Science.gov

Sample records for power assisted wheelchair

  1. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  2. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  3. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties. PMID:25785910

  4. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  5. Measuring usability of assistive technology from a multicontextual perspective: the case of power wheelchairs.

    PubMed

    Arthanat, Sajay; Nochajski, Susan M; Lenker, James A; Bauer, Stephen M; Wu, Yow Wu B

    2009-01-01

    Assistive technology (AT) devices enable people with disabilities to function in multiple contexts and activities. The usability of such devices is fundamentally indicative of the user's level of participation in multiple roles and occupations. Seventy people who used power wheelchairs were interviewed using a novel tool, the Usability Scale for Assistive Technology (USAT). The USAT uses a human factors science framework to investigate the wheelchair user's perceived independence in mobility-related activities within home, workplace, community, and outdoors in accordance with the characteristics of the wheelchair, environmental factors, and abilities and skills of the user to operate the wheelchair. Descriptive analysis of the data revealed usability issues with the use of power wheelchairs in all contexts. Users confronted far more significant issues within the community and outdoor environment compared with those at home and in the workplace. These issues have been elucidated and applied to an intervention framework with relevance to a multitude of AT stakeholders. PMID:20092111

  6. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    PubMed

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided.

  7. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity. PMID:26307457

  8. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity.

  9. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  10. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  11. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part I)-Adjustment of Assisted Torque and Performance Evaluation From Field Test-

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.

  12. Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.

    PubMed

    Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam

    2008-01-01

    Tongue Drive system (TDS) is a tongue-operated unobtrusive wireless assistive technology, which can potentially provide people with severe disabilities with effective computer access and environment control. It translates users' intentions into control commands by detecting and classifying their voluntary tongue motion utilizing a small permanent magnet, secured on the tongue, and an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. We have developed customized interface circuitry and implemented four control strategies to drive a powered wheelchair (PWC) using an external TDS prototype. The system has been evaluated by five able-bodied human subjects. The results showed that all subjects could easily operate the PWC using their tongue movements, and different control strategies worked better depending on the users' familiarity with the TDS.

  13. Novel Straight Road Driving Control of Power Assisted Wheelchair Based on Disturbance Estimation of Right and Left Wheels

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.

  14. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  15. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor.

    PubMed

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users' driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  16. Technological advances in powered wheelchairs.

    PubMed

    Edlich, Richard F; Nelson, Kenneth P; Foley, Marni L; Buschbacher, Ralph M; Long, William B; Ma, Eva K

    2004-01-01

    During the last 40 years, there have been revolutionary advances in power wheelchairs. These unique wheelchair systems, designed for the physically immobile patient, have become extremely diversified, allowing the user to achieve different positions, including tilt, recline, and, more recently, passive standing. Because of this wide diversity of powered wheelchair products, there is a growing realization of the need for certification of wheeled mobility suppliers. Legislation in Tennessee (Consumer Protection Act for Wheeled Mobility) passed in 2003 will ensure that wheeled mobility suppliers must have Assistive Technology Supplier certification and maintain their continuing education credits when fitting individuals in wheelchairs for long-term use. Fifteen other legislative efforts are currently underway in general assemblies throughout the US. Manufacturers, dealers, hospitals, and legislators are working toward the ultimate goal of passing federal legislation delineating the certification process of wheeled mobility suppliers. The most recent advance in the design of powered wheelchairs is the development of passive standing positions. The beneficial effects of passive standing have been documented by comprehensive scientific studies. These benefits include reduction of seating pressure, decreased bone demineralization, increased bladder pressure, enhanced orthostatic circulatory regulation, reduction in muscular tone, decrease in upper extremity muscle stress, and enhanced functional status in general. In February 2003, Permobil, Inc., introduced the powered Permobil Chairman 2K Stander wheelchair, which can tilt, recline, and stand. Other companies are now manufacturing powered wheelchairs that can achieve a passive standing position. These wheelchairs include the Chief SR Powerchair, VERTRAN, and LifeStand Compact. Another new addition to the wheelchair industry is the iBOT, which can elevate the user to reach cupboards and climb stairs but has no passive

  17. A prototype power assist wheelchair that provides for obstacle detection and avoidance for those with visual impairments

    PubMed Central

    Simpson, Richard; LoPresti, Edmund; Hayashi, Steve; Guo, Songfeng; Ding, Dan; Ammer, William; Sharma, Vinod; Cooper, Rory

    2005-01-01

    Background Almost 10% of all individuals who are legally blind also have a mobility impairment. The majority of these individuals are dependent on others for mobility. The Smart Power Assistance Module (SPAM) for manual wheelchairs is being developed to provide independent mobility for this population. Methods A prototype of the SPAM has been developed using Yamaha JWII power assist hubs, sonar and infrared rangefinders, and a microprocessor. The prototype limits the user to moving straight forward, straight backward, or turning in place, and increases the resistance of the wheels based on the proximity of obstacles. The result is haptic feedback to the user regarding the environment surrounding the wheelchair. Results The prototype has been evaluated with four blindfolded able-bodied users and one individual who is blind but not mobility impaired. For all individuals, the prototype reduced the number of collisions on a simple navigation task. Conclusion The prototype demonstrates the feasibility of providing navigation assistance to manual wheelchair users, but several shortcomings of the system were identified to be addressed in a second generation prototype. PMID:16202136

  18. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  19. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  20. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  1. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  2. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part II)-Variable Assistance Ratio Control Based on Estimation of Center-of-Gravity Angle and Phase Plane-

    NASA Astrophysics Data System (ADS)

    Hata, Naoki; Seki, Hirokazu; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of a power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. This paper proposes a novel control method to prevent power assisted wheelchair from overturning. The man-wheelchair system can be regarded as an inverse pendulum model when the front wheels are rising. The center-of-gravity (COG) angle of the model is the most important information directly-linked to overturn. Behavior of the system can be analyzed using phase plane as shown in this paper. The COG angle cannot be directly measured using a sensor, therefore, COG observer based on its velocity is proposed. On the basis of the analysis on phase plane, a novel control method with variable assistance ratio to prevent a dangerous overturn is proposed. The effectiveness of the proposed method is verified by the practical experiments on the flat ground and uphill slope.

  3. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  4. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  5. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  6. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  7. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  8. An observational study of powered wheelchair provision in Italy.

    PubMed

    Salatino, Claudia; Andrich, Renzo; Converti, R M; Saruggia, M

    2016-01-01

    Powered wheelchairs are complex and expensive assistive devices that must be selected and configured on the basis of individual user needs, lifestyle, motivation, driving ability, and environment. Providing agencies often require evidence that their financial investment will lead to a successful outcome. The authors surveyed a sample of 79 users who had obtained powered wheelchairs from a Regional Health Service in Italy in the period 2008-2013. Follow-up interviews were conducted at the users' homes in order to collect information about wheelchair use, and its effectiveness, usefulness, and economic impact. The instruments used in the interviews included an introductory questionnaire, QUEST (Quebec User Evaluation of Satisfaction with Assistive Technology), PIADS (Psychosocial Impact of Assistive Devices Scale), FABS/M (Facilitators and Barriers Survey/Mobility), and SCAI (Siva Cost Analysis Instrument). The results indicated positive outcomes, especially in relation to user satisfaction and psychosocial impact. A number of barriers were identified in various settings that sometimes restrict user mobility, and suggest corrective actions. The provision of a powered wheelchair generated considerable savings in social costs for most users: an average of about $38,000 per person over a projected 5-year period was estimated by comparing the cost of the intervention with that of non-intervention.

  9. RESNA position on the application of power wheelchairs for pediatric users.

    PubMed

    Rosen, Lauren; Arva, Julianna; Furumasu, Jan; Harris, Michele; Lange, Michelle L; McCarthy, Elisabeth; Kermoian, Rosanne; Pinkerton, Heather; Plummer, Teresa; Roos, Jodi; Sabet, Andrina; Vander Schaaf, Paula; Wonsettler, Terri

    2009-01-01

    This document, approved by the Rehabilitation Engineering & Assistive Technology Society of North America (RESNA) Board of Directors in March 2007, shares typical clinical applications and provides evidence from the literature supporting the use of power wheelchairs for children.

  10. Power Wheelchair Use in Persons With Amyotrophic Lateral Sclerosis: Changes Over Time.

    PubMed

    Ward, Amber Lea; Hammond, Sara; Holsten, Scott; Bravver, Elena; Brooks, Benjamin Rix

    2015-01-01

    The objectives of this study were to survey persons with Amyotrophic Lateral Sclerosis (ALS) at 1 and 6 months after receiving power wheelchairs to determine long-term use, comfort, and function as well as the power wheelchair's impact on daily tasks and quality of life. A 33-question survey and Psychosocial Impact of Assistive Devices Scale (PIADS) were sent 1 month after getting a new power wheelchair; a follow-up survey was sent at 6 months. Based on satisfaction and feature use survey results, at 1 month, 81% of users found the power wheelchair overall comfort to be high, 88% found their overall mobility to be improved, and 95% found it easy to use. Their quality of life increased and pain decreased at 1 and 6 months. According to the PIADS, the power wheelchair gave users increased ability to participate and sense of competence. This study has important results for the ALS community, as it is the first to assess power wheelchair users at 1 and 6 months after power wheelchair procurement. The results demonstrate the impact the power wheelchair has on mobility, psychosocial issues, functional abilities, and quality of life for a person with ALS.

  11. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.

  12. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work. PMID:21095654

  13. Assisting control for attendant propelled wheelchair based on force velocity relationship.

    PubMed

    Suzuki, Tatsuto; Uchiyama, Hironobu; Holloway, Catherine; Tyler, Nick

    2012-01-01

    There is a need to develop an assisting device which can be adapted to the individual capabilities of elderly attendants, which would allow them to maintain a level of fitness when pushing a wheelchair, while minimising the risk of injury to them. Furthermore there is a need to reduce the overall energy consumption of the device in keeping with the current trends of reducing carbon emissions. The control system for attendants pushing wheelchairs that reduces the energy needed by the assisting device is an increasing trend of optimisation of assistive technology devices to individual capabilities to ensure less energy expenditure of the attendant. The control parameters for existing assisting systems for attendant wheelchair propulsion are difficult to optimise for individual capabilities. We focus on the individual propelling performance, and propose an assisting control method based on the force velocity relationship of the individual. Our proposed assisting controller generates an assisting force when the attendant's propelling force exceeds an assisting boundary defined by the force velocity relationship. In this paper, we tested the performance of the assisting controller based on force velocity (FV) relationship using simulation. The simulation used an attendant wheelchair model with parameters determined from experiments. From the simulated results of the assisting force trajectories, the FV assisting system worked as we defined. The FV assisting system used less energy consumption than the existing proportional assisting systems. Also the FV assisting system would have a limit of maximum attendant propelling power, so the distribution between the attendant force and the assisting force can be easily adjusted to the individual's force velocity relationship. Our proposed FV assisting system would be useful as it would allow an optimised system based on individual capabilities to be created for rehabilitation/training systems, which would allow optimum energy

  14. Using machine learning to blend human and robot controls for assisted wheelchair navigation.

    PubMed

    Goil, Aditya; Derry, Matthew; Argall, Brenna D

    2013-06-01

    This work presents an algorithm for collaborative control of an assistive semi-autonomous wheelchair. Our approach is based on a statistical machine learning technique to learn task variability from demonstration examples. The algorithm has been developed in the context of shared-control powered wheelchairs that provide assistance to individuals with impairments that affect their control in challenging driving scenarios, like doorway navigation. We validate our algorithm within a simulation environment, and find that with relatively few demonstrations, our approach allows for safe traversal of the doorway while maintaining a high level of user control.

  15. Effectiveness of a Wheelchair Skills Training Program for Powered Wheelchair Users: A Randomized Controlled Trial

    PubMed Central

    Kirby, R. Lee; Miller, William C.; Routhier, Francois; Demers, Louise; Mihailidis, Alex; Polgar, Jan Miller; Rushton, Paula W.; Titus, Laura; Smith, Cher; McAllister, Mike; Theriault, Chris; Thompson, Kara; Sawatzky, Bonita

    2015-01-01

    Objectives To test the hypothesis that powered wheelchair users who receive the Wheelchair Skills Training Program (WSTP) improve their wheelchair skills in comparison with a Control group that receives standard care. Our secondary objectives were to assess goal achievement, satisfaction with training, retention, injury rate, confidence with wheelchair use and participation. Design Randomized controlled trial (RCT). Setting Rehabilitation centers and communities. Participants 116 powered wheelchair users. Intervention Five 30-minute WSTP training sessions. Main Outcome Measures Assessments were done at baseline (T1), post-training (T2) and 3 months post-training (T3) using the Wheelchair Skills Test Questionnaire (WST-Q 4.1), Goal Attainment Score (GAS), Satisfaction Questionnaire, Injury Rate, Wheelchair Use Confidence Scale for Power Wheelchair Users (WheelCon) and Life Space Assessment (LSA). Results There was no significant T2-T1 difference between the groups for WST-Q capacity scores (p = 0.600) but the difference for WST-Q performance scores was significant (p = 0.016) with a relative (T2/T1 x 100%) improvement of the median score for the Intervention group of 10.8%. The mean (SD) GAS for the Intervention group after training was 92.8% (11.4) and satisfaction with training was high. The WST-Q gain was not retained at T3. There was no clinically significant difference between the groups in injury rate and no statistically significant differences in WheelCon or LSA scores at T3. Conclusions Powered wheelchair users who receive formal wheelchair skills training demonstrate modest transient post-training improvements in their WST-Q performance scores, they have substantial improvements on individualized goals and they are positive about training. PMID:26232684

  16. Wheelchair

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA-developed aerospace computerized structural-analysis techniques and aerospace composite materials have resulted in an advanced wheelchair that weighs only 25 pounds. With only half the weight of a normal wheelchair, this advanced wheelchair is as strong and durable as a 50-pound stainless steel wheelchair yet can be easily collapsed forauto stowage. Its features include a seat, wheelguards, dynamic brakes, shaped hand rims, and a footrest with smooth contours to aid in opening doors.

  17. Powered wheelchairs: are we enabling or disabling?

    PubMed

    Beaumont-White, S; Ham, R O

    1997-04-01

    Following the unsuccessful issue of three powered indoor National Health Service (NHS) wheelchairs, a survey was carried out of 40 users in a London wheelchair service to identify the problems with issue and possible areas for improvement to practice. The survey identified improvements that were necessary both from the service and the manufacturers' booklets. The improvements include the issue of written instructions and information to complement verbal instruction given at handover. Such information should be as interesting to read as possible, make use of appropriate language and diagrams (especially in area where English is often not the first language), colour, text and print size to maximise comprehension to these severely disabled users and often their elderly relatives or carers. The importance of the role of the rehabilitation engineer in training the user, giving instruction at handover and annual review are highlighted to ensure that the equipment remains working, suitable and up to date for the individual's needs. Training in interpersonal and communication skills and the importance of recall should also be emphasised. The implementation of the findings should lead to increasing contact with the service by the user, reduction in repair and replacement costs, regular review, correct supply and will therefore enable users to increase their independence with appropriate equipment. PMID:9141127

  18. Adaptive shared control for an intelligent power wheelchair

    SciTech Connect

    Simpson, R.C.; Levine, S.P.

    1996-12-31

    The NavChair Assistive Navigation System is being developed to increase the mobility of severely handicapped individuals by providing navigation assistance for a power wheelchair. While designing the NavChair it became clear that obtaining the full range of desired functionality required several different {open_quotes}operating modes,{close_quotes} each of which was appropriate in different contexts. This also necessarily created a need for a method of choosing between these modes. One solution is for the user to manage the task of mode determination, which may place unacceptable performance burdens on NavChair users with severe disabilities. Instead, a means for the NavChair to automatically choose the proper operating mode is being sought.

  19. Wheelchairs

    MedlinePlus

    ... Others have disabilities due to muscular dystrophy or cerebral palsy . In some cases, kids have wheelchairs but don' ... Therapist In the Band: Jens' Story Spina Bifida Cerebral Palsy Contact Us Print Resources Send to a friend ...

  20. RESNA Position on the Application of Power Wheelchairs for Pediatric Users

    ERIC Educational Resources Information Center

    Rosen, Lauren; Arva, Julianna; Furumasu, Jan; Harris, Michele; Lange, Michelle L.; McCarthy, Elisabeth; Kermoian, Rosanne; Pinkerton, Heather; Plummer, Teresa; Roos, Jodi; Sabet, Andrina; Vander Schaaf, Paula; Wonsettler, Terri

    2009-01-01

    This document, approved by the Rehabilitation Engineering & Assistive Technology Society of North America (RESNA) Board of Directors in March 2007, shares typical clinical applications and provides evidence from the literature supporting the use of power wheelchairs for children. It is RESNA's position that age, limited vision or cognition,…

  1. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  2. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  3. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  4. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  5. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  6. A navigation system for increasing the autonomy and the security of powered wheelchairs.

    PubMed

    Fioretti, S; Leo, T; Longhi, S

    2000-12-01

    Assistive technology is an emerging area where some robotic devices can be used to strengthen the residual abilities of individuals with motor disabilities or to substitute their missing function thus helping them to gain a level of independence at least in the activities of daily living. This paper presents the design of a navigation system and its integration with a commercial powered wheelchair. The navigation system provides the commercial wheelchair with a set of functions which increase the autonomy of elderly and people with motor disabilities. In general, a robot device must be adapted to assistive applications in such a way as to be easily managed by the user. Users, especially young ones, prefer to directly control the robotic device and this aspect of usability has to be managed without affecting the security and efficiency of the navigation module. These aspects have been considered as specifications for the navigation module of powered wheelchairs. Different autonomy levels of the navigation module and proper user interfaces have been developed. Two autonomy levels have been designed. Simple collision avoidance is also implemented in order to stop the mobile base when an obstacle is detected. The preliminary technical tests performed on the navigation system have shown satisfactory results in terms of security and response time. A modular solution for the navigation module was considered in order to simplify the adaptation of the module to different powered wheelchairs.

  7. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  8. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  9. The power of power wheelchairs: Mobility choices of community-dwelling, older adults

    PubMed Central

    Mortenson, WB; Hammell, KW; Luts, A; Soles, C; Miller, WC

    2015-01-01

    Background Power wheelchairs are purported to have a positive effect on health, occupation, and quality of life. However, there is limited knowledge about what factors shape power wheelchair use decisions. Aims/Objectives A study was undertaken to understand the mobility choices of community-dwelling, power wheelchair users. Methods A series of semi-structured qualitative interviews was conducted with 13 older adult power wheelchair users. Participants were interviewed at enrollment and four months later. Data analysis was informed by Bourdieu’s theoretical constructs of habitus, capital, and field. Results Three main styles of power wheelchair use were identified: reluctant use, strategic use and essential use, and each type is illustrated using an aggregate case study. Conclusion/Significance These findings highlight the need to alter the power relationship that exists between prescribers and device users and to effect policy changes that enable people with physical impairments to make as wide a range of mobility choices as possible. PMID:26027749

  10. REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL

    PubMed Central

    Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2009-01-01

    The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494

  11. Estimation of wheelchair states during movement using WELL-SphERE for evaluation of power wheelchair safety.

    PubMed

    Komoto, Kengo; Suzurikawa, Jun

    2013-01-01

    To comprehensively evaluate the usability and safety of a power wheelchair (PWC), monitoring multimodal data related to the PWC in a real environment is crucial. In most studies exploring actual wheelchair conditions, modification of PWCs has been required. Especially modification of controlling circuits aiming for measurement of joystick operation may lead to controller malfunction and thus increase safety risk. It is essential, therefore, to ensure the safety of PWC users during experiments so that they can measure PWC-related data with their own wheelchairs. To achieve this aim, we developed a recording device that is easily installed on PWCs without any electronic modifications. The device, called a "WELL-SphERE," has sensing units that can be attached to PWCs a data management unit that can store and transfer measurement data. Here, we focused on joystick operation logged by the system. Seven participants were pre-tested to examine the characteristics of logged operations during runs through four test courses. Subsequently, all participants completed a questionnaire regarding the difficulty of the test courses. From these results, we classified the logged operations into four categories of "wheelchair states." Two participants--a novice driver and a mature driver--were also evaluated to verify the accuracy of the estimated wheelchair states. The accuracies of the estimates by the mature and novice driver were 98.8% and 89.0%, respectively. The wheelchair states for both participants showed characteristic patterns. Therefore, the wheelchair states estimated with the data logged using WELL-SphERE are valid indicators of the wheelchair conditions during movement.

  12. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs)

    PubMed Central

    De Souza, Lorraine H.; Frank, Andrew O.

    2016-01-01

    Abstract Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. Method: Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. Results: Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11–70) with RDs were identified and reviewed a mean of 64 (range 0–131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich’s ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. Conclusions: The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living.Implications for RehabilitationPowered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features.The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual’s need for function and participation whilst allowing for disease progression and/or growth.Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise

  13. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  14. 49 CFR 39.95 - May PVOs limit their liability for loss of or damage to wheelchairs or other assistive devices?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... damage to wheelchairs or other assistive devices? 39.95 Section 39.95 Transportation Office of the... damage to wheelchairs or other assistive devices? Consistent with any applicable requirements of..., damaged, or destroyed wheelchair or other assistive device is the original purchase price of the device....

  15. 49 CFR 39.95 - May PVOs limit their liability for loss of or damage to wheelchairs or other assistive devices?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... damage to wheelchairs or other assistive devices? 39.95 Section 39.95 Transportation Office of the... damage to wheelchairs or other assistive devices? Consistent with any applicable requirements of..., damaged, or destroyed wheelchair or other assistive device is the original purchase price of the device....

  16. 49 CFR 39.95 - May PVOs limit their liability for loss of or damage to wheelchairs or other assistive devices?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... damage to wheelchairs or other assistive devices? 39.95 Section 39.95 Transportation Office of the... damage to wheelchairs or other assistive devices? Consistent with any applicable requirements of..., damaged, or destroyed wheelchair or other assistive device is the original purchase price of the device....

  17. 49 CFR 39.95 - May PVOs limit their liability for loss of or damage to wheelchairs or other assistive devices?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... damage to wheelchairs or other assistive devices? 39.95 Section 39.95 Transportation Office of the... damage to wheelchairs or other assistive devices? Consistent with any applicable requirements of..., damaged, or destroyed wheelchair or other assistive device is the original purchase price of the device....

  18. 49 CFR 39.95 - May PVOs limit their liability for loss of or damage to wheelchairs or other assistive devices?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... damage to wheelchairs or other assistive devices? 39.95 Section 39.95 Transportation Office of the... damage to wheelchairs or other assistive devices? Consistent with any applicable requirements of..., damaged, or destroyed wheelchair or other assistive device is the original purchase price of the device....

  19. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study

    PubMed Central

    Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre–post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  20. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving.

  1. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  2. Evaluating the usability of a smartphone virtual seating coach application for powered wheelchair users.

    PubMed

    Wu, Yu-Kuang; Liu, Hsin-Yi; Kelleher, Annmarie; Pearlman, Jonathan; Cooper, Rory A

    2016-06-01

    The aim of the smartphone virtual seating coach (SVSC) was to provide a personalized reminder/warning system to encourage powered wheelchair users to use their powered seating functions (PSFs) as clinically recommended. This study evaluated the usability of the SVSC system by gathering feedback from five powered wheelchair users and five rehabilitation professionals through questionnaires and interviews. The results indicated that clear and understandable instructions to adjust the PSFs are the most important requirement for SVSC application. The instructions must be intuitive, could benefit from animations or indications of PSFs control buttons so powered wheelchair users can adjust their PSFs immediately and appropriately. PMID:27079179

  3. Exploring Powered Wheelchair Users and Their Caregivers’ Perspectives on Potential Intelligent Power Wheelchair Use: A Qualitative Study

    PubMed Central

    Kairy, Dahlia; Rushton, Paula W.; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-01-01

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) “challenging situations that may be overcome by an IPW” described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs’ identified mobility difficulties; (2) “cautious optimism concerning IPW use revealed participants” addresses concerns regarding using an IPW as well as technological suggestions; (3) “defining the potential IPW user” revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs. PMID:24566051

  4. Exploring powered wheelchair users and their caregivers' perspectives on potential intelligent power wheelchair use: a qualitative study.

    PubMed

    Kairy, Dahlia; Rushton, Paula W; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-02-21

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) "challenging situations that may be overcome by an IPW" described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs' identified mobility difficulties; (2) "cautious optimism concerning IPW use revealed participants" addresses concerns regarding using an IPW as well as technological suggestions; (3) "defining the potential IPW user" revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs.

  5. Exploring powered wheelchair users and their caregivers' perspectives on potential intelligent power wheelchair use: a qualitative study.

    PubMed

    Kairy, Dahlia; Rushton, Paula W; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-02-01

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) "challenging situations that may be overcome by an IPW" described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs' identified mobility difficulties; (2) "cautious optimism concerning IPW use revealed participants" addresses concerns regarding using an IPW as well as technological suggestions; (3) "defining the potential IPW user" revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs. PMID:24566051

  6. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.

    PubMed

    Chow, John W; Levy, Charles E

    2011-01-01

    PURPOSE. To provide an overview of associations between wheelchair propulsion biomechanics for both everyday and racing wheelchairs, wheeling-related upper limb injuries, and quality of life of manual wheelchair users through a synthesis of the available information. METHODS. A search of publications was carried out in PubMed and SportsDiscus databases. Studies on wheelchair propulsion biomechanics, upper limb injuries associated with wheelchair propulsion and quality of life of wheelchair users were identified. Relevant articles cited in identified articles but not cited in PubMed or SportsDiscus were also included. RESULTS. Wheelchair sports participation has positive impact on quality of life and research in racing wheelchair biomechanics can indirectly promote the visibility of wheelchair sports. The impact of pushrim-activated power-assisted wheelchairs (a hybrid between manual and battery-powered wheelchairs) and geared manual wheels on wheelers' everyday life were discussed. CONCLUSIONS. The study of wheelchair propulsion biomechanics focuses on how a wheelchair user imparts power to the wheels to achieve mobility and the accumulated knowledge can help to improve wheelchair users' mobility, reduce physical stress associated with wheelchair propulsion, and as a result, enhance quality of life. PMID:20932232

  7. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.

    PubMed

    Chow, John W; Levy, Charles E

    2011-01-01

    PURPOSE. To provide an overview of associations between wheelchair propulsion biomechanics for both everyday and racing wheelchairs, wheeling-related upper limb injuries, and quality of life of manual wheelchair users through a synthesis of the available information. METHODS. A search of publications was carried out in PubMed and SportsDiscus databases. Studies on wheelchair propulsion biomechanics, upper limb injuries associated with wheelchair propulsion and quality of life of wheelchair users were identified. Relevant articles cited in identified articles but not cited in PubMed or SportsDiscus were also included. RESULTS. Wheelchair sports participation has positive impact on quality of life and research in racing wheelchair biomechanics can indirectly promote the visibility of wheelchair sports. The impact of pushrim-activated power-assisted wheelchairs (a hybrid between manual and battery-powered wheelchairs) and geared manual wheels on wheelers' everyday life were discussed. CONCLUSIONS. The study of wheelchair propulsion biomechanics focuses on how a wheelchair user imparts power to the wheels to achieve mobility and the accumulated knowledge can help to improve wheelchair users' mobility, reduce physical stress associated with wheelchair propulsion, and as a result, enhance quality of life.

  8. A robotic wheelchair

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Grant, Edward

    1994-01-01

    Many people who are mobility impaired are incapable, for a variety of reasons, of using an ordinary wheelchair. These people must rely on either a power wheelchair, which they control, or another person to push and guide them while they are in an ordinary or power wheelchair. Power wheelchairs can be difficult to operate. If a person has additional disabilities, either in perception or fine motor control of their hands, a power chair can be difficult or impossible for them to use safely. Having one person push and guide a person who is mobility impaired is very expensive, and if the disabled person is otherwise independent, very inefficient and frustrating. This paper describes a low-cost robotic addition to a power wheelchair that assists the rider of the chair in avoiding obstacles, going to pre-designated places, and maneuvering through doorways and other narrow or crowded areas. This system can be interfaced to a variety of input devices, and can give the operator as much or as little moment by moment control of the chair as they wish.

  9. Rehabilitation Engineering & Assistive Technology Society (RESNA) position on the application of wheelchair standing devices: 2013 current state of the literature.

    PubMed

    Dicianno, Brad E; Morgan, Amy; Lieberman, Jenny; Rosen, Lauren

    2016-01-01

    This article, approved by the Rehabilitation Engineering & Assistive Technology Society of North America Board of Directors on December 23, 2013, shares typical clinical applications and provides evidence from the literature supporting the use of wheelchair standers.

  10. Design And Structural Analysis Of A Powered Wheelchair Transmission

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut Daniel; Dumitru, Nicolae; Margine, Alexandru

    2015-09-01

    In this paper are presented the author's researches on designing, dynamical and structural evaluation of a transmission for a wheelchair, intended to persons with locomotors disabilities. The kinematics of proposed transmission is analyzed in order to realize a proper synthesis and design of gears. A 3D model of the transmission and wheelchair are designed in Solid Works, and they will be used for the dynamic simulation of the wheelchair robotic system in Adams software. In Adams is analyzed wheelchair trajectory and dynamics for a combined trajectory: linear motion and steering. Dynamic parameters obtained from simulation are used to perform a finite element analysis of bevel and worm gears. Simulation results reveal the transmission dynamics parameters, emphasize the efficiency of the transmission and enable implementation of this design to a wheelchair model.

  11. Design and User Evaluation of a Wheelchair Mounted Robotic Assisted Transfer Device

    PubMed Central

    Grindle, Garrett G.; Jeannis, Hervens; Teodorski, Emily; Cooper, Rory A.

    2015-01-01

    Purpose. The aim of this study is to describe the robotic assisted transfer device (RATD) and an initial focus group evaluation by end users. The purpose of the device is to aid in the transfers of people with disabilities to and from their electric powered wheelchair (EPW) onto other surfaces. The device can be used for both stand-pivot transfers and fully dependent transfers, where the person being transferred is in a sling and weight is fully on the robot. The RATD is fixed to an EPW to allow for its use in community settings. Method. A functional prototype of the RATD was designed and fabricated. The prototype was presented to a group of 16 end users and feedback on the device was obtained via a survey and group discussion. Results. Thirteen out of sixteen (83%) participants agreed that it was important to develop this type of technology. They also indicated that user, caregiver, and robotic controls were important features to be included in the device. Conclusions. Participants in this study suggested that they would be accepting the use of robotic technology for transfers and a majority did not feel that they would be embarrassed to use this technology. PMID:25793190

  12. Performance metrics for power wheelchairs: a pipe dream?

    PubMed

    Iezzoni, Lisa I; Ogg, Michael

    2014-04-01

    Power wheelchair (PWC) users depend on their equipment to reliably transport them throughout daily activities and allow them to participate fully in community life. However, as reported by Worobey and colleagues, PWCs frequently require repairs and cause users a variety of problems, which can range from annoying to catastrophic. These authors suggest that comparing the performance of individual PWC makes and models--a PWC Consumer Reports--might be helpful to inform users and others about the relative quality of different products. Although a comparative report is an appealing idea, we suggest that producing meaningful comparisons of specific PWCs, especially complex rehabilitation PWCs, confronts significant methodologic and practical hurdles. Challenges include dealing with small sample sizes for individual products, risk-adjusting outcomes to account for systematic differences in patterns of use, specifying meaningful outcome metrics, distinguishing the contributions of manufacturers and PWC suppliers to suboptimal performance, and disentangling the myriad components of complex rehabilitation PWCs, which often carry parts from multiple manufacturers. In any case, most users have little control over their PWC selections, with the policies of health insurers and other factors largely dictating equipment choices. Considering these various concerns, we argue that producing a valid and useful Consumer Reports for PWCs will be difficult and, at least for complex rehabilitation chairs, will be of limited value.

  13. Joystick-controlled video console game practice for developing power wheelchairs users' indoor driving skills.

    PubMed

    Huang, Wei Pin; Wang, Chia Cheng; Hung, Jo Hua; Chien, Kai Chun; Liu, Wen-Yu; Cheng, Chih-Hsiu; Ng, How-Hing; Lin, Yang-Hua

    2015-02-01

    [Purpose] This study aimed to determine the effectiveness of joystick-controlled video console games in enhancing subjects' ability to control power wheelchairs. [Subjects and Methods] Twenty healthy young adults without prior experience of driving power wheelchairs were recruited. Four commercially available video games were used as training programs to practice joystick control in catching falling objects, crossing a river, tracing the route while floating on a river, and navigating through a garden maze. An indoor power wheelchair driving test, including straight lines, and right and left turns, was completed before and after the video game practice, during which electromyographic signals of the upper limbs were recorded. The paired t-test was used to compare the differences in driving performance and muscle activities before and after the intervention. [Results] Following the video game intervention, participants took significantly less time to complete the course, with less lateral deviation when turning the indoor power wheelchair. However, muscle activation in the upper limbs was not significantly affected. [Conclusion] This study demonstrates the feasibility of using joystick-controlled commercial video games to train individuals in the control of indoor power wheelchairs.

  14. Upper Body-Based Power Wheelchair Control Interface for Individuals with Tetraplegia

    PubMed Central

    Thorp, Elias B.; Abdollahi, Farnaz; Chen, David; Farshchiansadegh, Ali; Lee, Mei-Hua; Pedersen, Jessica; Pierella, Camilla; Roth, Elliot J.; Gonzalez, Ismael Seanez; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Many power wheelchair control interfaces are not sufficient for individuals with severely limited upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand movements provide users a limited vocabulary of commands and often do not take advantage of the user’s residual motion. We developed a body-machine interface (BMI) that leverages the flexibility and customizability of redundant control by using high dimensional changes in shoulder kinematics to generate proportional controls commands for a power wheelchair. In this study, three individuals with cervical spinal cord injuries were able to control the power wheelchair safely and accurately using only small shoulder movements. With the BMI, participants were able to achieve their desired trajectories and, after five sessions driving, were able to achieve smoothness that was similar to the smoothness with their current joystick. All participants were twice as slow using the BMI however improved with practice. Importantly, users were able to generalize training controlling a computer to driving a power wheelchair, and employed similar strategies when controlling both devices. Overall, this work suggests that the BMI can be an effective wheelchair control interface for individuals with high-level spinal cord injuries who have limited arm and hand control. PMID:26054071

  15. Accessibilities of Wheelchair Users to Cross the Gaps and Steps between Platforms and Trains

    NASA Astrophysics Data System (ADS)

    Hashizume, Tsutomu; Yoneda, Ikuo; Kitagawa, Hiroshi; Fujisawa, Shoichiro; Sueda, Osamu

    Gaps and steps between platforms and trains reduce the accessibility and mobility of people with wheelchairs in railway transportations. Using an experimental platform, the observations are performed how gaps and steps influence their capabilities for manual wheelchair or electric powered wheelchair users with spinal cord injury. A quantity of Normalized Driving Force (NDF) is introduced to evaluate the manual wheelchair user's abilities in the case of getting on or off the trains. Three types of electric powered wheelchairs are also tested under the same experimental conditions as the manual wheelchair. The dynamic wheelchair driving force is measured by using a torque meter equipped on a wheelchair to analyze the required force when getting on the trains. To improve practical accessibility of such people, an assistive device for boarding the trains is designed and its effect is verified.

  16. Driver Model of a Powered Wheelchair Operation as a Tool of Theoretical Analyses

    NASA Astrophysics Data System (ADS)

    Ito, Takuma; Inoue, Takenobu; Shino, Motoki; Kamata, Minoru

    This paper describes the construction of a driver model of a powered wheelchair operation for the understanding of the characteristics of the driver. The main targets of existing researches about driver models are the operation of the automobiles and motorcycles, not a low-speed vehicle such as powered wheelchairs. Therefore, we started by verifying the possibility of modeling the turning operation at a corner of a corridor. At first, we conducted an experiment on a daily powered wheelchair user by using his vehicle. High reproducibility of driving and the driving characteristics for the construction of a driver model were both confirmed from the result of the experiment. Next, experiments with driving simulators were conducted for the collection of quantitative driving data. The parameters of the proposed driver model were identified from experimental results. From the simulations with the proposed driver model and identified parameters, the characteristics of the proposed driver model were analyzed.

  17. Powered wheelchairs and independence in young children with tetraplegia.

    PubMed

    Bottos, M; Bolcati, C; Sciuto, L; Ruggeri, C; Feliciangeli, A

    2001-11-01

    The aim of this study was to assess the effect of early provision (< or = 8 years) of a powered wheelchair (PWC) in children with tetraplegia. Twenty-nine children (15 males, 14 females; mean age 6 years 3 months, age range 3 to 8 years) with spastic or dystonic tetraplegia were studied. All participants had severe motor impairment. Treatment outcomes were investigated in several dimensions of disablement: Impairment, Functional Limitation/Activity, Disability/Participation. It was found that the level of independence improved significantly after PWC provision, while motor impairment, IQ, and quality of life did not. The majority of children (21 of 27) reached a level of driving competence which allowed them to move around with or without minimal (i.e. verbal) adult support. Achievement of this competence was not statistically related to IQ or motor impairment but correlated to the time spent in the PWC. The majority of parents (21 of 25) were not in favour of the PWC when the study started but after PWC provision, 23 of 25 parents expressed positive feelings about it. Reactions of the majority of children (23 of 25) were positive from the beginning of the study and did not change over time. The authors concluded that PWCs can aid independence and socialization and the majority of children can achieve a good-enough driving competence, even those with severe learning disability or motor deficit. PWCs should not be viewed as a last resort but as a means of providing efficient self-locomotion in children with a severe motor deficit. PMID:11730152

  18. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    PubMed

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  19. The embodiment of assistive devices-from wheelchair to exoskeleton.

    PubMed

    Pazzaglia, Mariella; Molinari, Marco

    2016-03-01

    Spinal cord injuries (SCIs) place a heavy burden on the healthcare system and have a high personal impact and marked socio-economic consequences. Clinically, no absolute cure for these conditions exists. However, in recent years, there has been an increased focus on new robotic technologies that can change the frame we think about the prognosis for recovery and for treating some functions of the body affected after SCIs. This review has two goals. The first is to assess the possibility of the embodiment of functional assistive tools after traumatic disruption of the neural pathways between the brain and the body. To this end, we will examine how altered sensorimotor information modulates the sense of the body in SCI. The second goal is to map the phenomenological experience of using external tools that typically extend the potential of the body physically impaired by SCI. More specifically, we will focus on the difference between the perception of one's physically augmented and non-augmented affected body based on observable and measurable behaviors. We discuss potential clinical benefits of enhanced embodiment of the external objects by way of multisensory interventions. This review argues that the future evolution of human robotic technologies will require adopting an embodied approach, taking advantage of brain plasticity to allow bionic limbs to be mapped within the neural circuits of physically impaired individuals.

