Sample records for power capture optimization

  1. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  2. Large size biogas-fed Solid Oxide Fuel Cell power plants with carbon dioxide management: Technical and economic optimization

    NASA Astrophysics Data System (ADS)

    Curletti, F.; Gandiglio, M.; Lanzini, A.; Santarelli, M.; Maréchal, F.

    2015-10-01

    This article investigates the techno-economic performance of large integrated biogas Solid Oxide Fuel Cell (SOFC) power plants. Both atmospheric and pressurized operation is analysed with CO2 vented or captured. The SOFC module produces a constant electrical power of 1 MWe. Sensitivity analysis and multi-objective optimization are the mathematical tools used to investigate the effects of Fuel Utilization (FU), SOFC operating temperature and pressure on the plant energy and economic performances. FU is the design variable that most affects the plant performance. Pressurized SOFC with hybridization with a gas turbine provides a notable boost in electrical efficiency. For most of the proposed plant configurations, the electrical efficiency ranges in the interval 50-62% (LHV biogas) when a trade-off of between energy and economic performances is applied based on Pareto charts obtained from multi-objective plant optimization. The hybrid SOFC is potentially able to reach an efficiency above 70% when FU is 90%. Carbon capture entails a penalty of more 10 percentage points in pressurized configurations mainly due to the extra energy burdens of captured CO2 pressurization and oxygen production and for the separate and different handling of the anode and cathode exhausts and power recovery from them.

  3. Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.

    Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less

  4. Effect of fossil fuels on the parameters of CO2 capture.

    PubMed

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  5. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance

    PubMed Central

    Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko

    2016-01-01

    The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application. PMID:27763522

  6. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.

    PubMed

    Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko

    2016-10-17

    The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application.

  7. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Research on structural integration of thermodynamic system for double reheat coal-fired unit with CO2 capture

    NASA Astrophysics Data System (ADS)

    Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng

    2018-02-01

    Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.

  9. Propellers And Fans Based On The Moebius Strip

    NASA Technical Reports Server (NTRS)

    Seiner, John Milton; Gilinsky, Mikhail Markovich

    1996-01-01

    Moebius strip proposed as basis for optimally shaped airplane and boat propellers, fans, helicopter rotors, mixing screws, coffee grinders, and concrete mixers. Basic idea of optimal shaping of such device to increase working efficiency by increasing area for capture of still medium without increasing power needed for rotation.

  10. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  11. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  12. Optimization of extended propulsion time nuclear-electric propulsion trajectories

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1981-01-01

    This paper presents the methodology used in optimizing extended propulsion time NEP missions considering realistic thruster lifetime constraints. These missions consist of a powered spiral escape from a 700-km circular orbit at the earth, followed by a powered heliocentric transfer with an optimized coast phase, and terminating in a spiral capture phase at the target planet. This analysis is most applicable to those missions with very high energy requirements such as outer planet orbiter missions or sample return missions where the total propulsion time could greatly exceed the expected lifetime of an individual thruster. This methodology has been applied to the investigation of NEP missions to the outer planets where examples are presented of both constrained and optimized trajectories.

  13. Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters

    PubMed Central

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.

    2012-01-01

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014

  14. Optimization of passive low power wireless electromagnetic energy harvesters.

    PubMed

    Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M

    2012-10-11

    This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.

  15. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  16. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  17. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  18. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.

  19. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  20. Driver electronics design and control for a total artificial heart linear motor.

    PubMed

    Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich

    2018-01-27

    For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.

  1. Predicting power-optimal kinematics of avian wings

    PubMed Central

    Parslew, Ben

    2015-01-01

    A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model unearths a vast range of kinematic modes that are capable of generating the required forces for flight. The most efficient mode uses a near-vertical stroke–plane and a flexed-wing upstroke, similar to kinematics recorded experimentally. In hover, the model predicts that the power-optimal mode uses an extended-wing upstroke, similar to hummingbirds. In flexing their wings, pigeons are predicted to consume 20% more power than if they kept their wings full extended, implying that the typical kinematics used by pigeons in hover are suboptimal. Predictions of climbing flight suggest that the most energy-efficient way to reach a given altitude is to climb as steeply as possible, subjected to the availability of power. PMID:25392398

  2. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  3. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.

    PubMed

    Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan

    2018-06-01

    We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an environmentally and economically rewarding manner. The model developed in this study is generic, and it can be applied to any industry at any location, as long as the required inputs are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Trajectory Optimization of a Bimodal Nuclear Powered Spacecraft to Mars

    DTIC Science & Technology

    1990-05-29

    velocity M = initial mass of spacecraft o m= ion fuel expulsion rate (constant) 0 = thrust direction angle = gravitational constant of Sun AVto t...total velocity change possible for the impulsive engines AV1 = velocity change for Earth escape AV2 = velocity change for Mars capture AVto t = AV + AV

  5. 78 FR 18974 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... bring together experts from diverse backgrounds and experiences including electric system operators... transmission switching; AC optimal power flow modeling; and use of active and dynamic transmission ratings. In... variability of the system, including forecast error? [cir] How can outage probability be captured in...

  6. Mission Design, Guidance, and Navigation of a Callisto-Io-Ganymede Triple Flyby Jovian Capture

    NASA Astrophysics Data System (ADS)

    Didion, Alan M.

    Use of a triple-satellite-aided capture maneuver to enter Jovian orbit reduces insertion DeltaV and provides close flyby science opportunities at three of Jupiter's four large Galilean moons. This capture can be performed while maintaining appropriate Jupiter standoff distance and setting up a suitable apojove for plotting an extended tour. This paper has three main chapters, the first of which discusses the design and optimization of a triple-flyby capture trajectory. A novel triple-satellite-aided capture uses sequential flybys of Callisto, Io, and Ganymede to reduce the DeltaV required to capture into orbit about Jupiter. An optimal broken-plane maneuver is added between Earth and Jupiter to form a complete chemical/impulsive interplanetary trajectory from Earth to Jupiter. Such a trajectory can yield significant fuel savings over single and double-flyby capture schemes while maintaining a brief and simple interplanetary transfer phase. The second chapter focuses on the guidance and navigation of such trajectories in the presence of spacecraft navigation errors, ephemeris errors, and maneuver execution errors. A powered-flyby trajectory correction maneuver (TCM) is added to the nominal trajectory at Callisto and the nominal Jupiter orbit insertion (JOI) maneuver is modified to both complete the capture and target the Ganymede flyby. A third TCM is employed after all the flybys to act as a JOI cleanup maneuver. A Monte Carlo simulation shows that the statistical DeltaV required to correct the trajectory is quite manageable and the flyby characteristics are very consistent. The developed methods maintain flexibility for adaptation to similar launch, cruise, and capture conditions. The third chapter details the methodology and results behind a completely separate project to design and optimize an Earth-orbiting three satellite constellation to perform very long baseline interferometry (VLBI) as part of the 8th annual Global Trajectory Optimisation Competition (GTOC8). A script is designed to simulate the prescribed constellation and record its observations; the observations made are scored according to a provided performance index.

  7. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  8. Combined Pressure, Temperature Contrast and Surface-Enhanced Separation of Carbon Dioxide for Post-Combustion Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Wong, Michael; Gupta, Mayank

    The Rice University research team developed a hybrid carbon dioxide (CO 2) absorption process combining absorber and stripper columns using a high surface area ceramic foam gas-liquid contactor for enhanced mass transfer and utilizing waste heat for regeneration. This integrated absorber/desorber arrangement will reduce space requirements, an important factor for retrofitting existing coal-fired power plants with CO 2 capture technology. Described in this report, we performed an initial analysis to estimate the technical and economic feasibility of the process. A one-dimensional (1D) CO 2 absorption column was fabricated to measure the hydrodynamic and mass transfer characteristics of the ceramic foam.more » A bench-scale prototype was constructed to implement the complete CO 2 separation process and tested to study various aspects of fluid flow in the process. A model was developed to simulate the two-dimensional (2D) fluid flow and optimize the CO 2 capture process. Test results were used to develop a final technoeconomic analysis and identify the most appropriate absorbent as well as optimum operating conditions to minimize capital and operating costs. Finally, a technoeconomic study was performed to assess the feasibility of integrating the process into a 600 megawatt electric (MWe) coal-fired power plant. With process optimization, $82/MWh of COE can be achieved using our integrated absorber/desorber CO 2 capture technology, which is very close to DOE's target that no more than a 35% increase in COE with CCS. An environmental, health, and safety (EH&S) assessment of the capture process indicated no significant concern in terms of EH&S effects or legislative compliance.« less

  9. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    NASA Astrophysics Data System (ADS)

    Azau, M. A. M.; Jaafar, S.; Samsudin, K.

    2013-06-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Ryan; Marnay, Chris

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, tomore » examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.« less

  11. Large-scale optimal control of interconnected natural gas and electrical transmission systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-04-01

    We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that themore » additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.« less

  12. Modeling and optimal design of CO2 Direct Air Capture systems in large arrays

    NASA Astrophysics Data System (ADS)

    Sadri Irani, Samaneh; Luzzatto-Fegiz, Paolo

    2017-11-01

    As noted by the 2014 IPCC report, while the rise in atmospheric CO2 would be slowed by emissions reductions, removing atmospheric CO2 is an important part of possible paths to climate stabilization. Direct Air Capture of CO2 with chemicals (DAC) is one of several proposed carbon capture technologies. There is an ongoing debate on whether DAC is an economically viable approach to alleviate climate change. In addition, like all air capture strategies, DAC is strongly constrained by the net-carbon problem, namely the need to control CO2 emissions associated with the capture process (for example, if DAC not powered by renewables). Research to date has focused on the chemistry and economics of individual DAC devices. However, the fluid mechanics of their large-scale deployment has not been examined in the literature, to the best of our knowledge. In this presentation, we develop a model for flow through an array of DAC devices, varying their lateral extent and their separation. We build on a recent theory of canopy flows, introducing terms for CO2 entrainment into the array boundary layer, and transport into the farm. In addition, we examine the possibility of driving flow passively by wind, thereby reducing energy consumption. The optimal operational design is established considering the total cost, drag force, energy consumption and total CO2 capture.

  13. Using Reanalysis Data for the Prediction of Seasonal Wind Turbine Power Losses Due to Icing

    NASA Astrophysics Data System (ADS)

    Burtch, D.; Mullendore, G. L.; Delene, D. J.; Storm, B.

    2013-12-01

    The Northern Plains region of the United States is home to a significant amount of potential wind energy. However, in winter months capturing this potential power is severely impacted by the meteorological conditions, in the form of icing. Predicting the expected loss in power production due to icing is a valuable parameter that can be used in wind turbine operations, determination of wind turbine site locations and long-term energy estimates which are used for financing purposes. Currently, losses due to icing must be estimated when developing predictions for turbine feasibility and financing studies, while icing maps, a tool commonly used in Europe, are lacking in the United States. This study uses the Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset in conjunction with turbine production data to investigate various methods of predicting seasonal losses (October-March) due to icing at two wind turbine sites located 121 km apart in North Dakota. The prediction of icing losses is based on temperature and relative humidity thresholds and is accomplished using three methods. For each of the three methods, the required atmospheric variables are determined in one of two ways: using industry-specific software to correlate anemometer data in conjunction with the MERRA dataset and using only the MERRA dataset for all variables. For each season, a percentage of the total expected generated power lost due to icing is determined and compared to observed losses from the production data. An optimization is performed in order to determine the relative humidity threshold that minimizes the difference between the predicted and observed values. Eight seasons of data are used to determine an optimal relative humidity threshold, and a further three seasons of data are used to test this threshold. Preliminary results have shown that the optimized relative humidity threshold for the northern turbine is higher than the southern turbine for all methods. For the three test seasons, the optimized thresholds tend to under-predict the icing losses. However, the threshold determined using boundary layer similarity theory most closely predicts the power losses due to icing versus the other methods. For the northern turbine, the average predicted power loss over the three seasons is 4.65 % while the observed power loss is 6.22 % (average difference of 1.57 %). For the southern turbine, the average predicted power loss and observed power loss over the same time period are 4.43 % and 6.16 %, respectively (average difference of 1.73 %). The three-year average, however, does not clearly capture the variability that exists season-to-season. On examination of each of the test seasons individually, the optimized relative humidity threshold methodology performs better than fixed power loss estimates commonly used in the wind energy industry.

  14. Broad-search algorithms for finding triple-and quadruple-satellite-aided captures at Jupiter from 2020 to 2080

    NASA Astrophysics Data System (ADS)

    Lynam, Alfred E.

