Ismariza; Jani, Abdul Mutalib Md; Osman, Nafisah
2017-09-01
In the present works, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode powders were synthesized by a sol-gel method with the aid of ethylene glycol which served as the dispersing agent. The phase formation and morphology of the powders were examined by X-Ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM), respectively. The electrochemical properties of the synthesized cathode were obtained using an electrochemical impedance spectroscopy (EIS). The characteristic peaks for LSCF phase appears in the X-ray diffractogram after calcined at 500 °C and complete formation of LSCF single phase was attained at 700 °C. FESEM micrographs showed the presence of spherical particles of the powders with approximate particle size between 10 to 60 nm along with agglomerate morphologies. Well dispersed particles and fewer aggregates were observed for samples prepared with addition of ethylene glycol as the synthesizing aid. The surface area obtained for powder sample prepared with the aid of dispersing agent is 12.0 m2g-1. The EIS measurement results depicts a lower area specific resistance (ASR) obtained for sample prepared with addition of the ethylene glycol as compared to the pristine sample. The present results encourage the optimization of the cathode particle design in order to further improve the cathode performance.
The study of the effect of aluminum powders dispersion on the oxidation and kinetic characteristics
NASA Astrophysics Data System (ADS)
Gorbenko, T. I.; Gorbenko, M. V.; Orlova, M. P.; Volkov, S. A.
2017-11-01
Differential-scanning calorimetry (DSC) and thermogravimetric analysis (TG) were used to study micro-sized aluminum powder ASD-4 and nano-sized powder Alex. The dependence of the oxidation process on the dispersion of the sample particles is shown. The influence of thermogravimetric conditions on the thermal regime of the process was considered, and its kinetic parameters were determined. Calculations of the activation energy and the pre-exponential factor were carried out.
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai; Sato, Nicha
2018-04-01
Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.
Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S
2015-10-29
This research aims to design and fabricate a system to measure the capsaicinoid content of red pepper powder in a non-destructive and rapid method using visible and near infrared spectroscopy (VNIR). The developed system scans a well-leveled powder surface continuously to minimize the influence of the placenta distribution, thus acquiring stable and representative reflectance spectra. The system incorporates flat belts driven by a sample input hopper and stepping motor, a powder surface leveler, charge-coupled device (CCD) image sensor-embedded VNIR spectrometer, fiber optic probe, and tungsten halogen lamp, and an automated reference measuring unit with a reference panel to measure the standard spectrum. The operation program includes device interface, standard reflectivity measurement, and a graphical user interface to measure the capsaicinoid content. A partial least square regression (PLSR) model was developed to predict the capsaicinoid content; 44 red pepper powder samples whose measured capsaicinoid content ranged 13.45-159.48 mg/100 g by per high-performance liquid chromatography (HPLC) and 1242 VNIR absorbance spectra acquired by the pungency measurement system were used. The determination coefficient of validation (RV2) and standard error of prediction (SEP) for the model with the first-order derivative pretreatment method for Korean red pepper powder were 0.8484 and ±13.6388 mg/100 g, respectively.
Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Leal, David A.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar; Leal-Quiros, E.
2006-12-01
Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.
ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 formore » both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection« less
A profile of sphingolipids and related compounds tentatively identified in yak milk.