  20. The embodiment of assistive devices-from wheelchair to exoskeleton

    NASA Astrophysics Data System (ADS)

    Pazzaglia, Mariella; Molinari, Marco

    2016-03-01

    Spinal cord injuries (SCIs) place a heavy burden on the healthcare system and have a high personal impact and marked socio-economic consequences. Clinically, no absolute cure for these conditions exists. However, in recent years, there has been an increased focus on new robotic technologies that can change the frame we think about the prognosis for recovery and for treating some functions of the body affected after SCIs. This review has two goals. The first is to assess the possibility of the embodiment of functional assistive tools after traumatic disruption of the neural pathways between the brain and the body. To this end, we will examine how altered sensorimotor information modulates the sense of the body in SCI. The second goal is to map the phenomenological experience of using external tools that typically extend the potential of the body physically impaired by SCI. More specifically, we will focus on the difference between the perception of one's physically augmented and non-augmented affected body based on observable and measurable behaviors. We discuss potential clinical benefits of enhanced embodiment of the external objects by way of multisensory interventions. This review argues that the future evolution of human robotic technologies will require adopting an embodied approach, taking advantage of brain plasticity to allow bionic limbs to be mapped within the neural circuits of physically impaired individuals.

  1. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.

    PubMed

    Wästlund, Erik; Sponseller, Kay; Pettersson, Ola; Bared, Anders

    2015-01-01

    This article describes a novel add-on for powered wheelchairs that is composed of a gaze-driven control system and a navigation support system. The add-on was tested by three users. All of the users were individuals with severe disabilities and no possibility of moving independently. The system is an add-on to a standard power wheelchair and can be customized for different levels of support according to the cognitive level, motor control, perceptual skills, and specific needs of the user. The primary aim of this study was to test the functionality and safety of the system in the user's home environment. The secondary aim was to evaluate whether access to a gaze-driven powered wheelchair with navigation support is perceived as meaningful in terms of independence and participation. The results show that the system has the potential to provide safe, independent indoor mobility and that the users perceive doing so as fun, meaningful, and a way to reduce dependency on others. Independent mobility has numerous benefits in addition to psychological and emotional well-being. By observing users' actions, caregivers and healthcare professionals can assess the individual's capabilities, which was not previously possible. Rehabilitation can be better adapted to the individual's specific needs, and driving a wheelchair independently can be a valuable, motivating training tool. PMID:26744901

  2. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.

    PubMed

    Wästlund, Erik; Sponseller, Kay; Pettersson, Ola; Bared, Anders

    2015-01-01

    This article describes a novel add-on for powered wheelchairs that is composed of a gaze-driven control system and a navigation support system. The add-on was tested by three users. All of the users were individuals with severe disabilities and no possibility of moving independently. The system is an add-on to a standard power wheelchair and can be customized for different levels of support according to the cognitive level, motor control, perceptual skills, and specific needs of the user. The primary aim of this study was to test the functionality and safety of the system in the user's home environment. The secondary aim was to evaluate whether access to a gaze-driven powered wheelchair with navigation support is perceived as meaningful in terms of independence and participation. The results show that the system has the potential to provide safe, independent indoor mobility and that the users perceive doing so as fun, meaningful, and a way to reduce dependency on others. Independent mobility has numerous benefits in addition to psychological and emotional well-being. By observing users' actions, caregivers and healthcare professionals can assess the individual's capabilities, which was not previously possible. Rehabilitation can be better adapted to the individual's specific needs, and driving a wheelchair independently can be a valuable, motivating training tool.

  3. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must permit individuals with mobility disabilities to use wheelchairs and manually powered mobility... individuals with mobility disabilities in any areas open to pedestrian use. (b)(1) As A PVO subject to Title... permit the use of other power-driven mobility devices by individuals with mobility disabilities,...

  4. Maximal aerobic power in cerebral palsied wheelchair athletes: validity and reliability.

    PubMed

    Bhambhani, Y N; Holland, L J; Steadward, R D

    1992-03-01

    This study examined the validity and reliability of maximal aerobic power (VO2max) during wheelchair ergometry (WE) in wheelchair athletes with cerebral palsy. Six class 3 and class 4 male athletes with cerebral palsy completed two graded exercise tests to volitional fatigue on a wheelchair ergometer mounted on frictionless rollers. Four athletes were also able to complete two tests of bicycle ergometry (BE). Although the reliability coefficients for the VO2max during the two exercise modes were high (.89 and .93 for the WE and BE tests, respectively), the validity coefficients for this variable (ie, the correlations between WE and BE) were poor (.31 and -.24 for trials 1 and 2, respectively). Examination of the individual data indicated that athletes who used wheelchairs as their primary mode of ambulation had higher VO2max values during WE; whereas, those who used canes or no aids for daily ambulation had higher values on BE. Because of the specificity of the, VO2max response, it is recommended that the primary mode of ambulation be considered when deciding on the testing mode for evaluating the cardiorespiratory fitness of athletes with cerebral palsy.

  5. Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Yoshiaki

    This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.

  6. Evaluation of a Smartphone Platform as a Wireless Interface Between Tongue Drive System and Electric-Powered Wheelchairs

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam

    2013-01-01

    Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS–iPhone–PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ~9% per session over the following three sessions. PMID:22531737

  7. Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs.

    PubMed

    Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam

    2012-06-01

    Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS-iPhone-PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ∼9% per session over the following three sessions. PMID:22531737

  8. Development of a Powered Wheelchair Driving Simulator for Research and Development Use

    NASA Astrophysics Data System (ADS)

    Ito, Takuma; Shino, Motoki; Inoue, Takenobu; Kamata, Minoru

    The purpose of a powered wheelchair driving simulator is to decrease the time and effort in the process of clinic, research and development. In this paper, the design concepts of our driving simulator for research and development use are explained. To design the simulator's software and hardware, two following experiments were conducted. 1: The driver's horizontal field of view was measured. While making a right turn at a corner of a corridor, the movement of the driver's gazing point was measured. From this result, the maximum and minimum values of gazing point movement were analyzed to design the simulator's angle of view. 2: Motion cues such as acceleration and vibration were measured. The characteristics of these motion cues were analyzed to design the motion system. From the experiment results, a driving simulator of a powered wheelchair was developed. To evaluate the driving simulator, the experiment for comparing with a real powered wheelchair driving was conducted. Evaluations improved by the components which were specially designed for the driving simulator.

  9. A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres.

    PubMed

    Headleand, Christopher J; Day, Thomas; Pop, Serban R; Ritsos, Panagiotis D; John, Nigel W

    2016-01-01

    Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution. We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution. PMID:27046566

  10. A Driving Behaviour Model of Electrical Wheelchair Users

    PubMed Central

    Hamam, Y.; Djouani, K.; Daachi, B.; Steyn, N.

    2016-01-01

    In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362

  11. A Driving Behaviour Model of Electrical Wheelchair Users.

    PubMed

    Onyango, S O; Hamam, Y; Djouani, K; Daachi, B; Steyn, N

    2016-01-01

    In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362

  12. Utilization of ultrasound sensors for anti-collision systems of powered wheelchairs.

    PubMed

    Dutta, Tilak; Fernie, Geoff R

    2005-03-01

    Anti-collision systems have been developed for use with powered wheelchairs in order to enable people with cognitive or physical impairments to safely operate a powered wheelchair. Anti-collision systems consist of sensors that have the ability to detect objects near the wheelchair and a computer that can stop the chair if a collision is determined to be likely. This investigation considered the suitability of using ultrasound sensors in such a system when encountering objects typically found within a home or a long-term care facility. An ultrasound sensor's ability to detect an object was dependent on the object's size, shape, specularity, reflectivity, and sound absorption characteristics. Ultrasound sensors, by themselves, were found to be unsuitable for anti-collision systems due to an inability to detect objects commonly encountered in the target environment (the home or long-term care facility) without increasing the complexity of the system to such a degree that it would be prohibitive to deploy this technology to the public.

  13. Biomechanics and the wheelchair.

    PubMed

    McLaurin, C A; Brubaker, C E

    1991-04-01

    Wheelchair biomechanics involves the study of how a wheelchair user imparts power to the wheels to achieve mobility. Because a wheelchair can coast, power input need not be continuous, but each power strike can be followed by a period of recovery, with the stroking frequency depending on user preferences and the coasting characteristics of the wheelchair. The latter is described in terms of rolling resistance, wind resistance and the slope of the surface. From these three factors the power required to propel the wheelchair is determined, and must be matched by the power output of the user. The efficiency of propulsion is the ratio of this power output to the metabolic cost and is typically in the order of 5% in normal use. The features required in a wheelchair depend upon user characteristics and intended activities. The ideal wheelchair for an individual will have the features that closely match these characteristics and activities. Thus prescription is not just choosing a wheelchair, but choosing the components of the wheelchair that best serve the intended purpose. In this paper, each component is examined for available options and how these options effect the performance of the wheelchair for the individual. The components include wheels, tyres, castors, frames, bearings, materials, construction details, seats, backrests, armrests, foot and legrests, headrests, wheel locks, running brakes, handrims, levers, accessories, adjustments and detachable parts. Each component is considered in relation to performance characteristics including rolling resistance, versatility, weight, comfort, stability, maneouvrability, transfer, stowage, durability and maintenance. Where they exist, wheelchair standards are referred to as a source of information regarding these characteristics.

  14. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.

    PubMed

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-06-14

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop or semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should consider using either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591

  15. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.

    PubMed

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-06-14

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop or semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should consider using either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground.

  16. Peak oxygen uptake and maximal power output of Olympic wheelchair-dependent athletes.

    PubMed

    Veeger, H E; Hadj Yahmed, M; van der Woude, L H; Charpentier, P

    1991-10-01

    To extend the existing data base on the cardiovascular capacity of wheelchair-dependent athletes, a maximum wheelchair exercise test was conducted by 48 athletes (8 females and 40 males) on a motor driven treadmill. Athletes were selected on availability from the representatives of eight different disciplines. For 36 subjects maximal external power was calculated on the basis of a separate drag test. Maximal oxygen uptake (VO2max) for the male population was 2.23 l.min-1 (32.9 ml.kg-1.min-1). Subjects were divided into functional categories according to the International Stoke Mandeville Classification, with one nonambulatory, nonparaplegic group classified as "LA." The LA group displayed the highest values while the class IC tetraplegic showed the lowest performance level. Classified over sports disciplines, male track and field representatives showed the highest VO2max (2.86 l.min-1, 44.9 ml.kg-1.min-1) and target shooting athletes the lowest (1.32 l.min-1, 16.3 ml.kg-2.min-1). Maximal power output was on average 81.1 W for the male population and varied from 65.8 W for class II athletes to 92.2 W for class LA. Between sports values ranged from 96.8 W for basketball players to 48.2 W for the archery representative. These data are useful for setting standards for maximally attainable performance levels in relation to sport, functional classification, or sex and underline the capability of the wheelchair-dependent to improve cardiovascular fitness.

  17. Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving

    PubMed Central

    Vanacker, Gerolf; del R. Millán, José; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix

    2007-01-01

    Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739

  18. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    PubMed

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  19. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  20. To What Extent Can the Use of a Mobility Assistance Dog Reduce Upper Limb Efforts When Manual Wheelchair Users Ascend a Ramp?

    PubMed

    Martin-Lemoyne, Valérie; Gagnon, Dany H; Routhier, François; Poissant, Lise; Tousignant, Michel; Corriveau, Hélène; Vincent, Claude

    2016-04-01

    Biomechanical evidence is needed to determine to what extent the use of a mobility assistance dog (AD(Mob)) may minimize mechanical loads and muscular demands at the upper limbs among manual wheelchair users. This study quantified and compared upper limb efforts when propelling up a ramp with and without an AD(Mob) among manual wheelchair users. Ten manual wheelchair users with a spinal cord injury who own an AD(Mob) ascended a ramp with and without their AD(Mob). The movements of the wheelchair and upper limbs were captured and the forces applied at the pushrims were recorded to compute shoulder mechanical loading. Muscular demand of the pectoralis major, anterior deltoid, biceps, and the triceps was normalized against the maximum electromyographic values. The traction provided by the AD(Mob) significantly reduced the total force applied at the pushrim and its tangential component while the mechanical effectiveness remained similar. The traction provided by the AD(Mob) also resulted in a significant reduction in shoulder flexion, internal rotation, and adduction moments. The muscular demands of the anterior deltoid, pectoralis major, biceps, and triceps were significantly reduced by the traction provided by the AD(Mob). The use of AD(Mob) represents a promising mobility assistive technology alternative to minimize upper limb mechanical loads and muscular demands and optimize performance during wheelchair ramp ascent.

  1. Immersion factors affecting perception and behaviour in a virtual reality power wheelchair simulator.

    PubMed

    Alshaer, Abdulaziz; Regenbrecht, Holger; O'Hare, David

    2017-01-01

    Virtual Reality based driving simulators are increasingly used to train and assess users' abilities to operate vehicles in a controlled and safe way. For the development of those simulators it is important to identify and evaluate design factors affecting perception, behaviour, and driving performance. In an exemplary power wheelchair simulator setting we identified the three immersion factors display type (head-mounted display v monitor), ability to freely change the field of view (FOV), and the visualisation of the user's avatar as potentially affecting perception and behaviour. In a study with 72 participants we found all three factors affected the participants' sense of presence in the virtual environment. In particular the display type significantly affected both perceptual and behavioural measures whereas FOV only affected behavioural measures. Our findings could guide future Virtual Reality simulator designers to evoke targeted user behaviours and perceptions. PMID:27633192

  2. Immersion factors affecting perception and behaviour in a virtual reality power wheelchair simulator.

    PubMed

    Alshaer, Abdulaziz; Regenbrecht, Holger; O'Hare, David

    2017-01-01

    Virtual Reality based driving simulators are increasingly used to train and assess users' abilities to operate vehicles in a controlled and safe way. For the development of those simulators it is important to identify and evaluate design factors affecting perception, behaviour, and driving performance. In an exemplary power wheelchair simulator setting we identified the three immersion factors display type (head-mounted display v monitor), ability to freely change the field of view (FOV), and the visualisation of the user's avatar as potentially affecting perception and behaviour. In a study with 72 participants we found all three factors affected the participants' sense of presence in the virtual environment. In particular the display type significantly affected both perceptual and behavioural measures whereas FOV only affected behavioural measures. Our findings could guide future Virtual Reality simulator designers to evoke targeted user behaviours and perceptions.

  3. Neural network decoupling technique and its application to a powered wheelchair system.

    PubMed

    Tuan Nghia Nguyen; Nguyen, Hung T

    2015-08-01

    This paper proposes a neural network decoupling technique for an uncertain multivariable system. Based on a linear diagonalization technique, a reference model is designed using nominal parameters to provide training signals for a neural network decoupler. A neural network model is designed to learn the dynamics of the uncertain multivariable system in order to avoid required calculations of the plant Jacobian. To avoid overfitting problem, both neural networks are trained by the Lavenberg-Marquardt with Bayesian regulation algorithm that uses a real-time recurrent learning algorithm to obtain gradient information. Three experimental results in the powered wheelchair control application confirm that the proposed technique effectively minimises the coupling effects caused by input-output interactions even under the condition of system uncertainties.

  4. To move as a human. Comment on "The embodiment of assistive devices-from wheelchair to exoskeleton" by M. Pazzaglia and M. Molinari

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Christina

    2016-03-01

    I agree with the authors, that "there have been very few attempts to develop user-centered medical technologies" [1] in the field of rehabilitation for persons with disabilities and wheelchair users in particular. The human-environment context in which humans plan and inhabit their actions as wheelchair users has not been extensively studied. The authors' unique work explores how a person embodies an exoskeleton (robotic legs or a wheelchair) in their everyday life and focuses on proprioception and brain's capacity to enlarge one's body schema in order to understand users' perspectives. Ultimately, Pazzaglia and Molinari wish to support persons who use assistive devices adapt and have successful, meaningful lives. The work is neuro-scientifically grounded, but doesn't forget the emotional or affective aspects of the user.

  5. Mobility profile and wheelchair driving skills of powered wheelchair users: sensor-based event recognition using a support vector machine classifier.

    PubMed

    Moghaddam, Athena K; Pineau, Joelle; Frank, Jordan; Archambault, Philippe; Routhier, François; Audet, Thérèse; Polgar, Jan; Michaud, François; Boissy, Patrick

    2011-01-01

    This paper presents a method to automatically recognize events and driving activities during the use of a powered wheelchair (PW). The method uses a support vector machine classifier, trained from sensor-based data from a datalogging platform installed on the PW. Data from a 3D accelerometer positioned on the back of the PW were collected in a laboratory space during PW driving tasks. 16-segmented events and driving activities (i.e. impacts from different side on different objects, rolling down or up on incline surface, going across threshold of different height) were performed repeatedly (n=25 trials) by one operator at three different speeds (slow, normal, high). We present results from an experiment aiming to classify five different events and driving activities from the sensor data acquired using the datalogging platform. Classification results show the ability of the proposed method to reliably segment 100% of events, and to identify the correct event type in 80% of events.

  6. Automatic Detection and Classification of Unsafe Events During Power Wheelchair Use

    PubMed Central

    Moghaddam, Athena K.; Yuen, Hiu Kim; Archambault, Philippe S.; Routhier, François; Michaud, François; Boissy, Patrick

    2014-01-01

    Using a powered wheelchair (PW) is a complex task requiring advanced perceptual and motor control skills. Unfortunately, PW incidents and accidents are not uncommon and their consequences can be serious. The objective of this paper is to develop technological tools that can be used to characterize a wheelchair user’s driving behavior under various settings. In the experiments conducted, PWs are outfitted with a datalogging platform that records, in real-time, the 3-D acceleration of the PW. Data collection was conducted over 35 different activities, designed to capture a spectrum of PW driving events performed at different speeds (collisions with fixed or moving objects, rolling on incline plane, and rolling across multiple types obstacles). The data was processed using time-series analysis and data mining techniques, to automatically detect and identify the different events. We compared the classification accuracy using four different types of time-series features: 1) time-delay embeddings; 2) time-domain characterization; 3) frequency-domain features; and 4) wavelet transforms. In the analysis, we compared the classification accuracy obtained when distinguishing between safe and unsafe events during each of the 35 different activities. For the purposes of this study, unsafe events were defined as activities containing collisions against objects at different speed, and the remainder were defined as safe events. We were able to accurately detect 98% of unsafe events, with a low (12%) false positive rate, using only five examples of each activity. This proof-of-concept study shows that the proposed approach has the potential of capturing, based on limited input from embedded sensors, contextual information on PW use, and of automatically characterizing a user’s PW driving behavior. PMID:27170879

  7. Automatic Detection and Classification of Unsafe Events During Power Wheelchair Use.

    PubMed

    Pineau, Joelle; Moghaddam, Athena K; Yuen, Hiu Kim; Archambault, Philippe S; Routhier, François; Michaud, François; Boissy, Patrick

    2014-01-01

    Using a powered wheelchair (PW) is a complex task requiring advanced perceptual and motor control skills. Unfortunately, PW incidents and accidents are not uncommon and their consequences can be serious. The objective of this paper is to develop technological tools that can be used to characterize a wheelchair user's driving behavior under various settings. In the experiments conducted, PWs are outfitted with a datalogging platform that records, in real-time, the 3-D acceleration of the PW. Data collection was conducted over 35 different activities, designed to capture a spectrum of PW driving events performed at different speeds (collisions with fixed or moving objects, rolling on incline plane, and rolling across multiple types obstacles). The data was processed using time-series analysis and data mining techniques, to automatically detect and identify the different events. We compared the classification accuracy using four different types of time-series features: 1) time-delay embeddings; 2) time-domain characterization; 3) frequency-domain features; and 4) wavelet transforms. In the analysis, we compared the classification accuracy obtained when distinguishing between safe and unsafe events during each of the 35 different activities. For the purposes of this study, unsafe events were defined as activities containing collisions against objects at different speed, and the remainder were defined as safe events. We were able to accurately detect 98% of unsafe events, with a low (12%) false positive rate, using only five examples of each activity. This proof-of-concept study shows that the proposed approach has the potential of capturing, based on limited input from embedded sensors, contextual information on PW use, and of automatically characterizing a user's PW driving behavior. PMID:27170879

  8. Automatic Detection and Classification of Unsafe Events During Power Wheelchair Use.

    PubMed

    Pineau, Joelle; Moghaddam, Athena K; Yuen, Hiu Kim; Archambault, Philippe S; Routhier, François; Michaud, François; Boissy, Patrick

    2014-01-01

    Using a powered wheelchair (PW) is a complex task requiring advanced perceptual and motor control skills. Unfortunately, PW incidents and accidents are not uncommon and their consequences can be serious. The objective of this paper is to develop technological tools that can be used to characterize a wheelchair user's driving behavior under various settings. In the experiments conducted, PWs are outfitted with a datalogging platform that records, in real-time, the 3-D acceleration of the PW. Data collection was conducted over 35 different activities, designed to capture a spectrum of PW driving events performed at different speeds (collisions with fixed or moving objects, rolling on incline plane, and rolling across multiple types obstacles). The data was processed using time-series analysis and data mining techniques, to automatically detect and identify the different events. We compared the classification accuracy using four different types of time-series features: 1) time-delay embeddings; 2) time-domain characterization; 3) frequency-domain features; and 4) wavelet transforms. In the analysis, we compared the classification accuracy obtained when distinguishing between safe and unsafe events during each of the 35 different activities. For the purposes of this study, unsafe events were defined as activities containing collisions against objects at different speed, and the remainder were defined as safe events. We were able to accurately detect 98% of unsafe events, with a low (12%) false positive rate, using only five examples of each activity. This proof-of-concept study shows that the proposed approach has the potential of capturing, based on limited input from embedded sensors, contextual information on PW use, and of automatically characterizing a user's PW driving behavior.

  9. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor. PMID:15850119

  10. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor.

  11. Advanced Wheelchair

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A prototype lightweight wheelchair based on aerospace technology resulted from a Langley Research Center/University of VA project. The chair weighs 25 pounds and is collapsable. Commercial applications are under consideration.

  12. Dynamics of wheelchair basketball.

    PubMed

    Coutts, K D

    1992-02-01

    A sport model wheelchair instrumented with a portable computer and a switch activated with each half revolution of a rear wheel was used to record serial time and distance data on two subjects (1 male, 1 female) during a portion of a basketball game. These and two additional subjects (1 male, 1 female) also completed a series of coast down and maximal sprint trials on the basketball court. The drag force while coasting was positively related to the mass of the subject, and the male subjects had a higher maximal speed, acceleration, force, and power output in the sprint trials. During the wheelchair basketball game, it was estimated that 64% of the time was spent in propulsive action and 36% in braking activity. Projections for a complete 40 minute game indicated that both subjects would travel about 5 km at an average speed of 2 m.s-1 and attain a peak speed of 4 m.s-1. Plots of speed and power vs time showed the intermittent nature of playing wheelchair basketball. The greater amount of propulsive work (52.6 vs 37.5 kJ) and braking ("negative") work (43.9 vs 30.8 kJ) in a game for the male subject can be related to the male's higher body mass and wheelchair drag force. PMID:1532225

  13. Dynamics of wheelchair basketball.

    PubMed

    Coutts, K D

    1992-02-01

    A sport model wheelchair instrumented with a portable computer and a switch activated with each half revolution of a rear wheel was used to record serial time and distance data on two subjects (1 male, 1 female) during a portion of a basketball game. These and two additional subjects (1 male, 1 female) also completed a series of coast down and maximal sprint trials on the basketball court. The drag force while coasting was positively related to the mass of the subject, and the male subjects had a higher maximal speed, acceleration, force, and power output in the sprint trials. During the wheelchair basketball game, it was estimated that 64% of the time was spent in propulsive action and 36% in braking activity. Projections for a complete 40 minute game indicated that both subjects would travel about 5 km at an average speed of 2 m.s-1 and attain a peak speed of 4 m.s-1. Plots of speed and power vs time showed the intermittent nature of playing wheelchair basketball. The greater amount of propulsive work (52.6 vs 37.5 kJ) and braking ("negative") work (43.9 vs 30.8 kJ) in a game for the male subject can be related to the male's higher body mass and wheelchair drag force.

  14. Power Soccer: Experiences of Students Using Power Wheelchairs in a Collegiate Athletic Club

    ERIC Educational Resources Information Center

    Wessel, Roger D.; Wentz, Joel; Markle, Larry L.

    2011-01-01

    Intercollegiate athletics provides an opportunity for improving the societal perceptions and overall quality of life of physically disabled persons. Athletic opportunities in the collegiate atmosphere allow such students to be socially, psychologically, and physically engaged. This study focused on how involvement in a Power Soccer collegiate…

  15. Design and validation of an intelligent wheelchair towards a clinically-functional outcome

    PubMed Central

    2013-01-01

    Background Many people with mobility impairments, who require the use of powered wheelchairs, have difficulty completing basic maneuvering tasks during their activities of daily living (ADL). In order to provide assistance to this population, robotic and intelligent system technologies have been used to design an intelligent powered wheelchair (IPW). This paper provides a comprehensive overview of the design and validation of the IPW. Methods The main contributions of this work are three-fold. First, we present a software architecture for robot navigation and control in constrained spaces. Second, we describe a decision-theoretic approach for achieving robust speech-based control of the intelligent wheelchair. Third, we present an evaluation protocol motivated by a meaningful clinical outcome, in the form of the Robotic Wheelchair Skills Test (RWST). This allows us to perform a thorough characterization of the performance and safety of the system, involving 17 test subjects (8 non-PW users, 9 regular PW users), 32 complete RWST sessions, 25 total hours of testing, and 9 kilometers of total running distance. Results User tests with the RWST show that the navigation architecture reduced collisions by more than 60% compared to other recent intelligent wheelchair platforms. On the tasks of the RWST, we measured an average decrease of 4% in performance score and 3% in safety score (not statistically significant), compared to the scores obtained with conventional driving model. This analysis was performed with regular users that had over 6 years of wheelchair driving experience, compared to approximately one half-hour of training with the autonomous mode. Conclusions The platform tested in these experiments is among the most experimentally validated robotic wheelchairs in realistic contexts. The results establish that proficient powered wheelchair users can achieve the same level of performance with the intelligent command mode, as with the conventional command mode

  16. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What are the requirements concerning... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and...

  17. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What are the requirements concerning... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and...

  18. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What are the requirements concerning... Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and...

  19. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments

    PubMed Central

    2013-01-01

    Background Older adults are the most prevalent wheelchair users in Canada. Yet, cognitive impairments may prevent an older adult from being allowed to use a powered wheelchair due to safety and usability concerns. To address this issue, an add-on Intelligent Wheelchair System (IWS) was developed to help older adults with cognitive impairments drive a powered wheelchair safely and effectively. When attached to a powered wheelchair, the IWS adds a vision-based anti-collision feature that prevents the wheelchair from hitting obstacles and a navigation assistance feature that plays audio prompts to help users manoeuvre around obstacles. Methods A two stage evaluation was conducted to test the efficacy of the IWS. Stage One: Environment of Use – the IWS’s anti-collision and navigation features were evaluated against objects found in a long-term care facility. Six different collision scenarios (wall, walker, cane, no object, moving and stationary person) and three different navigation scenarios (object on left, object on right, and no object) were performed. Signal detection theory was used to categorize the response of the system in each scenario. Stage Two: User Trials – single-subject research design was used to evaluate the impact of the IWS on older adults with cognitive impairment. Participants were asked to drive a powered wheelchair through a structured obstacle course in two phases: 1) with the IWS and 2) without the IWS. Measurements of safety and usability were taken and compared between the two phases. Visual analysis and phase averages were used to analyze the single-subject data. Results Stage One: The IWS performed correctly for all environmental anti-collision and navigation scenarios. Stage Two: Two participants completed the trials. The IWS was able to limit the number of collisions that occurred with a powered wheelchair and lower the perceived workload for driving a powered wheelchair. However, the objective performance (time to complete course

  20. Development of Power Assisting Suit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  1. Exploring the Psychosocial Impact of Wheelchair and Contextual Factors on Quality of Life of People with Neuromuscular Disorders.

    PubMed

    Pousada García, Thais; Groba González, Betania; Nieto Rivero, Laura; Pereira Loureiro, Javier; Díez Villoria, Emiliano; Pazos Sierra, Alejandro

    2015-01-01

    Neuromuscular disorders (NMDs) are a group of heterogeneous diseases that show differences in incidence, hereditary, etiology, prognosis, or functional impairments. Wheelchair use (manual or powered) is influenced by several factors, including personal and contextual factors, and comprehensive evaluation of their impact is required in order to optimize prescription and provision of wheelchairs. The authors therefore assessed the influence of wheelchair use on the quality of life (QoL) of 60 participants with NMD using the Psychosocial Impact of Assistive Devices Scale (PIADS). The Functional Independence Measure (FIM) and a specially developed questionnaire were used to obtain information about contextual factors and participants' activity profile of activities of the participants. The results showed that using a wheelchair has psychosocial benefits, with the main determinants of benefit being type of wheelchair (powered), non-ambulation ability, and independence in mobility. Ensuring a good match between user and assistive technology (AT; e.g., wheelchair), as well as the effectiveness of the particular device, will increase the likelihood that the user will adopt it and use it effectively in daily life. Clinical prescription of AT would be improved by making appropriate use of outcome measures.

  2. Talking Wheelchair

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Communication is made possible for disabled individuals by means of an electronic system, developed at Stanford University's School of Medicine, which produces highly intelligible synthesized speech. Familiarly known as the "talking wheelchair" and formally as the Versatile Portable Speech Prosthesis (VPSP). Wheelchair mounted system consists of a word processor, a video screen, a voice synthesizer and a computer program which instructs the synthesizer how to produce intelligible sounds in response to user commands. Computer's memory contains 925 words plus a number of common phrases and questions. Memory can also store several thousand other words of the user's choice. Message units are selected by operating a simple switch, joystick or keyboard. Completed message appears on the video screen, then user activates speech synthesizer, which generates a voice with a somewhat mechanical tone. With the keyboard, an experienced user can construct messages as rapidly as 30 words per minute.

  3. Flux Coupling for Wheelchair Battery Chargers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Battery-charger concept for wheelchairs includes magnetic-flux coupling instead of electrical connections between power sources and wheelchairs. Concept meant to facilitate operation by patients whose disabilities make it difficult or impossible to maneuver common electrical plugs into or out of ac wall outlets.

  4. Airline Wheelchair

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.

  5. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... leave a passenger unattended in a wheelchair or other device? As a carrier, you must not leave a... enplaning, deplaning, or connecting assistance in a ground wheelchair, boarding wheelchair, or other...

  6. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... leave a passenger unattended in a wheelchair or other device? As a carrier, you must not leave a... enplaning, deplaning, or connecting assistance in a ground wheelchair, boarding wheelchair, or other...

  7. Assessment of the Tongue-Drive System Using a Computer, a Smartphone, and a Powered-Wheelchair by People With Tetraplegia.

    PubMed

    Kim, Jeonghee; Park, Hangue; Bruce, Joy; Rowles, Diane; Holbrook, Jaimee; Nardone, Beatrice; West, Dennis P; Laumann, Anne; Roth, Elliot J; Ghovanloo, Maysam

    2016-01-01

    Tongue-Drive System (TDS) is a wireless and wearable assistive technology that enables people with severe disabilities to control their computers, wheelchairs, and smartphones using voluntary tongue motion. To evaluate the efficacy of the TDS, several experiments were conducted, in which the performance of nine able-bodied (AB) participants using a mouse, a keypad, and the TDS, as well as a cohort of 11 participants with tetraplegia (TP) using the TDS, were observed and compared. Experiments included the Fitts' law tapping, wheelchair driving, phone-dialing, and weight-shifting tasks over five to six consecutive sessions. All participants received a tongue piercing, wore a magnetic tongue stud, and completed the trials as evaluable participants. Although AB participants were already familiar with the keypad, throughputs of their tapping tasks using the keypad were only 1.4 times better than those using the TDS. The completion times of wheelchair driving task using the TDS for AB and TP participants were between 157 s and 180 s with three different control strategies. Participants with TP completed phone-dialing and weight-shifting tasks in 81.9 s and 71.5 s, respectively, using tongue motions. Results showed statistically significant improvement or trending to improvement in performance status over the sessions. Most of the learning occurred between the first and second sessions, but trends did suggest that more practice would lead to increased improvement in performance using the TDS.

  8. Assessment of the Tongue-Drive System Using a Computer, a Smartphone, and a Powered-Wheelchair by People With Tetraplegia.

    PubMed

    Kim, Jeonghee; Park, Hangue; Bruce, Joy; Rowles, Diane; Holbrook, Jaimee; Nardone, Beatrice; West, Dennis P; Laumann, Anne; Roth, Elliot J; Ghovanloo, Maysam

    2016-01-01

    Tongue-Drive System (TDS) is a wireless and wearable assistive technology that enables people with severe disabilities to control their computers, wheelchairs, and smartphones using voluntary tongue motion. To evaluate the efficacy of the TDS, several experiments were conducted, in which the performance of nine able-bodied (AB) participants using a mouse, a keypad, and the TDS, as well as a cohort of 11 participants with tetraplegia (TP) using the TDS, were observed and compared. Experiments included the Fitts' law tapping, wheelchair driving, phone-dialing, and weight-shifting tasks over five to six consecutive sessions. All participants received a tongue piercing, wore a magnetic tongue stud, and completed the trials as evaluable participants. Although AB participants were already familiar with the keypad, throughputs of their tapping tasks using the keypad were only 1.4 times better than those using the TDS. The completion times of wheelchair driving task using the TDS for AB and TP participants were between 157 s and 180 s with three different control strategies. Participants with TP completed phone-dialing and weight-shifting tasks in 81.9 s and 71.5 s, respectively, using tongue motions. Results showed statistically significant improvement or trending to improvement in performance status over the sessions. Most of the learning occurred between the first and second sessions, but trends did suggest that more practice would lead to increased improvement in performance using the TDS. PMID:25730827

  9. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  10. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  11. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  12. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  13. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  14. A robotic wheelchair trainer: design overview and a feasibility study

    PubMed Central

    2010-01-01

    Background Experiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist. Methods To improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates. Results and Discussion Training with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment. Conclusions The system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit

  15. Gardening from a Wheelchair

    MedlinePlus

    ... Paralysis > Health > Staying active > Gardening from a wheelchair Gardening from a wheelchair ☷ ▾ Page contents Tips from community ... round handles) on gate latches, doors, and faucets. Gardening as therapy For Gene Rothert gardening is a ...

  16. Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards.

    PubMed

    Gebrosky, Benjamin; Pearlman, Jonathan; Cooper, Rory A; Cooper, Rosemarie; Kelleher, Annmarie

    2013-01-01

    Lightweight wheelchairs are characterized by their low cost and limited range of adjustment. Our study evaluated three different folding lightweight wheelchair models using the American National Standards Institute/Rehabilitation Engineering Society of North America (ANSI/RESNA) standards to see whether quality had improved since the previous data were reported. On the basis of reports of increasing breakdown rates in the community, we hypothesized that the quality of these wheelchairs had declined. Seven of the nine wheelchairs tested failed to pass the multidrum test durability requirements. An average of 194,502 +/- 172,668 equivalent cycles was completed, which is similar to the previous test results and far below the 400,000 minimum required to pass the ANSI/RESNA requirements. This was also significantly worse than the test results for aluminum ultralight folding wheelchairs. Overall, our results uncovered some disturbing issues with these wheelchairs and suggest that manufacturers should put more effort into this category to improve quality. To improve the durability of lightweight wheelchairs, we suggested that stronger regulations be developed that require wheelchairs to be tested by independent and certified test laboratories. We also proposed a wheelchair rating system based on the National Highway Transportation Safety Administration vehicle crash ratings to assist clinicians and end users when comparing the durability of different wheelchairs.

  17. Independent mobility after early introduction of a power wheelchair in spinal muscular atrophy.

    PubMed

    Dunaway, Sally; Montes, Jacqueline; O'Hagen, Jessica; Sproule, Douglas M; Vivo, Darryl C De; Kaufmann, Petra

    2013-05-01

    Weakness resulting from spinal muscular atrophy causes severe limitations in functional mobility. The early introduction of power mobility has potential to enhance development and mitigate disability. These outcomes are achieved by simulating normal skill acquisition and by promoting motor learning, visuospatial system development, self-exploration, cognition, and social development. There are few reports on early power mobility in spinal muscular atrophy, and it is typically not prescribed until school age. The authors evaluated 6 children under age 2 years with neuromuscular disease (5 spinal muscular atrophy, 1 congenital muscular dystrophy) for power mobility. Parents recorded the practice hours necessary to achieve independence using the Power Mobility Skills Checklist. Four children achieved independence in all items on the checklist by 7.9 months (range: 73-458 days). Introduction of early power mobility is feasible in spinal muscular atrophy patients under age 2 years and should be introduced in late infancy when children typically acquire locomotor skills.

  18. Towards a brain controlled assistive technology for powered mobility.

    PubMed

    Kaneswaran, Kelly; Arshak, Khalil; Burke, Edward; Condron, James

    2010-01-01

    For individuals with mobility limitations, powered wheelchair systems provide improved functionality, increased access to healthcare, education and social activities. Input devices such as joystick and switches can provide the necessary input required for efficient control of the powered wheelchair. For persons with limited dexterity, or fine control of the fingers, access to mechanical hardware such as buttons and joysticks can be quite difficult and sometimes painful. For individuals with conditions such as Traumatic Brain Injury (TBI), Multiple Sclerosis (MS) or Amyotrophic lateral sclerosis (ALS) voluntary control of limb movement maybe substantially limited or completely absent. Brain Computer Interfaces (BCI) are emerging as a possible method to replace the brains normal output pathways of peripheral nerves and muscles, allowing individuals with paralysis a method of communication and computer control. This study involves the analysis of non-invasive electroencephalograms (EEG) arising from the use of a newly developed Human Machine Interface (HMI) for powered wheelchair control. Using a delayed response task, binary classification of left and right movement intentions were classified with a best classification rate of 81.63% from single trial EEG. Results suggest that this method may be used to enhance control of HMI's for individuals with severe mobility limitations. PMID:21096887

  19. Wheelchair batteries: driving cycles and testing.

    PubMed

    Kauzlarich, J J; Ulrich, V; Bresler, M; Bruning, T

    1983-07-01

    The battery performance of electric wheelchairs was measured under indoor and outdoor conditions, and simulated driving cycles for these two environments were derived from these tests. Driving cycles were used to bench-test deep discharge wet cell and gel cell lead-acid batteries, nickel-cadmium batteries, and experimental nickel-zinc batteries. Results of this study support the conclusion that deep discharge wet cell lead-acid batteries satisfy wheelchair requirements and are the most economical choice. The effect of simulated wheelchair controller pulse width modulation on battery discharge compared to d.c. discharge was found to be negligible. A simple model analogous to Miner's Rule (3) plus results plotted on a Ragone chart of average power versus discharge time were found to correlate the effect of the highly variable actual power requirements of an electric wheelchair. Miner's Rule can predict battery performance for a given driving cycle.

  20. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    PubMed

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental. PMID:11347685

  1. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    PubMed

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental.

  2. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards.

    PubMed

    Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A

    2010-01-01

    Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.

  3. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.