    2015-04-01

    Multiple-satellite-aided capture is a -efficient technique for capturing a spacecraft into orbit at Jupiter. However, finding the times when the Galilean moons of Jupiter align such that three or four of them can be encountered in a single pass is difficult using standard astrodynamics algorithms such as Lambert's problem. In this paper, we present simple but powerful techniques that simplify the dynamics and geometry of the Galilean satellites so that many of these triple- and quadruple-satellite-aided capture sequences can be found quickly over an extended 60-year time period from 2020 to 2080. The techniques find many low-fidelity trajectories that could be used as initial guesses for future high-fidelity optimization. Results indicate the existence of approximately 3,100 unique triple-satellite-aided capture trajectories and 6 unique quadruple-satellite-aided capture trajectories during the 60-year time period. The entire search takes less than one minute of computational time.

  15. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE PAGES

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  16. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  17. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.

    PubMed

    Eichmiller, Jessica J; Miller, Loren M; Sorensen, Peter W

    2016-01-01

    Few studies have examined capture and extraction methods for environmental DNA (eDNA) to identify techniques optimal for detection and quantification. In this study, precipitation, centrifugation and filtration eDNA capture methods and six commercially available DNA extraction kits were evaluated for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using quantitative PCR in a series of laboratory experiments. Filtration methods yielded the most carp eDNA, and a glass fibre (GF) filter performed better than a similar pore size polycarbonate (PC) filter. Smaller pore sized filters had higher regression slopes of biomass to eDNA, indicating that they were potentially more sensitive to changes in biomass. Comparison of DNA extraction kits showed that the MP Biomedicals FastDNA SPIN Kit yielded the most carp eDNA and was the most sensitive for detection purposes, despite minor inhibition. The MoBio PowerSoil DNA Isolation Kit had the lowest coefficient of variation in extraction efficiency between lake and well water and had no detectable inhibition, making it most suitable for comparisons across aquatic environments. Of the methods tested, we recommend using a 1.5 μm GF filter, followed by extraction with the MP Biomedicals FastDNA SPIN Kit for detection. For quantification of eDNA, filtration through a 0.2-0.6 μm pore size PC filter, followed by extraction with MoBio PowerSoil DNA Isolation Kit was optimal. These results are broadly applicable for laboratory studies on carps and potentially other cyprinids. The recommendations can also be used to inform choice of methodology for field studies. © 2015 John Wiley & Sons Ltd.

  18. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  19. Balancing Power Absorption and Structural Loading for an Asymmetric Heave Wave-Energy Converter in Regular Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2016-06-24

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  20. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger

    2013-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools asmore » necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West Virginia University, Boston University and the University of Texas at Austin) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 13, CCSI announced the initial release of its first set of computational tools and models during the October 2012 meeting of its Industry Advisory Board. This initial release led to five companies licensing the CCSI Toolset under a Test and Evaluation Agreement this year. By the end of FY13, the CCSI Technical Team had completed development of an updated suite of computational tools and models. The list below summarizes the new and enhanced toolset components that were released following comprehensive testing during October 2013. 1. FOQUS. Framework for Optimization and Quantification of Uncertainty and Sensitivity. Package includes: FOQUS Graphic User Interface (GUI), simulation-based optimization engine, Turbine Client, and heat integration capabilities. There is also an updated simulation interface and new configuration GUI for connecting Aspen Plus or Aspen Custom Modeler (ACM) simulations to FOQUS and the Turbine Science Gateway. 2. A new MFIX-based Computational Fluid Dynamics (CFD) model to predict particle attrition. 3. A new dynamic reduced model (RM) builder, which generates computationally efficient RMs of the behavior of a dynamic system. 4. A completely re-written version of the algebraic surrogate model builder for optimization (ALAMO). The new version is several orders of magnitude faster than the initial release and eliminates the MATLAB dependency. 5. A new suite of high resolution filtered models for the hydrodynamics associated with horizontal cylindrical objects in a flow path. 6. The new Turbine Science Gateway (Cluster), which supports FOQUS for running multiple simulations for optimization or UQ using a local computer or cluster. 7. A new statistical tool (BSS-ANOVA-UQ) for calibration and validation of CFD models. 8. A new basic data submodel in Aspen Plus format for a representative high viscosity capture solvent, 2-MPZ system. 9. An updated RM tool for CFD (REVEAL) that can create a RM from MFIX. A new lightweight, stand-alone version will be available in late 2013. 10. An updated RM integration tool to convert the RM from REVEAL into a CAPE-OPEN or ACM model for use in a process simulator. 11. An updated suite of unified steady-state and dynamic process models for solid sorbent carbon capture included bubbling fluidized bed and moving bed reactors. 12. An updated and unified set of compressor models including steady-state design point model and dynamic model with surge detection. 13. A new framework for the synthesis and optimization of coal oxycombustion power plants using advanced optimization algorithms. This release focuses on modeling and optimization of a cryogenic air separation unit (ASU). 14. A new technical risk model in spreadsheet format. 15. An updated version of the sorbent kinetic/equilibrium model for parameter estimation for the 1st generation sorbent model. 16. An updated process synthesis superstructure model to determine optimal process configurations utilizing surrogate models from ALAMO for adsorption and regeneration in a solid sorbent process. 17. Validation models for NETL Carbon Capture Unit utilizing sorbent AX. Additional validation models will be available for sorbent 32D in 2014. 18. An updated hollow fiber membrane model and system example for carbon capture. 19. An updated reference power plant model in Thermoflex that includes additional steam extraction and reinjection points to enable heat integration module. 20. An updated financial risk model in spreadsheet format.« less

  1. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  2. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10-Megawatt electric (MWe) OTV power level and a 200-metric ton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  3. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  4. Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Chen; Colonius, Tim

    2017-11-01

    Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.

  5. Optimization of Answer Keys for Script Concordance Testing: Should We Exclude Deviant Panelists, Deviant Responses, or Neither?

    ERIC Educational Resources Information Center

    Gagnon, Robert; Lubarsky, Stuart; Lambert, Carole; Charlin, Bernard

    2011-01-01

    The Script Concordance Test (SCT) uses a panel-based, aggregate scoring method that aims to capture the variability of responses of experienced practitioners to particular clinical situations. The use of this type of scoring method is a key determinant of the tool's discriminatory power, but deviant answers could potentially diminish the…

  6. Advanced Vehicle and Power Initiative

    DTIC Science & Technology

    2010-07-29

    optimize vehicle operation, and capture vehicle kinetic energy during braking ( regenerative energy). As much as two-thirds of this imported oil comes... categories . Figure 4 provides a visual representation of many of the HEV and BEV options available on the 2010 GSA Schedule. Figure 4 - GSA...gallon • Renewable energy generated 24 • Vehicle miles driven by vehicle category • Implementation costs – Infrastructure modifications required

  7. Co-Simulation for Advanced Process Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less

  8. Capacity Expansion Modeling for Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  9. A cooperative game theory approach to transmission planning in power systems

    NASA Astrophysics Data System (ADS)

    Contreras, Javier

    The rapid restructuring of the electric power industry from a vertically integrated entity into a decentralized industry has given rise to complex problems. In particular, the transmission component of the electric power system requires new methodologies to fully capture this emerging competitive industry. Game theory models are used to model strategic interactions in a competitive environment. This thesis presents a new decentralized framework to study the transmission network expansion problem using cooperative game theory. First, the players and the rules of the game are defined. Second, a coalition formation scheme is developed. Finally, the optimized cost of expansion is allocated based on the history of the coalition formation.

  10. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilitiesmore » can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.« less

  11. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools asmore » necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify industrial challenge problems, CCSI ensures that the simulation tools are developed for the carbon capture technologies of most relevance to industry. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories' core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI's industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI's academic participants (Carnegie Mellon University, Princeton University, West Virginia University, and Boston University) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 12, CCSI released its first set of computational tools and models. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies as well as related technologies, such as those found in the power, refining, chemicals, and gas production industries. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that provide new capabilities such as creating reduced order models (ROMs) from reacting multiphase flow simulations and running thousands of process simulations concurrently for optimization and UQ.« less

  12. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, P.; Bhattacharyya, D.; Turton, R.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less

  13. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, P.; Bhattacharyya, D.; Turton, R.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less

  14. MOOSE Implementation of MAMBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Jack; Matthews, Topher

    The development of MAMBA is targeted at capturing both core wide CRUD induced power shifts (CIPS) as well as pin-­level CRUD induced localized corrosion (CILC). Both CIPS and CILC require some sort of information from thermal-­hydraulic, neutronics, and fuel performance codes, although the degree of coupling is different for the two effects. Since CIPS necessarily requires a core-­wide power distribution solve, it requires tight coupling with a neutronics code. Conversely, CIPS tends to be an individual pin phenomenon, requiring tight coupling a fuel performance code. As efforts are now focused on coupling MAMBA within the VERA suite, a natural separationmore » has surfaced in which a FORTRAN rewrite of MAMBA is optimal for VERA integration to capture CIPS behavior, while a CILC focused calculation would benefit from a tight coupling with BISON, motivating a MOOSE version of MAMBA.« less

  15. A New Algorithm to Optimize Maximal Information Coefficient

    PubMed Central

    Luo, Feng; Yuan, Zheming

    2016-01-01

    The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this paper is to maximize the power-to-load ratio of the Berkeley Wedge: a one-degree-of-freedom, asymmetrical, energy-capturing, floating breakwater of high performance that is relatively free of viscosity effects. Linear hydrodynamic theory was used to calculate bounds on the expected time-averaged power (TAP) and corresponding surge restraining force, pitch restraining torque, and power take-off (PTO) control force when assuming that the heave motion of the wave energy converter remains sinusoidal. This particular device was documented to be an almost-perfect absorber if one-degree-of-freedom motion is maintained. The success of such or similar future wave energy converter technologies would requiremore » the development of control strategies that can adapt device performance to maximize energy generation in operational conditions while mitigating hydrodynamic loads in extreme waves to reduce the structural mass and overall cost. This paper formulates the optimal control problem to incorporate metrics that provide a measure of the surge restraining force, pitch restraining torque, and PTO control force. The optimizer must now handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads. A penalty weight is placed on the surge restraining force, pitch restraining torque, and PTO actuation force, thereby allowing the control focus to be placed either on power absorption or load mitigation. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results in the form of TAP, reactive TAP, and the amplitudes of the surge restraining force, pitch restraining torque, and PTO control force are shown for the Berkeley Wedge example.« less

  17. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  18. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues

    PubMed Central

    Boassa, Daniela; Hu, Junru; Romoli, Benedetto; Phan, Sebastien; Dulcis, Davide

    2018-01-01

    Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications. PMID:29749931

  19. Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao

    This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less

  20. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    NASA Astrophysics Data System (ADS)

    Chow, Raymond

    The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined, reaching a comparable increase of 1.4% by a trailing edge thickness of 15%c. Decreasing inboard twist only acted to increase thrust without increasing power capture any further at U infinity = 11 m/s. While increasing inboard blade twist decreased power, but decreased thrust at even a higher rate. Vortex generators were not successively configured to significantly improve power capture in this study. Two of the three configurations examined actually decreased power capture and increased the separation region. The results found in this study are not believed to be representative of a properly sized and located array of VGs. The presence of the nose cone and nacelle body at the hub of the rotor is found to have a minimal effect on the power and thrust of the overall rotor. The downstream wake structure however is changed by the nacelle, potentially useful for wake tailoring when turbines are closely spaced together.

  1. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE PAGES

    Zhu, Guangdong

    2017-01-16

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  2. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  3. Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    2017-05-17

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  4. Driving personalized medicine: capturing maximum net present value and optimal return on investment.

    PubMed

    Roth, Mollie; Keeling, Peter; Smart, Dave

    2010-01-01

    In order for personalized medicine to meet its potential future promise, a closer focus on the work being carried out today and the foundation it will provide for that future is imperative. While big picture perspectives of this still nascent shift in the drug-development process are important, it is more important that today's work on the first wave of targeted therapies is used to build specific benchmarking and financial models against which further such therapies may be more effectively developed. Today's drug-development teams need a robust tool to identify the exact drivers that will ensure the successful launch and rapid adoption of targeted therapies, and financial metrics to determine the appropriate resource levels to power those drivers. This special report will describe one such benchmarking and financial model that is specifically designed for the personalized medicine field and will explain how the use of this or similar models can help to capture the maximum net present value of targeted therapies and help to realize optimal return on investment.