Qu, S; Barrett-Wilt, G; Fonseca, L M; Rankin, S A
2016-07-01
This work characterized a fraction of constituents in yak milk within the realm of approximately 1,000 to 3,000 Da using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Eleven samples of yak milk powder from the Sichuan province of China were received by the Department of Food Science, University of Wisconsin-Madison, and stored at room temperature until analysis. Sample preparation involved delipidation and deproteinization of yak milk samples and cold ethanol precipitation. Subsequently, MALDI time-of-flight mass spectrometry was performed in positive ion, reflector mode (AB Sciex TOF/TOF 4800 MALDI; AB Sciex, Foster City, CA). The instrument was first calibrated with the manufacturer's 6-peptide mixture, and each spectrum was internally calibrated using the accurate mass of ACTH Fragment 18-39 standard peptide (protonated mass at m/z 2464.199) present in each sample. Laser power was adjusted for the calibration standards and for each sample so that the signal obtained for the most-abundant ion in each spectrum could be maximized, or kept below ~2×10(4) to preserve spectral quality. Structure and name based on mass were matched using the Metlin metabolite database (https://metlin.scripps.edu/index.php). Results of the current work for yak milk powder showed a large variety of sphingolipid structures with clusters around 1,200, 1,600, and 2,000 Da. The profiling matched several glycosphingolipids, such as gangliosides GA1, GD1a, GD1b, GD3, GM1, GM2, GM3, and GT2 and several other unique moieties, including deaminated neuraminic acid (KDN) oligosaccharides, and fucose containing gangliosides. Matrix preparation and MALDI time-of-flight parameters were important factors established in this work to allow high resolution profiling of complex sphingolipids in yak powder milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Oxidation of U-20 at% Zr alloy in air at 423 1063 K
NASA Astrophysics Data System (ADS)
Matsui, Tsuneo; Yamada, Takanobu; Ikai, Yasushi; Naito, Keiji
1993-01-01
The oxidation behavior of U 0.80Zr 0.20 alloy (two-phase mixture of U and UZr 2 below 878 K and single solid solution above 1008 K) was studied by thermogravimetry in the temperature range from 423 to 1063 K in air. During oxidation in the low temperature region (423-503 K), the sample kept its initial shape (a rectangular rod) and the surface of the sample was covered by a black thin adherent UO2 + x oxide layer. On the other hand, by oxidation in the middle temperature region, the sample broke to several pieces of thin plates and blocks, and fine powder at 643-723 K and entirely to fine powder at 775-878 K, all of which were analyzed to be a mixture of U 3O 8 and ZrO 2. By oxidation in the high temperature region (1008-1063 K) the sample broke to very fine powder, which consisted of U 3O 8 and ZrO 2. Based on the sample shape, the oxide phase identified after oxidation and the slope value of the bilogarithmic plots of the weight gain against time, the oxidation kinetics was analyzed with a paralinear equation in the low temperature region below 503 K and a linear equation in the middle and high temperature regions above 643 K. Oxidation rates of U 0.80Zr 0.20 (two-phase mixture) in the low and middle temperature regions were smaller than those of uranium metal. A discontinuity in the plot of the linear oxidation rate constant versus reciprocal temperature was found to be present between 723 and 838 K, similarly to the case of uranium metal previously reported. The linear rate constants of single-phase solid solution in the high temperature region above 1008 K seemed to be a little smaller than those estimated by the extrapolation of the values in the middle temperature region.
NASA Astrophysics Data System (ADS)
Motavallian, Pourya; Abasht, Behzad; Abdollah-Pour, Hassan
2018-04-01
Nanocrystalline CoZrxFe2-xO4 (0 ≤ x ≤ 0.3 in a step of 0.05) powders were synthesized by Pechini sol-gel method. The dry gel was grinded and calcined at 700 °C in a static air atmosphere for 1 h. Some tests such as thermo gravimetric analysis (TGA) combined with differential analysis (DTA), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behaviour, structural bonds identification, crystallographic properties, morphology and magnetic properties of the obtained powders. X-ray diffraction revealed a single-phase cubic spinel structure for all samples, where the crystallite size decreases; the lattice parameter simultaneously increases with substitution of Zr. The results of FE-SEM showed that the particle size is in the 20-70 nm range. The magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) were measured from the hysteresis loops. The greatest amount of saturation magnetization for CoZr0.05Fe1.95O4 sample was 67.9 emu·g-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hujova, Miroslava; Pokorny, Richard; Klouzek, Jaroslav
The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feedmore » in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.« less
A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)
2017-04-01
average diameter of 315 nm. The c¢-solvus tempera- ture, Tc0 , was 1430 K (1157 C). As determined by a series of long- time heat treatments followed...obtained in a mode of simple shear via the torsion of tubular samples. Similar in design to that employed by various researchers in the 1980s,[28,29] the...INTL (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR
NASA Astrophysics Data System (ADS)
Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing
2018-03-01
It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.
[Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].
Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang
2005-08-01
ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.
Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology
Dixon, George P.; Martin, Joe A.; Thompson, Don
1998-01-01
A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-01-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article. PMID:27877783
Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu
2015-06-01
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.
Effect of chard powder on colour and aroma formation in cooked sausages
NASA Astrophysics Data System (ADS)
Nasonova, V. V.; Tunieva, E. K.
2017-09-01
The use of nitrate-containing vegetable powders instead of sodium nitrite in meat products requires changes in technological production parameters in order to obtain traditional organoleptic characteristics in the finished products. The aim of this work was to study the effect of chard powder on colour and aroma formation in cooked sausages. Cooked sausage samples were: control with nitrite curing mixture; type 1 sausages with chard powder and ascorbic acid; type 2 sausages with chard powder and sodium ascorbate. To transform nitrate ions contained in the vegetable chard powder to nitrite ions using a denitrifying culture, preliminary thermal treatments were used: 30 and 60 min at 40±2°C, after which the sausages were cooked until a temperature of 72±2°C was achieved. The sausages were stored for 40 days at 0-6°C. When sausage meat was initially held at 40°C for 60 min, a homogenous pink colour formed in the sausages with the vegetable powder. The indicators of lightness, redness and yellowness in cooked sausages as well as the indicators of instrumental odour assessment did not differ significantly (p>0.05). The indicators of colour stability during storage were 1.1-3.0% higher in the sausages with the chard powder compared to the control. The mass fraction of sodium nitrite in the experimental sausages was 2.0-2.2 higher than in the control (p>0.05). As a result of cooked sausage storage, the differences in the sodium nitrite content in the control and types 1 and 2 sausages were similar. During storage, the mass fraction of sodium nitrite decreased in types 1 and 2 sausages by 55.6 and 54.8%, respectively (p<0.05). Cooked sausages with the chard powder contained 2.1-2.4 times more sodium nitrate than did control sausages (p<0.05). However, all tested sausage samples complied with legislative requirements in terms of their sodium nitrite and nitrate levels.
Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production.
Boylstein, Randy; Piacitelli, Chris; Grote, Ardith; Kanwal, Richard; Kullman, Greg; Kreiss, Kathleen
2006-10-01
In microwave popcorn workers, exposure to butter flavorings has been associated with fixed obstructive lung disease resembling bronchiolitis obliterans. Inhalation toxicology studies have shown severe respiratory effects in rats exposed to vapors from a paste butter flavoring, and to diacetyl, a diketone found in most butter flavorings. To gain a better understanding of worker exposures, we assessed diacetyl emissions and airborne dust levels from butter flavorings used by several microwave popcorn manufacturing companies. We heated bulk samples of 40 different butter flavorings (liquids, pastes, and powders) to approximately 50 degrees C and used gas chromatography, with a mass selective detector, to measure the relative abundance of volatile organic compounds emitted. Air sampling was conducted for diacetyl and for total and respirable dust during the mixing of powder, liquid, or paste flavorings with heated soybean oil at a microwave popcorn plant. To further examine the potential for respiratory exposures to powders, we measured dust generated during different simulated methods of manual handling of several powder butter flavorings. Powder flavorings were found to give off much lower diacetyl emissions than pastes or liquids. The mean diacetyl emissions from liquids and pastes were 64 and 26 times larger, respectively, than the mean of diacetyl emissions from powders. The median diacetyl emissions from liquids and pastes were 364 and 72 times larger, respectively, than the median of diacetyl emissions from powders. Fourteen of 16 powders had diacetyl emissions that were lower than the diacetyl emissions from any liquid flavoring and from most paste flavorings. However, simulated handling of powder flavorings showed that a substantial amount of the airborne dust generated was of respirable size and could thus pose its own respiratory hazard. Companies that use butter flavorings should consider substituting flavorings with lower diacetyl emissions and the use of ventilation and enclosure engineering controls to minimize exposures. Until controls are fully implemented, companies should institute mandatory respiratory protection for all exposed workers.