    PubMed

    Vanlandewijck, Y C; Spaepen, A J; Lysens, R J

    1994-03-01

    The aim of this study was to examine the user-related parameters, 1) force generation 2) maximal aerobic power and 3) propulsion technique, in respect to functional ability level [ISMWSF] wheelchair basketball classification: groups 1, 2 and 3) of 40 elite wheelchair basketball players. Isometric (position on the handrims = -30, 0 degrees, +30 degrees and +60 degrees) and dynamic force application (velocities = 0.56, 0.83 and 1.11 m.s-1) on the handrims (test 1) was measured by means of a computerised wheelchair simulator, with the subjects sitting in a standardised position. Each subject performed a maximal exercise test (test 2) on a motor driven treadmill at 1.67 m.s-1 and four subsequent submaximal tests (test 3) at two exercise levels (60 and 80% of individual VO2) and two velocities (1.11 and 2.22 m.s-1) with constant power output. In tests 2 and 3, cardiorespiratory and kinematic data were recorded simultaneously. Although no significant differences between functional ability groups were found in relation to force application on the handrims, three different force application strategies were observed (test 1). Maximal aerobic capacity and power output (test 2) differed significantly (p < 0.05) between groups 1 and 2 and between groups 1 and 3. No differences in mechanical efficiency were observed between the three functional ability groups, irrespective of changes in wheelchair velocity and external load (test 3). Propulsion technique was not proven to be functional ability dependent although remarkable differences in movement pattern were observed, especially during the recovery phase.

  4. The development of a nationwide registry of wheelchair users.

    PubMed

    Fitzgerald, Shirley G; Kelleher, Annmarie; Teodorski, Emily; Collins, Diane M; Boninger, Michael; Cooper, Rory A

    2007-11-01

    This paper provides an overview of the development of a wheelchair users registry and subsequently describes a population of individuals who use wheelchairs. The characteristics of Americans who permanently use wheelchairs and scooters are currently unknown. As the result of developing a Registry of individuals who use wheeled mobility devices for systematic recruitment for research studies, this study provides a description of a nationwide sample of over 1000 individuals who used wheelchairs or scooters for their daily mobility. The Registry is predominantly Caucasian (83%), 63% male, with a mean age of 50 years. Some 54% used manual wheelchairs for an average of 16 years. When quality of wheelchairs was compared, results indicated those in more customizable manual wheelchairs were significantly more likely to be younger. Males were significantly more likely to receive more customizable, heavy duty power wheelchairs than females. The Wheelchair Users Registry provides an organized and systematic way to maintain contact with previous research participants. Expected to grow in size, the Registry may enable an even more diverse pool of subjects interested in participating in research studies.

  5. The Mobility Decision. 1990 Wheelchair Guide.

    ERIC Educational Resources Information Center

    Henke, Cliff

    1990-01-01

    This article presents tips for parents shopping for wheelchairs for children with special mobility needs. Manual versus power chairs, dimensions, maneuverability, weight, transportability, durability, adaptability, maximum/minimum speeds, battery life (for power chairs), climbing angle, and other features are discussed. Factors to consider in…

  6. Engineered embodiment: Comment on "The embodiment of assistive devices-from wheelchair to exoskeleton" by M. Pazzaglia and M. Molinari

    NASA Astrophysics Data System (ADS)

    Kannape, Oliver Alan; Lenggenhager, Bigna

    2016-03-01

    From brain-computer interfaces to wearable robotics and bionic prostheses - intelligent assistive devices have already become indispensable in the therapy of people living with reduced sensorimotor functioning of their physical body, be it due to spinal cord injury, amputation or brain lesions [1]. Rapid technological advances will continue to fuel this field for years to come. As Pazzaglia and Molinari [2] rightly point out, progress in this domain should not solely be driven by engineering prowess, but utilize the increasing psychological and neuroscientific understanding of cortical body-representations and their plasticity [3]. We argue that a core concept for such an integrated embodiment framework was introduced with the formalization of the forward model for sensorimotor control [4]. The application of engineering concepts to human movement control paved the way for rigorous computational and neuroscientific analysis. The forward model has successfully been adapted to investigate principles underlying aspects of bodily awareness such as the sense of agency in the comparator framework [5]. At the example of recent advances in lower limb prostheses, we propose a cross-disciplinary, integrated embodiment framework to investigate the sense of agency and the related sense of body ownership for such devices. The main onus now is on the engineers and cognitive scientists to embed such an approach into the design of assistive technology and its evaluation battery.

  7. Dynamic characteristics of a sport wheelchair.

    PubMed

    Coutts, K D

    1991-01-01

    A single subject performed 36 coast-down trials on a hardwood floor in a sport model wheelchair with velocity ranging from 1.28 to 5.31 m/s (4.6 to 19.1 km/h). A portable computer attached to the wheelchair was used to record the time to the nearest 0.001-second of each half-revolution of a rear wheel. The deceleration during each trial was determined with an average coefficient of variation of 2.6 percent from linear regression of velocity versus time values. A significant relationship (r = 0.97) between deceleration and the square of the velocity was noted in an analysis of the values from the 36 trials. Total drag force and power was calculated as a function of wheelchair velocity from this relationship, indicating that the power output needed to propel the wheelchair increased as a function of the velocity cubed. It is speculated that this noted exponential increase in the energy cost of wheelchair propulsion at higher speeds was due mainly to an increase in air drag.

  8. Physiological evaluation of a newly designed lever mechanism for wheelchairs.

    PubMed

    van der Woude, L H; Veeger, H E; de Boer, Y; Rozendal, R H

    1993-01-01

    Lever-propelled wheelchairs have been described as more efficient and less physically demanding than hand-rim-propelled wheelchairs. To evaluate a newly designed lever mechanism (MARC) in both one- and two-arm use, a series of wheelchair exercise tests were performed on a motor-driven treadmill. Eight able-bodied male subjects performed a standard exercise test in the prototype MARC, both in an asynchronic and a synchronic bimanual propelling mode and in an unilateral (left-sided) mode. Subsequently the subjects performed additional exercise tests in a conventional crank-to-rod lever mechanism with unilateral and bimanual propulsion and in a conventional hand rim wheelchair. Analysis of variance was used to study the effect of the different work modes upon power output and cardiorespiratory parameters statistically (p < 0.05). The MARC stood out well in comparison with the conventional lever design. The additional design features which are to be implemented (variable gearing, reverse gear) will make the MARC a useful wheelchair. One-arm wheelchair propulsion is a very strenuous form of locomotion, requiring careful consideration in terms of provision. Mechanical and ergonomic improvements are quite feasible in lever propulsion and may to a certain extent reduce this problem. To improve overall mobility of wheelchair-dependent subjects further, ergonomic and mechanical design improvements are very necessary in lever as well as hand-rim wheelchairs. A combined biomechanical and physiological research approach will help in the definition of design criteria and fitting guidelines. PMID:8169940

  9. The wheelchair thrombosis syndrome.

    PubMed Central

    Lohiya, Ghan-Shyam; Tan-Figueroa, Lilia; Silverman, Steve; Le, Hung Van

    2006-01-01

    OBJECTIVE: To report a case of deep vein thrombosis (DVT) related to prolonged wheelchair use. CASE REPORT: A 48-year-old patient with spastic quadriplegia usually spent 10-12 hours daily in a wheelchair. He suddenly developed marked swelling of his right foot, leg and thigh. His plasma D-dimer level was 1,030 (normal <500) ng/ml. A duplex ultrasound revealed common femoral vein thrombosis. He was hospitalized and anticoagulated; his extremity swelling decreased considerably by day 45. Hypercoagulability work-up disclosed previously subclinical mild elevation of serum cardiolipin immunoglobulin G (antiphospholipid syndrome). This patient will receive longterm anticoagulation. CONCLUSION: Prolonged sitting in wheelchair may cause DVT. To enhance public recognition of this avoidable risk, we propose the term "wheelchair thrombosis syndrome." PMID:16895294

  10. Wheelchair basketball quantification.

    PubMed

    Gil-Agudo, Angel; Del Ama-Espinosa, Antonio; Crespo-Ruiz, Beatriz

    2010-02-01

    Classification systems are one of the key elements in sports for people with disability, including wheelchair basketball. Further scientific studies to validate classification systems are needed. This article describes the most relevant research, with emphasis on biomechanics.

  11. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.

    PubMed

    Vanlandewijck, Y C; Spaepen, A J; Lysens, R J

    1994-11-01

    Low mechanical efficiency values in wheelchair propulsion are usually explained on the basis of the supply of force and power generated during the push phase. The purpose of this study is to analyze the movement and muscular activity pattern in handrim wheelchair propulsion, focusing on both the push and recovery phases. Data on cardiorespiratory and propulsion technique parameters were obtained from 40 wheelchair basketball players with extensive experience in wheelchair propulsion in six situations: two exercise levels (60% and 80% of individual VO2peak), and three velocities (1.11, 1.67, and 2.22 m.s-1) with constant power output on a treadmill. A two-factor analysis of variance with repeated measurements was applied with "exercise level" and "speed" as the main factors. A significant effect on gross mechanical efficiency was found when the velocity was increased from 1.67 to 2.22 m.s-1. Decreased mechanical efficiency could be explained by a significant change in the acceleration of the wheelchair-user system during recovery, caused by arm and trunk movements, inducing inertial forces to act on the wheelchair. Consequently, mechanical work increased significantly during the recovery phase. These findings indicate that studies on mechanical efficiency in wheelchair propulsion should not only be focussed on power supply during the push phase, but also on the movement pattern during recovery.

  12. Preliminary assessment of Tongue Drive System in medium term usage for computer access and wheelchair control.

    PubMed

    Yousefi, Behnaz; Huo, Xueliang; Ghovanloo, Maysam

    2011-01-01

    Tongue Drive System (TDS) is a wireless, wearable assistive technology that enables individuals with severe motor impairments access computers, drive wheelchairs, and control their environments using tongue motion. In this paper, we have evaluated the TDS performance as a computer input device using ISO9241-9 standard tasks for pointing and selecting, based on the well known Fitts' Law, and as a powered wheelchair controller through an obstacle course navigation task. Nine able-bodied subjects who already had tongue piercing participated in this trial over 5 sessions during 5 weeks, allowing us to study the TDS learning process and its current limiting factors. Subjects worn tongue rings made of titanium in the form of a barbell with a small rare earth magnetic tracer hermetically sealed inside the upper ball. Comparing the results between 1(st) and 5(th) sessions showed that subjects' performance improved in all the measures through 5 sessions, demonstrating the effects of learning. PMID:22255650

  13. Embodying prostheses - how to let the body welcome assistive devices. Comment on "The embodiment of assistive devices-from wheelchair to exoskeleton" by M. Pazzaglia and M. Molinari

    NASA Astrophysics Data System (ADS)

    Longo, Matthew R.; Sadibolova, Renata; Tamè, Luigi

    2016-03-01

    A growing body of research has focused on the development of assistive devises to improve the recovery and ameliorate the quality of life of people suffering from spinal cord injuries (SCI). In their stimulating and timely paper, Pazzaglia and Molinari [1] review the significant progress made by biotechnology studies in providing increasing sophisticated assistive tools (e.g., prostheses and exoskeletons) that extend the functionality of patients' bodies. However, despite this extraordinary technological effort [2], it remains uncertain how these devices can be appropriately embedded into the mental representation of the body. Here, we wish to amplify the points raised by Pazzaglia and Molinari by discussing three challenges facing work on embodying prostheses raised by experimental research on body representation.

  14. Re-embodiment: incorporation through embodied learning of wheelchair skills.

    PubMed

    Standal, Øyvind F

    2011-05-01

    In this article, the notion of re-embodiment is developed to include the ways that rearrangement and renewals of body schema take place in rehabilitation. More specifically, the embodied learning process of acquiring wheelchair skills serves as a starting point for fleshing out a phenomenological understanding of incorporation of assistive devices. By drawing on the work of Merleau-Ponty, the reciprocal relation between acquisition habits and incorporation of instruments is explored in relation to the learning of wheelchair skills. On the basis of this, it is argued that through learning to manoeuvre the wheelchair, a reversible relation between is established between the moving body-subject and the wheelchair. In this sense, re-embodiment involves a gestalt switch from body image to body schema. PMID:20865328

  15. RESNA Position on the Application of Seat-Elevating Devices for Wheelchair Users

    ERIC Educational Resources Information Center

    Arva, Julianna; Schmeler, Mark R.; Lange, Michelle L.; Lipka, Daniel D.; Rosen, Lauren E.

    2009-01-01

    This document, approved by the Rehabilitation Engineering & Assistive Technology Society of North America (RESNA) Board of Directors in September 2005, shares typical clinical applications and provides evidence from the literature supporting the use of seat-elevating devices for wheelchair users. Wheelchair mobility is often only considered from…

  16. Towards a new modality-independent interface for a robotic wheelchair.

    PubMed

    Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo

    2014-05-01

    This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.

  17. Yaw rate and linear velocity stabilized manual wheelchair.

    PubMed

    Seifert, Sara J; Dahlstrom, Robert J; Condon, John P; Hedin, Daniel S

    2013-01-01

    We present the development of a prototype novel low-power, inexpensive stability control system for manual wheelchairs. Manual wheelchairs, while providing the ability to maneuver in relatively small indoor spaces, have a high center of gravity making them prone to tipping. Additionally, they can easily slide on sloped surfaces and can even spin and tip when attempting to turn or brake too quickly. When used on ramps and in outdoor environments where the surface is rarely perfectly flat (slopes greater than 1∶20 (5%) are common), wheelchair users can easily encounter potentially dangerous situations. The design and evaluation of an accident prevention system for independent manual wheelchair users that increases independence by enabling mobility with greater confidence and safety is described. The system does not limit a wheelchair user's ability to manually brake, rather, if the system detects that the wheelchair is out of control, braking force will be added by the system to either one or both wheels. The prototype utilized inexpensive bicycle technologies for the wheel brake and electrical power generator assemblies. Custom servos were designed along with custom electronics and firmware in the prototype to evaluate performance. The goal of the project was to derive specifications for a control and actuation system that utilizes inexpensive bicycle components in this cost-sensitive application. The design is detailed and the final specifications provided. PMID:24109828

  18. Feedback Control for a Smart Wheelchair Trainer Based on the Kinect Sensor

    NASA Astrophysics Data System (ADS)

    Darling, Aurelia McLaughlin

    This thesis describes a Microsoft Kinect-based feedback controller for a robot-assisted powered wheelchair trainer for children with a severe motor and/or cognitive disability. In one training mode, "computer gaming" mode, the wheelchair is allowed to rotate left and right while the children use a joystick to play video games shown on a screen in front of them. This enables them to learn the use of the joystick in a motivating environment, while experiencing the sensation and dynamics of turning in a safe setting. During initial pilot testing of the device, it was found that the wheelchair would creep forward while children were playing the games. This thesis presents a mathematical model of the wheelchair dynamics that explains the origin of the creep as a center of gravity offset from the wheel axis or a mismatch of the torques applied to the chair. Given these possible random perturbations, a feedback controller was developed to cancel these effects, correcting the system creep. The controller uses a Microsoft Kinect sensor to detect the distance to the screen displaying the computer game, as well as the left-right position (parallel parking concept) with respect to the screen, and then adjusts the wheel torque commands based on this measurement. We show through experimental testing that this controller effectively stops the creep. An added benefit of the feedback controller is that it approximates a washout filter, such as those used in aircraft simulators, to convey a more realistic sense of forward/backward motion during game play.

  19. Electrooculogram wheelchair control.

    PubMed

    Philips, Gavin R; Catellier, Andrew A; Barrett, Steven F; Wright, Cameron H G

    2007-01-01

    This paper describes the research, development, and implementation of an electrooculogram-controlled wheelchair. This system was designed specifically to fit the demands of users with limited use of their arms and legs. By monitoring ocular bio-electrical signals, this system allows the user to steer the wheelchair using only eye movements. The first generation prototype described here used a "sip and puff" unit for overall control of the system, allowing the user to change modes of operation using only his/her breath. Finally, an ultra-sonic rangefinder was added to provide an extra measure of safety, alerting the user to sudden changes in grade. This is part of an ongoing project to allow greater independence for those with special needs. PMID:17487075

  20. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury

    PubMed Central

    Yang, Ajax; Asselin, Pierre; Knezevic, Steven; Kornfeld, Stephen

    2015-01-01

    Background: Individuals with spinal cord injury (SCI) often use a wheelchair for mobility due to paralysis. Powered exoskeletal-assisted walking (EAW) provides a modality for walking overground with crutches. Little is known about the EAW velocities and level of assistance (LOA) needed for these devices. Objective: The primary aim was to evaluate EAW velocity, number of sessions, and LOA and the relationships among them. The secondary aims were to report on safety and the qualitative analysis of gait and posture during EAW in a hospital setting. Methods: Twelve individuals with SCI ≥1.5 years who were wheelchair users participated. They wore a powered exoskeleton (ReWalk; ReWalk Robotics, Inc., Marlborough, MA) with Lofstrand crutches to complete 10-meter (10MWT) and 6-minute (6MWT) walk tests. LOA was defined as modified independence (MI), supervision (S), minimal assistance (Min), and moderate assistance (Mod). Best effort EAW velocity, LOA, and observational gait analysis were recorded. Results: Seven of 12 participants ambulated ≥0.40 m/s. Five participants walked with MI, 3 with S, 3 with Min, and 1 with Mod. Significant inverse relationships were noted between LOA and EAW velocity for both 6MWT (Z value = 2.63, Rho = 0.79, P = .0086) and 10MWT (Z value = 2.62, Rho = 0.79, P = .0088). There were 13 episodes of mild skin abrasions. MI and S groups ambulated with 2-point alternating crutch pattern, whereas the Min and Mod groups favored 3-point crutch gait. Conclusion: Seven of 12 individuals studied were able to ambulate at EAW velocities ≥0.40 m/s, which is a velocity that may be conducive to outdoor activity-related community ambulation. The ReWalk is a safe device for in-hospital ambulation. PMID:26364279

  1. Distribution and cost of wheelchairs and scooters provided by Veterans Health Administration.

    PubMed

    Hubbard, Sandra L; Fitzgerald, Shirley G; Vogel, Bruce; Reker, Dean M; Cooper, Rory A; Boninger, Michael L

    2007-01-01

    During fiscal years 2000 and 2001, the Veterans Health Administration provided veterans with more than 131,000 wheelchairs and scooters at a cost of $109 million. This national study is the first to investigate Veterans Health Administration costs in providing wheelchairs and scooters and to compare regional prescription patterns. With a retrospective design, we used descriptive methods to analyze fiscal years 2000 and 2001 National Prosthetics Patient Database data (cleaned data set of 113,724 records). Wheelchairs were categorized by function, weight, and adjustability options for meeting individual needs (e.g., axle position, camber, position of wheels, tilt, and recline options). Results displayed a cost distribution that was negatively skewed by low-cost accessories coded as wheelchairs. Of the standard manual wheelchairs, 3.5% could be considered beyond the customary cost. Regionally, 71% to 86% of all wheelchairs provided were manual wheelchairs, 5% to 11% were power wheelchairs, and 5% to 20% were scooters. The considerable variation found in the types of wheelchairs and scooters provided across Veterans Integrated Service Networks may indicate a need for evidence-based prescription guidelines and clinician training in wheeled-mobility technologies.

  2. Anaerobic work capacity in elite wheelchair athletes.

    PubMed

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, H E; Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, protocol) proved to be adequate in terms of power output (P30, P5) velocity and heart rate. Male and female athletes were comparable with respect to personal characteristics (age, body weight, training hours). Track athletes (classified in 4 different functional classes) showed a class-related mean power output (P30: mean power produced during the 30-second sprint period) of 23, 68, 100, and 138 W for the male athletes (n = 38) and 38, 77, and 76 W for females in the upper three classes (n = 10). Sprint power was low for the group of subjects with cerebral palsy (35 W; mixed, n = 6) and relatively high for the amputee group (121 W; mixed, n = 6), female basketball players (81 W; n = 5), and two male field athletes (110 W). Significant differences between male and female athletes were found for P30 and P5 (highest mean power output over any of the six 5-second periods). As was to be expected, mean maximum heart rate in the sprint test varied significantly between the track groups from 112 (high lesion group) to 171 beats/minute(-1) (low lesion group) but not for both genders. The lower P30 in the T1 and T2 groups must be explained not only by the reduced functional muscle mass and impaired coordination but also by phenomena of cardiovascular dysfunction. Based on the performance parameters, the functional classification of the track athletes into four groups seems adequate. P30 was significantly associated with the personal characteristics of gender and hours of training. A significant correlation was found between P30 and sprint performance times for 200 meters (r = -0.79). No correlation was found between either of the forms of power output and the marathon times

  3. RESNA Wheelchair Service Provision Guide

    ERIC Educational Resources Information Center

    Arledge, Stan; Armstrong, William; Babinec, Mike; Dicianno, Brad E.; Digiovine, Carmen; Dyson-Hudson, Trevor; Pederson, Jessica; Piriano, Julie; Plummer, Teresa; Rosen, Lauren; Schmeler, Mark; Shea, Mary; Stogner, Jody

    2011-01-01

    The purpose of the Wheelchair Service Provision Guide is to provide an appropriate framework for identifying the essential steps in the provision of a wheelchair. It is designed for use by all participants in the provision process including consumers, family members, caregivers, social service and health care professionals, suppliers,…

  4. Vision based interface system for hands free control of an intelligent wheelchair

    PubMed Central

    Ju, Jin Sun; Shin, Yunhee; Kim, Eun Yi

    2009-01-01

    Background Due to the shift of the age structure in today's populations, the necessities for developing the devices or technologies to support them have been increasing. Traditionally, the wheelchair, including powered and manual ones, is the most popular and important rehabilitation/assistive device for the disabled and the elderly. However, it is still highly restricted especially for severely disabled. As a solution to this, the Intelligent Wheelchairs (IWs) have received considerable attention as mobility aids. The purpose of this work is to develop the IW interface for providing more convenient and efficient interface to the people the disability in their limbs. Methods This paper proposes an intelligent wheelchair (IW) control system for the people with various disabilities. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an IW is determined by the inclination of the user's face, while proceeding and stopping are determined by the shapes of the user's mouth. Our system is composed of electric powered wheelchair, data acquisition board, ultrasonic/infra-red sensors, a PC camera, and vision system. Then the vision system to analyze user's gestures is performed by three stages: detector, recognizer, and converter. In the detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region is detected based on edge information. The extracted features are sent to the recognizer, which recognizes the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to the converter to control the wheelchair. Result & conclusion The advantages of the proposed system include 1) accurate recognition of user's intention with minimal user motion and 2) robustness to a cluttered background and the time-varying illumination. To prove these

  5. Evaluation of Dynamics of Pushing a Wheelchair Up or Down a Slope

    NASA Astrophysics Data System (ADS)

    Miyawaki, Kazuto; Sasaki, Makoto; Iwami, Takehiro; Obinata, Goro; Shimada, Yoichi

    Japan's progressing aging society increasingly needs evaluation of equipment used for human assistance. Earlier studies have evaluated the use of wheelchairs. However, the manner in which the equipment moderates the generated consumption energy of helpers has not been described sufficiently. This study performs mechanical evaluation of a helper's walking using a wheelchair on a slope. We use the Musculoskeletal Model to estimate the joint moment and energy consumption. Results obtained with 14 volunteers who assisted these wheelchair experiments were considered for cases in which the energy consumption of the wheelchair increased by 13% from that of a normal gait when moving up an incline. This evaluation method is useful for developing practical assistance equipment.

  6. Entangling and assisted entangling power of bipartite unitary operations

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yu, Li

    2016-08-01

    Nonlocal unitary operations can create quantum entanglement between distributed particles, and the quantification of created entanglement is a hard problem. It corresponds to the concepts of entangling and assisted entangling power when the input states are, respectively, product and arbitrary pure states. We analytically derive them for Schmidt-rank-two bipartite unitary and some complex bipartite permutation unitaries. In particular, the entangling power of permutation unitary of Schmidt rank three can take only one of two values: log29 -16 /9 or log23 ebits. The entangling power, assisted entangling power, and disentangling power of 2 ×dB permutation unitaries of Schmidt rank four are all 2 ebits. These quantities are also derived for generalized Clifford operators. We further show that any bipartite permutation unitary of Schmidt rank greater than two has entangling power greater than 1.223 ebits. We construct the generalized controlled-not (cnot) gates whose assisted entangling power reaches the maximum. We quantitatively compare the entangling power and assisted entangling power for general bipartite unitaries and their connection to the disentangling power by proposing a probabilistic protocol for implementing bipartite unitaries.

  7. A lower-limb power-assist robot with perception-assist.

    PubMed

    Hayashi, Yoshiaki; Kiguchi, Kazuo

    2011-01-01

    In order to assist the motion in the daily lives of physically weak persons such as elderly persons, many kinds of power-assist robots have been developed. In the case of some physically weak persons, the ability to perceive the environment is sometimes deteriorated also. A method of perception-assist has been proposed to assist not only the user's motion but also the user's interaction with an environment, by applying the modification force to the user's motion if it is necessary. In this paper, the perception-assist for a lower-limb power-assist exoskeleton robot is proposed. In the daily life, the walking is very important for persons to achieve desired tasks. Basically, the robot assists the user's muscle force according to the user's motion intention which is estimated based on EMG signals. If the robot has found problems which might lead the user to dangerous situation such as the falling down, the robot tries to modify the user's motion in addition to the ordinal power-assists to make the user walk properly. Since the user might fall down by the effect of the additional modification force of the perception-assist, the robot automatically prevents the user from falling down by considering ZMP (Zero Moment Point). The effectiveness of the proposed method has been evaluated by performing experiments.

  8. Wheelchair interventions, services and provision for disabled children: a mixed-method systematic review and conceptual framework

    PubMed Central

    2014-01-01

    Background Wheelchairs for disabled children (≤18 years) can provide health, developmental and social benefits. World Health Organisation and United Kingdom Government reports demonstrate the need for improved access to wheelchairs both locally and internationally. The use of health economics within this field is lacking. Provision of wheelchairs based on cost-effectiveness evidence is not currently possible. We conducted the first systematic review in this field to incorporate evidence of effectiveness, service user perspectives, policy intentions and cost-effectiveness in order to develop a conceptual framework to inform future research and service development. Methods We used an adapted EPPI-Centre mixed-method systematic review design with narrative summary, thematic and narrative synthesis. 11 databases were searched. Studies were appraised for quality using one of seven appropriate tools. A conceptual framework was developed from synthesised evidence. Results 22 studies and 14 policies/guidelines were included. Powered wheelchairs appear to offer benefits in reduced need for caregiver assistance; improved communicative, personal-social and cognitive development; and improved mobility function and independent movement. From 14 months of age children can learn some degree of powered wheelchair driving competence. However, effectiveness evidence was limited and low quality. Children and parents placed emphasis on improving social skill and independence. Participation in wider society and development of meaningful relationships were key desired outcomes. Policy intentions and aspirations are in line with the perspectives of children and parents, although translation of policy recommendations into practice is lacking. Conclusions There is a distinct lack of high quality effectiveness and economic evidence in this field. Social and health needs should be seen as equally important when assessing the mobility needs of disabled children. Disabled children and

  9. Anthropometry and Performance in Wheelchair Basketball.

    PubMed

    Granados, Cristina; Yanci, Javier; Badiola, Aduna; Iturricastillo, Aitor; Otero, Montse; Olasagasti, Jurgi; Bidaurrazaga-Letona, Iraia; Gil, Susana M

    2015-07-01

    This study investigated whether anthropometric characteristics, generic and specific sprinting, agility, strength, and endurance capacity could differentiate between First-Division and Third-Division wheelchair basketball (WB) players. A First-Division WB team (n = 8; age = 36.05 ± 8.25 years, sitting body height = 91.38 ± 4.24 cm, body mass = 79.80 ± 12.63 kg) and a Third-Division WB team (n = 11; age = 31.10 ± 6.37 years, sitting body height = 85.56 ± 6.48 cm, body mass = 71.18 ± 17.63 kg) participated in the study. Wheelchair sprint, agility, strength, and endurance tests were performed. The First-Division team was faster (8.7%) in 20 m without the ball, more agile (13-22%), stronger (18-33%), covered more distance (20%) in the endurance test, and presented higher values of rate of perceived exertion for the exercise load (48%) than the Third-Division team. Moreover, the individual 20-m sprint time values correlated inversely with the individual strength/power values (from r = -0.54 to -0.77, p ≤ 0.05, n = 19). Wheelchair basketball coaches should structure strength and conditioning training to improve sprint and agility and evaluate players accordingly, so that they can receive appropriate training stimuli to match the physiological demands of their competitive level.

  10. Voice Controlled Wheelchair

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Michael Condon, a quadraplegic from Pasadena, California, demonstrates the NASA-developed voice-controlled wheelchair and its manipulator, which can pick up packages, open doors, turn a TV knob, and perform a variety of other functions. A possible boon to paralyzed and other severely handicapped persons, the chair-manipulator system responds to 35 one-word voice commands, such as "go," "stop," "up," "down," "right," "left," "forward," "backward." The heart of the system is a voice-command analyzer which utilizes a minicomputer. Commands are taught I to the computer by the patient's repeating them a number of times; thereafter the analyzer recognizes commands only in the patient's particular speech pattern. The computer translates commands into electrical signals which activate appropriate motors and cause the desired motion of chair or manipulator. Based on teleoperator and robot technology for space-related programs, the voice-controlled system was developed by Jet Propulsion Laboratory under the joint sponsorship of NASA and the Veterans Administration. The wheelchair-manipulator has been tested at Rancho Los Amigos Hospital, Downey, California, and is being evaluated at the VA Prosthetics Center in New York City.

  11. The tongue enables computer and wheelchair control for people with spinal cord injury.

    PubMed

    Kim, Jeonghee; Park, Hangue; Bruce, Joy; Sutton, Erica; Rowles, Diane; Pucci, Deborah; Holbrook, Jaimee; Minocha, Julia; Nardone, Beatrice; West, Dennis; Laumann, Anne; Roth, Eliot; Jones, Mike; Veledar, Emir; Ghovanloo, Maysam

    2013-11-27

    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy. PMID:24285485

  12. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    PubMed Central

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  13. Walking and wheelchair navigation in patients with left visual neglect.

    PubMed

    Turton, Ailie J; Dewar, Sophie J; Lievesley, Alex; O'Leary, Kelly; Gabb, Jude; Gilchrist, Iain D

    2009-04-01

    Patients with neglect veer to one side when walking or driving a wheelchair, however there is a contradiction in the literature about the direction of this deviation. The study investigated the navigational trajectory of a sample of neglect patients of mixed mobility status in an ecological setting. Fifteen patients with left-sided neglect after right hemisphere stroke were recorded walking or driving a powered wheelchair along a stretch of corridor. Their position in the corridor and the number of collisions was recorded. The results showed that the patients' path was dependent on their mobility status: wheelchair patients with neglect consistently deviated to the left of the centre of the corridor and walking patients with neglect consistently deviated to the right. A further two ambulant patients with neglect were recorded both walking and using the wheelchair to determine whether the differences were task or patient dependent. These two patients also exhibited leftward deviation when driving the wheelchair, but a rightward deviation when walking. These results suggest that the direction of the deviation is task dependent. Further work will be required to identify what features of the two modes of navigation lead to this dissociation.

  14. Kinematics of sport wheelchair propulsion.

    PubMed

    Coutts, K D

    1990-01-01

    Eight international caliber wheelchair male athletes (3 basketball, 5 distance track) performed an all-out propulsion effort from a standing start for 10 seconds on a wheelchair ergometer. Comparisons between the basketball and track athletes on linear wheelchair and push rim velocity during the first 3 pushes and the peak value indicated that the basketball players had a significantly (p less than .05) higher push rim velocity throughout the effort and a higher wheelchair velocity only at the end of the first push. The track athletes attained a significantly higher peak wheelchair velocity. Graphical comparison of the best individual basketball and track athletes' performances indicated that the track athletes caught up to the basketball players after about 3.7 seconds or 12 meters and travelled 49 meters in the 10 seconds, compared to 37 meters for the basketball players. Differences in push rim and wheel diameter are considered the major factor in the noted differences in propulsion kinematics of basketball and track wheelchairs.

  15. Drag and sprint performance of wheelchair basketball players.

    PubMed

    Coutts, K D

    1994-01-01

    The purpose of this study was to measure the wheelchair drag and maximal sprint performance abilities of wheelchair basketball players and to make comparisons between male and female players. A group of nine male and eight female wheelchair basketball players attending a national training camp consented to serve as subjects. Each subject completed six coast-down trials at speeds from a walking pace (1 to 1.5 m/s) to maximal for determining wheelchair drag and then performed four maximal sprint trials from a stationary start over the length (35 m) of the gymnasium floor. A portable computer that recorded the time to the nearest 0.001 second of each half revolution of a rear wheel was attached to the wheelchair of each subject. The drag force during the coast-down trials and the power output during the sprint trials were determined from the recorded data. Differences between the genders in a number of subject and trial variables were evaluated by t-tests using the 0.05 level of significance. There were no significant differences between the means of the male and female groups in age (27 vs. 28 yrs), wheelchair mass (12.0 vs. 11.61 kg), or regression predicted drag forces at speeds of 2 m/s (5.3 vs. 5.5 N) and 5 m/s (16.7 vs. 13.5 N). The male subjects were significantly heavier (78.3 vs. 59.1 kg) and had a higher tire pressure (123 vs. 94 psi). In the sprint trial results, the males exhibited a significantly higher maximal speed (4.75 vs. 4.08 m/s), higher peak acceleration (1.32 vs. 1.03 m/s/s), and a higher peak power output (530 vs. 264 w).

  16. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    PubMed Central

    2013-01-01

    Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Methods Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Results Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC’s (>0.9). Conclusions A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high

  17. From Wheelchair to Cane

    PubMed Central

    Mayo, Amanda; Berbrayer, David

    2015-01-01

    ABSTRACT Spina bifida is associated with foot deformities, which may lead to foot ulcers, osteomyelitis, and limb amputation. Calcanectomy and Symes amputations have been reported successful in spina bifida. There is lack of evidence for transtibial amputations. This case describes a 27-yr-old woman with L4 level spina bifida who underwent bilateral transtibial amputations. She ambulated with bilateral ankle foot orthoses and canes until age 22. At age 22, she had bilateral foot reconstructive surgeries complicated by nonunion, ulcerations, and osteomyelitis. She was using a wheelchair by age 25. She had elective bilateral transtibial amputations at age 27 for progressive osteomyelitis. Four weeks after amputations, she was fit with bilateral prostheses. On completion of 2 mos of rehabilitation, she ambulated with a cane. This case demonstrates good functional outcomes after transtibial amputations in a young spina bifida patient. Prosthetic fitting should be considered for similar, previously high functioning spina bifida patients with transtibial amputation(s). PMID:26259056

  18. Tetraplegic wheelchair basketball.

    PubMed

    Uchida, A; Yamaguchi, S; Hayashi, T; Inasaka, R; Fukuda, J; Hasegawa, T; Hashitani, T; Owashi, M

    1994-01-01

    Tetraplegic wheelchair basketball was started in the Kanagawa Rehabilitation Center (KRC) as a recreational sport for tetraplegics in 1980. In this game, there are two goals on each side, thus we call it 'twin basketball'. One goal is of ordinary height and the other is low. Three ways of shooting and two ways of dribbling are allowed according to the player's level of tetraplegia and technical skill. The first official game was held in 1983. Since then, the game has been taken up in several areas of Japan. The first All Japan championship game was held in 1987, ten teams including 98 tetraplegics attending. Five years later, in the sixth championship game, 18 teams including 171 tetraplegics attended. As official physicians, we have examined the physical condition and technical skills of all players since 1987. All players are classified, and assigned points from 1 to 4.5. The total number of points of five players in one team are limited to 11.

  19. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  20. Design of a Power-Assisted Spacesuit Glove Actuator

    NASA Technical Reports Server (NTRS)

    Howard, Russell D.

    2000-01-01

    This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.

  1. HMM based automated wheelchair navigation using EOG traces in EEG

    NASA Astrophysics Data System (ADS)

    Aziz, Fayeem; Arof, Hamzah; Mokhtar, Norrima; Mubin, Marizan

    2014-10-01

    This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.

  2. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health.

    PubMed

    van der Woude, Lucas H V; de Groot, Sonja; Janssen, Thomas W J

    2006-11-01

    Those with lower limb disabilities are often dependent on manually propelled wheelchairs for their mobility, in Europe today some 3.3 million people. This implies a transfer from leg to arm work for ambulation and all other activities of daily living (ADL). Compared to the legs, arm work is less efficient and more straining, and leads to a lower physical capacity. Also, there is a major risk of mechanical overuse. Problems of long-term wheelchair use are not only pain or discomfort, but also a risk of a physically inactive lifestyle. Subsequently, serious secondary impairments (obesity, diabetes and cardiovascular problems) may eventually emerge. Wheelchair quality, including the ergonomic fitting to the individual may play a preventive role here, but also other modes of physical activity, and the understanding of training, rehabilitation, active lifestyle and sports on health and wellbeing. The 'International Classification of Functioning, Health and Disability' (ICF) model, a stress-strain-work capacity model, as well as the ergonomics model that relates human-activity-assistive technology are instrumental to the concepts, structure and aims of research in assistive technology for mobility. Apart from empirical developments and innovations from within wheelchair sports, systematic research has played a role in wheelchair development and design in three important areas: (1) the vehicle mechanics, (2) the human movement system and (3) the wheelchair-user interface. Current practical developments in design and technology are discussed. A position stand on the key-issues of a current and future research agenda in this area is presented.

  3. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.

    PubMed

    Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V

    2014-01-01

    To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.

  4. Mapping and navigational control for a “smart” wheelchair.

    PubMed

    Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F

    2012-01-01

    A “smart” wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A “smart” wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of “smart” wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current “smart” wheelchair technology.

  5. Mapping and navigational control for a “smart” wheelchair.

    PubMed

    Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F

    2012-01-01

    A “smart” wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A “smart” wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of “smart” wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current “smart” wheelchair technology. PMID:22846309

  6. Comparison of wheelchair athletes and nonathletes on selected mood states.

    PubMed

    Paulsen, P; French, R; Sherrill, C

    1990-12-01

    The Profile of Mood States was administered to two groups of male university students in wheelchairs. Both the 26 wheelchair athletes and the 28 wheelchair nonathletes exhibited the iceberg profile associated with positive mental health. Multivariate analysis indicated that wheelchair athletes had a significantly lower score on Depression than the wheelchair nonathletes but all scores were in the normal range.

  7. Adaptive sports technology and biomechanics: wheelchairs.

    PubMed

    Cooper, Rory A; De Luigi, Arthur Jason

    2014-08-01

    Wheelchair sports are an important tool in the rehabilitation of people with severe chronic disabilities and have been a driving force for innovation in technology and practice. In this paper, we will present an overview of the adaptive technology used in Paralympic sports with a special focus on wheeled technology and the impact of design on performance (defined as achieving the greatest level of athletic ability and minimizing the risk of injury). Many advances in manual wheelchairs trace their origins to wheelchair sports. Features of wheelchairs that were used for racing and basketball 25 or more years ago have become integral to the manual wheelchairs that people now use every day; moreover, the current components used on ultralight wheelchairs also have benefitted from technological advances developed for sports wheelchairs. For example, the wheels now used on chairs for daily mobility incorporate many of the components first developed for sports chairs. Also, advances in manufacturing and the availability of aerospace materials have driven current wheelchair design and manufacture. Basic principles of sports wheelchair design are universal across sports and include fit; minimizing weight while maintaining high stiffness; minimizing rolling resistance; and optimizing the sports-specific design of the chair. However, a well-designed and fitted wheelchair is not sufficient for optimal sports performance: the athlete must be well trained, skilled, and use effective biomechanics because wheelchair athletes face some unique biomechanical challenges.