  5. The impact of the topology on cascading failures in a power grid model

    NASA Astrophysics Data System (ADS)

    Koç, Yakup; Warnier, Martijn; Mieghem, Piet Van; Kooij, Robert E.; Brazier, Frances M. T.

    2014-05-01

    Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.

  6. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGES

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  7. Compact, Lightweight Adsorber and Sabatier Reactor for CO2 Capture and Reduction for Consumable and Propellant Production

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Busby, Stacy A.; Abney, Morgan B.; Perry, Jay L.; Knox, James C.

    2012-01-01

    The utilization of CO2 to produce (or recycle) life support consumables, such as O2 and H2O, and to generate propellant fuels is an important aspect of NASA's concept for future, long duration planetary exploration. One potential approach is to capture and use CO2 from the Martian atmosphere to generate the consumables and propellant fuels. Precision Combustion, Inc. (PCI), with support from NASA, continues to develop its regenerable adsorber technology for capturing CO2 from gaseous atmospheres (for cabin atmosphere revitalization and in-situ resource utilization applications) and its Sabatier reactor for converting CO2 to methane and water. Both technologies are based on PCI's Microlith(R) substrates and have been demonstrated to reduce size, weight, and power consumption during CO2 capture and methanation process. For adsorber applications, the Microlith substrates offer a unique resistive heating capability that shows potential for short regeneration time and reduced power requirements compared to conventional systems. For the Sabatier applications, the combination of the Microlith substrates and durable catalyst coating permits efficient CO2 methanation that favors high reactant conversion, high selectivity, and durability. Results from performance testing at various operating conditions will be presented. An effort to optimize the Sabatier reactor and to develop a bench-top Sabatier Development Unit (SDU) will be discussed.

  8. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  9. Multiplex amplification of large sets of human exons.

    PubMed

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  10. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    NASA Astrophysics Data System (ADS)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  11. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE).more » Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and low-cost CO{sub 2} compression equipment, an incremental LCOE of $33/MWh at 90% capture can be achieved (40% lower than the advanced MEA case). Even with lower cost compression, it appears unlikely that a membrane process using high feed compression (>5 bar) can be competitive with amine absorption, due to the capital cost and energy consumption of this equipment. Similarly, low vacuum pressure (<0.2 bar) cannot be used due to poor efficiency and high cost of this equipment. High membrane permeance is important to reduce the capital cost and footprint of the membrane unit. CO{sub 2}/N{sub 2} selectivity is less important because it is too costly to generate a pressure ratio where high selectivity can be useful. A potential cost ?sweet spot? exists for use of membrane-based technology, if 50-70% CO{sub 2} capture is acceptable. There is a minimum in the cost of CO{sub 2} avoided/ton that membranes can deliver at 60% CO{sub 2} capture, which is 20% lower than the cost at 90% capture. Membranes operating with no feed compression are best suited for lower capture rates. Currently, it appears that the biggest hurdle to use of membranes for post-combustion CO{sub 2} capture is compression equipment cost. An alternative approach is to use sweep membranes in parallel with another CO{sub 2} capture technology that does not require feed compression or vacuum equipment. Hybrid designs that utilize sweep membranes for selective CO{sub 2} recycle show potential to significantly reduce the minimum energy of CO{sub 2} separation.« less

  12. Optimal cost-effective designs of Phase II proof of concept trials and associated go-no go decisions.

    PubMed

    Chen, Cong; Beckman, Robert A

    2009-01-01

    This manuscript discusses optimal cost-effective designs for Phase II proof of concept (PoC) trials. Unlike a confirmatory registration trial, a PoC trial is exploratory in nature, and sponsors of such trials have the liberty to choose the type I error rate and the power. The decision is largely driven by the perceived probability of having a truly active treatment per patient exposure (a surrogate measure to development cost), which is naturally captured in an efficiency score to be defined in this manuscript. Optimization of the score function leads to type I error rate and power (and therefore sample size) for the trial that is most cost-effective. This in turn leads to cost-effective go-no go criteria for development decisions. The idea is applied to derive optimal trial-level, program-level, and franchise-level design strategies. The study is not meant to provide any general conclusion because the settings used are largely simplified for illustrative purposes. However, through the examples provided herein, a reader should be able to gain useful insight into these design problems and apply them to the design of their own PoC trials.

  13. Membrane-based systems for carbon capture and hydrogen purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services.more » Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.« less

  14. New trends in astrodynamics and applications: optimal trajectories for space guidance.

    PubMed

    Azimov, Dilmurat; Bishop, Robert

    2005-12-01

    This paper represents recent results on the development of optimal analytic solutions to the variation problem of trajectory optimization and their application in the construction of on-board guidance laws. The importance of employing the analytically integrated trajectories in a mission design is discussed. It is assumed that the spacecraft is equipped with a power-limited propulsion and moving in a central Newtonian field. Satisfaction of the necessary and sufficient conditions for optimality of trajectories is analyzed. All possible thrust arcs and corresponding classes of the analytical solutions are classified based on the propulsion system parameters and performance index of the problem. The solutions are presented in a form convenient for applications in escape, capture, and interorbital transfer problems. Optimal guidance and neighboring optimal guidance problems are considered. It is shown that the analytic solutions can be used as reference trajectories in constructing the guidance algorithms for the maneuver problems mentioned above. An illustrative example of a spiral trajectory that terminates on a given elliptical parking orbit is discussed.

  15. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  16. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  17. Optimization of wave-guided luminescence for higher efficiency of bifacial thin-film microscale GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Shen, Ling; Shen, Yifeng; Li, Feng

    2018-01-01

    In pursuit of capturing more wave-guided luminescence for surface-printed bifacial GaAs μ-cells, the pyramid structure has been incorporated with specular back side reflector (BSR) to change the direction of photon propagation. Based on ray tracing model, the calculated photon capturing efficiency of GaAs μ-cells from back side via pyramid, dependent on the parameters of pyramid structure, achieve the largest 1.7× increase for dye absorption peak of 480 nm compared to the case without pyramid. More significantly, the short circuit current in experiment has been improved from original 16.5 mA/cm2 to 23.75 mA/cm2 for the AM 1.5G solar spectrum. Further experiment demonstrates that the optimized pyramid structure enables the integrated luminescent intensity to reach ∼3× increase in a smaller distance of optical transport, which means the advantages in photon capturing efficiency for cells with higher aspect ratio. The calculation further confirms that the cells with higher aspect ratio, among all cells with the same area, realize the higher concentration ratio for the same geometric gain. This provides a guideline for design of cell geometries to guarantee a higher power output in terms of cell modules.

  18. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  19. Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-03-18

    The focus of this project was the ADAsorb™ CO 2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additionalmore » electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO 2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO 2 working capacity that well exceeds 15% by weight. Modeling also revealed that reductions in adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less

  20. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  1. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    NASA Astrophysics Data System (ADS)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  2. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  3. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. Anmore » extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.« less

  4. Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.

    2011-05-01

    This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.

  5. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells.

    PubMed

    Guillen-Ahlers, Hector; Rao, Prahlad K; Perumalla, Danu S; Montoya, Maria J; Jadhav, Avinash Y L; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2018-06-01

    The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.

  6. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less

  7. Robust multi-model control of an autonomous wind power system

    NASA Astrophysics Data System (ADS)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  8. Solar-powered irrigation systems. Technical progress report, July 1977--January 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-02-28

    Dispersed solar thermal power systems applied to farm irrigation energy needs are analyzed. The 17 western states, containing 84% of nationwide irrigated croplands and consuming 93% of nationwide irrigation energy, have been selected to determine were solar irrigation systems can compete most favorably with conventional energy sources. Financial analysis of farms, according to size and ownership, was accomplished to permit realistic comparative analyses of system lifetime costs. Market potential of optimized systems has been estimated for the 17-state region for near-term (1985) and intermediate-term (2000) applications. Technical, economic, and institutional factors bearing on penetration and capture of this market aremore » being identified.« less

  9. The role of CSP in Brazil: A multi-model analysis

    NASA Astrophysics Data System (ADS)

    Soria, Rafael; Lucena, André F. P.; Tomaschek, Jan; Fichter, Tobias; Haasz, Thomas; Szklo, Alexandre; Schaeffer, Roberto; Rochedo, Pedro; Fahl, Ulrich; Kern, Jürgen; Hoffmann, Susanne

    2016-05-01

    MESSAGE, TIMES and REMIX-CEM are potential tools for modelling a larger penetration of variable renewable energy (VRE) into the Brazilian power system. They also allow devising the opportunities that concentrated solar power (CSP) plants offer to the power system and to the wider energy system. There are different opportunities for CSP in Brazil in the short and medium term, consolidating this technology as a feasible alternative for greenhouse gas (GHG) mitigation in Brazil. This work verified that CSP is a cost-effective option only under very stringent mitigation scenarios (4DS and 2DS) and when carbon capture and storage (CCS) is not available. Still, according to the findings of REMIX-CEM-B, CSP can provide firm energy and dispatchable capacity in the Northeast region of Brazil, optimally complementing wind and PV generation. Moreover, CSP can offer additional flexibility to the Northeast power system, especially during winter and after 2030.

  10. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a positionmore » where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.« less

  11. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  12. RANS simulations of wind turbine wakes: optimal tuning of turbulence closure and aerodynamic loads from LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Letizia, Stefano; Puccioni, Matteo; Zhan, Lu; Viola, Francesco; Camarri, Simone; Iungo, Giacomo Valerio

    2017-11-01

    Numerical simulations of wakes produced by utility-scale wind turbines still present challenges related to the variability of the atmospheric conditions and, in the most of the cases, the lack of information about the geometry and aerodynamic performance of the wind turbine blades. In order to overcome the mentioned difficulties, we propose a RANS solver for which turbine aerodynamic forcing and turbulence closure are calibrated through LiDAR and SCADA data acquired for an onshore wind farm. The wind farm under examination is located in North Texas over a relatively flat terrain. The experimental data are leveraged to maximize accuracy of the RANS predictions in terms of wake velocity field and power capture for different atmospheric stability conditions and settings of the wind turbines. The optimization of the RANS parameters is performed through an adjoint-RANS formulation and a gradient-based procedure. The optimally-tuned aerodynamic forcing and turbulence closure are then analyzed in order to investigate effects of the atmospheric stability on the evolution of wind turbine wakes and power performance. The proposed RANS solver has low computational costs comparable to those of wake engineering models, which make it a compelling tool for wind farm control and optimization. Acknowledgments: NSF I/UCRC WindSTAR IIP 1362033 and TACC.

  13. Optimal ballistically captured Earth-Moon transfers

    NASA Astrophysics Data System (ADS)

    Ricord Griesemer, Paul; Ocampo, Cesar; Cooley, D. S.

    2012-07-01

    The optimality of a low-energy Earth-Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth-Moon ballistic lunar capture transfers.

  14. Learning in engineered multi-agent systems

    NASA Astrophysics Data System (ADS)

    Menon, Anup

    Consider the problem of maximizing the total power produced by a wind farm. Due to aerodynamic interactions between wind turbines, each turbine maximizing its individual power---as is the case in present-day wind farms---does not lead to optimal farm-level power capture. Further, there are no good models to capture the said aerodynamic interactions, rendering model based optimization techniques ineffective. Thus, model-free distributed algorithms are needed that help turbines adapt their power production on-line so as to maximize farm-level power capture. Motivated by such problems, the main focus of this dissertation is a distributed model-free optimization problem in the context of multi-agent systems. The set-up comprises of a fixed number of agents, each of which can pick an action and observe the value of its individual utility function. An individual's utility function may depend on the collective action taken by all agents. The exact functional form (or model) of the agent utility functions, however, are unknown; an agent can only measure the numeric value of its utility. The objective of the multi-agent system is to optimize the welfare function (i.e. sum of the individual utility functions). Such a collaborative task requires communications between agents and we allow for the possibility of such inter-agent communications. We also pay attention to the role played by the pattern of such information exchange on certain aspects of performance. We develop two algorithms to solve this problem. The first one, engineered Interactive Trial and Error Learning (eITEL) algorithm, is based on a line of work in the Learning in Games literature and applies when agent actions are drawn from finite sets. While in a model-free setting, we introduce a novel qualitative graph-theoretic framework to encode known directed interactions of the form "which agents' action affect which others' payoff" (interaction graph). We encode explicit inter-agent communications in a directed graph (communication graph) and, under certain conditions, prove convergence of agent joint action (under eITEL) to the welfare optimizing set. The main condition requires that the union of interaction and communication graphs be strongly connected; thus the algorithm combines an implicit form of communication (via interactions through utility functions) with explicit inter-agent communications to achieve the given collaborative goal. This work has kinship with certain evolutionary computation techniques such as Simulated Annealing; the algorithm steps are carefully designed such that it describes an ergodic Markov chain with a stationary distribution that has support over states where agent joint actions optimize the welfare function. The main analysis tool is perturbed Markov chains and results of broader interest regarding these are derived as well. The other algorithm, Collaborative Extremum Seeking (CES), uses techniques from extremum seeking control to solve the problem when agent actions are drawn from the set of real numbers. In this case, under the assumption of existence of a local minimizer for the welfare function and a connected undirected communication graph between agents, a result regarding convergence of joint action to a small neighborhood of a local optimizer of the welfare function is proved. Since extremum seeking control uses a simultaneous gradient estimation-descent scheme, gradient information available in the continuous action space formulation is exploited by the CES algorithm to yield improved convergence speeds. The effectiveness of this algorithm for the wind farm power maximization problem is evaluated via simulations. Lastly, we turn to a different question regarding role of the information exchange pattern on performance of distributed control systems by means of a case study for the vehicle platooning problem. In the vehicle platoon control problem, the objective is to design distributed control laws for individual vehicles in a platoon (or a road-train) that regulate inter-vehicle distances at a specified safe value while the entire platoon follows a leader-vehicle. While most of the literature on the problem deals with some inadequacy in control performance when the information exchange is of the nearest neighbor-type, we consider an arbitrary graph serving as information exchange pattern and derive a relationship between how a certain indicator of control performance is related to the information pattern. Such analysis helps in understanding qualitative features of the `right' information pattern for this problem.