NASA Astrophysics Data System (ADS)
Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan
2015-07-01
Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.
Powdered hide model for vegetable tanning
USDA-ARS?s Scientific Manuscript database
Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Piccini, Matthew Ernest; Schaff, Ulrich Y.
Multiple cases of attempted bioterrorism events using biotoxins have highlighted the urgent need for tools capable of rapid screening of suspect samples in the field (e.g., mailroom and public events). We present a portable microfluidic device capable of analyzing environmental (e.g., white powder), food (e.g., milk) and clinical (e.g., blood) samples for multiplexed detection of biotoxins. The device is rapid (<15-30 min sample-to-answer), sensitive (< 0.08 pg/mL detection limit for botulinum toxin), multiplexed (up to 64 parallel assays) and capable of analyzing small volume samples (< 20 μL total sample input). The immunoassay approach (SpinDx) is based on binding ofmore » toxins in a sample to antibody-laden capture particles followed by sedimentation of particles through a density-media in a microfluidic disk and quantification using a laser-induced fluorescence detector. A direct, blinded comparison with a gold standard ELISA revealed a 5-fold more sensitive detection limit for botulinum toxin while requiring 250-fold less sample volume and a 30 minute assay time with a near unity correlation. A key advantage of the technique is its compatibility with a variety of sample matrices with no additional sample preparation required. Ultrasensitive quantification has been demonstrated from direct analysis of multiple clinical, environmental and food samples, including white powder, whole blood, saliva, salad dressing, whole milk, peanut butter, half and half, honey, and canned meat. We believe that this device can met an urgent need in screening both potentially exposed people as well as suspicious samples in mail-rooms, airports, public sporting venues and emergency rooms. The general-purpose immunodiagnostics device can also find applications in screening of infectious and systemic diseases or serve as a lab device for conducting rapid immunoassays.« less
NASA Astrophysics Data System (ADS)
Kumar, A.; Tiwari, S. P.; Singh, A. K.; Kumar, K.
2016-07-01
Infrared to visible upconversion fluorescent nanoparticles of Gd2O3 codoped with Ho3+/Yb3+ ions are synthesized via thermal decomposition process. The X-ray diffraction analysis of as-synthesized nanoparticles and annealed sample at 1000 °C has shown body-centered cubic phase of Gd2O3. The synthesized phosphor has shown intense green emission upon 980-nm excitation. High-contrast latent fingermarks on some difficult semi-porous and non-porous surfaces under 980-nm diode laser excitation were developed through powder dusting and colloidal solution spraying techniques and the results are compared with the commercial green luminescent fingermark powder. The latent fingermarks were developed on transparent (biological glass slides), single-color (aluminum foil) and multicolor (plywood, plastic bottle and book cover page) background surfaces. The present study depicts that the upconversion-based latent fingermarks detection using Gd2O3:Ho3+/Yb3+ phosphor material is suitable over the other conventional powders and has potential for practical applications in forensic science.
Harabi, Abdelhamid; Harabi, Esma
2015-06-01
A careful combination of the main parameters controlling natural hydroxyapatite (NHA: Ca10(PO4)6(OH)2) production such as milling techniques, sintering temperature and holding time may lead to an interesting NHA based bio-ceramics without any foreign oxide additions. In this way, an original wet milling setup has been proposed to obtain sub-micron sized NHA powders. In order to avoid any possible NHA decomposition, a precise Ca/P ratio of NHA derived from animals was selected accordingly. Also, an alternative direct visual approach of the bone age classification was also proposed. A relative density of about 95% was obtained for powders sintered at 1300°C for 2h. The best Vickers micro-hardness and 3 point bending strength values for these sintered samples, using this proposed milling system and without any additions, were 4.7±0.3GPa and 37MPa, respectively. Finally, a complete correlation between the powder microstructure and the final product properties has been established. Copyright © 2015 Elsevier B.V. All rights reserved.