  8. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori. PMID:26132350

  9. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori.

  10. Experimental study on a smart wheelchair system using a combination of stereoscopic and spherical vision.

    PubMed

    Nguyen, Jordan S; Su, Steven W; Nguyen, Hung T

    2013-01-01

    This paper is concerned with the experimental study performance of a smart wheelchair system named TIM (Thought-controlled Intelligent Machine), which uses a unique camera configuration for vision. Included in this configuration are stereoscopic cameras for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, and a spherical camera system for 360-degrees of monocular vision. The camera combination provides obstacle detection and mapping in unknown environments during real-time autonomous navigation of the wheelchair. With the integration of hands-free wheelchair control technology, designed as control methods for people with severe physical disability, the smart wheelchair system can assist the user with automated guidance during navigation. An experimental study on this system was conducted with a total of 10 participants, consisting of 8 able-bodied subjects and 2 tetraplegic (C-6 to C-7) subjects. The hands-free control technologies utilized for this testing were a head-movement controller (HMC) and a brain-computer interface (BCI). The results showed the assistance of TIM's automated guidance system had a statistically significant reduction effect (p-value = 0.000533) on the completion times of the obstacle course presented in the experimental study, as compared to the test runs conducted without the assistance of TIM.

  11. Weight Training for Wheelchair Sports.

    ERIC Educational Resources Information Center

    Practical Pointers, 1978

    1978-01-01

    The article examines weight lifting training procedures for persons involved in wheelchair sports. Popular myths about weight training are countered, and guidelines for a safe and sound weight or resistance training program are given. Diagrams and descriptions follow for specific weightlifting activities: regular or standing press, military press,…

  12. Taking Control: An Exploratory Study of the Use of Tilt-in-Space Wheelchairs in Residential Care.

    PubMed

    Shankar, Sneha; Mortenson, W Ben; Wallace, Justin

    2015-01-01

    Tilt-in-space (TIS) wheelchairs are common in residential care, but little empirical evidence exists regarding how they are used by residents and staff in these settings. As part of a larger study exploring the use of wheeled mobility in these facilities, we conducted a substudy to examine how TIS wheelchairs are used in practice and to explore the experiences of the residents who use them. We conducted a series of three participant observations and interviews with 6 residents or their family members and interviewed 10 staff. Our analysis identified taking control as the main overarching theme, subsuming two subthemes: promoting comfort and mobilizing to participate. Findings suggest that power TIS wheelchairs enable user control, whereas manual TIS wheelchairs promote staff control. These findings illustrate how TIS wheelchairs may enable or inhibit occupational engagement and suggest that vigilance is necessary to prevent their use as a restraint.

  13. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  14. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards. PMID:19398366

  15. Training a Parent in Wheelchair Skills to Improve Her Child's Wheelchair Skills: A Case Study

    ERIC Educational Resources Information Center

    Kirby, R. Lee; Smith, Cher; Billard, Jessica L.; Irving, Jenny D. H.; Pitts, Janice E.; White, Rebecca S.

    2010-01-01

    We tested the hypothesis that training a parent in wheelchair-user and caregiver wheelchair skills would improve the child's wheelchair skills. We studied an 11-year-old girl with spina bifida and her mother. The mother received 4 training sessions averaging 42.5 minutes per session, over a period of 3 weeks. The total pre-training and, 4 weeks…

  16. Getting the Right Wheelchair for Travel: A WC19-Compliant Wheelchair

    ERIC Educational Resources Information Center

    Manary, Miriam A.; Hobson, Douglas A.; Schneider, Lawrence W.

    2007-01-01

    Children and adults who must remain seated in their wheelchairs while traveling are often at a disadvantage in terms of crash safety. The new voluntary wheelchair industry standard WC19 (short for Section 19 of the ANSI/RESNA wheelchair standards) works to close the safety gap by providing design and performance criteria and test methods to assess…

  17. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards.

  18. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  19. [Standard requirements for electric wheelchairs (author's transl)].

    PubMed

    Fritsch, M

    1979-02-01

    Electric Wheelchairs are driven on public roads. Neither an operating license, liability insurance nor special driving license is necessary according to Road Traffic and Road Licensing Regulations. Statutory regulations prescribe that these wheelchairs must be fitted with two independent brakes and adequate lighting equipment. Safety can be increased by: Totmann brake system - battery servicing - improved battery chargers and technical safety tests. Maintenance of the wheelchair prolongs its life. Social security agencies should allow a large number of the most severely handicapped people to benefit from medically prescribed wheelchairs.

  20. Partitioning kinetic energy during freewheeling wheelchair maneuvers.

    PubMed

    Medola, Fausto O; Dao, Phuc V; Caspall, Jayme J; Sprigle, Stephen

    2014-03-01

    This paper describes a systematic method to partition the kinetic energy (KE) of a free-wheeling wheelchair. An ultralightweight rigid frame wheelchair was instrumented with two axle-mounted encoders and data acquisition equipment to accurately measure the velocity of the drive wheels. A mathematical model was created combining physical specifications and geometry of the wheelchair and its components. Two able-bodied subjects propelled the wheelchair over four courses that involved straight and turning maneuvers at differing speeds. The KE of the wheelchair was divided into three components: translational, rotational, and turning energy. This technique was sensitive to the changing contributions of the three energy components across maneuvers. Translational energy represented the major component of total KE in all maneuvers except a zero radius turn in which turning energy was dominant. Both translational and rotational energies are directly related to wheelchair speed. Partitioning KE offers a useful means of investigating the dynamics of a moving wheelchair. The described technique permits analysis of KE imparted to the wheelchair during maneuvers involving changes in speed and direction, which are most representative of mobility in everyday life. This technique can be used to study the effort required to maneuver different types and configurations of wheelchairs.

  1. Wheelchair driving. Evaluation of a new training outfit.

    PubMed

    Lundberg, A

    1980-01-01

    A training apparatus for wheelchair drivers has been constructed. Its purpose is to offer an alternative for outdoor training or in indoor halls. Wheelchair driving/training is performed on a simple system of rollers (originally designed for racing cyclists), which was tested by 10 skilled wheelchair drivers (participants in the Swedish national wheelchair basketball team) and 6 unskilled wheelchair drivers. Maximal working tests have been performed and compared with arm ergometer work. The results show that skilled wheelchair drivers are subject to a greater load on the oxygen transport system during wheelchair work on rollers as compared with arm ergometer work. This is probably because they are capable of increasing their working muscle mass in wheelchair driving by engaging the muscles of the trunk. Corresponding differences cannot be found for the unskilled wheelchair drivers. Wheelchair work on rollers also offers an adequate neuromuscular training for this category of participants in 'wheelchair' sports.

  2. Event-based and Multi Agent Control of an Innovative Wheelchair

    NASA Astrophysics Data System (ADS)

    Diomin, U.; Witczak, P.; Stetter, R.

    2015-11-01

    Due to the aging population more and more people require mobility assistance in form of a wheelchair. Generally it would be desirable that such wheelchairs would be easy to use and would allow their users the possibility to move in any direction at any time. Concepts which allow such movements are existing since many years but have for several reasons not found their way to the market. Additionally for semi-autonomous (assisted) operation and fully autonomous operation (e. g. an empty wheelchair driving to its charging station) the control task is much less challenging for such drive system, because no complex manoeuvres needs to be considered and planned. In an ongoing research a drive system for a wheelchair was developed which offers such possibilities employing a relatively simple mechanical design. This drive system is based on a certain steering principle which is based on torque differences between different wheels. This allows a relatively simple mechanical design but poses challenges on the control of the vehicle. This paper describes two possible approaches to address this challenge - the use of an event based control and the application of multiple software agents. Both approaches can solve the control problem individually but can also complement each other for better system performance. The paper stars with a description of the wheelchair drive system. Then the asynchronous event based control software is described as well the multi agent based approach. The next sections report the results of the experiments and discuss the further improvements.

  3. Hybrid power supplies: A capacitor-assisted battery

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Burgel, Joseph F.; Shi, Peter L.; Rusek, Andrew; Zou, Xiulin

    A hybrid electrochemical power supply is a concept that circumvents the need for designing any single power source to meet some extraordinary application requirement. A hybrid allows using components designed for near optimal operation without having to make unnecessary performance sacrifices. In many cases some additional synergistic effects appear. In this study, an electrochemical capacitor was employed as a power assist for a battery. An engine starting load was numerically modeled in the time domain and simulations were carried out. Actual measurements were then taken on the cranking of a diesel engine removed from a 5.0-tonne military truck and cranked in an environmental chamber. The cranking currents delivered by each power source were measured in the accessible current loops. This permitted the model parameters to be identified and, by doing that, studies using the analytical model demonstrated the merit of this hybrid application. The general system response of the battery/capacitor configuration was then modeled as a function of temperature. Doing this revealed electrical the interaction between the hybrid components. This study illustrates another case for advocating hybridized power systems.

  4. Wheeling à petit pas: Parkinsonism detected by observation of wheelchair propulsion.

    PubMed

    Worley, Scott W; Kirby, R Lee; MacLeod, Donald A

    2006-11-01

    We present a man with parkinsonism detected by the observation of wheelchair propulsion. His manual wheelchair propulsion technique was observed to include rapid, brief, low-power strokes resembling the marche à petit pas (walking with tiny steps) phenomenon of parkinsonism. We videotaped his wheelchair propulsion and compared him with ten age-, gender-, and diagnosis-matched controls. The patient had a propulsion velocity of 0.14 m/sec compared with a mean (+/- standard deviation) of 0.73 (+/- 0.16) m/sec for the controls, a cadence of 209 strokes/min vs. 60 (+/- 12) strokes/min for the controls, and a mechanical efficiency of 0.04 m/stroke compared with 0.75 (+/- 0.25) m/stroke for the controls. This observation shifted the course of his medical investigations and management as well as his rehabilitation care. This is the first detailed report of how parkinsonian features may affect manual wheelchair propulsion. It suggests that observation of wheelchair mobility should be a routine component of the physical examination of wheelchair users. PMID:17079968

  5. Endoscopic vidian neurectomy assisted by power instrumentation and coblation.

    PubMed

    Hsu, Chao-Yuan; Shen, Ping-Hung; Weitzel, Erik Kent

    2013-09-01

    Vidian neurectomy has been used to manage intractable vasomotor rhinitis for decades. After the introduction of endoscopic sinus surgery in the 1980s, transnasal endoscopic vidian neurectomy (EVN) was subsequently reported. The most common problem in performing EVN was excessive bleeding from the pterygopalatine fossa. The complexity and vascularity of the pterygopalatine fossa can cause bloody surgical fields and prevent complete neurectomy. In response to this surgical problem, a procedure was developed to use powered instrumentation and coblation during EVN. There were eight cases of EVNs (16 neurectomies) assisted by power instrumentation and coblation from December 2011 to May 2012. The average blood loss of these cases was 37.5 mL (range, 25-50 mL). The average surgical time of each neurectomy was 27.4 minutes (range, 20-35 minutes). No complications occurred in any of the eight cases. Very limited bleeding and less thermal damage were noted while achieving a complete neurectomy.

  6. Performance analysis of elite men's and women's wheelchair basketball teams.

    PubMed

    Gómez, Miguel Ángel; Pérez, Javier; Molik, Bartosz; Szyman, Robert J; Sampaio, Jaime

    2014-01-01

    The purpose of the present study was to identify which game-related statistics discriminate winning and losing teams in men's and women's elite wheelchair basketball. The sample comprised all the games played during the Beijing Paralympics 2008 and the World Wheelchair Basketball Championship 2010. The game-related statistics from the official box scores were gathered and data were analysed in 2 groups: balanced games (final score differences ≤ 12 points) and unbalanced games (final score differences >13 points). Discriminant analysis allowed identifying the successful 2-point field-goals and free-throws, the unsuccessful 3-point field-goals and free-throws, the assists and fouls received as discriminant statistics between winning and losing teams in men's balanced games. In women's games, the teams were discriminated only by the successful 2-point field-goals. Linear regression analysis showed that the quality of opposition had great effects in final point differential. The field-goals percentage and free-throws rate were the most important factors in men's games, and field-goals percentage and offensive rebounding percentage in women's games. The identified trends allow improving game understanding and helping wheelchair basketball coaches to plan accurate practice sessions and, ultimately, deciding better in competition.

  7. Accessibility of outpatient healthcare providers for wheelchair users: Pilot study.

    PubMed

    Frost, Karen L; Bertocci, Gina; Stillman, Michael D; Smalley, Craig; Williams, Steve

    2015-01-01

    The Americans with Disabilities Act (ADA) requires full and equal access to healthcare services and facilities, yet studies indicate individuals with mobility disabilities receive less than thorough care as a result of ADA noncompliance. The objective of our pilot study was to assess ADA compliance within a convenience sample of healthcare clinics affiliated with a statewide healthcare network. Site assessments based on the ADA Accessibility Guidelines for Buildings and Facilities were performed at 30 primary care and specialty care clinics. Clinical managers completed a questionnaire on standard practices for examining and treating patients whose primary means of mobility is a wheelchair. We found a majority of restrooms (83%) and examination rooms (93%) were noncompliant with one or more ADA requirements. Seventy percent of clinical managers reported not owning a height-adjustable examination table or wheelchair accessible weight scale. Furthermore, patients were examined in their wheelchairs (70%-87%), asked to bring someone to assist with transfers (30%), or referred elsewhere due to an inaccessible clinic (6%). These methods of accommodation are not compliant with the ADA. We recommend clinics conduct ADA self-assessments and provide training for clinical staff on the ADA and requirements for accommodating individuals with mobility disabilities.

  8. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.

    PubMed

    Mason, Barry S; van der Woude, Lucas H V; Goosey-Tolfrey, Victoria L

    2013-01-01

    Optimizing mobility performance in wheelchair court sports (basketball, rugby and tennis) is dependent on a combination of factors associated with the user, the wheelchair and the interfacing between the two. Substantial research has been attributed to the wheelchair athlete yet very little has focused on the role of the wheelchair and the wheelchair-user combination. This article aims to review relevant scientific literature that has investigated the effects of wheelchair configuration on aspects of mobility performance from an ergonomics perspective. Optimizing performance from an ergonomics perspective requires a multidisciplinary approach. This has resulted in laboratory-based investigations incorporating a combination of physiological and biomechanical analyses to assess the efficiency, health/safety and comfort of various wheelchair configurations. To a lesser extent, field-based testing has also been incorporated to determine the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports. The available literature has demonstrated that areas of seat positioning, rear wheel camber, wheel size and hand-rim configurations can all influence the ergonomics of wheelchair performance. Certain configurations have been found to elevate the physiological demand of wheelchair propulsion, others have been associated with an increased risk of injury and some have demonstrated favourable performance on court. A consideration of all these factors is required to identify optimal wheelchair configurations. Unfortunately, a wide variety of different methodologies have immerged between studies, many of which are accompanied by limitations, thus making the identification of optimal configurations problematic. When investigating an area of wheelchair configuration, many studies have failed to adequately standardize other areas, which has prevented reliable cause and effect relationships being established. In addition, a large

  9. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.

    PubMed

    Mason, Barry S; van der Woude, Lucas H V; Goosey-Tolfrey, Victoria L

    2013-01-01

    Optimizing mobility performance in wheelchair court sports (basketball, rugby and tennis) is dependent on a combination of factors associated with the user, the wheelchair and the interfacing between the two. Substantial research has been attributed to the wheelchair athlete yet very little has focused on the role of the wheelchair and the wheelchair-user combination. This article aims to review relevant scientific literature that has investigated the effects of wheelchair configuration on aspects of mobility performance from an ergonomics perspective. Optimizing performance from an ergonomics perspective requires a multidisciplinary approach. This has resulted in laboratory-based investigations incorporating a combination of physiological and biomechanical analyses to assess the efficiency, health/safety and comfort of various wheelchair configurations. To a lesser extent, field-based testing has also been incorporated to determine the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports. The available literature has demonstrated that areas of seat positioning, rear wheel camber, wheel size and hand-rim configurations can all influence the ergonomics of wheelchair performance. Certain configurations have been found to elevate the physiological demand of wheelchair propulsion, others have been associated with an increased risk of injury and some have demonstrated favourable performance on court. A consideration of all these factors is required to identify optimal wheelchair configurations. Unfortunately, a wide variety of different methodologies have immerged between studies, many of which are accompanied by limitations, thus making the identification of optimal configurations problematic. When investigating an area of wheelchair configuration, many studies have failed to adequately standardize other areas, which has prevented reliable cause and effect relationships being established. In addition, a large

  10. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  11. Attendant Care for College Students with Physical Disabilities Using Wheelchairs: Transition Issues and Experiences

    ERIC Educational Resources Information Center

    Burwell, Nequel R.; Wessel, Roger D.; Mulvihill, Thalia

    2015-01-01

    From preschool through high school, accommodation and success, rather than self-advocacy and student development, are the predominant frameworks for students with physical disabilities. Many students with physical disabilities who use wheelchairs are assisted by their family members with daily life activities such as getting out of bed, showering,…

  12. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  13. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  14. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  15. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  16. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  17. Concept proposal for a detachable exoskeleton-wheelchair to improve mobility and health.

    PubMed

    Borisoff, Jaimie F; Mattie, Johanne; Rafer, Vince

    2013-06-01

    Wheelchair use has consequences to quality of life in at least two areas: 1) health issues such as pressure sores and chronic overuse injury; and 2) access problems due to the inaccessible nature of the built and natural environments that are most amenable to upright postures. Even with these concerns, wheelchairs are still the best form of mobility for many people (e.g. they are relatively easy to transfer into and propel). However, wheelchairs are simply not transformative, i.e. they do not allow a person with a disability to attain a level of mobility performance that approaches that of their non-disabled peers, nor do they typically allow for face to face interactions and full participation in the community. Wheelchairs also do not typically support ongoing therapeutic benefits for the user. To address the inadequacy of existing wheelchairs, we are merging two evolving technologies into a coherent new mobility device. The first is dynamic wheeled mobility, which adds significant functionality to conventional wheelchairs through the use of on-the-fly adjustable positioning. The second is powered walking exoskeletons, which enable highly desired standing and walking functions, as well as therapeutic benefits associated with rehabilitation gait training. Unfortunately, exoskeletons have significant usability concerns such as slow speed, limited range, potential to cause skin issues, and difficult transfers. A new concept of docking a detachable exoskeleton to a wheeled frame has been developed to address these issues. The design goal is a single mobility device that not only optimizes daily activities (i.e. wheelchair seating and propulsion with dynamic positioning), but also serves as an easy-to-use rehabilitation tool for therapeutic benefits (i.e. a detachable powered exoskeleton for walking sojourns). This has significant potential benefits for the lives of people with mobility impairments. PMID:24187215

  18. Review of the use of physical restraints and lap belts with wheelchair users.

    PubMed

    Chaves, Eliana S; Cooper, Rory A; Collins, Diane M; Karmarkar, Amol; Cooper, Rosemarie

    2007-01-01

    Wheelchair-related physical restraints, lap belts, and other alternatives are intended to provide safe and adequate seating and mobility for individuals using wheelchairs. Physical restraints and lap belts are also helpful for positioning people in their wheelchairs to reduce the risk of injury during wheelchair tips and falls. However, when used improperly or in ways other than intended, injury or even death can result. Although widely prescribed, little evidence is available to direct professionals on the appropriate use of these restraints and lap belts and for whom these restraints are indicated. The purpose of this study was to conduct a review of available literature from 1966-2006 to identify the risks and benefits associated with lap belts while seated in wheelchairs. Twenty-five studies that met the inclusion criteria were reviewed. Nine studies reported the frequency of asphyxial deaths caused by physical restraints, nine studies reported the long-term complication and indirect adverse effects of physical restraints and lap-belt use, and seven studies reported the benefits of physical restraints and lap belts with individuals using wheelchairs. Despite the weak evidence, the results suggest a considerable number of deaths from asphyxia caused by the use of physical restraints occurred each year in the U.S. The majority of the deaths occurred in nursing homes, followed by hospitals, and then the home of the person. Most deaths occurred while persons were restrained in wheelchairs or beds. Based on that, caution needs to be exercised when using restraints or positioning belts. In addition, other seating and environment alternatives should be explored prior to using restraints or positioning belts, such as power wheelchair seating options. Positioning belts may reduce risk of falls from wheelchairs and should be given careful consideration, but caution should be exercised if the individual cannot open the latch independently. Also, the duration of use of the

  19. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions. PMID:24110321

  20. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  1. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation.

    PubMed

    Mason, B S; Lemstra, M; van der Woude, L H V; Vegter, R; Goosey-Tolfrey, V L

    2015-04-01

    The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and biomechanical responses to submaximal and maximal effort propulsion specific to wheelchair basketball. Eight able-bodied individuals participated in the laboratory-based testing, which took place on a wheelchair ergometer at two fixed speeds (1.1 and 2.2 m s(-1)). Outcome measures were power output and physiological demand (oxygen uptake and heart rate). Three participants with experience of over-ground sports wheelchair propulsion also performed 2 × 20 m sprints in each wheel configuration. Results revealed that wheels differed significantly in lateral stiffness with the 'new' Spinergy wheel shown to be the stiffest (678.2 ± 102.1 N mm(-1)). However the effects of stiffness on physiological demand were minimal compared to tyre type whereby tubular tyres significantly reduced the rolling resistance and power output in relation to clincher tyres. Therefore tyre type (and subsequently inflation pressure) remains the most important aspect of wheel specification for athletes to consider and monitor when configuring a sports wheelchair. PMID:25726151

  2. Design of an integral computer-based wheelchair controller/linear synchronous motor system.

    PubMed

    Kelly, G W; Ross, D A; Bass, R M; Davey, K R

    1986-06-01

    The purpose of this paper is to illustrate the advantages of designing computer-based motor controllers together with innovative motors, such that maximum controller/motor system benefits are obtained. Specifically, this paper describes how a computer-based controller/drive system for powered wheelchairs has been designed and is being built and tested. This type of integral controller/drive system has been possible to build into a wheelchair only with the advent of the microprocessor-based feedback motor controller. The type of motor chosen for this project was a linear synchronous motor (LSM), which is highly efficient (90%+) and could easily be made an integral part of a wheelchair wheel, providing a "no-moving-parts" drive system. However, an LSM cannot be variable-speed-controlled without knowledge of, and controlled adjustment to, the absolute rotor versus stator position at each point in time. Microprocessor-based feedback motor controllers make precise, efficient control of LSMs possible at a reasonable cost. In addition, this combination of controller and motor provides a very flexible wheelchair control/drive system that may be easily programmed to suit the needs and necessities of the wide variety of over 200,000 persons now using powered wheelchairs. PMID:3537184

  3. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.

    PubMed

    Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R

    2011-04-29

    Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes.

  4. Influence of wheel configuration on wheelchair basketball performance: wheel stiffness, tyre type and tyre orientation.

    PubMed

    Mason, B S; Lemstra, M; van der Woude, L H V; Vegter, R; Goosey-Tolfrey, V L

    2015-04-01

    The aim of the current investigation was to explore the lateral stiffness of different sports wheelchair wheels available to athletes in 'new' and 'used' conditions and to determine the effect of (a) stiffness, (b) tyre type (clincher vs. tubular) and (c) tyre orientation on the physiological and biomechanical responses to submaximal and maximal effort propulsion specific to wheelchair basketball. Eight able-bodied individuals participated in the laboratory-based testing, which took place on a wheelchair ergometer at two fixed speeds (1.1 and 2.2 m s(-1)). Outcome measures were power output and physiological demand (oxygen uptake and heart rate). Three participants with experience of over-ground sports wheelchair propulsion also performed 2 × 20 m sprints in each wheel configuration. Results revealed that wheels differed significantly in lateral stiffness with the 'new' Spinergy wheel shown to be the stiffest (678.2 ± 102.1 N mm(-1)). However the effects of stiffness on physiological demand were minimal compared to tyre type whereby tubular tyres significantly reduced the rolling resistance and power output in relation to clincher tyres. Therefore tyre type (and subsequently inflation pressure) remains the most important aspect of wheel specification for athletes to consider and monitor when configuring a sports wheelchair.

  5. Impact of wheelchair seat height on neck and shoulder range of motion during functional task performance.

    PubMed

    Sabari, Joyce; Shea, Mary; Chen, Linda; Laurenceau, Alyssa; Leung, Evan

    2016-01-01

    Wheelchair users are at high risk for developing repetitive stress injuries (RSI) of the cervical spine and glenohumeral joints due to increased demands on active range of motion (AROM) when performing functional tasks from a seated position. The addition of a seat elevation device may alleviate the risk factors that lead to the development of RSI. However, there are no studies which establish that wheelchair seat height impacts upon arthrokinematic requirements at vulnerable joints. Additionally, Medicare and most insurance carriers do not cover the cost of power seat elevators because this feature has not been shown to be a "medical necessity." This study examined differences in AROM at the cervical spine and glenohumeral joint during performance of two functional tasks while seated in a wheelchair with the seat elevation feature at minimum and maximum height. Results revealed statistically significant differences in AROM requirements for cervical extension and shoulder abduction between the two wheelchair seat heights. These findings provide preliminary support for the value of the power seat elevation function in minimizing the risk of RSI at the shoulder complex and cervical spine in wheelchair users. PMID:26853925

  6. Participatory design and validation of mobility enhancement robotic wheelchair.

    PubMed

    Daveler, Brandon; Salatin, Benjamin; Grindle, Garrett G; Candiotti, Jorge; Wang, Hongwu; Cooper, Rory A

    2015-01-01

    The design of the mobility enhancement robotic wheelchair (MEBot) was based on input from electric powered wheelchair (EPW) users regarding the conditions they encounter when driving in both indoor and outdoor environments that may affect their safety and result in them becoming immobilized, tipping over, or falling out of their wheelchair. Phase I involved conducting a participatory design study to understand the conditions and barriers EPW users found to be difficult to drive in/over. Phase II consisted of creating a computer-aided design (CAD) prototype EPW to provide indoor and outdoor mobility that addressed these conditions with advanced applications. Phase III involved demonstrating the advanced applications and gathering feedback from end users about the likelihood they would use the advanced applications. The CAD prototype incorporated advanced applications, including self-leveling, curb climbing, and traction control, that addressed the challenging conditions and barriers discussed with EPW users (n = 31) during the participatory design study. Feedback of the CAD design and applications in phase III from end users (n = 12) showed a majority would use self-leveling (83%), traction control (83%), and curb climbing (75%). The overall design of MEBot received positive feedback from EPW users. However, these opinions will need to be reevaluated through user trials as the design advances. PMID:26562492

  7. Semi-autonomous wheelchair system using stereoscopic cameras.

    PubMed

    Nguyen, Jordan S; Nguyen, Thanh H; Nguyen, Hung T

    2009-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using stereoscopic cameras to assist hands-free control technologies for severely disabled people. The stereoscopic cameras capture an image from both the left and right cameras, which are then processed with a Sum of Absolute Differences (SAD) correlation algorithm to establish correspondence between image features in the different views of the scene. This is used to produce a stereo disparity image containing information about the depth of objects away from the camera in the image. A geometric projection algorithm is then used to generate a 3-Dimensional (3D) point map, placing pixels of the disparity image in 3D space. This is then converted to a 2-Dimensional (2D) depth map allowing objects in the scene to be viewed and a safe travel path for the wheelchair to be planned and followed based on the user's commands. This assistive technology utilising stereoscopic cameras has the purpose of automated obstacle detection, path planning and following, and collision avoidance during navigation. Experimental results obtained in an indoor environment displayed the effectiveness of this assistive technology.

  8. Wheeled mobility (wheelchair) service delivery: scope of the evidence.

    PubMed

    Greer, Nancy; Brasure, Michelle; Wilt, Timothy J

    2012-01-17

    Identifying the appropriate wheelchair for a person who needs one has implications for both disabled persons and society. For someone with severe locomotive problems, the right wheelchair can affect mobility and quality of life. However, policymakers are concerned about the increasing demand for unnecessarily elaborate chairs. The Office of Inspector General, U.S. Department of Health and Human Services, issued 4 reports between 2009 and 2011 detailing fraud and misapplication of Medicare funds for powered wheelchairs, more than a decade after similar concerns were first raised by 4 contractors who process claims for durable medical equipment. Subsequent concerns have arisen about whether some impaired persons who need wheeled mobility devices may now be inappropriately denied coverage. A transparent, evidence-based approach to wheeled mobility service delivery (the matching of mobility-impaired persons to appropriate devices and supporting services) might lessen these concerns. This review describes the process of wheeled mobility service delivery for long-term wheelchair users with complex rehabilitation needs and presents findings from a survey of the literature (published and gray) and interviews with key informants. Recommended steps in the delivery process were identified in textbooks, guidelines, and published literature. Delivery processes shared many commonalities; however, no research supports the recommended approaches. A search of bibliographic databases through March 2011 identified 24 studies that evaluated aspects of wheeled mobility service delivery. Most were observational, exploratory studies designed to determine consumer use of and satisfaction with the process. The evidence base for the effectiveness of approaches to wheeled mobility service delivery is insufficient, and additional research is needed to develop standards and guidelines. PMID:22250145

  9. Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision.

    PubMed

    Nguyen, Jordan S; Tran, Yvonne; Su, Steven W; Nguyen, Hung T

    2011-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions. PMID:22255649

  10. Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision.

    PubMed

    Nguyen, Jordan S; Tran, Yvonne; Su, Steven W; Nguyen, Hung T

    2011-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions.

  11. An embedded control system for intelligent wheelchair.

    PubMed

    Lu, Tao; Yuan, Kui; Zhu, Haibing; Hu, Huosheng

    2005-01-01

    Due to recent advancement of AI and robotics technology, the research of intelligent wheelchair (iWheelChair) begins to draw attention from both scientific community and industry. iWheelchair is a kind of home welfare tools and can help the handicapped and elderly people to gain mobility and lead to independent life. This paper describes a newly developed intelligent wheelchair. The controller of the iWheelChair adopts the advanced DSP technology, and plays the role of data acquisition and processing of joystick and ultrasonic sensors. 8 ultrasonic sensors are mounted on iWheelchair and can detect the environment changes for safe operation. Experiments are presented to show that iWheelChair is able to avoid obstacles safely while controlled by its user via the joystick.

  12. The wheelchair as a full-body tool extending the peripersonal space

    PubMed Central

    Galli, Giulia; Noel, Jean Paul; Canzoneri, Elisa; Blanke, Olaf; Serino, Andrea

    2015-01-01

    Dedicated multisensory mechanisms in the brain represent peripersonal space (PPS), a limited portion of space immediately surrounding the body. Previous studies have illustrated the malleability of PPS representation through hand-object interaction, showing that tool use extends the limits of the hand-centered PPS. In the present study we investigated the effects of a special tool, the wheelchair, in extending the action possibilities of the whole body. We used a behavioral measure to quantify the extension of the PPS around the body before and after Active (Experiment 1) and Passive (Experiment 2) training with a wheelchair and when participants were blindfolded (Experiment 3). Results suggest that a wheelchair-mediated passive exploration of far space extended PPS representation. This effect was specifically related to the possibility of receiving information from the environment through vision, since no extension effect was found when participants were blindfolded. Surprisingly, the active motor training did not induce any modification in PPS representation, probably because the wheelchair maneuver was demanding for non-expert users and thus they may have prioritized processing of information from close to the wheelchair rather than at far spatial locations. Our results suggest that plasticity in PPS representation after tool use seems not to strictly depend on active use of the tool itself, but is triggered by simultaneous processing of information from the body and the space where the body acts in the environment, which is more extended in the case of wheelchair use. These results contribute to our understanding of the mechanisms underlying body–environment interaction for developing and improving applications of assistive technological devices in different clinical populations. PMID:26042069

  13. Mechanical design and simulation of two-wheeled wheelchair using solidworks

    NASA Astrophysics Data System (ADS)

    Altalmas, T. M.; Ahmad, S.; Aula, A.; Akmeliawati, R.; Sidek, S. N.

    2013-12-01

    This article is presented a new design of two-wheeled wheelchair that can balance on two wheels to make it suitable in the narrow areas, especially in the domestic environments; it has the ability to extend the height of the chair to help the user to act independently in the life for example, in the library to pick and put books on the shelves. The 3D model has been built up using SolidWorks Software. Nowadays, SolidWorks environment is considered as a powerful tool that is helping designer to design products and attain its performance before physical prototype stage. SolidWorks simulation model has been employed to test the frame of the wheelchair under the weight of the human body and the upper part of the wheelchair. The static analysis has been done on the frame using steel and aluminium; however the aluminium material has been selected due to its light weight

  14. Predictors of Mobility among Wheelchair Using Residents in Long Term Care

    PubMed Central

    Mortenson, W. Ben; Miller, William C.; Backman, Catherine L.; Oliffe, John L.

    2014-01-01

    Objective The purpose of this study was to identify predictors of mobility among long term care residents who use wheelchairs as their main means of mobility. Based on the Matching Person to Technology Model, we hypothesized that wheelchair-related, personal and environmental factors would be independent predictors of mobility. Design Cross-sectional study. Setting Eleven long term residential care facilities in the Lower Mainland of British Columbia, Canada Participants The study included 268 residents: 149 self-responding residents and 119 residents who required proxy respondents. Interventions Not applicable. Main outcome measures Mobility was measured using the Nursing Home Life Space Diameter. Standardized measures of personal, wheelchair-related and environmental factors were administered and socio-demographic data were collected as independent variables. Results Independent mobility decreased as the distance from the resident’s room increased: 63% of participants were independently mobile on their units, 40% were independently mobile off their units within the facilities and 20% were independently mobile outdoors. For the total sample, the significant predictors of mobility, in descending order of importance, were wheelchair skills (including the capacity to engage brakes and manoeuvre), functional independence in activities of daily living, having four or more visits per week from friends or family and use of a power wheelchair. This regression model accounted for 48% of variance in mobility scores. Conclusions Limited independent mobility is a common problem among facility residents. Residents may benefit from interventions such as wheelchair skills training or provision of powered mobility but the effectiveness of these interventions needs to be evaluated. PMID:21840499

  15. Movement stability analysis of surface electromyography-based elbow power assistance.

    PubMed

    Kwon, Suncheol; Kim, Yunjoo; Kim, Jung

    2014-04-01

    The use of power assistive devices that use surface electromyography (SEMG) signals may be limited by the noisy nature of SEMG signals. The aim of this study was to investigate the variation in human movement stability while the amount of SEMG-based assistive power was changed. A robotic device provided a torque that was proportional to the torque estimated by SEMG for assisting human movements, and 12 volunteers participated in the elbow flexion experiments. The maximum finite-time Lyapunov exponent (MFTLE), the average logarithmic rate of the divergence of neighboring trajectories, and the variability of the kinematic data were used to quantify the stability of the assisted elbow movements. The stability provided by the MFTLE decreased as the amount of assistive torque increased with respect to the amount of human torque. The kinematic variability increased with the increase in assistive torque. Therefore, by ensuring that the amount of SEMG-based assistive torque is less than the amount of human torque, the assistance may provide relatively natural movements. This study is the first to quantify movement stability as SEMG-based assistive power is applied. This study can provide a foundation for determining the appropriate amount of SEMG-based assistive power.

  16. Motion Evaluation Of A Wheelchair Prototype For Disabled People

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut Daniel; Dumitru, Nicolae; Margine, Alexandru

    2015-09-01

    In this paper is presented the design solution and experimental prototype of a wheelchair for disabled people. Design solution proposed to be implemented uses two reduction gears motors and a mechanical transmission with chains. It's developed a motion controller based on a PWM technology, which allows the user to control the wheelchair motion. The wheelchair has the ability of forward - backward motion and steering. The design solution is developed in Solid Works, and it's implemented to a wheelchair prototype model. Wheelchair design and motion makes him suitable especially for indoor use. It is made a study of the wheelchair kinematics, first using a kinematic simulation in Adams. Are presented the wheelchair motion trajectory and kinematics parameters. The experimental prototype is tested with a motion analysis system based on ultra high speed video cameras recording. The obtained results from simulation and experimentally tests, demonstrate the efficiency of wheelchair proposed solution.

  17. A theory of wheelchair wheelie performance.

    PubMed

    Kauzlarich, J J; Thacker, J G

    1987-01-01

    The results of this analytical study of wheelchair wheelie performance can be summarized into two wheelchair design equations, or rules of thumb, as developed in the paper. The equation containing the significant parameters involved in popping a wheelie for curb climbing is: fh = 0.8 mg theta c.g. [A] where fh is handrim force, m is the mass of the wheelchair + user less rear wheels, g is acceleration of gravity (9.807 m/s2), and theta c.g. is "c.g. angle," i.e., the angle between the vertical through the rear axle and a line connecting the rear axle and the system center-of-gravity. Equation [A] shows that reducing the mass and/or the c.g. angle will make it easier to pop a wheelie. The c.g. angle is reduced by moving the rear axle position forward on the wheelchair. Wheelie balance is the other aspect of performance considered; where the user balances the wheelchair on the rear wheels for going down curbs or just for fun. The ease with which a system can be controlled (balanced) is related to the static stability of the system. The static stability is defined as: omega 2 = mgl/J [B] where J is the mass moment of inertia at the center of gravity of the system about the direction perpendicular to the sideframe. For better wheelchair control during wheelchair balance the static stability should be reduced. Measurements of the value for the polar mass moment of inertia for a typical wheelchair + user of m = 90 kg was found to be J = 8.7 kg-m2. In order to decrease the value of the static stability, Equation [B], one can increase J or decrease m and/or l, where l is the distance from the rear axle to the c.g. of the system. It is also shown that balancing a rod in the palm of the hand (inverted pendulum) is a mathematical problem similar to the wheelie balance problem, and a rod of length 1.56 meters is similar to a wheelchair + user system mass of 90 kg. However, balancing a rod is done primarily by using visual perception, whereas wheelie balance involves human

  18. Recent trends in assistive technology for mobility

    PubMed Central

    2012-01-01

    Loss of physical mobility makes maximal participation in desired activities more difficult and in the worst case fully prevents participation. This paper surveys recent work in assistive technology to improve mobility for persons with a disability, drawing on examples observed during a tour of academic and industrial research sites in Europe. The underlying theme of this recent work is a more seamless integration of the capabilities of the user and the assistive technology. This improved integration spans diverse technologies, including powered wheelchairs, prosthetic limbs, functional electrical stimulation, and wearable exoskeletons. Improved integration is being accomplished in three ways: 1) improving the assistive technology mechanics; 2) improving the user-technology physical interface; and 3) sharing of control between the user and the technology. We provide an overview of these improvements in user-technology integration and discuss whether such improvements have the potential to be transformative for people with mobility impairments. PMID:22520500

  19. Recent trends in assistive technology for mobility.

    PubMed

    Cowan, Rachel E; Fregly, Benjamin J; Boninger, Michael L; Chan, Leighton; Rodgers, Mary M; Reinkensmeyer, David J

    2012-04-20

    Loss of physical mobility makes maximal participation in desired activities more difficult and in the worst case fully prevents participation. This paper surveys recent work in assistive technology to improve mobility for persons with a disability, drawing on examples observed during a tour of academic and industrial research sites in Europe. The underlying theme of this recent work is a more seamless integration of the capabilities of the user and the assistive technology. This improved integration spans diverse technologies, including powered wheelchairs, prosthetic limbs, functional electrical stimulation, and wearable exoskeletons. Improved integration is being accomplished in three ways: 1) improving the assistive technology mechanics; 2) improving the user-technology physical interface; and 3) sharing of control between the user and the technology. We provide an overview of these improvements in user-technology integration and discuss whether such improvements have the potential to be transformative for people with mobility impairments.