  15. Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study

    PubMed Central

    2017-01-01

    The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant. PMID:28413256

  16. The impact of short-term stochastic variability in solar irradiance on optimal microgrid design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schittekatte, Tim; Stadler, Michael; Cardoso, Gonçalo

    2016-07-01

    This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PVmore » as well as the synergistic benefits of pairing PV with storage.« less

  17. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGES

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  18. The bias of the log power spectrum for discrete surveys

    NASA Astrophysics Data System (ADS)

    Repp, Andrew; Szapudi, István

    2018-03-01

    A primary goal of galaxy surveys is to tighten constraints on cosmological parameters, and the power spectrum P(k) is the standard means of doing so. However, at translinear scales P(k) is blind to much of these surveys' information - information which the log density power spectrum recovers. For discrete fields (such as the galaxy density), A* denotes the statistic analogous to the log density: A* is a `sufficient statistic' in that its power spectrum (and mean) capture virtually all of a discrete survey's information. However, the power spectrum of A* is biased with respect to the corresponding log spectrum for continuous fields, and to use P_{A^*}(k) to constrain the values of cosmological parameters, we require some means of predicting this bias. Here, we present a prescription for doing so; for Euclid-like surveys (with cubical cells 16h-1 Mpc across) our bias prescription's error is less than 3 per cent. This prediction will facilitate optimal utilization of the information in future galaxy surveys.

  19. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murcia, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay

    Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating independent surrogates for the mean and standard deviation of each output with respect to the inflow realizations. A global sensitivity analysis shows that the turbulent inflow realization has a bigger impact on the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertaintymore » models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces. In conclusion, the surrogates are a way to obtain power and load estimation under site specific characteristics without sharing the proprietary aeroelastic design.« less

  20. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates

    DOE PAGES

    Murcia, Juan Pablo; Réthoré, Pierre-Elouan; Dimitrov, Nikolay; ...

    2017-07-17

    Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating independent surrogates for the mean and standard deviation of each output with respect to the inflow realizations. A global sensitivity analysis shows that the turbulent inflow realization has a bigger impact on the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-alignment. The methodology presented extends the deterministic power and thrust coefficient curves to uncertaintymore » models and adds new variables like damage equivalent fatigue loads in different components of the turbine. These surrogate models can then be implemented inside other work-flows such as: estimation of the uncertainty in annual energy production due to wind resource variability and/or robust wind power plant layout optimization. It can be concluded that it is possible to capture the global behavior of a modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response surfaces. In conclusion, the surrogates are a way to obtain power and load estimation under site specific characteristics without sharing the proprietary aeroelastic design.« less

  1. Hybrid Power Management-Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.

  2. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  3. Optimized Two-Party Video Chat with Restored Eye Contact Using Graphics Hardware

    NASA Astrophysics Data System (ADS)

    Dumont, Maarten; Rogmans, Sammy; Maesen, Steven; Bekaert, Philippe

    We present a practical system prototype to convincingly restore eye contact between two video chat participants, with a minimal amount of constraints. The proposed six-fold camera setup is easily integrated into the monitor frame, and is used to interpolate an image as if its virtual camera captured the image through a transparent screen. The peer user has a large freedom of movement, resulting in system specifications that enable genuine practical usage. Our software framework thereby harnesses the powerful computational resources inside graphics hardware, and maximizes arithmetic intensity to achieve over real-time performance up to 42 frames per second for 800 ×600 resolution images. Furthermore, an optimal set of fine tuned parameters are presented, that optimizes the end-to-end performance of the application to achieve high subjective visual quality, and still allows for further algorithmic advancement without loosing its real-time capabilities.

  4. Capturing Knowledge In Order To Optimize The Cutting Process For Polyethylene Pipes Using Knowledge Models

    NASA Astrophysics Data System (ADS)

    Rotaru, Ionela Magdalena

    2015-09-01

    Knowledge management is a powerful instrument. Areas where knowledge - based modelling can be applied are different from business, industry, government to education area. Companies engage in efforts to restructure the database held based on knowledge management principles as they recognize in it a guarantee of models characterized by the fact that they consist only from relevant and sustainable knowledge that can bring value to the companies. The proposed paper presents a theoretical model of what it means optimizing polyethylene pipes, thus bringing to attention two important engineering fields, the one of the metal cutting process and gas industry, who meet in order to optimize the butt fusion welding process - the polyethylene cutting part - of the polyethylene pipes. All approach is shaped on the principles of knowledge management. The study was made in collaboration with companies operating in the field.

  5. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  6. Stability of a slotted ALOHA system with capture effect

    NASA Astrophysics Data System (ADS)

    Onozato, Yoshikuni; Liu, Jin; Noguchi, Shoichi

    1989-02-01

    The stability of a slotted ALOHA system with capture effect is investigated under a general communication environment where terminals are divided into two groups (low-power and high-power) and the capture effect is modeled by capture probabilities. An approximate analysis is developed using catastrophe theory, in which the effects of system and user parameters on the stability are characterized by the cusp catastrophe. Particular attention is given to the low-power group, since it must bear the strain under the capture effect. The stability conditions of the two groups are given explicitly by bifurcation sets.

  7. Economic and environmental optimization of waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Münster, M.; Ravn, H.; Hedegaard, K.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less

  8. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    PubMed

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.

    The Ionic Liquid (IL) [hmim][Tf 2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO 2 capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO 2, H 2, Hmore » 2S, CO, and CH 4 in this IL were compiled and their binary interaction parameters (Δ ij and l ij) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO 2 solubilities in [hmim][Tf 2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO 2 capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO 2 up to 153 bar to the sequestration sites. The compositions of all process streams, CO 2 capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO 2 was captured and sent to sequestration sites; 99.5 mol% of H 2 was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf 2N] IL could be used as a physical solvent for CO 2 capture from warm shifted fuel gas streams with high efficiency.« less

  10. Incorporating operational flexibility into electric generation planning Impacts and methods for system design and policy analysis

    NASA Astrophysics Data System (ADS)

    Palmintier, Bryan S.

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these impacts occur; 2. Demonstrating that a failure to account for operational flexibility can result in undesirable outcomes for both utility planners and policy analysts; and 3. Extending the state of the art for electric power system models by introducing a tractable method for incorporating unit commitment based operational flexibility at full 876o hourly resolution directly into planning optimization. Together these results encourage and offer a new flexibility-aware approach for capacity planning and accompanying policy design that can enable cleaner, less expensive electric power systems for the future. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  11. Sparsity-Cognizant Algorithms with Applications to Communications, Signal Processing, and the Smart Grid

    NASA Astrophysics Data System (ADS)

    Zhu, Hao

    Sparsity plays an instrumental role in a plethora of scientific fields, including statistical inference for variable selection, parsimonious signal representations, and solving under-determined systems of linear equations - what has led to the ground-breaking result of compressive sampling (CS). This Thesis leverages exciting ideas of sparse signal reconstruction to develop sparsity-cognizant algorithms, and analyze their performance. The vision is to devise tools exploiting the 'right' form of sparsity for the 'right' application domain of multiuser communication systems, array signal processing systems, and the emerging challenges in the smart power grid. Two important power system monitoring tasks are addressed first by capitalizing on the hidden sparsity. To robustify power system state estimation, a sparse outlier model is leveraged to capture the possible corruption in every datum, while the problem nonconvexity due to nonlinear measurements is handled using the semidefinite relaxation technique. Different from existing iterative methods, the proposed algorithm approximates well the global optimum regardless of the initialization. In addition, for enhanced situational awareness, a novel sparse overcomplete representation is introduced to capture (possibly multiple) line outages, and develop real-time algorithms for solving the combinatorially complex identification problem. The proposed algorithms exhibit near-optimal performance while incurring only linear complexity in the number of lines, which makes it possible to quickly bring contingencies to attention. This Thesis also accounts for two basic issues in CS, namely fully-perturbed models and the finite alphabet property. The sparse total least-squares (S-TLS) approach is proposed to furnish CS algorithms for fully-perturbed linear models, leading to statistically optimal and computationally efficient solvers. The S-TLS framework is well motivated for grid-based sensing applications and exhibits higher accuracy than existing sparse algorithms. On the other hand, exploiting the finite alphabet of unknown signals emerges naturally in communication systems, along with sparsity coming from the low activity of each user. Compared to approaches only accounting for either one of the two, joint exploitation of both leads to statistically optimal detectors with improved error performance.

  12. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at amore » location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.« less

  13. Hydraulic containment: analytical and semi-analytical models for capture zone curve delineation

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2002-05-01

    We present an efficient semi-analytical algorithm that uses complex potential theory and superposition to delineate the capture zone curves of extraction wells. This algorithm is more flexible than previously published techniques and allows the user to determine the capture zone for a number of arbitrarily positioned extraction wells pumping at different rates. The algorithm is applied to determine the capture zones and optimal well spacing of two wells pumping at different flow rates and positioned at various orientations to the direction of regional groundwater flow. The algorithm is also applied to determine capture zones for non-colinear three-well configurations as well as to determine optimal well spacing for up to six wells pumping at the same rate. We show that the optimal well spacing is found by minimizing the difference in the stream function evaluated at the stagnation points.

  14. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  15. Application of model predictive control for optimal operation of wind turbines

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Cao, Pei; Tang, J.

    2017-04-01

    For large-scale wind turbines, reducing maintenance cost is a major challenge. Model predictive control (MPC) is a promising approach to deal with multiple conflicting objectives using the weighed sum approach. In this research, model predictive control method is applied to wind turbine to find an optimal balance between multiple objectives, such as the energy capture, loads on turbine components, and the pitch actuator usage. The actuator constraints are integrated into the objective function at the control design stage. The analysis is carried out in both the partial load region and full load region, and the performances are compared with those of a baseline gain scheduling PID controller. The application of this strategy achieves enhanced balance of component loads, the average power and actuator usages in partial load region.

  16. Assessment of policy impacts on carbon capture and sequestration and bioenergy for U.S.' coal and natural gas power plants

    NASA Astrophysics Data System (ADS)

    Spokas, K.; Patrizio, P.; Leduc, S.; Mesfun, S.; Kraxner, F.