Ngo, Chi-Vinh; Chun, Doo-Man
2016-11-08
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.
Ngo, Chi-Vinh; Chun, Doo-Man
2016-01-01
In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport. PMID:27824132
Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol-Gel Precursor
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Cao, Peng; Huang, Saifang; Zhang, Weijun; Huang, Zhaohui; Gao, Wei
2015-07-01
CaCu3Ti4O12 (CCTO) powders derived from sol-gel precursors were calcined and sintered via microwave radiation. The obtained CCTO powders were compared with that obtained via a conventional heating method. For microwave heating, 89.1 wt.% CCTO was achieved from the sol-gel precursor, after only 17 min at 950°C. In contrast, the conventional calcination method required 3 h to generate 87.6 wt.% CCTO content at 1100°C. In addition, the CCTO powders prepared through 17 min of microwave calcination exhibited a small particle size distribution of D50 = 3.826 μm. It was found that a lengthy hold time of 1 h by microwave sintering is required to obtain a high dielectric constant (3.14 × 103 at 102 Hz) and a reasonably low dielectric loss (0.161) in the sintered CCTO ceramic. Based upon the distinct microstructures, the dielectric responses of the CCTO samples sintered by different methods are attributed to space charge polarization and internal barrier layer capacitor mechanism.
A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.
Yuan, Meng; Sheng, Wei; Zhang, Yan; Wang, Junping; Yang, Yijin; Zhang, Shuguang; Goryacheva, Irina Yu; Wang, Shuo
2012-11-02
A gel-based non-instrumental immuno-affinity assay was developed for the rapid screening of chloramphenicol (CAP) in food samples with the limit of detection (LOD) of 1 μg L(-1). The immuno-affinity test column (IATC) consisted of a test layer containing anti-CAP antibody coupled gel, and a control layer with anti-HRP antibody coupled gel. Based on the direct competitive immuno-reaction and the horseradish peroxidase enzymatic reaction, the test results could be evaluated visually. Basically, blue color development represented the negative results, while the absence of color development represented the positive results. In this study, CAP spiked samples of raw milk, pasteurized milk, UHT milk, skimmed milk powder, acacia honey, date honey, fish and shrimp were tested. Little or none sample pretreatment was required for this assay. The whole procedure was completed within 10min. In conclusion, the gel-based immuno-affinity test is a simple, rapid, and promising on-site screening method for CAP residues in food samples, with no instrumental requirement. Copyright © 2012 Elsevier B.V. All rights reserved.
Sathivel, Subramaniam; Bechtel, Peter J; Babbitt, Jerry; Prinyawiwatkul, Witoon; Negulescu, Ioan I; Reppond, Kermit D
2004-08-11
Functional, nutritional, and thermal properties of freeze-dried protein powders (FPP) from whole herring (WHP), herring body (HBP), herring head (HHP), herring gonad (HGP), and arrowtooth flounder fillets (AFP) were evaluated. The FPP samples have desirable nutritional and functional properties and contained 63-81.4% protein. All FPP samples had desirable essential amino acid profiles and mineral contents. The emulsifying and fat adsorption capacities of all FPP samples were higher than those of soy protein concentrate. The emulsifying stability of WHP was lower than that of egg albumin but greater than that of soy protein concentrate. Thermal stability of the FPP samples is in the following order: HGP > HBP > WHP > HHP > AFP.