  20. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  1. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  2. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  3. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  4. Principles and Practices for Championship Performances in Wheelchair Field Events.

    ERIC Educational Resources Information Center

    Practical Pointers, 1980

    1980-01-01

    The article discusses training and competing in wheelchair sports. General principles of training, including scheduling and content considerations, are listed. Principles for specific wheelchair events (shotput, discus, and javelin) are detailed. A final part addresses training for the wheelchair pentathlon, which includes archery, swimming,…

  5. Upper limb joint motion of two different user groups during manual wheelchair propulsion

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho

    2013-02-01

    Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.

  6. Geospatial Analysis and Technical Assistance for Power Plant Siting Interagency

    SciTech Connect

    Neher, L A

    2002-03-07

    The focus of this contract (in the summer and fall of 2001) was originally to help the California Energy Commission (CEC) locate and evaluate potential sites for electric power generation facilities and to assist the CEC in addressing areas of congestion on transmission lines and natural gas supply line corridors. Subsequent events have reduced the immediate urgency, although not the ultimate need for such analyses. Software technology for deploying interactive geographic information systems (GIS) accessible over the Internet have developed to the point that it is now practical to develop and publish GIS web sites that have substantial viewing, movement, query, and even map-making capabilities. As part of a separate project not funded by the CEC, the GIS Center at LLNL, on an experimental basis, has developed a web site to explore the technical difficulties as well as the interest in such a web site by agencies and others concerned with energy research. This exploratory effort offers the potential or developing an interactive GIS web site for use by the CEC for energy research, policy analysis, site evaluation, and permit and regulatory matters. To help ground the geospatial capabilities in the realistic requirements and needs of the CEC staff, the CEC requested that the GIS Center conduct interviews of several CEC staff persons to establish their current and envisioned use of spatial data and requirements for geospatial analyses. This survey will help define a web-accessible central GIS database for the CEC, which will augment the well-received work of the CEC Cartography Unit. Individuals within each siting discipline have been contacted and their responses to three question areas have been summarized. The web-based geospatial data and analytical tools developed within this project will be available to CEC staff for initial area studies, queries, and informal, small-format maps. It is not designed for fine cartography or for large-format posters such as the

  7. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false May a carrier leave a passenger unattended in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.103 May a...

  8. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false May a carrier leave a passenger unattended in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.103 May a...

  9. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false May a carrier leave a passenger unattended in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... BASIS OF DISABILITY IN AIR TRAVEL Boarding, Deplaning, and Connecting Assistance § 382.103 May a...

  10. Using a Wheelchair as a Seat in a Motor Vehicle: An Overview of Wheelchair Transportation Safety and Related Standards

    ERIC Educational Resources Information Center

    Schneider, Larry

    2007-01-01

    This is the first of a series of six articles on the topic of transportation safety for wheelchair-seated travelers and will highlight some of the basic issues and principles that have been considered in the development of voluntary standards for wheelchair tiedown and occupant restraints systems (WTORS) as well as for wheelchairs that are used as…

  11. Real-time transmission of panoramic images for a telepresence wheelchair.

    PubMed

    Ha, Van Kha Ly; Nguyen, Tuan Nghia; Nguyen, Hung T

    2015-08-01

    This paper proposes an approach to transmit panoramic images in real-time for a telepresence wheelchair. The system can provide remote monitoring and assistive assistance for people with disabilities. This study exploits technological advancement in image processing, wireless communication networks, and healthcare systems. High resolution panoramic images are extracted from the camera which is mounted on the wheelchair. The panoramic images are streamed in real-time via a wireless network. The experimental results show that streaming speed is up to 250 KBps. The subjective quality assessments show that the received images are smooth during the streaming period. In addition, in terms of the objective image quality evaluation the average peak signal-to-noise ratio of the reconstructed images is measured to be 39.19 dB which reveals high quality of images. PMID:26737063

  12. Relationship between aerobic and anaerobic parameters and functional classification in wheelchair basketball players.

    PubMed

    de Lira, C A B; Vancini, R L; Minozzo, F C; Sousa, B S; Dubas, J P; Andrade, M S; Steinberg, L L; da Silva, A C

    2010-08-01

    Participation in sports for individuals with disabilities continues to gain popularity. In order to provide fair and equitable competition among persons with different disabilities and functional capacity, a separate functional classification system has been devised for each sport. The aims of the present study were to evaluate aerobic and anaerobic performance of wheelchair basketball athletes and verify a correlation with the International Wheelchair Basketball Federation functional classification system. For this, 17 highly trained male Brazilian basketball wheelchair athletes (25.4+/-4.4 years) from the national team who had taken part in the Athens 2004 Paralympic Games were assessed. These athletes were submitted to cardiopulmonary exercise testing and Wingate-like 30-s sprint test using upper limbs. The present study demonstrated that the functional classification score correlated with relative (r=0.90; P<0.0001) and absolute peak power (r=0.50; P=0.0353) and absolute mean power (r=0.93; P<0.0001) obtained from the Wingate-like 30-s sprint test and also correlated with absolute O(2) peak (r=0.68; P=0.0026) and O(2) at ventilatory threshold (r=0.71; P=0.0014), measured on cardiopulmonary exercise testing. Therefore, our findings support the functional classification created to classify athletes' functional capability on the court, which also correlated with aerobic and anaerobic performance parameters of the elite wheelchair basketball players. PMID:19793219

  13. Relationship between aerobic and anaerobic parameters and functional classification in wheelchair basketball players.

    PubMed

    de Lira, C A B; Vancini, R L; Minozzo, F C; Sousa, B S; Dubas, J P; Andrade, M S; Steinberg, L L; da Silva, A C

    2010-08-01

    Participation in sports for individuals with disabilities continues to gain popularity. In order to provide fair and equitable competition among persons with different disabilities and functional capacity, a separate functional classification system has been devised for each sport. The aims of the present study were to evaluate aerobic and anaerobic performance of wheelchair basketball athletes and verify a correlation with the International Wheelchair Basketball Federation functional classification system. For this, 17 highly trained male Brazilian basketball wheelchair athletes (25.4+/-4.4 years) from the national team who had taken part in the Athens 2004 Paralympic Games were assessed. These athletes were submitted to cardiopulmonary exercise testing and Wingate-like 30-s sprint test using upper limbs. The present study demonstrated that the functional classification score correlated with relative (r=0.90; P<0.0001) and absolute peak power (r=0.50; P=0.0353) and absolute mean power (r=0.93; P<0.0001) obtained from the Wingate-like 30-s sprint test and also correlated with absolute O(2) peak (r=0.68; P=0.0026) and O(2) at ventilatory threshold (r=0.71; P=0.0014), measured on cardiopulmonary exercise testing. Therefore, our findings support the functional classification created to classify athletes' functional capability on the court, which also correlated with aerobic and anaerobic performance parameters of the elite wheelchair basketball players.

  14. Safety assurance of assistive devices based on a two-level checking scheme.

    PubMed

    Lin, Hua-Sheng; Chang, Yi-Chu; Chen, Chiun-Fan; Luh, Jer-Junn; Chiou, Ying-Han; Lai, Jin-Shin; Kuog, T-S

    2005-01-01

    The increasing number of physically challenged individuals has boosted the demand of powered wheelchairs. This paper is on the subject of a DSP (Digital Signal Processors) based assistive system, which is associated with a two-level checking scheme. The assistive system takes on the M3S (Multiple Master Multiple Slave) regulation for the assurance of safety. The CAN (Control Area Networks) embedded module in the DSP provides robust transmission of information within the system. The hardware interfaces based on the two-level checking scheme is implemented in input devices (e.g. joystick, head control apparatus) and in output devices (e.g. manipulator, prime mover motors). PMID:17281868

  15. [Wheelchair basketball from the orthopedic viewpoint].

    PubMed

    Stöhr, H; Zimmer, M

    1997-09-01

    155 (aged 16 to 52 years) wheelchair basketball players were surveyed to determine athletic injuries and overload-syndromes. During their active participation in wheelchair basketball 60.6% of the players have suffered 272 injuries and overload-syndromes. Those were mainly localised at the upper extremity (74.6%). Acute injuries predominate with 57.7%. Strains of the finger joint and skin injuries were found to be the most common injuries. Myogelosis and tendinosis were the most common reported overload-syndromes. A significantly higher number of complaints were associated with wheelchair basketball participation at league-level and depending on the player's position. At the end of the article the means of possible additional disability and consequences to specify therapy and prevention for disabled will be discussed.

  16. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.

    PubMed

    Smith, P A; Glaser, R M; Petrofsky, J S; Underwood, P D; Smith, G B; Richard, J J

    1983-06-01

    The handrim propulsion system of most manual wheelchairs has been shown to be inefficient and stressful to the cardiovascular and pulmonary systems. Arm crank propulsion has been suggested to reduce these stresses. In order to compare conventional handrim wheelchair propulsion to arm crank type wheelchair propulsion, 16 volunteers (9 able-bodied, 7 wheelchair-dependent) operated both wheelchairs over level tiled and carpeted test courses at 3km.hr-1. The arm crank propelled wheelchair was operated in 3 gear ratios: low, medium and high. Exercise bouts were 5 minutes in duration. During the final minute of each test, oxygen uptake (VO2), net locomotive energy cost (NLEC), pulmonary ventilation (VE) and heart rate (HR) were monitored. Subjects exhibited significantly lower magnitude of these physiologic responses during arm crank wheelchair propulsion relative to handrim wheelchair propulsion for all gear drive ratios. Average percent differences were 30% and 32% for VO2; 50% and 50% for NLEC; 27% and 34% for VE; and 16% and 19% for HR on the tiled and carpeted test surfaces, respectively. From these data we conclude that arm crank wheelchair propulsion is less strenuous than conventional handrim wheelchair propulsion and that arm crank propulsion systems should be considered as a possible means to improve wheelchair design. PMID:6860094

  17. On the construction of a skill-based wheelchair navigation profile.

    PubMed

    Urdiales, Cristina; Pérez, Eduardo Javier; Peinado, Gloria; Fdez-Carmona, Manuel; Peula, Jose M; Annicchiarico, Roberta; Sandoval, Francisco; Caltagirone, Carlo

    2013-11-01

    Assisted wheelchair navigation is of key importance for persons with severe disabilities. The problem has been solved in different ways, usually based on the shared control paradigm. This paradigm consists of giving the user more or less control on a need basis. Naturally, these approaches require personalization: each wheelchair user has different skills and needs and it is hard to know a priori from diagnosis how much assistance must be provided. Furthermore, since there is no such thing as an average user, sometimes it is difficult to quantify the benefits of these systems. This paper proposes a new method to extract a prototype user profile using real traces based on more than 70 volunteers presenting different physical and cognitive skills. These traces are clustered to determine the average behavior that can be expected from a wheelchair user in order to cope with significant situations. Processed traces provide a prototype user model for comparison purposes, plus a simple method to obtain without supervision a skill-based navigation profile for any user while he/she is driving. This profile is useful for benchmarking but also to determine the situations in which a given user might require more assistance after evaluating how well he/she compares to the benchmark. Profile-based shared control has been successfully tested by 18 volunteers affected by left or right brain stroke at Fondazione Santa Lucia, in Rome, Italy.

  18. Towards an intelligent system for clinical guidance on wheelchair tilt and recline usage.

    PubMed

    Fu, Jicheng; Wiechmann, Paul; Jan, Yih-Kuen; Jones, Maria

    2012-01-01

    We propose to construct an intelligent system for clinical guidance on how to effectively use power wheelchair tilt and recline functions. The motivations fall into the following two aspects. (1) People with spinal cord injury (SCI) are vulnerable to pressure ulcers. SCI can lead to structural and functional changes below the injury level that may predispose individuals to tissue breakdown. As a result, pressure ulcers can significantly affect the quality of life, including pain, infection, altered body image, and even mortality. (2) Clinically, wheelchair power seat function, i.e., tilt and recline, is recommended for relieving sitting-induced pressures. The goal is to increase skin blood flow for the ischemic soft tissues to avoid irreversible damage. Due to variations in the level and completeness of SCI, the effectiveness of using wheelchair tilt and recline to reduce pressure ulcer risks has considerable room for improvement. Our previous study indicated that the blood flow of people with SCI may respond very differently to wheelchair tilt and recline settings. In this study, we propose to use the artificial neural network (ANN) to predict how wheelchair power seat functions affect blood flow response to seating pressure. This is regression learning because the predicted outputs are numerical values. Besides the challenging nature of regression learning, ANN may suffer from the overfitting problem which, when occurring, leads to poor predictive quality (i.e., cannot generalize). We propose using the particle swarm optimization (PSO) algorithm to train ANN to mitigate the impact of overfitting so that ANN can make correct predictions on both existing and new data. Experimental results show that the proposed approach is promising to improve ANN's predictive quality for new data. PMID:23366964

  19. A paired outcomes study comparing two pediatric wheelchairs for low-resource settings: the regency pediatric wheelchair and a similarly sized wheelchair made in Kenya.

    PubMed

    Rispin, Karen; Wee, Joy

    2014-01-01

    This comparative study of two similar wheelchairs designed for less-resourced settings provides feedback to manufacturers, informing ongoing improvement in wheelchair design. It also provides practical familiarity to clinicians in countries where these chairs are available, in their selection of prescribed wheelchairs. In Kenya, 24 subjects completed 3 timed skills and assessments of energy cost on 2 surfaces in each of 2 wheelchairs: the Regency pediatric chair and a pediatric wheelchair manufactured by the Association of the Physically Disabled of Kenya (APDK). Both wheelchairs are designed for and distributed in less-resourced settings. The Regency chair significantly outperformed the APDK chair in one of the energy cost assessments on both surfaces and in one of three timed skills tests.

  20. The Utility of Computer-Assisted Power Analysis Lab Instruction

    ERIC Educational Resources Information Center

    Petrocelli, John V.

    2007-01-01

    Undergraduate students (N = 47), enrolled in 2 separate psychology research methods classes, evaluated a power analysis lab demonstration and homework assignment. Students attended 1 of 2 lectures that included a basic introduction to power analysis and sample size analysis. One lecture included a demonstration of how to use a computer-based power…

  1. Wheelchair securement and occupant restraint system (WTORS) practices in public transit buses.

    PubMed

    Frost, Karen L; Bertocci, Gina; Salipur, Zdravko

    2013-01-01

    The purpose of this study was to characterize wheelchair tiedown and occupant restraint system (WTORS) usage in public transit buses based on observations of wheelchair and scooter (wheeled mobility device: WhMD) passenger trips. A retrospective review of on-board video surveillance recordings of WhMD trips on fixed-route, large accessible transit vehicles (LATVs) was performed. Two hundred ninety-five video recordings were collected for review and analysis during the period June 2007-February 2009. Results showed that 73.6% of WhMDs were unsecured during transit. Complete use of all four tiedowns was observed more frequently for manual wheelchairs (14.9%) and power wheelchairs (5.5%), compared to scooters (0.0%), and this difference was significant (p=0.013). Nonuse or misuse (lap belt use only) of the occupant restraint system occurred during 47.5% of WhMD trips. The most frequently observed (52.5%) use of the lap belt consisted of bus operators routing the lap belt around the WhMD seatback in an attempt to secure the WhMD. These findings support the need for development and implementation of WTORS with improved usability and/or WTORS that can be operated independently by WhMD passengers and improved WTORS training for bus operators.

  2. Biomechanics of Pediatric Manual Wheelchair Mobility.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  3. Medical Concerns among Wheelchair Road Racers.

    ERIC Educational Resources Information Center

    Martinez, Santos F.

    1989-01-01

    Results of a questionnaire administered to 43 wheelchair road racers suggest that their medical problems may lead to complications while training or racing. The study looked at the effects of training, injuries, bladder management, medications, and spasms. Sports medicine professionals are provided with information on handling disabled athletes.…

  4. Just a Body in a Wheelchair

    ERIC Educational Resources Information Center

    Rosen, Betty

    2014-01-01

    This article has no direct link with academics, children, students or those who teach: I severed almost all such connections several years ago. It describes the rewards and challenges of leading a reminiscence group of elderly people, all of whom suffer some level of memory loss and/or severe physical disability; most are wheelchair-bound. It…

  5. Reaching High Bookshelves From a Wheelchair

    NASA Technical Reports Server (NTRS)

    Walch, A. J.

    1982-01-01

    "Book retriever" allows people confined to wheelchairs to remove or replace books from upper shelves of library stacks. Retriever is mechanical device composed of aluminum tube approximately 5 feet long with two jaws at upper end. Jaws securely clamp selected book; they are thin enough to be inserted between adjacent books.

  6. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  7. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  8. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  9. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  10. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  11. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  12. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  13. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  14. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  15. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  16. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  17. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  18. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  19. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  20. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  1. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  2. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  3. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  4. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  5. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  6. Biomechanics of Pediatric Manual Wheelchair Mobility

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  7. Training Visual Control in Wheelchair Basketball Shooting

    ERIC Educational Resources Information Center

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  8. Transportation Safety Standards for Wheelchair Users: A Review of Voluntary Standards for Improved Safety, Usability, and Independence of Wheelchair-Seated Travelers

    ERIC Educational Resources Information Center

    Schneider, Lawrence W.; Manary, Miriam A.; Hobson, Douglas A.

    2008-01-01

    Safe transportation for wheelchair users who do not transfer to the vehicle seat when traveling in motor vehicles requires after-market wheelchair tiedown and occupant restraint systems (WTORS) to secure the wheelchair and provide crashworthy restraint for the wheelchair-seated occupant. In the absence of adequate government safety standards,…

  9. Seat height in handrim wheelchair propulsion.

    PubMed

    van der Woude, L H; Veeger, D J; Rozendal, R H; Sargeant, T J

    1989-01-01

    To study the effect of seat height on the cardiorespiratory system and kinematics in handrim wheelchair ambulation, nine non-wheelchair users participated in a wheelchair exercise experiment on a motor-driven treadmill. The subjects conducted five progressive exercise tests. After an initial try-out test, four tests were performed at different standardized seat heights of 100, 120, 140, and 160 degrees elbow extension (subject sitting erect, hands on the rim in top-dead-center = 12.00 hrs; full extension = 180 degrees). Each test consisted of four 3-minute exercise blocks at speeds of respectively 0.55, 0.83, 1.11, and 1.39 m.s-1 (2-5 km.hr-1). Analysis of variance revealed significant effects of seat height (P less than 0.05) on gross mechanical efficiency (ME), oxygen cost, push range, and push duration, and on the ranges of motion in the different arm segments and trunk. Mean ME appeared higher at the lower seat heights of 100 and 120 degrees elbow extension. This is reflected in an enhanced oxygen consumption at seat heights of 140 and 160 degrees elbow extension. Simultaneously, the push range showed a 15 to 20 degree decrease with increasing seat height, which is reflected in a decreased push duration. In the push phase, decreases in retroflexion and abduction/adduction of the upper arm were seen. The trunk shifted further forward, and the motion range in the elbow joint shifted to extension with increasing seat height. No shifts in minimum and maximum angular velocities were seen with increasing seat height. The results showed an interrelationship between wheelchair seat height and both cardiorespiratory and kinematic parameters. With respect to the cardiorespiratory system, the optimization of the wheelchair geometry, based on functional characteristics of the user, appears beneficial.

  10. Field test evaluation of aerobic, anaerobic, and wheelchair basketball skill performances.

    PubMed

    Vanlandewijck, Y C; Daly, D J; Theisen, D M

    1999-11-01

    Forty-six male wheelchair basketball players performed a set of field tests to evaluate aerobic capacity (25 m shuttle run), anaerobic capacity (30s sprint), and six specific wheelchair basketball skills. Overall test-retest reliability (n = 20) ranged from r = 0.65 to r = 0.97. To study the validity (criterion related evidence) of the shuttle run test, heart rate (HR) was recorded for 15 subjects, who also performed a continuous, multistage arm cranking exercise until volitional fatigue. Moderate to high correlations were calculated between shuttle run distances covered (1375 243,6 m) and VO2max (2208+/-461.6 mL/min) and POmax (93.8+/-17.97 W), measured during maximal arm cranking (respectively r = 0.64 and r = 0.87). Maximal HR during shuttle run (174.9+/-16.6 B/min) and arm cranking (169+/-14.21 B/min) were correlated (r = 0.78). High correlations between shuttle run test and anaerobic field tests, however, indicate high implication of anaerobic and wheelchair maneuverability performances. The 30 s sprint test was validated (n = 15) against a Wingate Anaerobic Test (WAnT) on a roller ergometer. Comparing distance (field test: 90+/-6.7 m) with mean power output (WAnT: 852.1+/-234.9 W) the correlation was r = 0.93. Principal components factor analysis identified 'wheelchair propulsion dynamics' and 'eye-hand-coordination' as the underlying constructs of the six skill proficiency measurements, accounting for 80.1% of the variance. In conclusion, the newly developed field test battery is a reliable and valid tool for anaerobic capacity and skill proficiency assessment in wheelchair basketball players.

  11. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses

    PubMed Central

    Foglyano, Kevin M.; Kobetic, Rudi; To, Curtis S.; Bulea, Thomas C.; Schnellenberger, John R.; Audu, Musa L.; Nandor, Mark J.; Quinn, Roger D.; Triolo, Ronald J.

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963

  12. Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses.

    PubMed

    Foglyano, Kevin M; Kobetic, Rudi; To, Curtis S; Bulea, Thomas C; Schnellenberger, John R; Audu, Musa L; Nandor, Mark J; Quinn, Roger D; Triolo, Ronald J

    2015-01-01

    Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963

  13. Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review

    PubMed Central

    Medola, Fausto Orsi; Elui, Valeria Meirelles Carril; Santana, Carla da Silva; Fortulan, Carlos Alberto

    2014-01-01

    Many aspects relating to equipment configuration affect users’ actions in a manual wheelchair, determining the overall mobility performance. Since the equipment components and configuration determine both stability and mobility efficiency, configuring the wheelchair with the most appropriate set-up for individual users’ needs is a difficult task. Several studies have shown the importance of seat/backrest assembly and the relative position of the rear wheels to the user in terms of the kinetics and kinematics of manual propulsion. More recently, new studies have brought to light evidence on the inertial properties of different wheelchair configurations. Further new studies have highlighted the handrim as a key component of wheelchair assembly, since it is the interface through which the user drives the chair. In light of the new evidence on wheelchair mechanics and propulsion kinetics and kinematics, this article presents a review of the most important aspects of wheelchair configuration that affect the users’ actions and mobility. PMID:24648656

  14. Displacement-load force-perceived weight relationships in lifting objects with power-assist

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2009-12-01

    This paper deals with the design of a 1-DOF power assist system (PAS) for lifting objects in vertical direction based on a hypothesis that pertains to operator's weight perception. We particularly studied the relationships among object's displacement, load force (vertical lifting force) and perceived weight for the objects lifted with the PAS. We also compared the load force features for power-assist-lifted objects to that for manually lifted objects for equal heaviness. Finally, we proposed using the findings to develop human-friendly PASs for lifting heavy objects in industries such as construction, military operations, manufacturing and assembly, logistics and transport, mining etc.

  15. Displacement-load force-perceived weight relationships in lifting objects with power-assist

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Mizanoor; Ikeura, Ryojun; Nobe, Masaya; Sawai, Hideki

    2010-01-01

    This paper deals with the design of a 1-DOF power assist system (PAS) for lifting objects in vertical direction based on a hypothesis that pertains to operator's weight perception. We particularly studied the relationships among object's displacement, load force (vertical lifting force) and perceived weight for the objects lifted with the PAS. We also compared the load force features for power-assist-lifted objects to that for manually lifted objects for equal heaviness. Finally, we proposed using the findings to develop human-friendly PASs for lifting heavy objects in industries such as construction, military operations, manufacturing and assembly, logistics and transport, mining etc.

  16. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain.

  17. The Injury Risk to Wheelchair Occupants Using Motor Vehicle Transportation

    PubMed Central

    Songer, Thomas J.; Fitzgerald, Shirley G.; Rotko, Katherine A.

    2004-01-01

    The transportation safety experience for persons using wheelchairs is largely unknown. Motor vehicle crash involvement and injury frequency was examined in a telephone interview completed by 596 wheelchair users. Overall, 42% were drivers. Most subjects also rode as passengers in private vehicles (87%) and public vehicles (61%). Wheelchair use as a seat in the vehicle was higher among passengers than drivers. Crash involvement was highest among drivers and lower in passengers. Reported injuries from non-crash scenarios, though, were higher in passengers compared to drivers. Persons seated in wheelchairs in vehicles appear to be at a greater safety risk. PMID:15319121

  18. A Procedure Manual for the Health Assistant Curriculum: Final Report.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., University Park.

    A secondary education health assistant curriculum procedure manual for six occupational areas is presented. The six areas, the number of procedures described for each area, and an example procedure follow: nursing assistant, forty-six (assist patient to and from a wheelchair); home health assistant, six (baby holds); medical/dental offices…

  19. Laser-assisted stopping power of a hot plasma for a system of correlated ions.

    PubMed

    Silva, C A; Galvão, R M

    1999-12-01

    The laser-assisted stopping power of a fully ionized plasma for the system of two correlated test charges is investigated. The general expressions for the stopping power are applied to a low-density and a low-temperature plasma in a low-energy beam-plasma experiment [J. Jacoby et al., Phys. Rev. Lett. 74, 1550 (1995)]. The effect of the interaction between the beam test charges, described by a correlation term, is to increase the stopping power of the laser-assisted plasma compared to the case where the charges are infinitely separated. However, the laser field affects the correlation between the test charges and contributes to decrease the plasma stopping power, as compared to the laser-free dicluster case.

  20. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classification.

    PubMed

    Crespo-Ruiz, Beatriz M; Del Ama-Espinosa, Antonio J; Gil-Agudo, Angel M

    2011-04-01

    The objective was to conduct a methodological pilot study to analyze wheelchair propulsion upper limb kinematics in standard competitive play considering the functional classification of each athlete. Ten basketball players with a functional classification ranging from 1 to 4 were included in the study. Four camcorders (Kinescan-IBV) and a treadmill for wheelchairs were used. Temporal parameters were analyzed and the upper limb kinematics was obtained using ISB recommendations. The value of the temporal parameters such as push phase duration, the ratio of push phase/recovery phase, contact, and propulsion angle seems to reduce as the functional classification increases. A methodological protocol has been developed that allows the analysis of kinematic characteristics of wheelchair propulsion in basketball players taking into account their functional classification.

  1. Training visual control in wheelchair basketball shooting.

    PubMed

    Oudejans, Raôul R D; Heubers, Sjoerd; Ruitenbeek, Jean-René J A C; Janssen, Thomas W J

    2012-09-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible. Participants drove under a large screen that initially blocked the basket. As soon as they saw the basket they shot. When training with the screen, shooting percentages increased. We conclude that visual control training is an effective method to improve wheelchair basketball shooting. The findings support the idea that perceptual-motor learning can be enhanced by manipulating relevant constraints in the training environment, even for expert athletes.

  2. Sport orientation model for wheelchair basketball athletes.

    PubMed

    Skordilis, E K; Stavrou, N A

    2005-06-01

    This study examined the validity of the Sport Orientation Questionnaire (Competitiveness: 13 items, Win Orientation: 6 items, and Goal Orientation: 6 items) in a sample of 195 wheelchair basketball athletes from the USA. Following evidence for sample-specific validity, the measurement model that underlies the questionnaire was examined. A short-form with 15 items for three factors of Competitiveness (7 items), Win Orientation (5 items) and Goal Orientation (3 items) fit the data (X2/df ratio=2.21, NNFI=.892, CFI=.991, RCFI=.935, SRMR=.058, RMSEA=.071). To evaluate the findings further, we cross-validated the short-form by sex. Structural equation modeling indicated there were similar measurement properties and factor structures for the men and women, indicating similar conceptualization of sport orientations. Meaningful comparisons across sex may be undertaken, since both men and women who are wheelchair basketball athletes perceive the three short-form SOQ factors similarly.

  3. Heart rates of participants in wheelchair sports.

    PubMed

    Coutts, K D

    1988-02-01

    The relative stress of participation in wheelchair basketball, volleyball, tennis, and racquetball were determined by monitoring the heart rates of wheelchair athletes. Heart rates were recorded for 5 seconds every 30 seconds during monitoring sessions of 10 min or longer under game or practice conditions. Subjects were volunteer paraplegic athletes with lesions below T5 or with equivalent disability according to an international sport classification system. Average heart rates were 89 beats/min for tennis 'practice', 96 for racquetball 'practice' 107 for volleyball 'practice', 114 for volleyball 'game', 127 for tennis 'game', 129 for basketball 'practice', 135 for racquetball 'game', and 149 for basketball 'game' conditions. The percentage of time when heart rates were above 140 beats/min, followed the same pattern as the average heart rates and ranged from 0 to 62%.

  4. Plutonium-238: an ideal power source for intracorporeal ventricular assist devices?

    PubMed

    Tchantchaleishvili, Vakhtang; Bush, Bryan S; Swartz, Michael F; Day, Steven W; Massey, H Todd

    2012-01-01

    Ventricular assist devices emerged as a widely used modality for treatment of end-stage heart failure; however, despite significant advances, external energy supply remains a problem contributing to significant patient morbidity and potential mortality. One potential solution is using the nuclear radioisotope Plutonium-238 as a power source. Given its very high energy density and long half-life, Plutonium-238 could eventually allow a totally intracorporeal ventricular assist system that lasts for the patient's lifetime. Risks, such as leakage and theft identified decades ago, still remain. However, it is possible that newer technologies could be used to overcome the system complexity and unreliability of the previous generations of nuclear-powered mechanical assist systems. Were it not for the remaining safety risks, Plutonium-238 would be an ideal energy source for this purpose.

  5. Biomechanics and energetics of basketball wheelchairs evolution.

    PubMed

    Ardigo', L P; Goosey-Tolfrey, V L; Minetti, A E

    2005-06-01

    The aim of this study was to investigate metabolic demand and mechanical work of different basketball wheelchairs that represented significant stages of its evolution from 1960 to date. Four subjects pushed each model on a basketball court at different speeds (from 0.90 to 2.35 m.s(-1)). During the trials, oxygen consumption was measured. Also, the different forms of mechanical work involved in the exercise were investigated. The oxygen consumption decreased from the oldest model to the next ones, remaining then quite constant. This was also the same with breathing and pushing frequencies. Both the work against air drag and rolling resistance decreased, air drag always played a minor role due to the low speeds investigated. The total mechanical work was highest in the oldest wheelchair and lowest in the newest one. The efficiencies were found similar for all the chairs but the most recent one (less efficient). Already by the 1970's the wheelchair economy had reached an acceptable level, at least partially because of its improved ergonomics. Yet, when focusing on the efficiency, the surprisingly low value with the newest model suggests factors other than the economy (need of better balance, responsiveness, and ground grip) as determinants of the evolution of this device. PMID:15895323

  6. Biomechanics and energetics of basketball wheelchairs evolution.

    PubMed

    Ardigo', L P; Goosey-Tolfrey, V L; Minetti, A E

    2005-06-01

    The aim of this study was to investigate metabolic demand and mechanical work of different basketball wheelchairs that represented significant stages of its evolution from 1960 to date. Four subjects pushed each model on a basketball court at different speeds (from 0.90 to 2.35 m.s(-1)). During the trials, oxygen consumption was measured. Also, the different forms of mechanical work involved in the exercise were investigated. The oxygen consumption decreased from the oldest model to the next ones, remaining then quite constant. This was also the same with breathing and pushing frequencies. Both the work against air drag and rolling resistance decreased, air drag always played a minor role due to the low speeds investigated. The total mechanical work was highest in the oldest wheelchair and lowest in the newest one. The efficiencies were found similar for all the chairs but the most recent one (less efficient). Already by the 1970's the wheelchair economy had reached an acceptable level, at least partially because of its improved ergonomics. Yet, when focusing on the efficiency, the surprisingly low value with the newest model suggests factors other than the economy (need of better balance, responsiveness, and ground grip) as determinants of the evolution of this device.

  7. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  8. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  9. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  10. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  11. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  12. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.205 Additional passengers who use wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek to... transportation to them on the bus....

  13. Learning to Drive a Wheelchair in Virtual Reality

    ERIC Educational Resources Information Center

    Inman, Dean P.; Loge, Ken; Cram, Aaron; Peterson, Missy

    2011-01-01

    This research project studied the effect that a technology-based training program, WheelchairNet, could contribute to the education of children with physical disabilities by providing a chance to practice driving virtual motorized wheelchairs safely within a computer-generated world. Programmers created three virtual worlds for training. Scenarios…

  14. Female Wheelchair Athletes and Changes to Body Image.

    ERIC Educational Resources Information Center

    Sands, Robert Thomas; Wettenhall, Robyn Sandra

    2000-01-01

    The effects of a psychological intervention program on attitudes of body image of six national female wheelchair basketball players was examined. As a result of the cognitive behavioral intervention program, physical self-perception increased for the wheelchair athletes and for 50 percent of the athletes on multidimensional components of body…

  15. Adolescents' Attitudes toward Wheelchair Users: A Provincial Survey

    ERIC Educational Resources Information Center

    Arbour-Nicitopoulos, Kelly P.

    2010-01-01

    The study aims were to examine (i) adolescents' attitudes towards family members who use a wheelchair in relation to other health problems and conditions, and (ii) the association between perceived wheelchair stigma and socio-demographic factors. Data were based on surveys from 2790 seventh to 12th grade students derived from the 2007 cycle of the…

  16. Training Patterns of Wheelchair Basketball Players in Turkey

    ERIC Educational Resources Information Center

    Tatar, Yasar

    2008-01-01

    The aim of this study was to analyze technical drills, warm-up and cool-down exercises used by wheelchair basketball players of the Turkish league in relation to training sessions. 33 male wheelchair basketball players participated in the study (mean age 26.6[plus or minus]5,95 years). All players reported that they used warm-up exercises before…

  17. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    NASA Astrophysics Data System (ADS)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  18. On the development of an expert system for wheelchair selection

    NASA Technical Reports Server (NTRS)

    Madey, Gregory R.; Bhansin, Charlotte A.; Alaraini, Sulaiman A.; Nour, Mohamed A.

    1994-01-01

    The presentation of wheelchairs for the Multiple Sclerosis (MS) patients involves the examination of a number of complicated factors including ambulation status, length of diagnosis, and funding sources, to name a few. Consequently, only a few experts exist in this area. To aid medical therapists with the wheelchair selection decision, a prototype medical expert system (ES) was developed. This paper describes and discusses the steps of designing and developing the system, the experiences of the authors, and the lessons learned from working on this project. Wheelchair Advisor, programmed in CLIPS, serves as diagnosis, classification, prescription, and training tool in the MS field. Interviews, insurance letters, forms, and prototyping were used to gain knowledge regarding the wheelchair selection problem. Among the lessons learned are that evolutionary prototyping is superior to the conventional system development life-cycle (SDLC), the wheelchair selection is a good candidate for ES applications, and that ES can be applied to other similar medical subdomains.

  19. Home in a Wheelchair: House Design Ideas for Easier Wheelchair Living.

    ERIC Educational Resources Information Center

    Chasin, Joseph

    Intended to aid in the building or purchase of a home suitable for use by a handicapped individual in a wheelchair, the booklet provides detailed design guidelines. Included is information on the decision process, finances, ramps, a car shelter, doors communication devices, electrical needs, windows, elevators and chair lifts, the kitchen, an…

  20. Scuba diving: taking the wheelchair out of wheelchair sports.

    PubMed

    Madorsky, J G; Madorsky, A G

    1988-03-01

    In the past, physicians prohibited patients with neuromuscular disease or disability from participating in scuba diving. This report highlights the opportunities that self-contained underwater breathing apparatus (scuba) affords to physically handicapped individuals, to move without assistive devices in a gravity-free environment. The experience of a person with T10 paraplegia is used to illustrate the applicability of a new system of evaluation, training, and certification for scuba diving to patients with a wide variety of disabilities, such as paraplegia, quadriplegia, amputation, cerebral palsy, and poliomyelitis. This review also discusses equipment needs, potential risks, and safety precautions. Physicians are encouraged to support those handicapped individuals who choose to explore the submerged two thirds of our planet for its recreational as well as its potential vocational opportunities.

  1. H∞-control of a rack-assisted electric power steering system

    NASA Astrophysics Data System (ADS)

    Dannöhl, C.; Müller, S.; Ulbrich, H.

    2012-04-01

    Electric power steering (EPS) is more and more in use for passenger cars. Compared with hydraulic steering systems there are many advantages, such as reduced CO2 emissions and the possibility to use the EPS motor torque for advanced driver assistance systems. One task of the steering system is to give the driver an adequate steering feel. This includes providing road feedback and the right level of assistance torque. This article describes the steering torque control of a rack-assisted EPS. The controller's task is to follow a reference steering torque quickly and accurately. First, a mechanical model of the EPS is shown. Then, an H∞-controller is designed, implemented and compared with other steering torque controllers. As steering torque discontinuities are a topic when looking at new control algorithms, the phenomenon and its cause are analysed using a detailed mechanical model. The results of this analysis are considered in the controller design.