    2017-12-01

    Reducing electricity-sector emissions relies heavily on countries' abilities to either transition away from carbon-intensive energy generation or to sequester its resultant emissions with carbon capture and storage (CCS) technologies. The use of biomass energy technologies in conjunction with carbon capture and sequestration (BECCS) presents the opportunity for net reductions in atmospheric carbon dioxide. In this study, we investigate the limitations of several common policy mechanisms to incentivize the deployment of BECCS using the techno-economic spatial optimization model BeWhere (www.iiasa.ac.at/bewhere). We consider a set of coal and natural gas power plants in the United States (U.S.) selected using a screening process that considers capacity, boiler age, and capacity factor for electricity-generation units from the EPA 2014 eGRID database. The set makes up 470 GW of generation, and produces 8,400 PJ and 2.07 GtCO2 annually. Co-firing up to 15% for coal power plants is considered, using woody-biomass residues sourced from certified and managed U.S. forests obtained from the G4M (www.iiasa.ac.at/g4m) and GeoWiki (www.geo-wiki.org) database. Geologic storage is considered with injectivity and geomechanical limitations to ensure safe storage. Costs are minimized under two policy mechanisms: a carbon tax and geologic carbon sequestration credits, such as the Q45 credits. Results show that the carbon tax scenario incentivizes co-firing at low to medium carbon taxes, but is replaced by CCS at higher tax values. Carbon taxes do not strongly incentivize BECCS, as negative emissions associated with sequestering carbon content are not accounted as revenue. On the other hand, carbon credit scenarios result in significant CCS deployment, but lack any incentive for co-firing.

  17. Can an auditory multi-feature optimal paradigm be used for the study of processes associated with attention capture in passive listeners?

    PubMed

    Tavakoli, Paniz; Campbell, Kenneth

    2016-10-01

    A rarely occurring and highly relevant auditory stimulus occurring outside of the current focus of attention can cause a switching of attention. Such attention capture is often studied in oddball paradigms consisting of a frequently occurring "standard" stimulus which is changed at odd times to form a "deviant". The deviant may result in the capturing of attention. An auditory ERP, the P3a, is often associated with this process. To collect a sufficient amount of data is however very time-consuming. A more multi-feature "optimal" paradigm has been proposed but it is not known if it is appropriate for the study of attention capture. An optimal paradigm was run in which 6 different rare deviants (p=.08) were separated by a standard stimulus (p=.50) and compared to results when 4 oddball paradigms were also run. A large P3a was elicited by some of the deviants in the optimal paradigm but not by others. However, very similar results were observed when separate oddball paradigms were run. The present study indicates that the optimal paradigm provides a very time-saving method to study attention capture and the P3a. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  19. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  20. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO 2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combinedmore » Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO 2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO 2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO 2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO 2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO 2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO 2 captured. The incremental COE for the ECM-based CO 2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less

  1. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle,more » etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2 captured. The incremental COE for the ECM-based CO2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less

  2. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  3. Multi-objective Extremum Seeking Control for Enhancement of Wind Turbine Power Capture with Load Reduction

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.

  4. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; Liu, Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality.

  5. Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Zhang; Paul A. Webley

    CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less

  6. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    PubMed

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  7. Secure provision of reactive power ancillary services in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is decoupled and assumed to be fixed during the reactive power dispatch procedures; however, the effect of reactive power on real power is considered in the model by calculating the required reduction in real power output of a generator due to an increase in its reactive power supply. In this case, real power generation is allowed to be rescheduled, within given limits, from the already dispatched levels obtained from the energy market clearing process. The proposed dispatch model achieves the main objective of an ISO in a competitive electricity market, which is to provide the required reactive power support from generators at least cost while ensuring a secure operation of the power system. The proposed reactive power procurement and dispatch models capture both the technical and economic aspects of power system operation in competitive electricity markets; however, from an optimization point of view, these models represent non-convex mixed integer non-linear programming (MINLP) problems due to the presence of binary variables associated with the different regions of reactive power operation in a synchronous generator. Such MINLP optimization problems are difficult to solve, especially for an actual power system. A novel Generator Reactive Power Classification (GRPC) algorithm is proposed in this thesis to address this issue, with the advantage of iteratively solving the optimization models as a series of non-linear programming (NLP) sub-problems. The proposed reactive power procurement and dispatch models are implemented and tested on the CIGRE 32-bus system, with several case studies that represent different practical operating scenarios. The developed models are also compared with other approaches for reactive power provision, and the results demonstrate the robustness and effectiveness of the proposed model. The results clearly reveal the main features of the proposed models for optimal provision of reactive power ancillary service, in order to suit the requirements of an ISO under today's stressed system conditions in a competitive market environment.

  8. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farthing, G. A.; Rimpf, L. M.

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less

  9. Final Techno-Economic Analysis of 550 MWe Supercritical PC Power Plant CO 2 Capture with Linde-BASF Advanced PCC Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Devin; Stoffregen, Torsten; Rigby, Sean

    This topical report presents the techno-economic evaluation of a 550 MWe supercritical pulverized coal (PC) power plant utilizing Illinois No. 6 coal as fuel, integrated with 1) a previously presented (for a subcritical PC plant) Linde-BASF post-combustion CO 2 capture (PCC) plant incorporating BASF’s OASE® blue aqueous amine-based solvent (LB1) [Ref. 6] and 2) a new Linde-BASF PCC plant incorporating the same BASF OASE® blue solvent that features an advanced stripper interstage heater design (SIH) to optimize heat recovery in the PCC process. The process simulation and modeling for this report is performed using Aspen Plus V8.8. Technical information frommore » the PCC plant is determined using BASF’s proprietary thermodynamic and process simulation models. The simulations developed and resulting cost estimates are first validated by reproducing the results of DOE/NETL Case 12 representing a 550 MWe supercritical PC-fired power plant with PCC incorporating a monoethanolamine (MEA) solvent as used in the DOE/NETL Case 12 reference [Ref. 2]. The results of the techno-economic assessment are shown comparing two specific options utilizing the BASF OASE® blue solvent technology (LB1 and SIH) to the DOE/NETL Case 12 reference. The results are shown comparing the energy demand for PCC, the incremental fuel requirement, and the net higher heating value (HHV) efficiency of the PC power plant integrated with the PCC plant. A comparison of the capital costs for each PCC plant configuration corresponding to a net 550 MWe power generation is also presented. Lastly, a cost of electricity (COE) and cost of CO 2 captured assessment is shown illustrating the substantial cost reductions achieved with the Linde-BASF PCC plant utilizing the advanced SIH configuration in combination with BASF’s OASE® blue solvent technology as compared to the DOE/NETL Case 12 reference. The key factors contributing to the reduction of COE and the cost of CO 2 captured, along with quantification of the magnitude of the reductions achieved by each of these factors, are also discussed. Additionally, a high-level techno-economic analysis of one more highly advanced Linde-BASF PCC configuration case (LB1-CREB) is also presented to demonstrate the significant impact of innovative PCC plant process design improvements on further reducing COE and cost of CO 2 captured for overall plant cost and performance comparison purposes. Overall, the net efficiency of the integrated 550 MWe supercritical PC power plant with CO 2 capture is increased from 28.4% with the DOE/NETL Case 12 reference to 30.9% with the Linde-BASF PCC plant previously presented utilizing the BASF OASE® blue solvent [Ref. 6], and is further increased to 31.4% using Linde-BASF PCC plant with BASF OASE® blue solvent and an advanced SIH configuration. The Linde-BASF PCC plant incorporating the BASF OASE® blue solvent also results in significantly lower overall capital costs, thereby reducing the COE and cost of CO 2 captured from $147.25/MWh and $56.49/MT CO 2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO 2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO 2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO2 captured can be further reduced to $125.51/MWh and $39.90/MT CO 2 for LB1-CREB. Most notably, the Linde-BASF process options presented here have already demonstrated the potential to lower the cost of CO2 captured below the DOE target of $40/MT CO 2 at the 550 MWe scale for second generation PCC technologies.« less

  10. Modeling Hydrodynamic Changes Due to Marine Hydrokinetic Power Production: Community Outreach and Education

    NASA Astrophysics Data System (ADS)

    James, S. C.; Jones, C.; Roberts, J.

    2013-12-01

    Power generation with marine hydrokinetic (MHK) turbines is receiving growing global interest. Because of reasonable investment, maintenance, reliability, and environmental friendliness, this technology can contribute to national (and global) energy markets and is worthy of research investment. Furthermore, in remote areas, small-scale MHK energy from river, tidal, or ocean currents can provide a local power supply. The power-generating capacity of MHK turbines will depend, among other factors, upon the turbine type and number and the local flow velocities. There is an urgent need for deployment of practical, accessible tools and techniques to help the industry optimize MHK array layouts while establishing best sitting and design practices that minimize environmental impacts. Sandia National Laboratories (SNL) has modified the open-source flow and transport Environmental Fluid Dynamics Code (EFDC) to include the capability of simulating the effects of MHK power production. Upon removing energy (momentum) from the system, changes to the local and far-field flow dynamics can be estimated (e.g., flow speeds, tidal ranges, flushing rates, etc.). The effects of these changes on sediment dynamics and water quality can also be simulated using this model. Moreover, the model can be used to optimize MHK array layout to maximize power capture and minimize environmental impacts. Both a self-paced tutorial and in-depth training course have been developed as part of an outreach program to train academics, technology developers, and regulators in the use and application of this software. This work outlines SNL's outreach efforts using this modeling framework as applied to two specific sites where MHK turbines have been deployed.

  11. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  12. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture

    NASA Astrophysics Data System (ADS)

    Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

    2015-01-01

    We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

  13. Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.

    Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less

  14. Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation

    DOE PAGES

    Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.; ...

    2017-08-18

    Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less

  15. Absorber modeling for NGCC carbon capture with aqueous piperazine.

    PubMed

    Zhang, Yue; Freeman, Brice; Hao, Pingjiao; Rochelle, Gary T

    2016-10-20

    A hybrid system combining amine scrubbing with membrane technology for carbon capture from natural gas combined cycle (NGCC) power plants is proposed in this paper. In this process, the CO 2 in the flue gas can be enriched from 4% to 18% by the membrane, and the amine scrubbing system will have lower capture costs. Aqueous piperazine (PZ) is chosen as the solvent. Different direct contact cooler (DCC) options, multiple absorber operating conditions, optimal intercooling designs, and different cooling options have been evaluated across a wide range of inlet CO 2 . Amine scrubbing without DCC is a superior design for NGCC carbon capture. Pump-around cooling at the bottom of the absorber can effectively manage the temperature of the hot flue gas, and still be effective for CO 2 absorption. The absorber gas inlet must be designed to avoid excessive localized temperature and solvent evaporation. When the inlet CO 2 increases from 4% to 18%, total absorber CAPEX decreases by 60%; another 10% of the total absorber CAPEX can be saved by eliminating the DCC. In-and-out intercooling works well for high CO 2 , while pump-around intercooling is more effective for low CO 2 . Dry cooling requires more packing and energy but appears to be technically and economically feasible if cooling water availability is limited.

  16. Mercury content of the Springfield coal, Indiana and Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Mastalerz, Maria; Drobniak, A.; Quick, J.C.; Eble, C.F.; Zimmerer, M.J.

    2005-01-01

    With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9-53% capture by cold-side electrostatic precipitators (ESP) and 47-81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg. ?? 2005 Elsevier B.V. All rights reserved.

  17. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    PubMed

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  18. Optimum sensor placement for microphone arrays

    NASA Astrophysics Data System (ADS)

    Rabinkin, Daniel V.

    Microphone arrays can be used for high-quality sound pickup in reverberant and noisy environments. Sound capture using conventional single microphone methods suffers severe degradation under these conditions. The beamforming capabilities of microphone array systems allow highly directional sound capture, providing enhanced signal-to-noise ratio (SNR) when compared to single microphone performance. The overall performance of an array system is governed by its ability to locate and track sound sources and its ability to capture sound from desired spatial volumes. These abilities are strongly affected by the spatial placement of microphone sensors. A method is needed to optimize placement for a specified number of sensors in a given acoustical environment. The objective of the optimization is to obtain the greatest average system SNR for sound capture in the region of interest. A two-step sound source location method is presented. In the first step, time delay of arrival (TDOA) estimates for select microphone pairs are determined using a modified version of the Omologo-Svaizer cross-power spectrum phase expression. In the second step, the TDOA estimates are used in a least-mean-squares gradient descent search algorithm to obtain a location estimate. Statistics for TDOA estimate error as a function of microphone pair/sound source geometry and acoustic environment are gathered from a set of experiments. These statistics are used to model position estimation accuracy for a given array geometry. The effectiveness of sound source capture is also dependent on array geometry and the acoustical environment. Simple beamforming and time delay compensation (TDC) methods provide spatial selectivity but suffer performance degradation in reverberant environments. Matched filter array (MFA) processing can mitigate the effects of reverberation. The shape and gain advantage of the capture region for these techniques is described and shown to be highly influenced by the placement of array sensors. A procedure is developed to evaluate a given array configuration based on the above-mentioned metrics. Constrained placement optimizations are performed that maximize SNR for both TDC and MFA capture methods. Results are compared for various acoustic environments and various enclosure sizes. General guidelines are presented for placement strategy and bandwidth dependence, as they relate to reverberation levels, ambient noise, and enclosure geometry. An overall performance function is described based on these metrics. Performance of the microphone array system is also constrained by the design limitations of the supporting hardware. Two newly developed hardware architectures are presented that support the described algorithms. A low- cost 8-channel system with off-the-shelf componentry was designed and its performance evaluated. A massively parallel 512-channel custom-built system is in development-its capabilities and the rationale for its design are described.