Anzano, Jesús M; Villoria, Mark A; Ruíz-Medina, Antonio; Lasheras, Roberto J
2006-08-11
A microscopic laser-induced breakdown spectrometer was used to evaluate the analytical matrix effect commonly observed in the analysis of geological materials. Samples were analyzed in either the powder or pressed pellet forms. Calibration curves of a number of iron and aluminum compounds showed a linear relationship between the elemental concentration and peak intensity. A direct determination of elemental content can thus be made from extrapolation on these calibration curves. To investigate matrix effects, synthetic model samples were prepared from various iron and aluminum compounds spiked with SiO2 and CaCO3. The addition of these matrices had a pronounced analytical effect on those compounds prepared as pressed pellets. However, results indicated the absence of matrix effects when the samples were presented to the laser as loose powders on tape and results were compared to certified values, indicating the reliability of this approach for accurate analysis, provided the sample particle diameters are greater than approximately 100 microm. Finally, the simultaneous analysis of two different elements was demonstrated using powders on tape.
Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products.
Ingle, Prashant D; Christian, Roney; Purohit, Piyush; Zarraga, Veronica; Handley, Erica; Freel, Keith; Abdo, Saleem
2016-01-01
Protein is a principal component in commonly used dietary supplements and health food products. The analysis of these products, within the consumer package form, is of critical importance for the purpose of ensuring quality and supporting label claims. A rapid test method was developed using near-infrared (NIR) spectroscopy as a compliment to current protein determination by the Dumas combustion method. The NIR method was found to be a rapid, low-cost, and green (no use of chemicals and reagents) complimentary technique. The protein powder samples analyzed in this study were in the range of 22-90% protein. The samples were prepared as mixtures of soy protein, whey protein, and silicon dioxide ingredients, which are common in commercially sold protein powder drink-mix products in the market. A NIR regression model was developed with 17 samples within the constituent range and was validated with 20 independent samples of known protein levels (85-88%). The results show that the NIR method is capable of predicting the protein content with a bias of ±2% and a maximum bias of 3% between NIR and the external Dumas method.
NASA Astrophysics Data System (ADS)
Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.
2017-01-01
In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio
Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less
2011-09-01
carbon produced from TiC (From [10]). .................................... 27 Figure 9. LiFePO4 , acetylene black, and PVDF powders in weighing boat...dispenser, and the ball milled powder mixture x containing LiFePO4 , acetylene black, and PVDF binder; and b) Prepared slurry after adding NMP solvent to...the powder mixture. ..... 39 Figure 12. Sample vial containing a LiFePO4 slurry inside the ultrasonic bath. Each vial was sonicated for 30 minutes
NASA Astrophysics Data System (ADS)
Solanki, Neha; Jotania, Rajshree B.
2017-05-01
M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.
NASA Astrophysics Data System (ADS)
Zhirenkina, Nina V.; Mashkovtsev, Maxim A.; Bereskina, Polina A.; Zakirov, Ilsur F.; Baksheev, Evgenie O.; Bujnachev, Sergey V.; Vereshchagin, Artem O.
2017-09-01
In this study, the effect of preliminary hydrolysis of zirconyl oxysulfate on the properties of ZrO2-7 % Y2O3 powders prepared by hydroxides precipitation at a constant pH of 5 was studied. X-ray diffraction analysis showed the monophasic nature of the samples and the insignificant difference between CSR (coherent scattering regions). Samples differed in particle size distribution, porosity and morphology.
Direct metal laser deposition of titanium powder Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Bykovskiy, D. P.; Petrovskiy, V. N.; Sergeev, K. L.; Osintsev, A. V.; Dzhumaev, P. S.; Polskiy, V. I.
2017-12-01
The paper presents the results of mechanical properties study of the material produced by direct metal laser deposition of VT6 titanium powder. The properties were determined by the results of stretching at tensile testing machine, as well as compared with the properties of the same rolled material. These results show that obtained samples have properties on the level or even higher than that ones of the samples obtained from the rolled material in a certain range of technological regimes.
Sediment mineralogy based on visible and near-infrared reflectance spectroscopy
Jarrard, R.D.; Vanden Berg, M.D.; ,
2006-01-01
Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.
Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy
USDA-ARS?s Scientific Manuscript database
Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...
Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder
USDA-ARS?s Scientific Manuscript database
The increasingly common application of near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging ligh...