  2. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  3. Gender differences in wheelchair marathon performance – Oita International Wheelchair Marathon from 1983 to 2011

    PubMed Central

    Lepers, Romuald; Stapley, Paul J; Knechtle, Beat

    2012-01-01

    Background The purpose of the study was (1) to examine the changes in participation and performance of males and females at the Oita International Wheelchair Marathon in Oita, Japan, between 1983 and 2011, and (2) to analyze the gender difference in the age of peak wheelchair marathon performance. Methods Age and time performance data for all wheelchair athletes completing the Oita International Wheelchair Marathon from 1983 to 2011 were analyzed. Results Mean annual number of finishers was 123 ± 43 for males and 6 ± 3 for females (5.0% ± 2.0% of all finishers), respectively. Mean age of overall finishers was significantly (P = 0.026) greater for males (41.3 ± 1.8 years) compared to females (32.7 ± 1.4 years). In contrast, there was no difference in the mean age of the top three overall finishers between males (35.8 ± 3.2 years) and females (31.6 ± 1.5 years). The race time of the top three overall finishers was significantly lower (P < 0.01) for males (1:34 ± 0:11 hours:minutes) compared to females (1:59 ± 0:20 hours:minutes), but it was not significantly different between male (2:06 ± 0:12 hours:minutes) and female (2:12 ± 0:18 hours:minutes) overall finishers. The mean gender difference in time was 26.1% ± 9.7% for the top three overall finishers. Conclusion Further studies are required to investigate the reasons for the low participation of females in wheelchair marathons and why the gender difference in marathon performance is much greater for disabled athletes than for able-bodied athletes. PMID:24198599

  4. Field-based physiological testing of wheelchair athletes.

    PubMed

    Goosey-Tolfrey, Victoria L; Leicht, Christof A

    2013-02-01

    The volume of literature on field-based physiological testing of wheelchair sports, such as basketball, rugby and tennis, is considerably smaller when compared with that available for individuals and team athletes in able-bodied (AB) sports. In analogy to the AB literature, it is recognized that performance in wheelchair sports not only relies on fitness, but also sport-specific skills, experience and technical proficiency. However, in contrast to AB sports, two major components contribute towards 'wheeled sports' performance, which are the athlete and the wheelchair. It is the interaction of these two that enable wheelchair propulsion and the sporting movements required within a given sport. Like any other athlete, participants of wheelchair sports are looking for efficient ways to train and/or analyse their technique and fitness to improve their performance. Consequently, laboratory and/or field-based physiological monitoring tools used at regular intervals at key time points throughout the year must be considered to help with training evaluation. The present review examines methods available in the literature to assess wheelchair sports fitness in a field-based environment, with special attention on outcome variables, validity and reliability issues, and non-physiological influences on performance. It also lays out the context of field-based testing by providing details about the Paralympic court sports and the impacts of a disability on sporting performance. Due to the limited availability of specialized equipment for testing wheelchair-dependent participants in the laboratory, the adoption of field-based testing has become the preferred option by team coaches of wheelchair athletes. An obvious advantage of field-based testing is that large groups of athletes can be tested in less time. Furthermore, athletes are tested in their natural environment (using their normal sports wheelchair set-up and floor surface), potentially making the results of such testing

  5. Field-based physiological testing of wheelchair athletes.

    PubMed

    Goosey-Tolfrey, Victoria L; Leicht, Christof A

    2013-02-01

    The volume of literature on field-based physiological testing of wheelchair sports, such as basketball, rugby and tennis, is considerably smaller when compared with that available for individuals and team athletes in able-bodied (AB) sports. In analogy to the AB literature, it is recognized that performance in wheelchair sports not only relies on fitness, but also sport-specific skills, experience and technical proficiency. However, in contrast to AB sports, two major components contribute towards 'wheeled sports' performance, which are the athlete and the wheelchair. It is the interaction of these two that enable wheelchair propulsion and the sporting movements required within a given sport. Like any other athlete, participants of wheelchair sports are looking for efficient ways to train and/or analyse their technique and fitness to improve their performance. Consequently, laboratory and/or field-based physiological monitoring tools used at regular intervals at key time points throughout the year must be considered to help with training evaluation. The present review examines methods available in the literature to assess wheelchair sports fitness in a field-based environment, with special attention on outcome variables, validity and reliability issues, and non-physiological influences on performance. It also lays out the context of field-based testing by providing details about the Paralympic court sports and the impacts of a disability on sporting performance. Due to the limited availability of specialized equipment for testing wheelchair-dependent participants in the laboratory, the adoption of field-based testing has become the preferred option by team coaches of wheelchair athletes. An obvious advantage of field-based testing is that large groups of athletes can be tested in less time. Furthermore, athletes are tested in their natural environment (using their normal sports wheelchair set-up and floor surface), potentially making the results of such testing

  6. A Control Method Switching from Vibration Reduction to Positioning for Power Assisted Moving Flexible Structures

    NASA Astrophysics Data System (ADS)

    Fujimoto, Isao; Hara, Susumu; Yamada, Yoji; Morita, Yoshifumi; Seshimo, Kiyoshi; Higashi, Masatake

    This paper shows control methods of the smooth switching from vibration reduction when a worker conveys flexible structures to their positioning. One of the important issues in this study is there are no knowledge of the goal position before conveying an object and the terminal time when worker finishes conveying. Then one of sensors can detect the displacement of the object not anytime but only the time when the position is settled. Additionally, an overshoot has to be prevented when there are other objects at the goal position. For clearing up these issues, we applied an adaptive nonstationary control method and showed its effectiveness. And two methods for determining the goal position with limited sensor signals are proposed. For showing the utility of the proposed methods, we conducted four kinds of experiments of positioning a flexible object: 1) only the power assist control, 2) the vibration control with power assist control, 3) the vibration and position control with power assist control and laser sensor, 4) the vibration and position control with power assist control without laser sensor. The results show that the first method is useful for accurate positioning in a short time. The second method does not need an additional sensor used in the first method. However, this method takes a longer time for accurate positioning settling. Adaptive nonstationary control with smooth mode switching is useful when the additional sensor signal is input in the positioning stage only. Then, the results also show that vibration control is important when not only conveying but also positioning because of preventing the overshoot. The proposed methods are useful because it can position any undetermined goal position before conveying.

  7. Development of high speed power thyristor: The gate assisted turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Hamilton, D. R.; Brewster, J.; Frobenius, D.; Desmond, T.

    1972-01-01

    A high speed power switch with unique turn-off capability was developed. This gate-assisted turn-off thyristor was rated at 609 V and 50 A with turn-off times of 2 microsec. Twenty-two units were delivered for evaluation in a series inverter circuit. In addition, test circuits designed to relate to the series inverter application were built and demonstrated.

  8. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.

  9. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered. PMID:24699972

  10. Development of a Pre-Prototype Power Assisted Glove End Effector for Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this program was to develop an EVA power tool which is capable of performing a variety of functions while at the same time increasing the EVA crewmember's effectiveness by reducing hand fatigue associated with gripping tools through a pressurized EMU glove. The Power Assisted Glove End Effector (PAGE) preprototype hardware met or exceeded all of its technical requirements and has incorporated acoustic feedback to allow the EVA crewmember to monitor motor loading and speed. If this tool is to be developed for flight use, several issues need to be addressed. These issues are listed.

  11. Factors Associated With the Use of Standardized Power Mobility Skills Assessments Among Assistive Technology Practitioners.

    PubMed

    Jenkins, Gavin R; Vogtle, Laura K; Yuen, Hon K

    2015-01-01

    This study investigated self-reported prevalence of and factors affecting clinicians' use of standardized assessments when evaluating clients for power mobility devices (PMDs), and explored assessments clinicians typically use when carrying out PMD evaluation. An e-mail survey was sent to assistive technology professionals listed in the Rehabilitation Engineering and Assistive Technology Society of North America directory. Three hundred fifty-four respondents, qualified to conduct formal power mobility skills assessments, completed the online survey. Of those, 122 (34.5%) respondents reported that they were aware of the presence of standardized performance-based power mobility skills assessments, but only 28 (7.9%) used these assessments in their practice. Multivariate analysis revealed that the odds of the respondents who use the standardized assessments were 18 times higher for those who were aware of the presence of these assessments than those who were not (adjusted odds ratio [OR] OR = 17.85, P < 0.0001). The odds of using the standardized assessment for respondents who did not identify themselves as occupational or physical therapists were five times higher than those who were therapists (adjusted OR = 0.20, P < 0.0001). This survey revealed that the assistive technology practitioners who recommend PMDs mainly use non-standardized mobility skills assessments.

  12. Constraints influencing sports wheelchair propulsion performance and injury risk

    PubMed Central

    2013-01-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. A potential issue for many wheelchair athletes is how to train hard to maximise performance while also reducing the risk of injuries, particularly to the shoulder due to the accumulation of stress placed on this joint during activities of daily living, training and competition. The overall purpose of this narrative review was to use the constraints-led approach of dynamical systems theory to examine how various constraints acting upon the wheelchair-user interface may alter hand rim wheelchair performance during sporting activities, and to a lesser extent, their injury risk. As we found no studies involving Paralympic athletes that have directly utilised the dynamical systems approach to interpret their data, we have used this approach to select some potential constraints and discussed how they may alter wheelchair performance and/or injury risk. Organism constraints examined included player classifications, wheelchair setup, training and intrinsic injury risk factors. Task constraints examined the influence of velocity and types of locomotion (court sports vs racing) in wheelchair propulsion, while environmental constraints focused on forces that tend to oppose motion such as friction and surface inclination. Finally, the ecological validity of the research studies assessing wheelchair propulsion was critiqued prior to recommendations for practice and future research being given. PMID:23557065

  13. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  14. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  15. Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Graf, Adam; Krzak, Joseph J.; Reiners, Kathryn; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  16. The effects of rear-wheel camber on the mechanical parameters produced during the wheelchair sprinting of handibasketball athletes.

    PubMed

    Faupin, Arnaud; Campillo, Philippe; Weissland, Thierry; Gorce, Philippe; Thevenon, André

    2004-05-01

    The wheel camber of a wheelchair is a significant parameter that must be taken into account in the search for optimal regulation of a wheelchair. This study examined the effects of different rear-wheel camber (9 degrees , 12 degrees and 15 degrees )-today used mainly in the handibasket championship-on the various kinetic and kinematic parameters of the propulsion cycle. Eight males, all players in the French handibasket championship, were asked to participate in this study. They performed three 8 s maximal sprints as measured by a wheelchair ergometer, 9 degrees , 12 degrees , and 15 degrees of rear-wheel camber. The results of our study show that residual torque increases in proportion to the increase in wheel camber. This could explain other study results, which show a decrease in mean velocity and an increase in both power output and time of the propelling phase, in relation to the wheel camber. These results should provide the information necessary for optimal wheelchair regulation.

  17. Simulation model of a lever-propelled wheelchair.

    PubMed

    Sasaki, Makoto; Ota, Yuki; Hase, Kazunori; Stefanov, Dimitar; Yamaguchi, Masaki

    2014-01-01

    Wheelchair efficiency depends significantly on the individual adjustment of the wheelchair propulsion interface. Wheelchair prescription involves reconfiguring the wheelchair to optimize it for specific user characteristics. Wheelchair tuning procedure is a complicated task that is performed usually by experienced rehabilitation engineers. In this study, we report initial results from the development of a musculoskeletal model of the wheelchair lever propulsion. Such a model could be used for the development of new advanced wheelchair approaches that allow wheelchair designers and practitioners to explore virtually, on a computer, the effects of the intended settings of the lever-propulsion interface. To investigate the lever-propulsion process, we carried out wheelchair lever propulsion experiments where joint angle, lever angle and three-directional forces and moments applied to the lever were recorded during the execution of defined propulsion motions. Kinematic and dynamic features of lever propulsion motions were extracted from the recorded data to be used for the model development. Five healthy male adults took part in these initial experiments. The analysis of the collected kinematic and dynamic motion parameters showed that lever propulsion is realized by a cyclical three-dimensional motion of upper extremities and that joint torque for propulsion is maintained within a certain range. The synthesized propulsion model was verified by computer simulation where the measured lever-angles were compared with the angles generated by the developed model simulation. Joint torque amplitudes were used to impose the torque limitation to the model joints. The results evidenced that the developed model can simulate successfully basic lever propulsion tasks such as pushing and pulling the lever.

  18. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain. PMID:27134151

  19. Design considerations for a personalized wheelchair navigation system.

    PubMed

    Ding, Dan; Parmanto, Bambang; Karimi, Hassan A; Roongpiboonsopit, Duangduen; Pramana, Gede; Conahan, Thomas; Kasemsuppakorn, Piyawan

    2007-01-01

    Individuals with mobility impairments such as wheelchair users are often at a disadvantage when traveling to a new place, as their mobility can be easily affected by environmental barriers, and as such, even short trips can be difficult and perhaps impossible. We envision a personalized wheelchair navigation system based on a PDA equipped with wireless Internet access and GPS that can provide adaptive navigation support to wheelchair users in any geographic environment. Requirements, architectures and components of such a system are described in this paper. PMID:18003077

  20. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.

    PubMed

    Heo, Pilwon; Kim, Jung

    2014-11-01

    This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue. PMID:24860025

  1. Power-assistive finger exoskeleton with a palmar opening at the fingerpad.

    PubMed

    Heo, Pilwon; Kim, Jung

    2014-11-01

    This paper presents a powered finger exoskeleton with an open fingerpad, named the Open Fingerpad eXoskeleton (OFX). The palmar opening at the fingerpad allows for direct contact between the user's fingerpad and objects in order to make use of the wearer's own tactile sensation for dexterous manipulation. Lateral side walls at the end of the OFX's index finger module are equipped with custom load cells for estimating the wearer's pinch grip force. A pneumatic cylinder generates assistance force, which is determined according to the estimated pinch grip force. The OFX transmits the assistance force directly to the objects without exerting pressure on the wearer's finger. The advantage of the OFX over an exoskeleton with a closed fingerpad was validated experimentally. During static and dynamic manipulation of a test object, the OFX exhibited a lower safety margin than the closed exoskeleton, indicating a higher ability to adjust the grip force within an appropriate range. Furthermore, the benefit of force assistance in reducing the muscular burden was observed in terms of muscle fatigue during a static pinch grip. The median frequency (MDF) of the surface electromyography (sEMG) signal from the first dorsal interosseous (FDI) muscle displayed a lower reduction rate for the assisted condition, indicating a lower accumulation rate of muscle fatigue.

  2. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  3. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    PubMed

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury.

  4. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    PubMed Central

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  5. Comparison of Healthcare Workers Transferring Patients Using Either Conventional Or Robotic Wheelchairs: Kinematic, Electromyographic, and Electrocardiographic Analyses.

    PubMed

    Matsumoto, Hiromi; Ueki, Masaru; Uehara, Kazutake; Noma, Hisashi; Nozawa, Nobuko; Osaki, Mari; Hagino, Hiroshi

    2016-01-01

    Objectives. The aim of this study was to compare the musculoskeletal and physical strain on healthcare workers, by measuring range of motion (ROM), muscle activity, and heart rate (HR), during transfer of a simulated patient using either a robotic wheelchair (RWC) or a conventional wheelchair (CWC). Methods. The subjects were 10 females who had work experience in transferring patients and another female adult as the simulated patient to be transferred from bed to a RWC or a CWC. In both experimental conditions, ROM, muscle activity, and HR were assessed in the subjects using motion sensors, electromyography, and electrocardiograms. Results. Peak ROM of shoulder flexion during assistive transfer with the RWC was significantly lower than that with the CWC. Values for back muscle activity during transfer were lower with the RWC than with the CWC. Conclusions. The findings suggest that the RWC may decrease workplace injuries and lower back pain in healthcare workers. PMID:27372213

  6. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  7. Impact of Surface Type, Wheelchair Weight, and Axle Position on Wheelchair Propulsion by Novice Older Adults

    PubMed Central

    Cowan, Rachel E.; Nash, Mark S.; Collinger, Jennifer L.; Koontz, Alicia M.; Boninger, Michael L.

    2009-01-01

    Objective To examine the impact of surface type, wheelchair weight, and rear axle position on older adult propulsion biomechanics. Design Crossover trial. Setting Biomechanics laboratory. Participants Convenience sample of 53 ambulatory older adults with minimal wheelchair experience (65−87y); men = 20, women = 33. Intervention Participants propelled 4 different wheelchair configurations over 4 surfaces; tile, low carpet, high carpet, and an 8% grade ramp (surface, chair order randomized). Chair configurations included: (1) unweighted chair with an anterior axle position, (2) 9.05kg weighted chair with an anterior axle position, (3) unweighted chair with a posterior axle position (Δ0.08m), and (4) 9.05kg weighted chair with a posterior axle position (Δ0.08m). Weight was added to a titanium folding chair, simulating the weight difference between very light and depot wheelchairs. Instrumented wheels measured propulsion kinetics. Main Outcome Measures Average self-selected velocity, push-frequency, stroke length, peak resultant and tangential force. Results Velocity decreased as surface rolling resistance or chair weight increased. Peak resultant and tangential forces increased as chair weight increased, surface resistance increased, and with a posterior axle position. The effect of a posterior axle position was greater on high carpet and the ramp. The effect of weight was constant, but more easily observed on high carpet and ramp. The effects of axle position and weight were independent of one another. Conclusion Increased surface resistance decreases self-selected velocity and increases peak forces. Increased weight decreases self-selected velocity and increases forces. Anterior axle positions decrease forces, more so on high carpet. Effects of weight and axle position are independent. Greatest reductions in peak forces occur in lighter chairs with anterior axle positions. PMID:19577019

  8. Real-time performance of a hands-free semi-autonomous wheelchair system using a combination of stereoscopic and spherical vision.

    PubMed

    Nguyen, Jordan S; Nguyen, Tuan Nghia; Tran, Yvonne; Su, Steven W; Craig, Ashley; Nguyen, Hung T

    2012-01-01

    This paper is concerned with the operational performance of a semi-autonomous wheelchair system named TIM (Thought-controlled Intelligent Machine), which uses cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. The unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. Combining this vision system with a shared control strategy provides intelligent assistive guidance during wheelchair navigation, and can accompany any hands-free wheelchair control technology for people with severe physical disability. Testing of this system in crowded dynamic environments has displayed the feasibility and real-time performance of this system when assisting hands-free control technologies, in this case being a proof-of-concept brain-computer interface (BCI).

  9. WISDOM: wheelchair inertial sensors for displacement and orientation monitoring

    NASA Astrophysics Data System (ADS)

    Pansiot, J.; Zhang, Z.; Lo, B.; Yang, G. Z.

    2011-10-01

    Improved wheelchair design in recent years has significantly increased the mobility of people with disabilities, which has also enhanced the competitive advantage of wheelchair sports. For the latter, detailed assessment of biomechanical factors influencing individual performance and team tactics requires real-time wireless sensing and data modelling. In this paper, we propose the use of a miniaturized wireless wheel-mounted inertial sensor for wheelchair motion monitoring and tracking in an indoor sport environment. Based on a combined use of 3D microelectromechanical system (MEMS) gyroscopes and 2D MEMS accelerometers, the proposed system provides real-time velocity, heading, ground distance covered and motion trajectory of the wheelchair across the sports court. The proposed system offers a number of advantages compared to existing platforms in terms of size, weight and ease of installation. Beyond sport applications, it also has important applications for training and rehabilitation for people with disabilities.

  10. Using Virtual Reality to Dynamically Setting an Electrical Wheelchair

    NASA Astrophysics Data System (ADS)

    Dir, S.; Habert, O.; Pruski, A.

    2008-06-01

    This work uses virtual reality to find or refine in a recurring way the best adequacy between a person with physically disability and his electrical wheelchair. A system architecture based on "Experiment→Analyze and decision-making→Modification of the wheelchair" cycles is proposed. This architecture uses a decision-making module based on a fuzzy inference system which has to be parameterized so that the system converges quickly towards the optimal solution. The first challenge consists in computing criteria which must represent as well as possible particular situations that the user meets during each navigation experiment. The second challenge consists in transforming these criteria into relevant modifications about the active or non active functionalities or into adjustment of intrinsic setting of the wheelchair. These modifications must remain most stable as possible during the successive experiments. Objectives are to find the best wheelchair to give a beginning of mobility to a given person with physically disability.

  11. Influence of Handrim Wheelchair Propulsion Training in Adolescent Wheelchair Users, A Pilot Study

    PubMed Central

    Dysterheft, Jennifer L.; Rice, Ian M.; Rice, Laura A.

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13–18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury. PMID:26042217

  12. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.

    PubMed

    Dysterheft, Jennifer L; Rice, Ian M; Rice, Laura A

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13-18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  13. Sustained skeletal muscle power for cardiac assist devices: implications of metabolic constraints.

    PubMed

    Reichenbach, S H; Egrie, G D; Marinache, S M; Gustafson, K J; Farrar, D J; Hill, J D

    2001-01-01

    A device to harness power from skeletal muscle contracting in a linear configuration is under development. This application requires a sustained level of power that is dependent upon muscle mechanics and metabolic properties. A biomechanical muscle model and a metabolic model constructed from experimental data were used to predict maximum power available in a sustainable region of loading and stimulation conditions. Latissimus dorsi (LD) of four goats were evaluated in vivo after a 10 week in situ conditioning protocol with an implanted Telectronics myostimulator. The LD insertion was reconnected to a hydraulic loading system, allowing isometric and isotonic contractions for biomechanical characterization. Metabolic utilization was measured by a thermister based myothermic technique. Brief fatigue tests of working isotonic contractions revealed stimulation conditions associated with sustained power. The results show metabolic utilization was dependent on contraction duration, rate, force, and stroke. The region of sustainable contractions was found for a range of durations of 0.1 to 0.6 sec and rates of 10 to 120 bpm. The boundary for the sustainable power region was well approximated by a constant value of metabolic utilization. A constant duty cycle (contraction to cycle duration ratio) also approximated the sustained power but differed by as much as 30% during the shorter contraction durations. The results demonstrate that a mechanical muscle model can predict maximum sustained power when the operating conditions are constrained to a sustainable range determined by a metabolic model. Furthermore, metabolic constraints influence the optimum conditions for sustained power needed in the design of skeletal muscle powered assist devices.

  14. Guidelines for safe transportation of children in wheelchairs.

    PubMed

    DiGaudio, K M; Msall, M E

    1991-06-01

    Advocacy efforts by health care professionals have prompted state legislative changes mandating the use of car seats and seat belts by children. These initiatives have greatly improved the level of safety in transportation of nonhandicapped children. Despite these positive changes, the transportation needs of nonambulatory children have not been addressed. In addition, implementation of Public Law 99-457 will result in larger numbers of young children with motor impairments requiring transportation to preschool early intervention programs. This study sought to describe how safely children in wheelchairs are transported. Observations of subjects were made as they were transported by their families or agencies at a residential summer camp, a preschool program for children with developmental disabilities, and a school for children with cerebral palsy. A safety score system was developed based on laboratory studies conducted on wheelchair restraint systems. This observation tool described the position of the wheelchair in the vehicle, the occupant restraint system, and the wheelchair restraint system. These structured observations revealed inadequate safety measures. Comparisons of safety scores of subjects transported by families with those transported by agencies were not found to have statistically significant differences. The findings of this study demonstrate a gap between minimal safety standards in wheelchair transportation and actual observed practices. In an effort to promote safe transportation practices of children regardless of their developmental differences, we present guidelines for health care providers for monitoring safe wheelchair practices in family, school, and community settings.

  15. Acceptance and meanings of wheelchair use in senior stroke survivors.

    PubMed

    Barker, Donna J; Reid, Denise; Cott, Cheryl

    2004-01-01

    The purpose of this qualitative study was to gain understanding of the lived experience of senior stroke survivors who used prescribed wheelchairs in their homes and communities. The study involved semistructured, in-depth interviews that were conducted with 10 participants, ages 70 to 80 years old, who had used a wheelchair for a mean of 5.6 years. A constant comparative inductive method of analysis was performed. Three different categories of acceptance of wheelchair use were identified; reluctant acceptance, grateful acceptance, and internal acceptance. Increased mobility, varied social response, and loss of some valued roles were common to all three wheelchair acceptance categories. Aspects of level of burden, freedom, and spontaneity varied in degree among the three acceptance categories. As the wheelchair provided opportunity for increased continuity in the lives of these stroke survivors, it appeared to be accepted more fully and viewed more positively. Prestroke lifestyle and values need to be carefully considered in order to maximize acceptance of wheelchair use among senior stroke survivors.

  16. Wheelchair rider risk in motor vehicles: a technical note.

    PubMed

    Shaw, G

    2000-01-01

    A better understanding of the risk involved in riding different sizes and types of motor vehicles is required to make informed decisions regarding a reasonable level of protection for wheelchair riders. Wheelchair rider accident information that can be used to estimate risk is quite limited. This paper reviewed the resources available, including the National Electronic Injury Surveillance System database. Motor vehicle accident data for the general public were analyzed in order to better characterize wheelchair rider risk. Using the National Safety Council annual transportation mode fatality rates and the (inverse) relationship of vehicle mass and occupant fatality rate, fatality rates for vehicles that transport wheelchair riders (minivans, vans, paratransit vans, and small and large buses) were estimated. Despite the large margins of error that must be assumed for accident data and the conclusions drawn from it, the available information suggests that 1) the majority of wheelchair rider injuries could be prevented by providing protection for abrupt vehicle maneuvers; 2) the type, size, and mass of the vehicle have a substantial effect on the fatality rate, although this effect decreases for heavier (<3,000 kg) vehicles; and 3) wheelchair riders who cannot properly use tiedown and occupant restraint systems or who are frail would face a lower risk of injury if transported in larger vehicles.

  17. Development and pilot testing of a kneeling ultralight wheelchair design.

    PubMed

    Mattie, Johanne L; Leland, Danny; Borisoff, Jaimie F

    2015-01-01

    "Dynamic wheeled mobility" offers "on the fly" seating adjustments for wheelchair users such that various activities performed throughout the day can be matched by an appropriate seat position. While this has benefits for user participation and health, the added weight in existing dynamic wheelchairs may impact the user's ability to transport the frame, e.g. into cars. Other dynamic features to enable more participation avenues are also desirable. This paper outlines the development of a "kneeling" ultralight wheelchair design that offers dynamic wheeled mobility functionality at a weight that is comparable to many existing ultralight wheelchairs. In addition, the wheelchair's kneeling function allows a lowered seat position to facilitate low-to-the-ground tasks such as floor transfers and other activities where sustained low level reaching may be required (e.g. playing with children, changing a tire, etc.). This paper also describes the development and pilot testing of an end user evaluation protocol designed to validate the wheelchair's functionality and performance. Successful realization and commercialization of the technology would offer a novel product choice for people with mobility disabilities, and that may support daily activities, health, improved quality of life, and greater participation in the community. PMID:26737420

  18. Cardiorespiratory fitness and muscular strength of wheelchair users.

    PubMed Central

    Davis, G. M.; Kofsky, P. R.; Kelsey, J. C.; Shephard, R. J.

    1981-01-01

    The classification of lower-limb disabilities is commonly based on the site of the spinal cord lesion or the amount of functional muscle. Another important variable in assessing wheelchair users is their ability to carry out the activities of daily living. The cardiorespiratory fitness of those with lower-limb disabilities is usually assessed with arm-ergometry and wheelchair tests, each of which has some advantages. Muscle strength and endurance are also important aspects of the disabled person's ability to function. Fitness is often poor in the disabled, and normal wheelchair use does not seem to prove an adequate training stimulus. Exercise with an arm ergometer and with pulleys and participation in vigorous wheelchair sports can improve physical condition. Participation in exercise programs should be based on the results of a fitness assessment and on the level of the spinal cord lesion in those with paraplegia. Progression in such programs should be gradual to ensure that the exerciser does not become discouraged and drop out of classes before fitness is increased. Data on wheelchair athletes suggest that, with persistence, many individuals in wheelchairs can adjust relatively well to their disabilities. Images FIG. 1 FIG. 2 PMID:6459841

  19. Aerobic capacity and anaerobic threshold of wheelchair basketball players.

    PubMed

    Rotstein, A; Sagiv, M; Ben-Sira, D; Werber, G; Hutzler, J; Annenburg, H

    1994-03-01

    This study evaluated the aerobic capacity and anaerobic threshold of national level Israeli wheelchair basketball players. Subjects were tested working on a wheelchair rolling on a motor driven treadmill and on an arm cycle ergometer. Metabolic and cardiopulmonary parameters were measured during graded maximal exercise tests. Blood lactic acid (LA) concentration was measured in the intervals between loads during the test on the wheelchair. Heart rate (HR) and % heart rate reserve (%HRR) corresponding to the anaerobic threshold (4 mM blood LA) were evaluated while working on the wheelchair rolling on a motor driven treadmill. While working on the wheelchair the following peak exercise values were obtained: VO2 = 24.7 ml.kg/min, VE = 92.09 l/min HR = 181.5 b/min and R = 1.22. Values corresponding to the anaerobic threshold were found to be, HR = 139 b/min and %HRR = 57.02. Low correlations were obtained between peak exercise VO2 and VE measured while working on the wheelchair and those measured with arm cycle ergometer (r = 0.57 p = 0.137 and r = 0.4 p = 0.233 respectively). As athletes, subjects in the present study may be classified as having a low aerobic capacity and anaerobic threshold. It is also concluded that the ergometer type may have an important influence on test results.

  20. Quantification of activity during wheelchair basketball and rugby at the National Veterans Wheelchair Games: A pilot study.

    PubMed

    Sporner, Michelle L; Grindle, Garrett G; Kelleher, Annmarie; Teodorski, Emily E; Cooper, Rosemarie; Cooper, Rory A

    2009-09-01

    To date, no published data exists on distances and speeds traveled by rugby or basketball players during game play. The purpose of this study was to provide quantitative information of selected characteristics of wheelchair basketball and rugby game play. A miniaturized data logger was used to collect the distance traveled, average velocity, activity time, and number of starts and stops during basketball and rugby games. Participants were recruited prior to wheelchair basketball and rugby tournaments during the 2007 and 2008 National Veterans Wheelchair Games. Inclusion criteria were age 18 years or older and been participating in wheelchair basketball or rugby. The wheelchair rugby athletes on average traveled 2364.78 +/- 956.35 meters at 1.33 +/- 0.25 m/sec with 242.61 +/- 80.31 stops and starts in 29.98 +/- 11.79 min of play per game. The wheelchair basketball athletes on average traveled 2679.52 +/- 1103.66 m at 1.48 +/- 0.13 m/sec with 239.78 +/- 60.61 stops and starts in 30.28 +/- 9.59 min of play per game. Previous research has not reported basketball or rugby game play variables such as these, making this data set unique. The information could be used by players and coaches to create training protocols to better prepare for game conditions.

  1. Computer-assisted high-speed balancing of T53 and T55 power turbines

    NASA Technical Reports Server (NTRS)

    Pojeta, T. J.; Walter, T. J.

    1979-01-01

    Standard overhaul procedures for U.S. Army helicopter engines require operational vibration acceptance testing after rebuild. Engines frequently experience vibrations which exceed allowable overhaul work requirement limits. The rework/retest cycle for these engines constitute a significant cost penalty to the overhaul center. This paper reviews both analytical and test data which indicate bending critical speeds within the operating speed range of the low-speed power turbine rotor as the cause of most test cell rejections. High-speed balancing techniques are applicable and are capable of significantly reducing this reject rate. A complete prototype computer-assisted high-speed balancing system for assembled T53 and T55 power turbine rotors is described.

  2. Repositioning a slumped person in a wheelchair. A biomechanical analysis of three transfer techniques.

    PubMed

    Varcin-Coad, L; Barrett, R

    1998-11-01

    The purpose of this study was to determine the effect of three lifting techniques (unassisted lift, vertically assisted lift, and horizontally assisted lift) and two patient masses (65 kg and 75 kg) on loads acting on the lifter's spine when repositioning a wheelchair bound patient to a more upright sitting position. A static biomechanical model was used in conjunction with ground reaction force and videographic data to estimate compression and shear forces at the lumbosacral (L5/S1) joint. Results indicated that: L5/S1 compression forces associated with both unassisted and assisted transfers were of sufficient magnitude to warrant mechanical assistance; the two person technique with the assistant pushing the legs toward the back of the chair was associated with the lowest spinal loads; and L5/S1 compression forces were significantly greater for the vertically assisted lift compared to the unassisted lift. If a manual transfer is to be performed, the horizontally assisted lift is recommended to minimize loads on the lumbar spine of the lifter.

  3. Respondent driven sampling of wheelchair users: A lack of traction?

    PubMed Central

    Bourke, John A.; Schluter, Philip J.; Hay-Smith, E. Jean C.; Snell, Deborah L.

    2016-01-01

    Background: Internationally, wheelchair users are an emerging demographic phenomenon, due to their increased prevalence and rapidly increasing life-span. While having significant healthcare implications, basic robust epidemiological information about wheelchair users is often lacking due, in part, to this population’s ‘hidden’ nature. Increasingly popular in epidemiological research, Respondent Driven Sampling (RDS) provides a mechanism for generating unbiased population-based estimates for hard-to-reach populations, overcoming biases inherent within other sampling methods. This paper reports the first published study to employ RDS amongst wheelchair users. Methods: Between October 2015 and January 2016, a short, successfully piloted, internet-based national survey was initiated. Twenty seeds from diverse organisations were invited to complete the survey then circulate it to peers within their networks following a well-defined protocol. A predetermined reminder protocol was triggered when seeds or their peers failed to respond. All participants were entered into a draw for an iPad. Results: Overall, 19 people participated (nine women); 12 initial seeds, followed by seven second-wave participants arising from four seeds . Completion time for the survey ranged between 7 and 36 minutes. Despite repeated reminders, no further people were recruited. Discussion: While New Zealand wheelchair user numbers are unknown, an estimated 14% of people have physical impairments that limited mobility. The 19 respondents generated from adopting the RDS methodology here thus represents a negligible fraction of wheelchair users in New Zealand, and an insufficient number to ensure equilibrium required for unbiased analyses. While successful in other hard-to-reach populations, applying RDS methodology to wheelchair users requires further consideration. Formative research exploring areas of network characteristics, acceptability of RDS, appropriate incentive options, and seed

  4. Respondent driven sampling of wheelchair users: A lack of traction?

    PubMed Central

    Bourke, John A.; Schluter, Philip J.; Hay-Smith, E. Jean C.; Snell, Deborah L.

    2016-01-01

    Background: Internationally, wheelchair users are an emerging demographic phenomenon, due to their increased prevalence and rapidly increasing life-span. While having significant healthcare implications, basic robust epidemiological information about wheelchair users is often lacking due, in part, to this population’s ‘hidden’ nature. Increasingly popular in epidemiological research, Respondent Driven Sampling (RDS) provides a mechanism for generating unbiased population-based estimates for hard-to-reach populations, overcoming biases inherent within other sampling methods. This paper reports the first published study to employ RDS amongst wheelchair users. Methods: Between October 2015 and January 2016, a short, successfully piloted, internet-based national survey was initiated. Twenty seeds from diverse organisations were invited to complete the survey then circulate it to peers within their networks following a well-defined protocol. A predetermined reminder protocol was triggered when seeds or their peers failed to respond. All participants were entered into a draw for an iPad. Results: Overall, 19 people participated (nine women); 12 initial seeds, followed by seven second-wave participants arising from four seeds . Completion time for the survey ranged between 7 and 36 minutes. Despite repeated reminders, no further people were recruited. Discussion: While New Zealand wheelchair user numbers are unknown, an estimated 14% of people have physical impairments that limited mobility. The 19 respondents generated from adopting the RDS methodology here thus represents a negligible fraction of wheelchair users in New Zealand, and an insufficient number to ensure equilibrium required for unbiased analyses. While successful in other hard-to-reach populations, applying RDS methodology to wheelchair users requires further consideration. Formative research exploring areas of network characteristics, acceptability of RDS, appropriate incentive options, and seed

  5. Relationship between Functional Classification Levels and Anaerobic Performance of Wheelchair Basketball Athletes

    ERIC Educational Resources Information Center

    Molik, Bartosz; Laskin, James J.; Kosmol, Andrzej; Skucas, Kestas; Bida, Urszula

    2010-01-01

    Wheelchair basketball athletes are classified using the International Wheelchair Basketball Federation (IWBF) functional classification system. The purpose of this study was to evaluate the relationship between upper extremity anaerobic performance (AnP) and all functional classification levels in wheelchair basketball. Ninety-seven male athletes…

  6. Aerobic, Anaerobic, and Skill Performance with Regard to Classification in Wheelchair Rugby Athletes

    ERIC Educational Resources Information Center

    Morgulec-Adamowicz, Natalia; Kosmol, Andrzej; Molik, Bartosz; Yilla, Abu B.; Laskin, James J.

    2011-01-01

    The purpose of the study was to examine the sport-specific performance of wheelchair rugby players with regard to their classification. A group of 30 male athletes from the Polish Wheelchair Rugby League participated in the study. The seven International Wheelchair Rugby Federation classes were collapsed into four groups. Standardized measures of…

  7. The Role of Parents and Caregivers in Providing Safe Transportation for Occupants Seated in Wheelchairs

    ERIC Educational Resources Information Center

    Schneider, Lawrence W.; Manary, Miriam; Bertocci, Gina

    2007-01-01

    The responsibility for providing safe transportation for travelers seated in wheelchairs is shared by many stakeholders, including wheelchair and tiedown/restraint manufacturers, vehicle modifiers and equipment installers, transit providers, rehabilitation technology suppliers, wheelchair/seating clinicians, and even informed and responsible…

  8. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  9. Wheelchair Use among Community-Dwelling Older Adults: Prevalence and Risk Factors in a National Sample

    ERIC Educational Resources Information Center

    Clarke, Philippa; Colantonio, Angela

    2005-01-01

    Older adults are the largest group of wheelchair users yet there are no peer-reviewed studies on the national profile of older wheelchair users in Canada. We investigated the characteristics of wheelchair users in a national sample of community-dwelling older adults from the Canadian Study of Health and Aging (CSHA-2). Questions on the use of…

  10. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...-board wheelchair. The Aerospatiale/Aeritalia ATR-72 and the British Aerospace Advanced Turboprop...

  11. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  12. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...-board wheelchair. The Aerospatiale/Aeritalia ATR-72 and the British Aerospace Advanced Turboprop...

  13. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish to... providing intercity rail service shall provide on each train a number of spaces— (1) To park wheelchairs (to... providing intercity rail service may not provide more than two spaces to park wheelchairs nor more than...

  14. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  15. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  16. Shoulder pain: a comparison of wheelchair basketball players with trunk control and without trunk control.

    PubMed

    Yildirim, Necmiye Un; Comert, Esra; Ozengin, Nuriye

    2010-01-01

    The purpose of this study was to compare shoulder pain between wheelchair basketball players with trunk control and wheelchair basketball players without trunk control. Players were evaluated according the International Wheelchair Basketball Federation (IWBF) classification system. The study group comprised 60 wheelchair basketball players, who were rated according to the International Wheelchair Basketball Federation classification system. Players were divided into two groups according to their trunk control. Study participants completed an anonymous survey that included demographic data, medical history data, and the Wheelchair User's Shoulder Pain Index (WUSPI). There was no statistically significant difference between the two groups based on the number of years of wheelchair use, active sport years, weekly working hours, and weekly training hours (p> 0.05). Statistically significant differences were found between wheelchair basketball players with trunk control and wheelchair basketball players with trunk control with respect to the duration of their disability, the daily number of transfers made to wheelchair, and Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) score (p< 0.05). The total PC-WUSPI score was higher among players without trunk control (p< 0.05). Study findings suggest that the shoulder pain of wheelchair basketball players must be analyzed. Trunk stabilization is the key factor affecting the function of the shoulder and is of primary importance for appropriate loading of the shoulder joint's many forms of articulation.