  19. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power and computing resources are scarce.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul

    Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.

  1. CO 2 Capture by Cold Membrane Operation with Actual Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Trapti; Kulkarni, Sudhir; Hasse, David

    The main objective of the project was to develop a post-combustion CO 2 capture process based on the hybrid cold temperature membrane operation. The CO 2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO 2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO 2 purity. The aim of the project was based on DOE program goal of 90% CO 2 capture with >95% CO 2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves themore » technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12” PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO 2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1” permeator and 1” bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide’s cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12” or 6” diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12” PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO 2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6” PI-1 bundle exhibited superior bundle performance compared to the 12” PI-1 bundle. However, the carbon capture cost was not lower with the 6” PI-1 bundle due to the higher bundle installed cost. A 1” PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1” modules) in real flue gas and exhibited up to 10 times the CO 2 permeance and slightly lower CO 2/N 2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.« less

  2. The optimal design of service level agreement in IAAS based on BDIM

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochen; Zhan, Zhiqiang

    2013-03-01

    Cloud Computing has become more and more prevalent over the past few years, and we have seen the importance of Infrastructure-as-a-service (IaaS). This kind of service enables scaling of bandwidth, memory, computing power and storage. But the SLA in IaaS also faces complexity and variety. Users also consider the business of the service. To meet the most users requirements, a methodology for designing optimal SLA in IaaS from the business perspectives is proposed. This method is different from the conventional SLA design method, It not only focuses on service provider perspective, also from the customer to carry on the design. This methodology better captures the linkage between service provider and service client by considering minimizing the business loss originated from performance degradation and IT infrastructure failures and maximizing profits for service provider and clients. An optimal design in an IaaS model is provided and an example are analyzed to show this approach obtain higher profit.

  3. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels.

    PubMed

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-09-13

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.

  4. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-09-01

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.

  5. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  6. Stuart Cohen | NREL

    Science.gov Websites

    ;Optimizing post-combustion CO2 capture in response to volatile electricity prices." International , S.M., H.L. Chalmers, M.E. Webber, C.W. King, and J. Gibbins. "Comparing post-combustion CO2 ., G.T. Rochelle, and M.E. Webber. "Optimal operation of flexible post- combustion CO2 capture in

  7. Bench Scale Development and Testing of Aerogel Sorbents for CO 2 Capture Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begag, Redouane

    The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO 2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO 2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO 2 capacity, respectively (@ 40 °C adsorption / 100more » – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO 2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO 2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO 2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO 2 capture capacity after 20 cycles in the presence of 40 ppm SO 2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post combustion CO 2 capture process using a bituminous coal fired, super-critical steam cycle power plant producing 550 MWe net generation with 90% CO 2 capture using a methylethylamine (MEA) solvent. Using the NETL report as guidance, the designed CO 2 capture system was analyzed on a cost basis to determine relative cost estimates between the benchmark MEA system and the AFA sorbent system.« less

  8. An optimization framework for measuring spatial access over healthcare networks.

    PubMed

    Li, Zihao; Serban, Nicoleta; Swann, Julie L

    2015-07-17

    Measurement of healthcare spatial access over a network involves accounting for demand, supply, and network structure. Popular approaches are based on floating catchment areas; however the methods can overestimate demand over the network and fail to capture cascading effects across the system. Optimization is presented as a framework to measure spatial access. Questions related to when and why optimization should be used are addressed. The accuracy of the optimization models compared to the two-step floating catchment area method and its variations is analytically demonstrated, and a case study of specialty care for Cystic Fibrosis over the continental United States is used to compare these approaches. The optimization models capture a patient's experience rather than their opportunities and avoid overestimating patient demand. They can also capture system effects due to change based on congestion. Furthermore, the optimization models provide more elements of access than traditional catchment methods. Optimization models can incorporate user choice and other variations, and they can be useful towards targeting interventions to improve access. They can be easily adapted to measure access for different types of patients, over different provider types, or with capacity constraints in the network. Moreover, optimization models allow differences in access in rural and urban areas.

  9. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants thatmore » capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.« less

  10. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  11. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.

    PubMed

    Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E

    2017-05-18

    Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

  12. New research discovery may mean less radioactive contamination, safer nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S.

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  13. Accurate visible speech synthesis based on concatenating variable length motion capture data.

    PubMed

    Ma, Jiyong; Cole, Ron; Pellom, Bryan; Ward, Wayne; Wise, Barbara

    2006-01-01

    We present a novel approach to synthesizing accurate visible speech based on searching and concatenating optimal variable-length units in a large corpus of motion capture data. Based on a set of visual prototypes selected on a source face and a corresponding set designated for a target face, we propose a machine learning technique to automatically map the facial motions observed on the source face to the target face. In order to model the long distance coarticulation effects in visible speech, a large-scale corpus that covers the most common syllables in English was collected, annotated and analyzed. For any input text, a search algorithm to locate the optimal sequences of concatenated units for synthesis is desrcribed. A new algorithm to adapt lip motions from a generic 3D face model to a specific 3D face model is also proposed. A complete, end-to-end visible speech animation system is implemented based on the approach. This system is currently used in more than 60 kindergarten through third grade classrooms to teach students to read using a lifelike conversational animated agent. To evaluate the quality of the visible speech produced by the animation system, both subjective evaluation and objective evaluation are conducted. The evaluation results show that the proposed approach is accurate and powerful for visible speech synthesis.

  14. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.

    PubMed

    Divett, T; Vennell, R; Stevens, C

    2013-02-28

    At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel.

  15. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    NASA Astrophysics Data System (ADS)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  16. Optimization of ELISA Conditions to Quantify Colorectal Cancer Antigen-Antibody Complex Protein (GA733-FcK) Expressed in Transgenic Plant

    PubMed Central

    Ahn, Junsik; Lee, Kyung Jin

    2014-01-01

    The purpose of this study is to optimize ELISA conditions to quantify the colorectal cancer antigen GA733 linked to the Fc antibody fragment fused to KDEL, an ER retention motif (GA733-FcK) expressed in transgenic plant. Variable conditions of capture antibody, blocking buffer, and detection antibody for ELISA were optimized with application of leaf extracts from transgenic plant expressing GA733-FcK. In detection antibody, anti-EpCAM/CD362 IgG recognizing the GA733 did not detect any GA733-FcK whereas anti-human Fc IgG recognizing the human Fc existed in plant leaf extracts. For blocking buffer conditions, 3% BSA buffer clearly blocked the plate, compared to the 5% skim-milk buffer. For capture antibody, monoclonal antibody (MAb) CO17-1A was applied to coat the plate with different amounts (1, 0.5, and 0.25 μg/well). Among the amounts of the capture antibody, 1 and 0.5 μg/well (capture antibody) showed similar absorbance, whereas 0.25 μg/well of the capture antibody showed significantly less absorbance. Taken together, the optimized conditions to quantify plant-derived GA733-FcK were 0.5 μg/well of MAb CO17-1A per well for the capture antibody, 3% BSA for blocking buffer, and anti-human Fc conjugated HRP. To confirm the optimized ELISA conditions, correlation analysis was conducted between the quantified amount of GA733-FcK in ELISA and its protein density values of different leaf samples in Western blot. The co-efficient value R2 between the ELISA quantified value and protein density was 0.85 (p<0.01), which indicates that the optimized ELISA conditions feasibly provides quantitative information of GA733-FcK expression in transgenic plant. PMID:24555929

  17. The role of capital costs in decarbonizing the electricity sector

    NASA Astrophysics Data System (ADS)

    Hirth, Lion; Steckel, Jan Christoph

    2016-11-01

    Low-carbon electricity generation, i.e. renewable energy, nuclear power and carbon capture and storage, is more capital intensive than electricity generation through carbon emitting fossil fuel power stations. High capital costs, expressed as high weighted average cost of capital (WACC), thus tend to encourage the use of fossil fuels. To achieve the same degree of decarbonization, countries with high capital costs therefore need to impose a higher price on carbon emissions than countries with low capital costs. This is particularly relevant for developing and emerging economies, where capital costs tend to be higher than in rich countries. In this paper we quantitatively evaluate how high capital costs impact the transformation of the energy system under climate policy, applying a numerical techno-economic model of the power system. We find that high capital costs can significantly reduce the effectiveness of carbon prices: if carbon emissions are priced at USD 50 per ton and the WACC is 3%, the cost-optimal electricity mix comprises 40% renewable energy. At the same carbon price and a WACC of 15%, the cost-optimal mix comprises almost no renewable energy. At 15% WACC, there is no significant emission mitigation with carbon pricing up to USD 50 per ton, but at 3% WACC and the same carbon price, emissions are reduced by almost half. These results have implications for climate policy; carbon pricing might need to be combined with policies to reduce capital costs of low-carbon options in order to decarbonize power systems.

  18. Dynamic interrogative data capture (DIDC) : concept of operations.

    DOT National Transportation Integrated Search

    2016-04-01

    This Concept of Operations (ConOps) describes the characteristics of the Dynamic Interrogative Data Capture (DIDC) algorithms and associated software. The objective of the DIDC algorithms and software is to optimize the capture and transmission of ve...

  19. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  20. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  1. Modelling results for the thermal management sub-system of a combined heat and power (CHP) fuel cell system (FCS)

    NASA Astrophysics Data System (ADS)

    Colella, Whitney G.

    Although the fuel cells research and development community has traditionally focused the majority of its efforts on improving the fuel cell stack's voltage (electrical efficiency), combined heat and power (CHP) fuel cell system (FCSs) may achieve a competitive advantage over conventional generators only if the research and development community refocuses its efforts on cultivating other inherent technical qualities of such systems. Based on an analysis of their use within energy markets, these inherent qualities include (1) an ability to vary their electrical load rapidly, (2) an ability to vary their heat to power ratio during operation, and (3) an ability to deliver their waste heat to a useful thermal sink. This article focuses on the last of three design objectives: effectively capturing heat from a CHP FCS. This article (1) delineates the design specifications for a 6 kWe CHP FCS, (2) analyses four possible cooling loop configurations for this system, and (3) concludes which one of these provides the optimal heat recovery performance.

  2. Analysis of PMN-PT and PZT circular diaphragm energy harvesters for use in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Radziemski, Leon J.; Clark, William W.

    2007-04-01

    This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.

  3. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.

    PubMed

    Kim, Suk Lae; Choi, Kyungwho; Tazebay, Abdullah; Yu, Choongho

    2014-03-25

    Thermoelectric energy conversion is very effective in capturing low-grade waste heat to supply electricity particularly to small devices such as sensors, wireless communication units, and wearable electronics. Conventional thermoelectric materials, however, are often inadequately brittle, expensive, toxic, and heavy. We developed both p- and n-type fabric-like flexible lightweight materials by functionalizing the large surfaces and junctions in carbon nanotube (CNT) mats. The poor thermopower and only p-type characteristics of typical CNTs have been converted into both p- and n-type with high thermopower. The changes in the electronic band diagrams of the CNTs were experimentally investigated, elucidating the carrier type and relatively large thermopower values. With our optimized device design to maximally utilize temperature gradients, an electrochromic glucose sensor was successfully operated without batteries or external power supplies, demonstrating self-powering capability. While our fundamental study provides a method of tailoring electronic transport properties, our device-level integration shows the feasibility of harvesting electrical energy by attaching the device to even curved surfaces like human bodies.

  4. A Risk Management Method for the Operation of a Supply-Chain without Storage:

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiro; Manabe, Yuuji; Nakata, Norimasa; Kusaka, Satoshi

    A business risk management method has been developed for a supply-chain without a storage function under demand uncertainty. Power supply players in the deregulated power market face the need to develop the best policies for power supply from self-production and reserved purchases to balance demand, which is predictable with error. The proposed method maximizes profit from the operation of the supply-chain under probabilistic demand uncertainty on the basis of a probabilistic programming approach. Piece-wise linear functions are employed to formulate the impact of under-booked or over-booked purchases on the supply cost, and constraints on over-demand probability are introduced to limit over-demand frequency on the basis of the demand probability distribution. The developed method has been experimentally applied to the supply policy of a power-supply-chain, the operation of which is based on a 3-stage pricing purchase contract and on 28 time zones. The characteristics of the obtained optimal supply policy are successfully captured in the numerical results, which suggest the applicability of the proposed method.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Zhang, Yingchen

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less

  6. A 4 μW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems.

    PubMed

    Al-Ashmouny, Khaled M; Chang, Sun-Il; Yoon, Euisik

    2012-10-01

    We report an analog front-end prototype designed in 0.25 μm CMOS process for hybrid integration into 3-D neural recording microsystems. For scaling towards massive parallel neural recording, the prototype has investigated some critical circuit challenges in power, area, interface, and modularity. We achieved extremely low power consumption of 4 μW/channel, optimized energy efficiency using moderate inversion in low-noise amplifiers (K of 5.98 × 10⁸ or NEF of 2.9), and minimized asynchronous interface (only 2 per 16 channels) for command and data capturing. We also implemented adaptable operations including programmable-gain amplification, power-scalable sampling (up to 50 kS/s/channel), wide configuration range (9-bit) for programmable gain and bandwidth, and 5-bit site selection capability (selecting 16 out of 128 sites). The implemented front-end module has achieved a reduction in noise-energy-area product by a factor of 5-25 times as compared to the state-of-the-art analog front-end approaches reported to date.

  7. Carbonated Science Cleans Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger; Heldebrant, David; Glezakou, Vand

    Similar to the properties of soda, liquid solvents can efficiently capture and convert carbon dioxide from coal power plants. Researchers at PNNL explain this process and how this method can turn captured carbon into plastic or fuel.

  8. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    NASA Astrophysics Data System (ADS)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  9. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research.

    PubMed

    Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F

    2011-04-08

    The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Dynamics and control of robot for capturing objects in space

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.

  11. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    PubMed

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.

  12. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  13. Real options and asset valuation in competitive energy markets

    NASA Astrophysics Data System (ADS)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.

  14. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    PubMed

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Fast and robust group-wise eQTL mapping using sparse graphical models.

    PubMed

    Cheng, Wei; Shi, Yu; Zhang, Xiang; Wang, Wei

    2015-01-16

    Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. The traditional eQTL methods focus on testing the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may correspond to hidden biological pathways. We introduce a new approach to identify novel group-wise associations between sets of SNPs and sets of genes. Such associations are captured by hidden variables connecting SNPs and genes. Our model is a linear-Gaussian model and uses two types of hidden variables. One captures the set associations between SNPs and genes, and the other captures confounders. We develop an efficient optimization procedure which makes this approach suitable for large scale studies. Extensive experimental evaluations on both simulated and real datasets demonstrate that the proposed methods can effectively capture both individual and group-wise signals that cannot be identified by the state-of-the-art eQTL mapping methods. Considering group-wise associations significantly improves the accuracy of eQTL mapping, and the successful multi-layer regression model opens a new approach to understand how multiple SNPs interact with each other to jointly affect the expression level of a group of genes.

  16. Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates.

    PubMed

    Gehring, Andrew G; Brewster, Jeffrey D; He, Yiping; Irwin, Peter L; Paoli, George C; Simons, Tawana; Tu, Shu-I; Uknalis, Joseph

    2015-12-04

    Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins). We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7) to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation) had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555) conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1) could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 10⁵ cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.

  17. Slipstream pilot-scale demonstration of a novel amine-based post-combustion technology for carbon dioxide capture from coal-fired power plant flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Krish R.

    Post-combustion CO 2 capture (PCC) technology offers flexibility to treat the flue gas from both existing and new coal-fired power plants and can be applied to treat all or a portion of the flue gas. Solvent-based technologies are today the leading option for PCC from commercial coal-fired power plants as they have been applied in large-scale in other applications. Linde and BASF have been working together to develop and further improve a PCC process incorporating BASF’s novel aqueous amine-based solvent technology. This technology offers significant benefits compared to other solvent-based processes as it aims to reduce the regeneration energy requirementsmore » using novel solvents that are very stable under the coal-fired power plant feed gas conditions. BASF has developed the desired solvent based on the evaluation of a large number of candidates. In addition, long-term small pilot-scale testing of the BASF solvent has been performed on a lignite-fired flue gas. In coordination with BASF, Linde has evaluated a number of options for capital cost reduction in large engineered systems for solvent-based PCC technology. This report provides a summary of the work performed and results from a project supported by the US DOE (DE-FE0007453) for the pilot-scale demonstration of a Linde-BASF PCC technology using coal-fired power plant flue gas at a 1-1.5 MWe scale in Wilsonville, AL at the National Carbon Capture Center (NCCC). Following a project kick-off meeting in November 2011 and the conclusion of pilot plant design and engineering in February 2013, mechanical completion of the pilot plant was achieved in July 2014, and final commissioning activities were completed to enable start-up of operations in January 2015. Parametric tests were performed from January to December 2015 to determine optimal test conditions and evaluate process performance over a variety of operation parameters. A long-duration 1500-hour continuous test campaign was performed from May to August 2016 at a selected process condition to evaluate process performance and solvent stability over a longer period similar to how the process would operate as a continuously running large-scale PCC plant. The pilot plant integrated a number of unique features of the Linde-BASF technology aimed at lowering overall energy consumption and capital costs. During the overall test period including startup, parametric testing and long-duration testing, the pilot plant was operated for a total of 6,764 hours out of which testing with flue gas was performed for 4,109 hours. The pilot plant testing demonstrated all of the performance targets including CO 2 capture rate exceeding 90%, CO 2 purity exceeding 99.9 mol% (dry), flue gas processing capacity up to 15,500 lbs/hr (equivalent to 1.5 MWe capacity slipstream), regeneration energy as low as 2.7 GJ/tonne CO 2, and regenerator operating pressure up to 3.4 bara. Excellent solvent stability performance data was measured and verified by Linde and BASF during both test campaigns. In addition to process data, significant operational learnings were gained from pilot tests that will contribute greatly to the commercial success of PCC. Based on a thorough techno-economic assessment (TEA) of the Linde-BASF PCC process integrated with a 550 MWe supercritical coal-fired power plant, the net efficiency of the integrated power plant with CO 2 capture is increased from 28.4% with the DOE/NETL Case 12 reference to 30.9% with the Linde-BASF PCC plant previously presented utilizing the BASF OASE® blue solvent [Ref. 4], and is further increased to 31.4% using a Linde-BASF PCC plant with BASF OASE® blue solvent and an advanced stripper interstage heater (SIH) configuration. The Linde-BASF PCC plant incorporating the BASF OASE® blue solvent also results in significantly lower overall capital costs, thereby reducing the cost of electricity (COE) and cost of CO 2 captured from $147.25/MWh and $56.49/MT CO 2, respectively, for the reference DOE/NETL Case 12 plant, to $128.49/MWh and $41.85/MT CO2 for process case LB1, respectively, and $126.65/MWh and $40.66/MT CO 2 for process case SIH, respectively. With additional innovative Linde-BASF PCC process configuration improvements, the COE and cost of CO 2 captured can be further reduced to $125.51/MWh and $39.90/MT CO 2 for a further optimized PCC process defined as LB1-CREB. Most notably, the Linde-BASF process options assessed have already demonstrated the potential to lower the cost of CO 2 captured below the DOE target of $40/MT CO 2 at the 550 MWe scale for second generation PCC technologies. Project organization, structure, goals, tasks, accomplishments, process criteria and milestones will be presented in this report along with highlights and key results from parametric and long-duration testing of the Linde-BASF PCC pilot. The parametric and long-duration testing campaigns were aimed at validating the performance of the PCC technology against targets determined from a preliminary techno-economic assessment. The stability of the solvent with extended operation in a realistic power plant setting was measured with performance verified. Additionally, general solvent classification information, process operating conditions, normalized solvent performance data, solvent stability test results, flue gas conditions data, CO 2 purity data in the gaseous product stream, steam requirements and process flow diagrams, and updated process economic data for a scaled-up 550 MWe supercritical power plant with CO 2 capture are presented and discussed in this report.« less

  18. Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms.

    PubMed

    Sundareshan, Malur K; Bhattacharjee, Supratik; Inampudi, Radhika; Pang, Ho-Yuen

    2002-12-10

    Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the superresolution iterations. A quantitative evaluation of the performance of these algorithms for restoring and superresolving various imagery data captured by diffraction-limited sensing operations are also presented.

  19. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  20. Performance analysis of Aloha networks with power capture and near/far effect

    NASA Astrophysics Data System (ADS)

    McCartin, Joseph T.

    1989-06-01

    An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.

  1. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy usemore » and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO₂ capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.« less

  2. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Poli, F. M.

    2018-06-01

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.

  3. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Nicolas; Poli, Francesca M.

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  4. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE PAGES

    Lopez, Nicolas; Poli, Francesca M.

    2018-03-29

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  5. A configuration development strategy for the NASP

    NASA Astrophysics Data System (ADS)

    Snyder, Curtis D.; Pinckney, S. Z.

    Characteristics of airframe-integrated scramjet (AIS) aerospacecraft are studied using elementary and a recently developed AIS analysis code. Of principal interest is the definition of the AIS and what concepts offer the most potential. One of the concepts is selected for a limited optimization study aimed at defining the relationship of exhaust area to performance potential. The study shows that, if the AIS vehicle is to be fully constrained within the 'optimum' flowpath envelope, large values of exhaust-area-to-capture-area ratio are desired. A benefit of this choice is that performance at the very highest airbreather speeds is improved and, thus, may delay the need to switch to rocket power.

  6. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    PubMed

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  7. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  8. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  9. Effective motion planning strategy for space robot capturing targets under consideration of the berth position

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Jinguo

    2018-07-01

    Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.

  10. Wideband, low-frequency springless vibration energy harvesters: part I

    NASA Astrophysics Data System (ADS)

    Bendame, Mohamed; Abdel-Rahman, Eihab; Soliman, Mostafa

    2016-11-01

    We present a novel architecture for wideband and low-frequency vibration energy harvesting (VEH). Springless vibration energy harvesters (SVEH) employ impact oscillators as energy harvesting elements. A seismic mass moves along a linear guide limited by stoppers at both ends of the track. An electromagnetic transducer converts the kinetic energy captured by the mass into electrical energy. Experiments using prototypes of the horizontal SVEH demonstrated low frequency harvesting (<20 Hz), wideband harvesting (up to 6.0 Hz), and an optimal rectified output power of P  =  12 mW for a base acceleration amplitude of 0.5 g. A model of the electromagnetic SVEH was developed and validated experimentally. A figure of merit was defined to quantify realizable output power in linear and nonlinear VEHs. Comparison using this figure of merit shows that electromagnetic SVEHs outperform their linear counterparts by 92%-232% for acceleration amplitudes in the range of 0.4-0.6 g.

  11. Example-based human motion denoising.

    PubMed

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  12. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Merkel; Karl Amo; Richard Baker

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plantmore » energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.« less

  13. Economic and energetic analysis of capturing CO2 from ambient air

    PubMed Central

    House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.

    2011-01-01

    Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760

  14. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO2 capture

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Zhang, Shouren; Yin, Hang; Yang, Baocheng

    2017-08-01

    Herein, considering the great potential of nitrogen-doped hierarchical porous carbons in energy storage and CO2 capture, we designed a convenient and easily large-scale production strategy for preparing nitrogen-doped hierarchical porous carbon sphere (NHPCS) materials. In this synthesis route, spherical resorcinol-formaldehyde (RF) resins were selected as carbon precursor, and then the ZnCl2-impregnated RF resin spheres were carbonized in a NH3 atmosphere at a temperature range of 600-800 °C. During the one-step heat-treatment process, nitrogen atom could be efficiently incorporated into the carbon skeleton, and the interconnected and hierarchical pore structure with different micro/mesopore proportion could be generated and tuned by adjusting the activating agent ZnCl2 dosage and carbonization temperature. The resultant nitrogen-doped hierarchical porous carbon sphere materials exhibited a satisfactory charge storage capacity, and the optimal sample of NHPCS-2-8 with a high mesopore proportion obtained at 800 °C with a ZnCl2/RF mass ratio of 2:1 presented a specific capacitance of 273.8 F g-1 at a current density of 0.5 A g-1. More importantly, the assembled NHPCS-2-8-based symmetric capacitor displayed a high energy density of 17.2 Wh kg-1 at a power density of 178.9 W kg-1 within a voltage window of 0 ∼ 1.8 V in 0.5 M Na2SO4 aqueous electrolyte. In addition, the CO2 capture application of these NHPCS materials was also explored, and the optimal sample of NHPCS-0-8 with a large micropore proportion prepared at 800 °C exhibited an exceptional CO2 uptake capacity at ambient pressures of up to 4.23 mmol g-1 at 0 °C.