  17. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  18. Sports Injuries in Wheelchair Rugby – A Pilot Study

    PubMed Central

    Bauerfeind, Joanna; Koper, Magdalena; Wieczorek, Jacek; Urbański, Piotr; Tasiemski, Tomasz

    2015-01-01

    The aim of the study was to analyze etiology and the incidence of sports injuries among wheelchair rugby players. Moreover, we verified if the levels of aggressiveness and anger presented by the athletes and their roles in the team influenced the incidence and severity of the injuries. The study involved 14 male players, members of the Polish National Wheelchair Rugby Team. During a 9-month period, the athletes participated in up to 9 training camps and 4 Wheelchair Rugby tournaments. The study was based on the Competitive Aggressiveness and Anger Scale, registry of sports injuries consulted and non-consulted with a physician and a demographic questionnaire. The following observations were made during the 9-month period corresponding to a mean of 25 training and tournament days: 1) wheelchair rugby players experienced primarily minor injuries (n=102) that did not require a medical intervention, 2) only four injuries needed to be consulted by a physician, 3) sports injuries occurred more frequently among offensive players than in defensive players, 4) offensive players showed a tendency to higher levels of anger and aggressiveness than defensive players. It can be concluded that wheelchair rugby is a discipline associated with a high incidence of minor injuries that do not require a medical intervention. The incidence rate of injuries during the analyzed period was 0.3 per athlete per training day. PMID:26834880

  19. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.

    PubMed

    Soltau, Shelby L; Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment.

  20. Crash simulations of wheelchair-occupant systems in transport.

    PubMed

    Kang, W; Pilkey, W D

    1998-01-01

    A nonlinear multirigid body dynamic computer model has been developed to simulate the dynamic responses of a wheelchair-occupant system in a vehicle during a crash. The occupant, restrained by safety belts, is seated in a wheelchair that is, in turn, tied down in a vehicle. Validated extensively by crash sled tests at three laboratories, this model has been used to predict the responses of wheelchair-occupant systems in various crash environments. To evaluate the crashworthiness of different wheelchair tie-downs, the sensitivity of several design parameters, such as tiedown stiffness, wheel stiffness, and tiedown positions, has been studied using this model, and optimal values of these parameters for the wheelchair-occupant system have been obtained. Moreover, the model has been used to study the sensitivity of crash sled test pulse corridors in an effort to develop a sled test standard. It has been found that an existing ISO corridor allows large variation and should be "tightened." The model was implemented using a version of the multibody dynamic simulator, the Articulated Total Body program. PMID:9505255

  1. An approach to measure wheelchair stability. Concept and benefits.

    PubMed

    Stefanov, Dimitar H; Pasco, Damien

    2014-01-01

    Wheelchair stability is dependent on user's body characteristics that can shift significantly the original center of mass in the cases of limb amputation, severe skeletal deformities or obesity. The center of gravity may change with the installation of additional devices such as oxygen cylinders or ventilators on the wheelchair. Therefore, quantitative evaluation and prediction of the behavior of the user-wheelchair system in a variety of static and dynamic situations is essential for user's safety and for the optimal tuning of the human-wheelchair system. In this paper we discuss an approach for wheelchair stability assessment that only requires two inclinations and weight measurements. We also discuss the algorithm associated to the procedure based on the use of the reaction forces in the contact points of the wheels measured by the load cells. Further, the paper includes an analysis of the influence of the errors in measurement of the input parameters on the output results and demonstrates that the proposed approach possesses high accuracy. The advantage of the proposed approach is the use of a reliable procedure based on three simple steps and five weight measurements with four independent load scales which may lead to the design of an affordable and accurate measurement system.

  2. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt.

    PubMed

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-03-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles.

  3. Design intelligent wheelchair with ECG measurement and wireless transmission function.

    PubMed

    Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan

    2015-01-01

    The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface.

  4. Development of a wheelchair-mounted folding standing frame.

    PubMed

    Nash, R S; Davy, M S; Orpwood, R; Swain, I D

    1990-05-01

    Functional electrical stimulation (FES) is capable of providing standing function to certain mid-thoracic paraplegics following spinal injury. To be of use in the community such systems require the provision of a mechanical support attached to the user's wheelchair so that it is available for use at all times. The design specification was such that the frame should fit a wide range of wheelchairs, not increase the external dimensions of the wheelchair, be easily removed to enable transfers, provide a safe, stable support once erect and be quick and simple both to erect and to fold away. Although primarily designed for use as part of the FES standing system, the frame is also applicable for patients with a number of other chronic neurological or arthritic conditions. As such the specification has been extended so that the design is suitable for users with tremor or reduced upper limb function.

  5. Design intelligent wheelchair with ECG measurement and wireless transmission function.

    PubMed

    Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan

    2015-01-01

    The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface. PMID:26444818

  6. Survey of wheelchair athletic injuries: common patterns and prevention.

    PubMed

    Curtis, K A; Dillon, D A

    1985-06-01

    Twelve hundred wheelchair athletes were surveyed to determine commonly experienced athletic injuries, sports participation and training patterns associated with injuries. Soft tissue trauma, blisters, lacerations, decubiti and joint disorders were the most commonly reported injuries of the 128 respondents. Over 70 per cent of all reported injuries occurred during wheelchair track, road racing and basketball. Common mechanisms of injury were also identified. A significantly higher number of reported injuries were associated with increased sports participation (p less than 001), with the 21-30 year-old age group (p less than .01), and with a high number of training hours per week (p less than .05). There was no significant relationship between number of reported injuries and disability type, National Wheelchair Athletic Association classification, or sex. Decubitus ulcers and temperature regulation disorders were identified as particular risks for the spinal cord injury population. Educating the athlete and coach in means to prevent injury is necessary to promote optimal performance and safe participation.

  7. Design and Experimental Verification of Vibration Suppression Device on the Lift of Wheelchair-accessible Vehicles

    NASA Astrophysics Data System (ADS)

    Hatano, Yasuyoshi; Takahashi, Masaki

    2016-09-01

    In recent years, the number of wheelchair-accessible vehicles has increased with the aging of the population. Such vehicles are effective in reducing the burden on caregivers because the wheelchair user does not have to move from his/her wheelchair to a seat of the vehicle. Wheelchair-accessible vehicles are expected to be widely used in the future. However, wheelchair users have reported poor ride comfort. It is thus necessary to suppress the vibration of the vehicle considering the wheelchair user. We designed a passive damping device on the lift of wheelchair-accessible vehicles to improve the ride comfort for wheelchair users. The vibration due to road disturbances reaches the wheelchair user's body through the vehicle and wheelchair. Our control device decreases the acceleration of the torso and improves the ride comfort by ensuring that the frequency of the vibration reaching the wheelchair user differs from the resonance frequency band of the acceleration of the torso, which is the body part that feels the most discomfort. The effectiveness of the control device is verified experimentally.

  8. Valid detection of self-propelled wheelchair driving with two accelerometers.

    PubMed

    Kooijmans, H; Horemans, H L D; Stam, H J; Bussmann, J B J

    2014-11-01

    This study assessed whether self-propelled wheelchair driving can be validly detected by a new method using a set of two commonly used accelerometers.In a rehabilitation centre, 10 wheelchair-bound persons with spinal cord injury (SCI) (aged 29-63 years) performed a series of representative daily activities according to a protocol including self-propelled wheelchair driving and other activities. Two ActiGraph GT3X+ accelerometers were used; one was attached at the wrist, the other to the spokes of the wheelchair wheel. Based on the movement intensity of the two accelerometers, a custom-made algorithm in MatLab differentiated between self-propelled wheelchair driving and other activities (e.g. being pushed or arm movements not related to wheelchair driving). Video recordings were used for reference. Validity scores between the accelerometer output and the video analyses were expressed in terms of agreement, sensitivity and specificity scores.Overall agreement for the detection of self-propelled wheelchair driving was 85%; sensitivity was 88% and specificity 83%. Disagreement between accelerometer output and video analysis was largest for wheelchair driving at very low speed on a treadmill, wheelchair driving on a slope on a treadmill, and being pushed in the wheelchair whilst making excessive arm movements.Valid detection of self-propelled wheelchair driving is provided by two accelerometers and a simple algorithm. Disagreement with the video analysis was largest during three atypical daily activities.

  9. Variability in Wheelchair Propulsion: A New Window into an Old Problem.

    PubMed

    Sosnoff, Jacob J; Rice, Ian M; Hsiao-Wecksler, Elizabeth T; Hsu, Iris M K; Jayaraman, Chandrasekaran; Moon, Yaejin

    2015-01-01

    Manual wheelchair users are at great risk for the development of upper extremity injury and pain. Any loss of upper limb function due to pain adversely impacts the independence and mobility of manual wheelchair users. There is growing theoretical and empirical evidence that fluctuations in movement (i.e., motor variability) are related to musculoskeletal pain. This perspectives paper discusses a local review on several investigations examining the association between variability in wheelchair propulsion and shoulder pain in manual wheelchair users. The experimental data reviewed highlights that the variability of wheelchair propulsion is impacted by shoulder pain in manual wheelchair users. We maintain that inclusion of these metrics in future research on wheelchair propulsion and upper limb pain may yield novel data. Several promising avenues for future research based on this collective work are discussed.

  10. Turning assistive machines into assistive robots

    NASA Astrophysics Data System (ADS)

    Argall, Brenna D.

    2015-01-01

    For decades, the potential for automation in particular, in the form of smart wheelchairs to aid those with motor, or cognitive, impairments has been recognized. It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines turning the machine into a kind of robot, and offloading some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. This paper overviews some of the ongoing projects in my lab, which strives to advance human ability through robotics autonomy.

  11. Wheelchair integrated occupant restraints: feasibility in frontal impact.

    PubMed

    VanRoosmalen, L; Bertocci, G E; Ha, D; Karg, P

    2001-12-01

    Individuals often use their wheelchair as a motor vehicle seat when traveling in motor vehicles. The current use of fixed vehicle-mounted wheelchair occupant restraint systems (FWORSs) often results in poor belt fit and discomfort. Additionally, satisfaction, usability and usage rate of FWORSs during transit use are often low. The automotive industry has shown improved occupant restraint usage, belt fit and injury protection when integrating the upper torso and pelvic restraint in a motor vehicle seat. This study compared occupant injury measures of a FWORS to a concept wheelchair integrated restraint system (WIRS) using a 20g frontal sled impact test with a 30 mph change in velocity. Neck loads, neck moments, head, pelvis and chest acceleration, sternum compression and knee and head excursion data were recorded from the wheelchair seated 50th percentile male hybrid III anthropomorphic test dummy (ATD). The WIRS resulted in a lower head injury criteria (HIC) value, lower sternum compression and a lower upper-torso restraint load than the FWORS. Compared with the FWORS, increased head, knee and wheelchair excursions and higher neck loads and moments were measured in the WIRS test. Both restraint scenario injury parameters were complied with occupant injury criteria based on General Motors Injury Assessment Reference Values (GM-IARVs) and occupant kinematic requirements defined by the Society of Automotive Engineers (SAE) voluntary standard, J2249. A higher motion criteria index was calculated for the WIRS scenario and a comparable combined injury criteria index was calculated for both restraint scenarios. The sled impact test showed WIRS concept feasibility, facilitating further development by industrial manufacturers who might further want to pursue this restraint principle to increase wheelchair occupant safety and comfort during transport in motor vehicles.

  12. Optimal dye concentration and power density for laser-assisted vascular anatomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Ren, Zhen; Furnary, Anthony; Xie, Hua; Lagerquist, Kathryn A.; Burke, Allen; Prahl, Scott A.; Gregory, Kenton W.

    2003-06-01

    Laser tissue welding with albumin solder/indocyanine green (ICG) dye is an effective technique in surgical reconstruction. This study was carried out in vitro to find optimal ICG concentration and power density (PD) in laser assisted vascular anastomosis (LAVA). Fresh porcine carotid arteries incised into vascular strips (n = 120) were welded by diode laser in end-to-end with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG and at power density of 27.7, 56.7, and 76.9 W/cm2. Direct temperature was measured by inserting thermocouples outside and inside vessel. Tensile strength was tested immediately and histological study was performed. Temperature (both outside and inside vessel) significantly gradually decreasd (p < 0.01) with the increasing of ICG concentration at PD 56.7 W/cm2. Tensile strength significantly gradually decreased (p < 0.01) with increasing of ICG concentration at PD 56.7 W/cm2. Histological study showed minimal thermal injury limited to adventitia of vessels and no appreciable difference in all groups. We find that ICG concentration within solder is most important factor affecting both tissue temperature and tensile strength during laser vessel welding. The optimal balance between stronger strength and minimal thermal injury of vessel may be achieved primarily by using PD 56.7 W/cm2 at 0.01 mM ICG within solder during LAVA.

  13. Physical performance and cardiovascular and metabolic adaptation of elite female wheelchair basketball players in wheelchair ergometry and in competition.

    PubMed

    Schmid, A; Huonker, M; Stober, P; Barturen, J M; Schmidt-Trucksäss, A; Dürr, H; Völpel, H J; Keul, J

    1998-01-01

    Spinal cord injury leads to a pronounced reduction of cardiovascular, pulmonary, and metabolic ability. Physical activity, up to and including high-performance sports, has obtained importance in the course of rehabilitation and the postclinical phase. Thirteen elite female wheelchair basketball players from the German National Basketball Team and 10 female sedentary spinal cord-injured persons were examined in the study. Heart volume was measured by an echocardiography. All subjects underwent a graded exercise test on a wheelchair ergometer. Additionally, heart rate, lactate, and player points were measured during a competitive basketball game in wheelchair basketball players. Cardiac dimensions were larger for spinal cord-injured wheelchair basketball players (620.3 ml; 9.6 ml x kg(-1)) in comparison with spinal cord-injured persons (477.4 ml; 8.2 ml x kg(-1)) but did not exceed the heart volume of untrained nonhandicapped persons. In contrast, athletes with amputations or those having had poliomyelitis reached training-induced cardiac hypertrophy in relation to body mass (713.7 ml; 13.2 ml x kg(-1)), as observed in nonhandicapped athletes. During graded wheelchair ergometry, wheelchair basketball players showed a higher maximal work rate (59.9 v 45.5 W), maximal oxygen consumption (33.7 v 18.3 ml x min(-1) x kg(-1)), and maximal lactate (9.1 v 5.47 mmol x l(-1)) without a difference in maximal heart rate and workload at AT4 than did spinal cord-injured persons. The average heart rate during the wheelchair basketball game was 151 x min(-1), and the lactate concentration was 1.92 mmol x l(-1). Female athletes with a less severe handicap and higher maximal oxygen consumption during the graded exercise test reached a higher game level in the evaluation. During the competitive basketball game, high cardiovascular stress was observed, indicating a fast aerobic metabolism; the anaerobic lactic acid capacity played a subordinate role. Wheelchair basketball is an

  14. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    NASA Technical Reports Server (NTRS)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  15. Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)

    SciTech Connect

    Gonder, J.; Pesaran, A.

    2010-03-18

    Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

  16. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles. I. Initial characterization

    NASA Astrophysics Data System (ADS)

    Chu, Andrew; Braatz, Paul

    Commercial supercapacitors, also known as ultracapacitors or electrochemical capacitors, from Saft, Maxwell, Panasonic, CCR, Ness, EPCOS, and Power Systems were tested under constant current and constant power discharges to assess their applicability for power-assist applications in hybrid electric vehicles (HEVs). Commercial lithium-ion batteries from Saft and Shin-Kobe were also tested under similar conditions. Internal resistances were measured by electrochemical impedance spectroscopy (EIS), as well as by the " iR drop" method. Self discharge measurements were also recorded. Compared with earlier generations of supercapacitors, the cells showed improved current and power capability. However, their energy densities are still too low to meet goals set by Partnership for a New Generation of Vehicles (PNGV) for HEV propulsion. Cells that use acetonitrile as the electrolyte solvent yield better performance, although safety issues need to be addressed. New high-power lithium-ion batteries show high energy densities, with high power capabilities.

  17. Physical performance of elite wheelchair basketball players in armcranking ergometry and in selected wheeling tasks.

    PubMed

    Hutzler, Y

    1993-04-01

    This study compared the aerobic and the anaerobic performance of 11 elite Israeli wheelchair basketball players in arm ergometric tests and corresponding wheeling tasks, derived from basketball practice. The ergometric tests included a continuous aerobic maximal peak work capacity test (PWCmax), and a 30-second arm-all-out anaerobic test of mean anaerobic capacity (MANC) and peak anaerobic power (PANP). The wheeling tasks included a 428 meter race, slalom and 6-minute endurance race. We examined the relationship of performance variables to personal variables, age, bodyweight and classification as athletes. The results were analysed by Spearman correlation tables, revealing the following: (1) HRmax (maximal heart rate) correlated highly (r = .884-.962) with performance in all wheeling tasks; (2) no relationship was found between variables in the arm ergometric tests and variables in the wheeling tasks; (3) bodyweight correlated significantly with MANC and PWCmax (r = .817 and .783 respectively). This relationship was better than the other independent variables (classification and age). It is concluded that HRmax can be used for performance evaluation in wheelchair basketball practice, and that arm ergometric work capacity has only limited predictive value of performance in wheeling tasks. PMID:8493041

  18. Physical performance of elite wheelchair basketball players in armcranking ergometry and in selected wheeling tasks.

    PubMed

    Hutzler, Y

    1993-04-01

    This study compared the aerobic and the anaerobic performance of 11 elite Israeli wheelchair basketball players in arm ergometric tests and corresponding wheeling tasks, derived from basketball practice. The ergometric tests included a continuous aerobic maximal peak work capacity test (PWCmax), and a 30-second arm-all-out anaerobic test of mean anaerobic capacity (MANC) and peak anaerobic power (PANP). The wheeling tasks included a 428 meter race, slalom and 6-minute endurance race. We examined the relationship of performance variables to personal variables, age, bodyweight and classification as athletes. The results were analysed by Spearman correlation tables, revealing the following: (1) HRmax (maximal heart rate) correlated highly (r = .884-.962) with performance in all wheeling tasks; (2) no relationship was found between variables in the arm ergometric tests and variables in the wheeling tasks; (3) bodyweight correlated significantly with MANC and PWCmax (r = .817 and .783 respectively). This relationship was better than the other independent variables (classification and age). It is concluded that HRmax can be used for performance evaluation in wheelchair basketball practice, and that arm ergometric work capacity has only limited predictive value of performance in wheeling tasks.

  19. Effect of Wheelchair Frame Material on Users' Mechanical Work and Transmitted Vibration

    PubMed Central

    Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM. PMID:25276802

  20. Physical and Leisure Activity in Older Community-Dwelling Canadians Who Use Wheelchairs: A Population Study

    PubMed Central

    Best, Krista L.; Miller, William C.

    2011-01-01

    Background. Physical and leisure activities are proven health promotion modalities and have not been examined in older wheelchair users. Main Objectives. Examine physical and leisure activity in older wheelchair users and explore associations between wheelchair use and participation in physical and leisure activity, and wheelchair use, physical and leisure activity, and perceived health. Methods. 8301 Canadians ≥60 years of age were selected from the Canadian Community Health Survey. Sociodemographic, health-related, mobility-related, and physical and leisure activity variables were analysed using logistic regression to determine, the likelihood of participation in physical and leisure activity, and whether participation in physical and leisure activities mediates the relationship between wheelchair use and perceived health. Results. 8.3% and 41.3% older wheelchair users were physically and leisurely active. Wheelchair use was a risk factor for reduced participation in physical (OR = 44.71) and leisure activity (OR = 10.83). Wheelchair use was a risk factor for poor perceived health (OR = 10.56) and physical and leisure activity negatively mediated the relationship between wheelchair user and perceived health. Conclusion. There is a need for the development of suitable physical and leisure activity interventions for older wheelchair users. Participation in such interventions may have associations with health benefits. PMID:21584226

  1. Effect of wheelchair frame material on users' mechanical work and transmitted vibration.

    PubMed

    Chénier, Félix; Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM.

  2. Development and evaluation of one-hand drivable manual wheelchair device for hemiplegic patients.

    PubMed

    Jung, Hwa S; Park, Gemus; Kim, Young-Shim; Jung, Hyung-Shik

    2015-05-01

    This study was conducted for one-hand users including hemiplegic clients currently using standard manual wheelchairs, so as to analyze their specific problems and recommend solutions regarding usage. Thirty hemiplegic clients who were admitted to rehabilitation and convalescent hospitals participated as subjects. The research tools were standard manual wheelchairs commonly used by people with impaired gait and a "one-hand drivable manual wheelchair," which was developed for this study. The Wheelchair Skills Test (WST) was adopted for the objective assessment tool, while drivability, convenience, difference, and acceptability were developed for the subjective evaluation tools. The assessment procedures comprise two phases of pre-assessment and post-assessment. In the pre-assessment phase, the WST and subjective evaluation (drivability, convenience) were conducted using the existing standard manual wheelchair and with/without use of a foot to control the wheelchair. In the post-assessment phase, the WST and subjective evaluation (drivability, convenience, difference, acceptability) were also carried out using the developed one-hand drivable manual wheelchair. The results showed that the highest pass rate recorded for the WST items was 3.3% when the participants drove standard manual wheelchairs without the use of either foot and 96.7% when using the manual wheelchairs equipped with developed device. As compared to the existing wheelchair, statistical results showed significant effects on the WST, drivability, convenience, difference and acceptability when the participants drove wheelchairs equipped with the developed device. These findings imply that the one-hand drivable wheelchair equipped with the developed device can be an active and effective solution for hemiplegic clients using existing manual wheelchairs to increase their mobility and occupational performance.

  3. Wheelchair Athletes Need Special Treatment--But Only for Injuries.

    ERIC Educational Resources Information Center

    Monahan, Terry

    1986-01-01

    Disabled athletes now compete in many sports, but many physicians don't know what opportunities for sports participation are available for disabled people. Research into injuries is needed because wheelchair athletes have different needs in terms of injury management and rehabilitation. Resources for physicians are listed. (Author/MT)

  4. Gender and Attitudes toward People Using Wheelchairs: A Multidimensional Perspective

    ERIC Educational Resources Information Center

    Vilchinsky, Noa; Werner, Shirli; Findler, Liora

    2010-01-01

    This study aims to investigate the effect of observer's gender and target's gender on attitudes toward people who use wheelchairs due to a physical disability. Four hundred four Jewish Israeli students without disabilities completed the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Initially, confirmatory factor…

  5. Student Attitudes toward Intimacy with Persons Who Are Wheelchair Users

    ERIC Educational Resources Information Center

    Marini, Irmo; Chan, Roy; Feist, Amber; Flores-Torres, Lelia

    2011-01-01

    The present study explored whether students would be attracted to having an intimate relationship with a wheelchair user if participants were able to first see a head shot photo and later read a short biography of the person. Four hundred and eight undergraduate students were surveyed regarding their interest in potentially being friends, dating…

  6. Promoting Independence for Wheelchair Users: The Role of Home Accommodations

    ERIC Educational Resources Information Center

    Allen, Susan; Resnik, Linda; Roy, Jason

    2006-01-01

    Purpose: The objective of this research is to investigate whether home accommodations influence the amount of human help provided to a nationally representative sample of adults who use wheelchairs. Design and Methods: We analyzed data from the Adult Disability Follow-back Survey (DFS), Phase II, of the Disability Supplement to the 1994-1995…

  7. Multidimensional Self-Efficacy and Affect in Wheelchair Basketball Players

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.

    2008-01-01

    In the current study, variables grounded in social cognitive theory with athletes with disabilities were examined. Performance, training, resiliency, and thought control self-efficacy, and positive (PA) and negative (NA) affect were examined with wheelchair basketball athletes (N = 79). Consistent with social cognitive theory, weak to strong…

  8. Contingent feedback for training children to propel their wheelchairs.

    PubMed

    Grove, D N; Dalke, B A

    1976-07-01

    Three multiply handicapped children were taught self-movement of their wheelchairs. This behavior was established through the use of contingent reinforcement within 30-minute therapy sessions. When a high number of self-movement responses were obtained, the reinforcement was systematically withdrawn to allow the responses to come under the control of the natural environmental consequences.

  9. Relationship of Physiological Parameters and Achievement in Wheelchair Athletics.

    ERIC Educational Resources Information Center

    Hurst, Judith A.

    The relationship between achievement in track and field events (60, 100, 200, 400 meter runs and shotput, discus, and javelin throws) and selected physiological parameters (grip strength, body fat, vital lung capacity, and cardiovascular efficiency) of 20 wheelchair athletes was investigated. Results of track and field events were obtained from…

  10. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  11. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  12. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  13. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  14. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  15. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  16. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  17. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  18. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  19. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  20. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  1. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  2. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  3. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  4. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  5. Development of a powered mobile module for the ArmAssist home-based telerehabilitation platform.

    PubMed

    Jung, Je Hyung; Valencia, David B; Rodríguez-de-Pablo, Cristina; Keller, Thierry; Perry, Joel C

    2013-06-01

    The ArmAssist, developed by Tecnalia, is a system for at-home telerehabilitation of post-stroke arm impairments. It consists of a wireless mobile base module, a global position and orientation detection mat, a PC with display monitor, and a tele-rehabilitation software platform. This paper presents the recent development results on the mobile module augmenting its functionality by adding actuation components. Three DC servo motors were employed to drive the mobile module and a position control algorithm based on the kinematic model and velocity mode control was implemented such that the module tracks a path defined in the training software. Pilot tests of the powered mobile module were performed in experiments with different load conditions and two unimpaired subjects. Both test results show that the module is able to follow the predefined path within an acceptable error range for reach movement training. Further study and testing of the system in realistic conditions following stroke will be a future topic of research. PMID:24187242

  6. Safety enhancement of a specialized power assisted tricycle for a child with osteogenesis imperfecta type III.

    PubMed

    Geu, Matthew J; Tuffner, Francis F; Madsen, Robert O; Harman, William M; Barrett, Steven F

    2005-01-01

    A child in the community of Laramie, Wyoming was born with Osteogenesis Imperfecta which is a genetic disorder that limits the physical abilities, size, and strength of the child. A customized power assisted tricycle was developed, which offered a unique opportunity to serve multiple purposes in his childhood development. This tricycle will ultimately provide him with the opportunity to gain muscle mass, strength, coordination, and confidence. The tricycle was completed as a senior design project in 2002, funded by the National Science Foundation, Biomedical Engineering Program and research to Aid Persons with Disabilities Program and University of Wyoming, College of Engineering Undergraduate Design Project to Aid Wyoming Persons with Disabilities. Unfortunately, the tricycle did not provide the necessary features to allow him to ride the tricycle safely. For this reason the tricycle was redesigned to include many different redundant safety systems which allows the tricycle to be safe for the child's use. Being funded by the same grant, new systems were added to the tricycle. A panic kill switch, automatic brakes, numerous redundant velocity sensors, tip over prevention circuitry, a redesigned operating system, a battery recharge port, and other systems were added, allowing for the tricycle to provide a high level of safety. A great deal of testing and sound design practices have been taken into consideration throughout the addition of these systems. Without these improvements, the child would not have the opportunity to use the tricycle to help with his development. PMID:15850131

  7. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking

    PubMed Central

    Bryce, Thomas N.; Dijkers, Marcel P.

    2015-01-01

    Background: Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. Objective: To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. Methods: A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Results: Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. Conclusion: This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device. PMID:26364280

  8. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion

    PubMed Central

    Soltau, Shelby L.; Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment. PMID:26125019

  9. Sitting pressure in the tilted position: manual tilt-in-space wheelchair vs. manual wheelchair with a new rear antitip device.

    PubMed

    MacDonald, Blair; Kirby, R Lee; Smith, Cher; MacLeod, Donald A; Webber, Adam

    2009-01-01

    To test the hypothesis that, in comparison with a heavier, larger and more expensive manual tilt-in-space wheelchair, a lightweight manual wheelchair equipped with new rear antitip devices provides comparable mean sitting pressures in the tilted position, each of eight able-bodied participants sat for 8 mins in each wheelchair, upright, and tilted back (38-39 degrees). The mean (+/-SD) sitting pressures (of all active sensors in a force-sensing array) at the eighth minute in the upright and tilted positions with the new rear antitip device wheelchair were 58.6 (+/-14.0) and 45.8 (+/-9.3) mm Hg (a 20.7% reduction) (P = 0.005). For the tilt-in-space wheelchair, the mean values were 55.7 (+/-13.9) and 47.2 (+/-10.8) mm Hg (a 26.3% reduction) (P = 0.008). There were no significant differences between the wheelchairs in the upright (P = 0.843) or tilted (P = 0.624) positions. A lightweight manual wheelchair equipped with a new rear antitip device provides equivalent reductions of sitting pressures in the tilted position to a comparably tilted tilt-in-space wheelchair.

  10. Energy requirements of gamefield exercises designed for wheelchair-bound persons.

    PubMed

    Cardús, D; McTaggart, W G; Ribas-Cardús, F; Donovan, W H

    1989-02-01

    This report presents energy requirements of three athletic exercises (power ramp, climber, and chin-ups) in a free-wheeling gamefield developed by the City of Houston for wheelchair-bound persons. Heart rate was monitored by telemetry. Expired gas samples were collected in Douglas bags. Oxygen and CO2 concentrations were determined by mass spectrometry and expired gas volumes by a wet gas meter. Pulmonary ventilation, O2 consumption, and CO2 production were calculated from expired gas samples. Laboratory studies were conducted on eight men with paraplegia and ten untrained, healthy, able-bodied men. The same persons were tested on the gamefield while propelling a wheelchair over the power ramp, the climber, and doing chin-ups. Age and weight were 32 +/- 4yrs vs 31 +/- 6yrs and 79.6kg vs 79.0kg, respectively, for paraplegic and healthy men. Paraplegic men had average heart rates of 133 +/- 11bpm, 133 +/- 19bpm, and 135 +/- 21bpm, respectively, for the power ramp, climber, and chin-ups. Heart rate values for able-bodied men were 136 +/- 26bpm, 139 +/- 24bpm, and 136 +/- 26bpm, respectively, for the same three exercises. The paraplegic men's VO2 measurements were 13.2 +/- 2.2, 11.5 +/- 2.8, and 6.4 +/- 2.9ml/min/kg, respectively, for the power ramp, climber, and chin-ups. The able-bodied men's VO2 measurements were 15.8 +/- 2.8, 15.4 +/- 3.6, and 9.2 +/- 2.8 ml/min/kg for the same exercises. Patients with paraplegia seemed to outperform able-bodied men in all events. Gamefield exercises appeared to tax the cardiorespiratory system at a level comparable to that usually prescribed for training purposes. PMID:2916929

  11. 14 CFR 382.121 - What mobility aids and other assistive devices may passengers with a disability bring into the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What mobility aids and other assistive... Aids, and Other Assistive Devices § 382.121 What mobility aids and other assistive devices may... or collapsible wheelchairs; (2) Other mobility aids, such as canes (including those used by...

  12. 14 CFR 382.121 - What mobility aids and other assistive devices may passengers with a disability bring into the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What mobility aids and other assistive... Aids, and Other Assistive Devices § 382.121 What mobility aids and other assistive devices may... or collapsible wheelchairs; (2) Other mobility aids, such as canes (including those used by...

  13. 14 CFR 382.121 - What mobility aids and other assistive devices may passengers with a disability bring into the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What mobility aids and other assistive... Aids, and Other Assistive Devices § 382.121 What mobility aids and other assistive devices may... or collapsible wheelchairs; (2) Other mobility aids, such as canes (including those used by...

  14. 14 CFR 382.121 - What mobility aids and other assistive devices may passengers with a disability bring into the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What mobility aids and other assistive... Aids, and Other Assistive Devices § 382.121 What mobility aids and other assistive devices may... or collapsible wheelchairs; (2) Other mobility aids, such as canes (including those used by...

  15. Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury.

    PubMed

    Lalumiere, Mathieu; Gagnon, Dany H; Routhier, François; Bouyer, Laurent; Desroches, Guillaume

    2014-08-01

    No comprehensive biomechanical study has documented upper extremity (U/E) kinematics and kinetics during the performance of wheelchair wheelies among manual wheelchair users (MWUs). The aim of this study was to describe movement strategies (kinematics), mechanical loads (kinetics), and power at the nondominant U/E joints during a wheelie among MWUs with spinal cord injury (SCI). During a laboratory assessment, 16 MWUs with SCI completed four wheelie trials on a rigid surface. Each participant's wheelchair was equipped with instrumented wheels to record handrim kinetics, while U/E and wheelchair kinematics were recorded with a 3D motion analysis system. The greatest mean and peak total net joint moments were generated by the shoulder flexors (mean = 7.2 ± 3.5 N·m; peak = 20.7 ± 12.9 N·m) and internal rotators (mean = 3.8 ± 2.2 N·m; peak = 11.4 ± 10.9 N·m) as well as by the elbow flexors (mean = 5.5 ± 2.5 N·m; peak = 14.1 ± 7.6 N·m) during the performance of wheelies. Shoulder flexor and internal rotator efforts predominantly generate the effort needed to lift the front wheels of the wheelchair, whereas the elbow flexor muscles control these shoulder efforts to reach a state of balance. In combination with a task-specific training program that remains essential to properly learn how to control wheelies among MWUs with SCI, rehabilitation professionals should also propose a shoulder flexor, internal rotator, and elbow flexor strengthening program.

  16. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.

    PubMed

    Liles, Howard; Huang, Morris; Caspall, Jayme; Sprigle, Stephen

    2015-11-01

    A wheelchair-propelling robot has been developed to measure the efficiency of manual wheelchairs. The use of a robot has certain advantages compared to the use of human operators with respect to repeatability of measurements and the ability to compare many more wheelchair configurations than possible with human operators. Its design and implementation required significant engineering and validation of hardware and control systems. The robot can propel a wheelchair according to pre-programmed accelerations and velocities and measures the forces required to achieve these maneuvers. Wheel velocities were within 0.1 m/s of programmed values and coefficients of variation . Torque measurements were also repeatable with . By determining the propulsion torque required to propel the wheelchair through a series of canonical maneuvers, task-dependent input work for various wheelchairs and configurations can be compared. This metric would serve to quantify the combined inertial and frictional resistance of the mechanical system.

  17. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living

    NASA Astrophysics Data System (ADS)

    Matiko, Joseph W.; Wei, Yang; Torah, Russel; Grabham, Neil; Paul, Gordon; Beeby, Stephen; Tudor, John

    2015-12-01

    Globally, human life expectancy is steadily increasing causing an increase in the elderly population and consequently increased costs of supporting them. Ambient assisted living is an active research area aimed at supporting elderly people to live independently in their preferred living environment. This paper presents the design and testing of a self-powered wearable headband for electroencephalogram (EEG) based detection of emotions allowing the evaluation of the quality of life of assisted people. Printed active electrode fabrication and testing is discussed followed by the design of an energy harvester for powering the headband. The results show that the fabricated electrodes have similar performance to commercial electrodes and that the electronics embedded into the headband, as well as the wireless sensor node used for processing the EEG, can be powered by energy harvested from solar panels integrated on the headband. An average real time emotion classification accuracy of 90 (±9) % was obtained from 12 subjects. The results show that the self-powered wearable headband presented in this paper can be used to measure the wellbeing of assisted people with good accuracy.

  18. Multimodality gynecomastia repair by cross-chest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision.

    PubMed

    Ramon, Ytzhack; Fodor, Lucian; Peled, Isaac J; Eldor, Liron; Egozi, Dana; Ullmann, Yehuda

    2005-12-01

    Numerous methods of gynecomastia repair have been described to accomplish removal of breast tissue. Our multimodality surgical approach for the treatment of gynecomastia combines the use of power-assisted superficial cross-chest liposuction with direct pull-through excision of the breast parenchyma under endoscopic supervision. Seventeen patients, aging 17-39, underwent this multimodality approach. According to Simon's grading, 3 patients had grade 1, 5 had grade 2a, 6 had grade 2b, and 3 had grade 3 gynecomastia. Power-assisted liposuction was performed with a 3- or 4-mm triple-hole cannula inserted through the contralateral periareolar medial incision to suction the contralateral prepectoral fatty breast. At the end of the liposuction, the fibrous tissue was easily pulled through the ipsilateral stab wound and excised under endoscopic control. Follow-up time ranged from 6 to 34 months. The amount of fat removed by liposuction varied from 100-800 mL per breast, and the amount of breast parenchyma removed by excision varied from 20-110 g. All patients recovered remarkably well. No complications were recorded. All patients were satisfied with their results. This technique enables an effective treatment of both the fatty and fibrous tissue of the male breast and avoids skin redundancy due to skin contraction. A smooth masculine breast contour is consistently achieved without the stigma of this type of surgery.

  19. The Power of Peers in Employee Assistance: A Unique Program for a Community College.

    ERIC Educational Resources Information Center

    Hills, Marcia D.; And Others

    1989-01-01

    Describes the Red Deer College employee assistance program "Resources for Employee Assistance, Counselling and Health (REACH)" which has moved beyond this traditional approach to become an autonomous program run by employees for employees. Notes REACH is concerned with job performance and coping skills that contribute to individual and family well…

  20. Ergonomic evaluation of a wheelchair for transfer of disabled passengers at a large airport.

    PubMed

    Rohmert, W; Löwenthal, I; Rückert, A

    1990-01-01

    Transferring disabled passengers to the aircraft, both arriving and departing, is one passenger service at a big airport. We use different ergonomic research methods (registration of heart rate, AET job analysis as well as a standardized questionnaire) to evaluate the present wheelchair design. Due to e.g. the high wheelchair backrest, the forces needed to handle the chair and other facts, the current wheelchair causes a strain bottleneck. The results of the AET analysis and the rating of the perceived exertion confirm this finding. A redesigned wheelchair based on ergonomic principles, which reduces stress on the employees and offers more comfort to disabled passengers, is presented.

  1. Changes in inertia and effect on turning effort across different wheelchair configurations.

    PubMed

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers. PMID:24699971

  2. Support of Wheelchairs Using Pheromone Information with Two Types of Communication Methods

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Nitta, Katsumi

    In this paper, we propose a communication framework which combined two types of communication among wheelchairs and mobile devices. Due to restriction of range of activity, there is a problem that wheelchair users tend to shut themselves up in their houses. We developed a navigational wheelchair which loads a system that displays information on a map through WWW. However, this wheelchair is expensive because it needs a solid PC, a precise GPS, a battery, and so on. We introduce mobile devices and use this framework to provide information to wheelchair users and to facilitate them to go out. When a user encounters other users, they exchange messages which they have by short-distance wireless communication. Once a message is delivered to a navigational wheelchair, the wheelchair uploads the message to the system. We use two types of pheromone information which represent trends of user's movement and existences of a crowd of users. First, when users gather, ``crowd of people pheromone'' is emitted virtually. Users do not send these pheromones to the environment but carry them. If the density exceeds the threshold, messages that express ``people gethered'' are generated automatically. The other pheromone is ``movement trend pheromone'', which is used to improve probability of successful transmissions. From results of experiments, we concluded that our method can deliver information that wheelchair users gathered to other wheelchairs.

  3. Changes in inertia and effect on turning effort across different wheelchair configurations.

    PubMed

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.

  4. Further safety enhancement of a specialized power assisted tricycle for a child with osteogenesis imperfecta type III and design of an adjustble hand power tricycle.

    PubMed

    Geu, Matthew; Madsen, Robert; Weber, Erica; Burnett, Michael; Barrett, Steven

    2006-01-01

    Several tricycles, one a customized power assisted tricycle, and the second a hand powered tricycle were developed, which offered a unique opportunity to serve multiple purposes in several children's development throughout Wyoming. In Both cases these tricycles provide the children with the opportunity to gain muscle mass, strength, coordination, and confidence. The power assisted tricycle was completed as a senior design project in 2002, and over time safety enhancements have been completed to make the tricycle safer for operation. Unfortunately, the safety system enhancements were not acceptable for it to be released for use. For this reason the tricycle was further redesigned to include more redundant safety systems which will allow the tricycle to be safe for the child's use. The second tricycle was designed to allow for a group of children who have limited use of their legs, to be able to use the same tricycle to give them more upper body strength. A gear system using multiple gear sprockets was adapted to a preexisting tricycle to provide hand power rather than foot power. Without these improvements, the children would not have the opportunity to use these tricycles to help with their development. PMID:16817593

  5. Lightweight Regulated Power Supply

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Power-supply circuit regulates output voltage by adjusting frequency of chopper circuit according to variations. Currently installed in battery charger for electric wheelchair, circuit is well suited to other uses in which light weight is important - for example, in portable computers, radios, and test instruments.

  6. Improvements of a Brain-Computer Interface Applied to a Robotic Wheelchair

    NASA Astrophysics Data System (ADS)

    Ferreira, André; Bastos-Filho, Teodiano Freire; Sarcinelli-Filho, Mário; Sánchez, José Luis Martín; García, Juan Carlos García; Quintas, Manuel Mazo

    Two distinct signal features suitable to be used as input to a Support-Vector Machine (SVM) classifier in an application involving hands motor imagery and the correspondent EEG signal are evaluated in this paper. Such features are the Power Spectral Density (PSD) components and the Adaptive Autoregressive (AAR) parameters. The best result (an accuracy of 97.1%) is obtained when using PSD components, while the AAR parameters generated an accuracy of 91.4%. The results also demonstrate that it is possible to use only two EEG channels (bipolar configuration around C 3 and C 4), discarding the bipolar configuration around C z . The algorithms were tested with a proprietary EEG data set involving 4 individuals and with a data set provided by the University of Graz (Austria) as well. The resulting classification system is now being implemented in a Brain-Computer Interface (BCI) used to guide a robotic wheelchair.

  7. Exploring Winter Community Participation Among Wheelchair Users: An Online Focus Group

    PubMed Central

    Ripat, Jacquie; Colatruglio, Angela

    2016-01-01

    ABSTRACT The aim of this qualitative study was to gain an understanding of what people who use wheeled mobility devices (WMDs; e.g., manual and power wheelchairs, and scooters) identify as environmental barriers to community participation in cold weather climates, and to explore recommendations to overcome environmental barriers to community participation. Researchers conducted an online asynchronous focus group that spanned seven days, with eight individuals who use WMDs. Each day, participants were asked to respond to a moderator-provided question, and to engage with one another around the topic area. The researchers analyzed the verbatim data using an inductive content-analysis approach. Four categories emerged from the data: (1) winter barriers to community participation; (2) life resumes in spring and summer; (3) change requires awareness, education, and advocacy; and (4) winter participation is a right. Participants confirmed that it is a collective responsibility to ensure that WMD users are able to participate in the community throughout the seasons. PMID:26295488

  8. A Front-Row Seat at a Wheelchair Crash Test: EP Kicks Off Its Wheelchair Transportation Safety Series with a Visit to the University of Michigan's Transportation Research Institute

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2007-01-01

    The centerpiece of the University of Michigan's Transportation Research Institute (UMTRI) Sled Lab is "the impact sled," as it is called in the business. It's the business of conducting sled impact tests, perhaps better known as crash tests, on all types of wheelchairs and wheelchair seating systems as well as wheelchair tiedowns and…

  9. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  10. Evaluation of the new flexible contour backrest for wheelchairs.

    PubMed

    Parent, F; Dansereau, J; Lacoste, M; Aissaoui, R

    2000-01-01

    A new flexible contour backrest for wheelchairs was designed with the objectives of offering adequate posture, uniform pressure distribution, and comfort to the users while keeping the advantages of conventional sling backrests, such as easy to fold, light weight, unobtrusive, and airy. The purpose of this study is to compare the new backrest with two commercially available wheelchair backrests, an adjustable-tension (AT) backrest and a back cushion on a rigid support (RS), in terms of pressure distribution, back profile accommodation, and short-term comfort. Evaluations were done with 15 nonimpaired subjects in a static position. It was shown that the new backrest distributes pressure in a more uniform way than the AT and in a way similar to the RS, while giving a better fit to subjects' trunks than other backrests because of its multiple adjustments. Finally, subjects felt that the new backrest is as comfortable as the RS and more comfortable than the AT.

  11. Sport orientation and athletic identity of Greek wheelchair basketball players.

    PubMed

    Kokaridas, Dimitrios; Perkos, Stefanos; Harbalis, Thomas; Koltsidas, Evaggelos

    2009-12-01

    The purpose of this study was to examine sport orientation and athletic identity of Greek wheelchair basketball players. The sample consisted of 50 male wheelchair basketball players all coming from different teams participating at the Greek National Championship. Thirty-three (n = 33) participants had acquired disabilities, and 17 (n = 17) participants had congenital disabilities. The years of training of the participants ranged from 1 to 22 years. All subjects completed the Sport Orientation Questionnaire, with factors of competitiveness, goal orientation, and win orientation, and the Athletic Orientation Questionnaire which assesses personal identity, social identity, exclusivity, and negative effect. The study indicated satisfactory internal consistency for the questionnaires' factors. Furthermore, players with congenital disabilities appeared more win-oriented and focused on specific goals and with stronger self-perception of their athletic role compared to players with acquired disabilities.

  12. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline CrN Films for Bearings of Wind Power Systems.

    PubMed

    Chun, Sung-Yong

    2015-01-01

    Chromium nitride films used as important surface modified bearings for the wind power systems have been prepared using DC (direct current) and ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 500 W. The deposition rate and nano-grain size of ICP assisted films were decreased when the ICP power increased, while the corrosion resistance and mechanical properties of chromium nitride films increased. We present in detail coatings (e.g., deposition rate, grain size, prefer-orientation, corrosion resistance and hardness). Our studies show that chromium nitride coatings with superior properties can be prepared using ICP assisted sputtering.

  13. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  14. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... requirement for priority space in the cabin to store passengers' wheelchairs? (a) As a carrier, you must...-sized folding, collapsible, or break-down manual passenger wheelchair, the dimensions of which...

  15. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... requirement for priority space in the cabin to store passengers' wheelchairs? (a) As a carrier, you must...-sized folding, collapsible, or break-down manual passenger wheelchair, the dimensions of which...

  16. Transfer component skill deficit rates among Veterans who use wheelchairs.

    PubMed

    Koontz, Alicia M; Tsai, Chung-Ying; Hogaboom, Nathan S; Boninger, Michael L

    2016-01-01

    The purpose of this study was to quantify the deficit rates for transfer component skills in a Veteran cohort and explore the relationship between deficit rates and subject characteristics. Seventy-four men and 18 women performed up to four transfers independently from their wheelchair to a mat table while a therapist evaluated their transfer techniques using the Transfer Assessment Instrument. The highest deficit rates concerned the improper use of handgrips (63%). Other common problems included not setting the wheelchair up at the proper angle (50%) and not removing the armrest (58%). Veterans over 60 yr old and Veterans with moderate shoulder pain were more likely to set up their wheelchairs inappropriately than younger Veterans (p = 0.003) and Veterans with mild shoulder pain (p = 0.004). Women were less likely to remove their armrests than men (p = 0.03). Subjects with disabilities other than spinal cord injury were less inclined to set themselves up for a safe and easy transfer than the subjects with spinal cord injury (p ≤ 0.001). The results provide insight into the disparities present in transfer skills among Veterans and will inform the development of future transfer training programs both within and outside of the Department of Veterans Affairs. PMID:27149389

  17. Kinematic analysis of the wheelchair tennis serve: Implications for classification.

    PubMed

    Cavedon, V; Zancanaro, C; Milanese, C

    2014-10-01

    The aim of the present study was to assess the validity of the classification system used in Open-class wheelchair tennis by investigating the relationship between post-impact ball velocity in the serve (measured using a sports radar gun) and the severity of impairment. Shoulder and wrist angles at the instant of ball impact were also estimated from 2D motion analysis. Forty-three nationally ranked Italian Open-class wheelchair tennis players were assigned to four groups (A–D) according to descending level of activity limitation. Ten successful flat serves (WFSs) and 10 successful kick serves (WKSs) for each player were recorded. One-way ANOVA showed that the severity of impairment significantly (P < 0.05) affected post-impact ball velocity and shoulder angle at the instant of ball impact. Furthermore, the mean value of post-impact ball velocity in WFS increased from group A to group D, i.e., with descending level of activity limitation. The results of this cross-sectional study indicate that the severity of impairment per se is associated with velocity of the wheelchair tennis serve, suggesting that the current classification is flawed in that it overlooks the impact of severity of impairment on players' performance. PMID:25371933

  18. Electric Wheelchair Controlled by Human Body Motion Interface

    NASA Astrophysics Data System (ADS)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  19. Wheelchair seating: a state of the science report.

    PubMed

    Geyer, Mary Jo; Brienza, David M; Bertocci, Gina E; Crane, Barbara; Hobson, Douglas; Karg, Patricia; Schmeler, Mark; Trefler, Elaine

    2003-01-01

    Regardless of the field, agenda-setting processes are integral to establishing research and development priorities. Beginning in 1998, the National Institute on Disability and Rehabilitation Research mandated that each newly funded Rehabilitation Engineering and Research Center (RERC) hold a state-of-the-science consensus forum during the third year of its 5-year funding cycle. NIDRR's aim in formalizing this agenda-setting process was to facilitate the formulation of future research and development priorities for each respective RERC. In February 2001, the RERC on Wheeled Mobility, University of Pittsburgh, conducted one of the first such forums. The scope encompassed both current scientific knowledge and clinical issues. In preparation, expert interviews were carried out to establish the focus for the forum. Because a stakeholder forum on wheelchair technology had recently been held, opinion favored wheelchair seating as the focus and included the following core areas: seating for use in wheelchair transportation, seated postural control, seating discomfort, and tissue integrity management. The aim of this report is to present a summary of the workshop outcomes, describe the process, and increase awareness of this agenda-setting process in order to enhance future participation in a process that critically influences the field of wheeled mobility.

  20. Survey of wheelchair athletic injuries: common patterns and prevention.

    PubMed

    Curtis, K A; Dillon, D A

    1985-06-01

    Twelve hundred wheelchair athletes were surveyed to determine commonly experienced athletic injuries, sports participation and training patterns associated with injuries. Soft tissue trauma, blisters, lacerations, decubiti and joint disorders were the most commonly reported injuries of the 128 respondents. Over 70 per cent of all reported injuries occurred during wheelchair track, road racing and basketball. Common mechanisms of injury were also identified. A significantly higher number of reported injuries were associated with increased sports participation (p less than 001), with the 21-30 year-old age group (p less than .01), and with a high number of training hours per week (p less than .05). There was no significant relationship between number of reported injuries and disability type, National Wheelchair Athletic Association classification, or sex. Decubitus ulcers and temperature regulation disorders were identified as particular risks for the spinal cord injury population. Educating the athlete and coach in means to prevent injury is necessary to promote optimal performance and safe participation. PMID:4011292

  1. Body composition comparison in two elite female wheelchair athletes.

    PubMed

    Lussier, L; Knight, J; Bell, G; Lohman, T; Morris, A F

    1983-02-01

    It was the purpose of this study to determine body composition by two methods in two excellent female athletes. One sportswoman (SRH) was national wheelchair marathon champion in 1977 in 3 hours, 40 minutes on the Boston course. She still competes internationally and has won three gold medals and set three world records in the last Olympiad for the handicapped in 1980. The second woman athlete (LSJ) competes in wheelchair basketball and track on a national level. Body density was determined by the standard underwater weighing procedure and residual volume determination. A second method to calculate cellular body mass was the measure of potassium 40 (40K) activity by whole body scintillation counter. The characteristics of these athletes are listed as follows: (formula; see text) The results show that both methods of determining adiposity produce results differing by only one percentage point. It is important to determine body composition in these wheelchair athletes since their cellular body mass is decreased because of their disability.

  2. Thyristor-based current-fed drive with direct power control for permanent magnet-assisted synchronous reluctance generator

    NASA Astrophysics Data System (ADS)

    Baek, J.; Kwak, S.-S.; Toliyat, H. A.

    2015-03-01

    This paper proposes a robust and simple direct power control (DPC) of a thyristor-based current-fed drive for generator applications. A current-fed drive and permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) are investigated to deliver 3 kW power using a combustion engine. The current-fed drive utilises a thyristor-based three-phase rectifier to convert generator power to DC-link power and a single-phase current-fed inverter to supply a single-phase inductive load. In addition, a new control algorithm is developed based on DPC for the current-fed drive. The DC-link voltage-based DPC is proposed in order to directly control the output power. The goal of the DPC is to maintain the DC-link voltage at the required output power operating point. The DPC has advantages such as a simple algorithm for constant speed operation. Another feature of the developed current-fed drive is its inherent capability to provide generating action by making the PMa-SynRG operates as a generator, rectifying the phase voltages by means of the three-phase rectifier and feeding the power into the load. These features make the current-fed drive a good candidate for driving any type of synchronous generators including the proposed PMa-SynRG.

  3. A novel form of manually assisted ventilation.

    PubMed

    Stone, Andrew C; Nolan, Sheila; Abu-Hijleh, Muhanned; McCool, Dennis; Hill, Nicholas S; Abu-Hijlehia, Muhanned

    2003-03-01

    We report an individual with limb-girdle muscular dystrophy who has devised a way to assist her respiration by using her hands braced against the tray of her wheelchair. Utilizing this method, she was able to increase her tidal volume (VT) and lower her respiratory rate compared to unassisted spontaneous breathing, thereby maintaining a stable minute volume. The manually assisted VT measurements were comparable to those achieved using an intermittent abdominal pressure respirator (pneumatic belt). We believe that others with neuromuscular syndromes could use this technique, possibly decreasing their dependence on mechanical ventilatory assist devices.

  4. Demographic Profile and Athletic Identity of Traumatic Spinal Cord Injured Wheelchair Basketball Athletes in Greece

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Evaggelinou, Christina; Avourdiadou, Sevastia; Grekinis, Petros

    2010-01-01

    An epidemiological study conducted across the country of Greece was conducted in order to determine the profile and the athletic identity of spinal cord injured (SCI) wheelchair basketball athletes who participated to the 13th Greek Wheelchair Basketball Championship and Cup. The Disability Sport Participation questionnaire was used for data…

  5. The development and testing of a system for wheelchair stability measurement.

    PubMed

    Stefanov, Dimitar; Avtanski, Alexander; Shapcott, Nigel; Magee, Paul; Dryer, Paul; Fielden, Simon; Heelis, Mike; Evans, Jill; Moody, Louise

    2015-11-01

    Wheelchair stability has an impact on safety as well as wheelchair performance, propulsion and manoeuvrability. Wheelchair stability is affected by the addition of life-supporting heavy equipment, e.g. ventilators and oxygen cylinders, as well as the characteristics of the user e.g. limb amputations, obesity. The aim of the research described here was to develop and test a stability assessment system that would guide and support the adjustment of wheelchairs to individual needs, characteristics and lifestyles. The resulting system provides assessment of centre of gravity and wheelchair stability and calculates the wheelchair tipping angles. The system consists of a force platform that senses the weight distribution of the wheelchair and calculates the centres of the contact points of the wheels and the distances between them. The measurement data are transferred via a WiFi connection to a portable tablet computer where wheelchair stability parameters are calculated. A touchscreen GUI provides visualization of the stability results and navigation through the measurement modes. The developed new concept has been evaluated through technical laboratory-based testing to determine the validity of the data collected. Initial testing has been undertaken within the clinical setting in 3 large hospitals in the UK. Initial results suggest that Wheelsense® provides a valuable tool to support clinical judgement. PMID:26403319

  6. The development and testing of a system for wheelchair stability measurement.

    PubMed

    Stefanov, Dimitar; Avtanski, Alexander; Shapcott, Nigel; Magee, Paul; Dryer, Paul; Fielden, Simon; Heelis, Mike; Evans, Jill; Moody, Louise

    2015-11-01

    Wheelchair stability has an impact on safety as well as wheelchair performance, propulsion and manoeuvrability. Wheelchair stability is affected by the addition of life-supporting heavy equipment, e.g. ventilators and oxygen cylinders, as well as the characteristics of the user e.g. limb amputations, obesity. The aim of the research described here was to develop and test a stability assessment system that would guide and support the adjustment of wheelchairs to individual needs, characteristics and lifestyles. The resulting system provides assessment of centre of gravity and wheelchair stability and calculates the wheelchair tipping angles. The system consists of a force platform that senses the weight distribution of the wheelchair and calculates the centres of the contact points of the wheels and the distances between them. The measurement data are transferred via a WiFi connection to a portable tablet computer where wheelchair stability parameters are calculated. A touchscreen GUI provides visualization of the stability results and navigation through the measurement modes. The developed new concept has been evaluated through technical laboratory-based testing to determine the validity of the data collected. Initial testing has been undertaken within the clinical setting in 3 large hospitals in the UK. Initial results suggest that Wheelsense® provides a valuable tool to support clinical judgement.

  7. Visual Estimation of Spatial Requirements for Locomotion in Novice Wheelchair Users

    ERIC Educational Resources Information Center

    Higuchi, Takahiro; Takada, Hajime; Matsuura, Yoshifusa; Imanaka, Kuniyasu

    2004-01-01

    Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that…

  8. Ethnic, Gender, and Contact Differences in Intimacy Attitudes toward Wheelchair Users

    ERIC Educational Resources Information Center

    Marini, Irmo; Wang, Xiaohui; Etzbach, Colleen A.; Del Castillo, Alinka

    2013-01-01

    Student attitudes toward having a relationship with a wheelchair user were explored. Participants initially selected one of six opposite gender head shots and subsequently viewed their selection's whole body photograph in a wheelchair along with reading a short biography. Primarily undergraduate Hispanic and Caucasian students (N = 810) were…

  9. 77 FR 32644 - Medical Devices; Exemption From Premarket Notification: Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ..., 1998 (63 FR 3142). Section 510(m)(2) of the FD&C Act provides that, 1 day after date of publication of...: Wheelchair Elevator AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug... notification requirements for wheelchair elevator devices commonly known as inclined platform lifts...

  10. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  11. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  12. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  13. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  14. Comparison of mood states of college able-bodied and wheelchair basketball players.

    PubMed

    Paulsen, P; French, R; Sherrill, C

    1991-10-01

    The mood states of 26 college wheelchair basketball players were examined in relation to 11 varsity college basketball players and normative data from 340 college men. Multivariate analysis indicated that the wheelchair basketball players had significantly better mental health profiles than the two comparison groups.

  15. A five-wheel wheelchair with an active-caster drive system.

    PubMed

    Munakata, Yu; Tanaka, Aki; Wada, Masayoshi

    2013-06-01

    A novel wheelchair system with an active-caster drive mechanism is presented in this paper. A manual (hand propelled) wheelchair with an external single-wheel drive system forms a five-wheel configuration. The active-caster mechanism is applied to a drive system to motorize a manual wheelchair. Two electric motors which drive a wheel axis and a steering axis of a drive wheel independently are equipped on the active-caster. A coordinated control of the two motors enables the velocity vector on the steering shaft to direct in an arbitrary direction with an arbitrary magnitude. The generated velocity vector allows a wheelchair to go straight and/or rotate completely in a same way as a standard electric wheelchair. Namely 2DOF of the wheelchair can be controlled independently by a single drive wheel without any constraint, such as the orientation of the drive wheel which is well known as a non-holonomic constraint. In addition to the 2DOF mobility, the proposed system enables wheelchair users to change drive modes, a rear drive and a front drive. The drive wheel on the back side of the wheelchair is vertically actuated by a linear motor to change the height of the drive wheel that can vary load distribution and the number of wheels contacting to the ground. The five-wheel-contact makes the wheelchair to move as the normal mode in which the center of rotation is located at the midpoint of the main wheels. Depressing the drive wheel results in lost contacts of the main wheels from the ground in which the center of rotation is jumped at the midpoint of the front wheels, namely it performs as a front drive wheelchair. In this paper, kinematic models of the wheelchair and that with an active-caster drive system are analyzed and a control method by using a 2DOF joystick is derived. Based on the kinematic model, a prototype mechanism of the active-caster is designed and mounted on a manual wheelchair to realize the five-wheel wheelchair. In the experiments, the independent 2

  16. A five-wheel wheelchair with an active-caster drive system.

    PubMed

    Munakata, Yu; Tanaka, Aki; Wada, Masayoshi

    2013-06-01

    A novel wheelchair system with an active-caster drive mechanism is presented in this paper. A manual (hand propelled) wheelchair with an external single-wheel drive system forms a five-wheel configuration. The active-caster mechanism is applied to a drive system to motorize a manual wheelchair. Two electric motors which drive a wheel axis and a steering axis of a drive wheel independently are equipped on the active-caster. A coordinated control of the two motors enables the velocity vector on the steering shaft to direct in an arbitrary direction with an arbitrary magnitude. The generated velocity vector allows a wheelchair to go straight and/or rotate completely in a same way as a standard electric wheelchair. Namely 2DOF of the wheelchair can be controlled independently by a single drive wheel without any constraint, such as the orientation of the drive wheel which is well known as a non-holonomic constraint. In addition to the 2DOF mobility, the proposed system enables wheelchair users to change drive modes, a rear drive and a front drive. The drive wheel on the back side of the wheelchair is vertically actuated by a linear motor to change the height of the drive wheel that can vary load distribution and the number of wheels contacting to the ground. The five-wheel-contact makes the wheelchair to move as the normal mode in which the center of rotation is located at the midpoint of the main wheels. Depressing the drive wheel results in lost contacts of the main wheels from the ground in which the center of rotation is jumped at the midpoint of the front wheels, namely it performs as a front drive wheelchair. In this paper, kinematic models of the wheelchair and that with an active-caster drive system are analyzed and a control method by using a 2DOF joystick is derived. Based on the kinematic model, a prototype mechanism of the active-caster is designed and mounted on a manual wheelchair to realize the five-wheel wheelchair. In the experiments, the independent 2

  17. Feasibility study on a perceived fatigue prediction dependent power control for an electrically assisted bicycle.

    PubMed

    Kiryu, T; Minagawa, H

    2013-01-01

    Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB.

  18. Feasibility study on a perceived fatigue prediction dependent power control for an electrically assisted bicycle.

    PubMed

    Kiryu, T; Minagawa, H

    2013-01-01

    Several types of electric motor assists have been developed, as a result, it is important to control muscular fatigue on-site in terms of health promotion and motor rehabilitation. Predicting the perceived fatigue by several biosignal-related variables with the multiple regression model and polynomial approximation, we try to propose a self control design for the electrically assisted bicycle (EAB). We also determine the meaningful muscles during pedaling by muscle synergies in relation to the motion maturity. In field experiments, prediction of ongoing perceived physical fatigue could have the potential of suitable control of EAB. PMID:24110131

  19. Effectiveness of Social Behaviors for Autonomous Wheelchair Robot to Support Elderly People in Japan

    PubMed Central

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items. PMID:25993038

  20. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    PubMed

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items. PMID:25993038

  1. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.

    PubMed

    Ferguson, John E; Wittig, Becky L; Payette, Mark; Goldish, Gary D; Hansen, Andrew H

    2014-01-01

    Custom wheelchair seats can be used to help prevent pressure ulcers in individuals with spinal cord injury. In this study, a strap-based system was evaluated in three Veterans with spinal cord injury. Interface pressure distributions were measured after transfers, wheeling, and pressure relief maneuvers and after fittings by three different therapists. We found that pressure distribution measures were not generally affected after transfers and wheeling using the strap-based wheelchair and that pressure relief maneuvers were able to be performed. Additionally, all therapists were able to customize the wheelchair seat to clinically acceptable levels in 4 to 40 min for the three subjects. Future studies can test the long-term effects of using the strap-based wheelchair seat and identifying individuals that would most benefit from a rapidly customizable wheelchair seat.

  2. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.

    PubMed

    Ferguson, John E; Wittig, Becky L; Payette, Mark; Goldish, Gary D; Hansen, Andrew H

    2014-01-01

    Custom wheelchair seats can be used to help prevent pressure ulcers in individuals with spinal cord injury. In this study, a strap-based system was evaluated in three Veterans with spinal cord injury. Interface pressure distributions were measured after transfers, wheeling, and pressure relief maneuvers and after fittings by three different therapists. We found that pressure distribution measures were not generally affected after transfers and wheeling using the strap-based wheelchair and that pressure relief maneuvers were able to be performed. Additionally, all therapists were able to customize the wheelchair seat to clinically acceptable levels in 4 to 40 min for the three subjects. Future studies can test the long-term effects of using the strap-based wheelchair seat and identifying individuals that would most benefit from a rapidly customizable wheelchair seat. PMID:25626113

  3. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    PubMed

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  4. Powered Sit-to-Stand and Assistive Stand-to-Sit Framework for a Powered Transfemoral Prosthesis

    PubMed Central

    Varol, Huseyin Atakan; Sup, Frank; Goldfarb, Michael

    2009-01-01

    This work extends the three level powered knee and ankle prosthesis control framework previously developed by the authors by adding sitting mode. A middle level finite state based impedance controller is designed to accommodate sitting, sit-to-stand and stand-to-sit transitions. Moreover, a high level Gaussian Mixture Model based intent recognizer is developed to distinguish between standing and sitting modes and switch the middle level controllers accordingly. Experimental results with unilateral transfemoral amputee subject show that sitting down and standing up intent can be inferred from the prosthesis sensor signals by the intent recognizer. Furthermore, it is demonstrated that the prosthesis generates net active power of 50 W during standing up and dissipates up to 50 W of power during stand-to-sit transition at the knee joint. PMID:20046838

  5. Applying basic principles of child passenger safety to improving transportation safety for children who travel while seated in wheelchairs.

    PubMed

    Manary, Miriam A; Schneider, Lawrence W

    2011-01-01

    Occupant restraint systems are designed based on knowledge of crash dynamics and the application of proven occupant-protection principles. For ambulatory children or children who use wheelchairs but can transfer out of their wheelchair when traveling in motor vehicles, there is a range of child safety seats that comply with federal safety standards and that therefore offer high levels of crash protection. For children who remain seated in wheelchairs for travel, the use of wheelchairs and wheelchair tiedown and occupant restraint systems (WTORS) that comply with voluntary industry standards significantly enhances safety. Revisions to the initial versions of these standards will further improve safety for smaller children who travel seated in wheelchairs by requiring wheelchairs for children between 13 and 22 kg (18 and 50 lb) to provide a five-point, wheelchair-integrated crash-tested harness similar to that used in forward-facing child safety seats. While wheelchair and tiedown/restraint manufacturers, van modifiers, transportation personnel, clinicians, and others involved with children who use wheelchairs have clearly defined responsibilities relative to providing these children with safe transportation, parents and caregivers should be knowledgeable about best-practice in wheelchair transportation safety and should use this knowledge to advocate for the safest transportation possible.

  6. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  7. Oxygen plasma power dependence on ZnO grown on porous silicon substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Nam, Giwoong; Kim, Min Su; Kim, Do Yeob; Yim, Kwang Gug; Kim, Soaram; Kim, Sung-O.; Lee, Dong-Yul; Leem, Jae-Young

    2012-10-15

    ZnO thin films were deposited on porous silicon by plasma-assisted molecular beam epitaxy using different radio frequency power settings. Optical emission spectrometry was applied to study the characteristics of the oxygen plasma, and the effects of the radio frequency power on the properties of the ZnO thin films were evaluated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The grain sizes for radio frequency powers of 100, 200, and 300 W were 46, 48, and 62 nm, respectively. In addition, the photoluminescence intensities of the ultraviolet and the visible range increased at 300 W, because the density of the atomic oxygen transitions increased. The quality of the ZnO thin films was enhanced, but the deep-level emission peaks increased with increasing radio frequency power. The structural and optical properties of the ZnO thin films were improved at the radio frequency power of 300 W. Moreover, the optical properties of the ZnO thin films were improved with porous silicon, instead of Si.

  8. Performance evaluation of biosignal measurement at the wheelchair system.

    PubMed

    Han, Dong-Kyoon; Kim, Jong-Myoung; Hong, Joo-Hyun; Cha, Eun-Jong; Lee, Tae-Soo

    2008-01-01

    The purpose of this study is to measure both ECG and BCG(Ballistocariograph) signal of a subject on moving or resting wheelchair and detect the heart rate and respiratory rate and transmit an event message to remote server on emergent situation. To acquire ECG and BCG data, amplifier circuits were composed to be suitable for their characteristics. 3-axial accelerometer was built in the developed device to measure the mechanical noise that can be generated on moving wheelchair.The output signals were converted to digital data and stored in bio-signal archiving media(SD card). CDMA module was used to transmit the event data on ECG electrode detachment and the received data was monitored by the developed C# application program. 8 volunteers participated in the experiment to evaluate the validity of the developed device. When the event occurs in each subject, 48 Kbyte data, stored for 32 seconds from that point, was transmitted to remote server through CDMA cellular phone network correctly. The received data of ECG , BCG, and 3-axial acceleration could be archived in server and the heart rate and respiratory rate could be measured and analyzed. The correlation coefficients of respiratory rate in resting and moving with the real value were 0.9636 and 0.9237, respectively. The correlation coefficient ofR-R intervals between the developed and reference device was 0.999.In conclusion, the developed device in this study could acquire the ECG and BCG data of subjects on wheelchair simultaneously and measure their heart rate and respiratory rate. In addition, event data was verified to be transmitted to remote server without any errors.

  9. Data logger device applicability for wheelchair tennis court movement.

    PubMed

    Sindall, Paul; Lenton, John; Cooper, Rory; Tolfrey, Keith; Goosey-Tolfrey, Vicky

    2015-01-01

    Assessment of movement logging devices is required to ensure suitability for the determination of court-movement variables during competitive sports performance and allow for practical recommendations to be made. Hence, the purpose was to examine wheelchair tennis speed profiles to assess data logger device applicability for court-movement quantification, with match play stratified by rank (HIGH, LOW), sex (male, female) and format (singles, doubles). Thirty-one wheelchair tennis players were monitored during competitive match play. Mixed sampling was employed (male = 23, female = 8). Friedman's test with Wilcoxon signed-rank post hoc testing revealed a higher percentage of time below 2.5 m · s(-1) [<2.5 vs. ≥2.5 m · s(-1): 89.4 (5.0) vs. 1.2 (3.5)%, Z = -4.860, P < 0.0005, r = 0.87] with the remaining time [9.0 (4.9%)] spent stationary. LOW-ranked players were stationary for longer than HIGH-ranked counterparts [12.6 (8.7) vs. 8.2 (5.1)%, U = 30.000, P = 0.011, r = 0.46] with more time at low propulsion speeds (<1.0 m · s(-1)). HIGH-ranked and doubles players spent more time in higher speed zones than respective counterparts. Females spent more time in the 1.0-1.49 m · s(-1) zone (U = 48.000, P = 0.047, r = 0.36). Regardless of rank, sex or format, propulsion speeds during wheelchair tennis match play are consistent with data logger accuracy. Hence, data logging is appropriate for court-movement quantification. PMID:25278114

  10. Prototype development and comparative evaluation of wheelchair pressure mapping system.

    PubMed

    Ferguson-Pell, M; Cardi, M D

    1993-01-01

    Wheelchair pressure mapping devices used in the prescription of seat cushions and postural supports have been limited in durability, data presentation, and/or clinical efficiency. This project sought to establish the ideal specifications for clinically useful pressure mapping systems, and to use these specifications to influence the design of an innovative wheelchair pressure mapping system (Tekscan "Seat"). Technology, previously developed for measurement of forces of dental occlusion and of the foot during gait, was applied to wheelchair seat mapping. Tests were designed to compare the performance of three pressure mapping systems: the Tekscan system, the FSA system, and the Talley TPM3. Bench tests were done to measure reproducibility, hysteresis, and creep of each of the pressure mapping systems. A contoured loader gauge was developed to test for the influence of hammocking. Tests were also performed using spinal cord-injured subjects to demonstrate the relative performance of the pressure mapping systems in a clinical setting. A focus group session was conducted with seating specialists to review the strengths and weakness of the systems for routine clinical use. The TPM3 was found to be the most accurate, stable, and reproducible but limited in ease of use, speed, and data presentation. FSA was rated well in clinical application and data management but demonstrated a pronounced hysteresis (+/-19%) and creep (4%). The Tekscan system also showed substantial hysteresis (+/-20%) and creep (19%) but was preferred by clinicians for its real-time display capabilities, resolution, and display options. Some trends in system performance on varied support surfaces were identified and can be a valuable guide to interpretation of measurements and prescription decision making in the clinic. Problems identified with the accuracy and stability of the Tekscan and FSA systems may be amenable to resolution with software correction and changes in fabrication. With these

  11. Data logger device applicability for wheelchair tennis court movement.

    PubMed

    Sindall, Paul; Lenton, John; Cooper, Rory; Tolfrey, Keith; Goosey-Tolfrey, Vicky

    2015-01-01

    Assessment of movement logging devices is required to ensure suitability for the determination of court-movement variables during competitive sports performance and allow for practical recommendations to be made. Hence, the purpose was to examine wheelchair tennis speed profiles to assess data logger device applicability for court-movement quantification, with match play stratified by rank (HIGH, LOW), sex (male, female) and format (singles, doubles). Thirty-one wheelchair tennis players were monitored during competitive match play. Mixed sampling was employed (male = 23, female = 8). Friedman's test with Wilcoxon signed-rank post hoc testing revealed a higher percentage of time below 2.5 m · s(-1) [<2.5 vs. ≥2.5 m · s(-1): 89.4 (5.0) vs. 1.2 (3.5)%, Z = -4.860, P < 0.0005, r = 0.87] with the remaining time [9.0 (4.9%)] spent stationary. LOW-ranked players were stationary for longer than HIGH-ranked counterparts [12.6 (8.7) vs. 8.2 (5.1)%, U = 30.000, P = 0.011, r = 0.46] with more time at low propulsion speeds (<1.0 m · s(-1)). HIGH-ranked and doubles players spent more time in higher speed zones than respective counterparts. Females spent more time in the 1.0-1.49 m · s(-1) zone (U = 48.000, P = 0.047, r = 0.36). Regardless of rank, sex or format, propulsion speeds during wheelchair tennis match play are consistent with data logger accuracy. Hence, data logging is appropriate for court-movement quantification.

  12. Synchrophasor-Assisted Prediction of Stability/Instability of a Power System

    NASA Astrophysics Data System (ADS)

    Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar

    2013-05-01

    This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.

  13. Hemodynamic evaluation of a chronically implanted, electrically powered left ventricular assist system: responses to acute circulatory stress.

    PubMed

    McKay, R G; Penny, W F; Wyman, R M; Clay, W; Carr, J G; Bernhard, W F; Grossman, W

    1991-12-01

    Hemodynamic stress testing was performed in four calves with a chronically implanted left ventricular assist device consisting of a double-valved pump interposed between the left ventricular apex and the descending thoracic aorta. The device was powered either pneumatically (n = 1) or with a transcutaneous energy transmission system (n = 3). Hemodynamic evaluation (cardiac output and right and left ventricular and pulmonary and carotid artery pressures) was carried out at baseline and during all hemodynamically stressed states. Atrial pacing and ventricular pacing to a heart rate of 140 beats/min resulted in no significant change in right or left heart filling pressures or cardiac output. Preload reduction with nitroprusside or transient inferior vena cava balloon occlusion resulted in a marked decrease in left ventricular pressure with preservation of mean arterial pressure. Phenylephrine administration resulted in a marked rise in mean arterial pressure with no change in cardiac output or filling pressure. Induction of ventricular fibrillation resulted in a decrease of mean left ventricular pressure to 11 +/- 8 mm Hg, but mean arterial pressure was maintained at greater than or equal to 50 mm Hg. It is concluded that a multicomponent, implantable, electrically powered assist system is capable of maintaining a normal cardiac output under a wide range of loading conditions and chronotropic states. Although this device is clearly preload dependent, it is capable of maintaining normal systemic pressures during conditions of severe left ventricular dysfunction and circulatory collapse. PMID:1960330

  14. Ambulation without wheelchairs for paraplegics with complete lesions.

    PubMed

    Natvig, H; McAdam, R

    1978-08-01

    Some salient features of the physical training programme for paraplegics at the State Rehabilitation Institute in Oslo are mentioned. A ten-year follow-up study of 42 clients with complete lesions (TI-L3) is presented. After an intensive physical training programme of some 10--15 weeks 74 per cent were able to climb and go down 20 standard stairs and 71 per cent were able to walk 100 metres indoors with crutches. The authors stress the importance of ambulations independent of wheelchairs whenever this is possible. PMID:733293

  15. Biomechanical Model for Evaluation of Pediatric Upper Extremity Joint Dynamics during Wheelchair Mobility

    PubMed Central

    Schnorenberg, Alyssa J.; Slavens, Brooke A.; Wang, Mei; Vogel, Lawrence; Smith, Peter; Harris, Gerald F.

    2014-01-01

    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopaedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood. PMID:24309622

  16. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.

    PubMed

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users' activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs' wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels. PMID:26479684

  17. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.

    PubMed

    Schnorenberg, Alyssa J; Slavens, Brooke A; Wang, Mei; Vogel, Lawrence C; Smith, Peter A; Harris, Gerald F

    2014-01-01

    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood.

  18. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.

    PubMed

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users' activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs' wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels.

  19. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    PubMed Central

    Akkaya, Nurullah; Aytac, Ersin; Günsel, Irfan; Çağman, Ahmet

    2016-01-01

    The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG) signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN) is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair. PMID:27777953

  20. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording.

    PubMed

    Zhou, Nan; Traverso, Luis M; Xu, Xianfan

    2015-03-27

    To keep increasing the storage density in next-generation hard disk drives, heat-assisted magnetic recording is being developed where a nanoscale near field transducer (NFT) locally and temporally heats a sub-diffraction-limited region in the recording medium to reduce the magnetic coercivity. This allows the use of very small grain in the medium while still maintaining data thermal stability. Plasmonic nanostructures made of apertures or antennas are good candidates for NFTs because of their capability of subwavelength light manipulation in optical frequencies. The NFT must simultaneously deliver enough power to the recording medium with as small as possible incident laser power to reduce self-heating in the NFT, which could cause thermal expansion and materials failure that lead to degradation of the overall hard drive performance. In this work, we study the effect of optical properties on the power delivery efficiency of nanoscale bowtie aperture antennas, with the presence of a recording media stack. Heat dissipation and temperature rise in the NFT are also computed to investigate their dependence on materials' properties. The possibility of using alternative plasmonic materials for delivering higher power and/or reducing heating in NFTs is discussed.