  15. Comparaison de la performance environnementale de la production thermique d'electricite avec et sans sequestration geologique du dioxyde de carbone

    NASA Astrophysics Data System (ADS)

    Bellerive, Nathalie

    The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database (Version 1.2). This database was selected due to its European source. Finally, technical calculations and literature were used to complete the data inventory. This was validated by electrical experts in order to increase data and modeling precision. Results were similar for IGCC and NGCC power plants using Impact 2002+, an impacts analysis method. Global warming potential decreased by 67% with the implementation of CO2 capture and sequestration compared to systems without CSC. Results for all others impacts categories, demonstrated an increase from 16% to 116% in relative proportions compared to systems without CSC. The main contributor was the additional quantity of energy required to operate CO2 capture and compression facilities. This additional energy negatively affected the power plant's global efficiency because of the increase in the quantity of fossil fuel that needed to be extracted and consumed. The increase in other impacts was mainly due to additional electricity, fossil fuel (for extracting, treatment and transportation) and additional emissions generated during power plant operations. A scenario analysis was done to study the sensitivity and variability of uncertain data during the software modeling process of a power plant. Data on power plant efficiency is the most variable and sensitive during modeling, followed by the length of the transportation pipe and the leaking rate during CO2 sequestration. This result analysis is interesting because it led to the maximum efficiency scenario with capture (with a short CO 2 transportation distance and a low leaking rate) obtaining better results on all impact category indicators, compared to the minimum efficiency scenario without capture. In fact, positive results on all category indicators were possible during the system comparison between the two cases (with and without capture). (Abstract shortened by UMI.)

  16. BSM (+BMM) Data Emulator Dynamic Interrogative Data Capture (DIDC) Assessment Report: Impacts of DIDC

    DOT National Transportation Integrated Search

    2016-04-01

    The objective of the Dynamic Interrogative Data Capture (DIDC) algorithms and software is to optimize the capture and transmission of vehicle-based data under a range of dynamically configurable messaging strategies. The key hypothesis of DIDC is tha...

  17. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels

    PubMed Central

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-01-01

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices. PMID:27619690

  18. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  19. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  20. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Cai, Zhongle; Cui, Yue; Li, Ze; Han, Huanhuan; Fu, Meixia; Luo, Bin

    2016-06-01

    An effective machine learning algorithm, the support vector machine (SVM), is presented in the context of a coherent optical transmission system. As a classifier, the SVM can create nonlinear decision boundaries to mitigate the distortions caused by nonlinear phase noise (NLPN). Without any prior information or heuristic assumptions, the SVM can learn and capture the link properties from only a few training data. Compared with the maximum likelihood estimation (MLE) algorithm, a lower bit-error rate (BER) is achieved by the SVM for a given launch power; moreover, the launch power dynamic range (LPDR) is increased by 3.3 dBm for 8 phase-shift keying (8 PSK), 1.2 dBm for QPSK, and 0.3 dBm for BPSK. The maximum transmission distance corresponding to a BER of 1 ×10-3 is increased by 480 km for the case of 8 PSK. The larger launch power range and longer transmission distance improve the tolerance to amplitude and phase noise, which demonstrates the feasibility of the SVM in digital signal processing for M-PSK formats. Meanwhile, in order to apply the SVM method to 16 quadratic amplitude modulation (16 QAM) detection, we propose a parameter optimization scheme. By utilizing a cross-validation and grid-search techniques, the optimal parameters of SVM can be selected, thus leading to the LPDR improvement by 2.8 dBm. Additionally, we demonstrate that the SVM is also effective in combating the laser phase noise combined with the inphase and quadrature (I/Q) modulator imperfections, but the improvement is insignificant for the linear noise and separate I/Q imbalance. The computational complexity of SVM is also discussed. The relatively low complexity makes it possible for SVM to implement the real-time processing.

  1. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    PubMed

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  2. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  3. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE PAGES

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2017-12-11

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  4. Optimal scheduling and its Lyapunov stability for advanced load-following energy plants with CO 2 capture

    DOE PAGES

    Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu; ...

    2017-11-03

    In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less

  5. Optimal scheduling and its Lyapunov stability for advanced load-following energy plants with CO 2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu

    In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less

  6. Subtask 2.18 - Advancing CO 2 Capture Technology: Partnership for CO 2 Capture (PCO 2C) Phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, John; Azenkeng, Alexander; Fiala, Nathan

    2016-03-31

    Industries and utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to meet the current national CO 2 reduction goals. The Partnership for CO2 Capture Phase III focused on several important research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two flue gas pretreatment technologies for postcombustion capture, an SO 2 reduction scrubbing technology from Cansolv Technologies Inc. and the Tri-Mer filtration technology that combines particulate, NOx, and SO 2 control, were evaluated on the Energy &more » Environmental Research Center’s (EERC’s) pilot-scale test system. Pretreating the flue gas should enable more efficient, and therefore less expensive, CO 2 capture. Both technologies were found to be effective in pretreating flue gas prior to CO 2 capture. Two new postcombustion capture solvents were tested, one from the Korea Carbon Capture and Sequestration R&D Center (KCRC) and one from CO 2 Solutions Incorporated. Both of these solvents showed the ability to capture CO 2 while requiring less regeneration energy, which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation were evaluated through precombustion testing. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was comparable to that of other membranes that have been tested at the EERC. Aspen Plus® software was used to model the KCRC and CO 2 Solutions solvents and found that they would result in significantly improved overall plant performance. The modeling effort also showed that the parasitic steam load at partial capture of 45% is less than half that of 90% overall capture, indicating savings that could be accrued if 90% capture is not required. Modeling of three regional power plants using the Carnegie Mellon Integrated Environmental Control Model showed that, among other things, the use of a bypass during partial capture may minimize the size of the capture tower(s) and result in a slight reduction in the revenue required to operate the capture facility. The results reinforced that a one-size-fits-all approach cannot be taken to adding capture to a power plant. Laboratory testing indicated that Fourier transform infrared spectroscopy could be used to continuously sample stack emissions at CO 2 capture facilities to detect and quantify any residual amine or its degradation products, particularly nitrosamines. The information gathered during Phase III is important for utility stakeholders as they determine how to reduce their CO 2 emissions in a carbon-constrained world. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the North Dakota Industrial Commission, PPL Montana, Nebraska Public Power District, Tri-Mer Corporation, Montana–Dakota Utilities Co., Basin Electric Power Cooperative, KCRC/Korean Institute of Energy Research, Cansolv Technologies, and CO 2 Solutions, Inc.« less

  7. Identification of pre-impact conditions of a cyclist involved in a vehicle-bicycle accident using an optimized MADYMO reconstruction combined with motion capture.

    PubMed

    Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu

    2018-05-01

    The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.

  8. Data Capture Technique for High Speed Signaling

    DOEpatents

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  9. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part B: Applications

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-09-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.

  10. Large Pilot Scale Testing of Linde/BASF Post-Combustion CO 2 Capture Technology at the Abbott Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Kevin C.

    The work summarized in this report is the first step towards a project that will re-train and create jobs for personnel in the coal industry and continue regional economic development to benefit regions impacted by previous downturns. The larger project is aimed at capturing ~300 tons/day (272 metric tonnes/day) CO 2 at a 90% capture rate from existing coal- fired boilers at the Abbott Power Plant on the campus of University of Illinois (UI). It will employ the Linde-BASF novel amine-based advanced CO 2 capture technology, which has already shown the potential to be cost-effective, energy efficient and compact atmore » the 0.5-1.5 MWe pilot scales. The overall objective of the project is to design and install a scaled-up system of nominal 15 MWe size, integrate it with the Abbott Power Plant flue gas, steam and other utility systems, and demonstrate the viability of continuous operation under realistic conditions with high efficiency and capacity. The project will also begin to build a workforce that understands how to operate and maintain the capture plants by including students from regional community colleges and universities in the operation and evaluation of the capture system. This project will also lay the groundwork for follow-on projects that pilot utilization of the captured CO 2 from coal-fired power plants. The net impact will be to demonstrate a replicable means to (1) use a standardized procedure to evaluate power plants for their ability to be retrofitted with a pilot capture unit; (2) design and construct reliable capture systems based on the Linde-BASF technology; (3) operate and maintain these systems; (4) implement training programs with local community colleges and universities to establish a workforce to operate and maintain the systems; and (5) prepare to evaluate at the large pilot scale level various methods to utilize the resulting captured CO 2. Towards the larger project goal, the UI-led team, together with Linde, has completed a preliminary design for the carbon capture pilot plant with basic engineering and cost estimates, established permitting needs, identified approaches to address Environmental, Health, and Safety concerns related to pilot plant installation and operation, developed approaches for long-term use of the captured carbon, and established strategies for workforce development and job creation that will re-train coal operators to operate carbon capture plants. This report describes Phase I accomplishments and demonstrates that the project team is well-prepared for full implementation of Phase 2, to design, build, and operate the carbon capture pilot plant.« less

  11. A preliminary investigation of cryogenic CO2 capture utilizing a reverse Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, L. C.; Pfotenhauer, J. M.; Qiu, L. M.

    2014-01-01

    Utilizing CO2 capture and storage (CCS) technologies is a significant way to reduce carbon emissions from coal fired power plants. Cryogenic CO2 capture (CCC) is an innovative and promising CO2 capture technology, which has an apparent energy and environmental advantage compared to alternatives. A process of capturing CO2 from the flue gas of a coal-fired electrical power plant by cryogenically desublimating CO2 has been discussed and demonstrated theoretically. However, pressurizing the inlet flue gas to reduce the energy penalty for the cryogenic process will lead to a more complex system. In this paper, a modified CCC system utilizing a reverse Brayton Cycle is proposed, and the energy penalty of these two systems are compared theoretically.

  12. Chemicals to help coal come clean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, A.M.

    Scrubbing methods to capture carbon from power plants are advancing to the demonstration phase. The article gives an update of projects around the world, and the goals and cost of CCS projects. BASF, together with RWE Power and Linde, are working to ensure state of the art integration of the carbon-capture process into a power plant to minimize the penalty in electrical output. A pilot project will test new solvents in an 'advanced amine' system at RWE's power station in Niederaussem, Germany. A pilot unit will soon capture CO{sub 2} from a coal-fired plant of Dow's in South Charleston, WV,more » USA and Dow has also agreed to build an amines demonstration facility in Belchatow, Poland. Other projects in the USA and Canada are reported. 1 fig.« less

  13. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less

  14. Root System Water Consumption Pattern Identification on Time Series Data

    PubMed Central

    Figueroa, Manuel; Pope, Christopher

    2017-01-01

    In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers’ detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system’s 0.348 precision. PMID:28621739

  15. Root System Water Consumption Pattern Identification on Time Series Data.

    PubMed

    Figueroa, Manuel; Pope, Christopher

    2017-06-16

    In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers' detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system's 0.348 precision.

  16. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, P.R.

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  17. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    NASA Astrophysics Data System (ADS)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  18. A non-ideal portal frame energy harvester controlled using a pendulum

    NASA Astrophysics Data System (ADS)

    Iliuk, I.; Balthazar, J. M.; Tusset, A. M.; Piqueira, J. R. C.; Rodrigues de Pontes, B.; Felix, J. L. P.; Bueno, Á. M.

    2013-09-01

    A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.

  19. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations.

    PubMed

    Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M

    2015-09-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.

  20. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations

    PubMed Central

    Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.

    2015-01-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358

  1. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  2. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  3. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE PAGES

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    2017-09-13

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  4. Enhanced mutual capture of colored solitons by matched modulator

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Eyal; Orenstein, Meir

    2004-08-01

    The mutual capture of two colored solitons is enhanced by a modulator, to a level which enables its practical exploitation, e.g., for a read- write mechanism in a soliton buffer. The enhanced capture was analyzed using closed form particle-like soliton perturbation, and verified by numerical simulations. Optimal modulator frequency and modulation depth are obtained. This mutual capture can be utilized for all-optical soliton logic and memory.

  5. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  6. Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby

    NASA Astrophysics Data System (ADS)

    Patrick, Sean

    Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.

  7. Optimizing local capture of atrial fibrillation by rapid pacing: study of the influence of tissue dynamics.

    PubMed

    Uldry, Laurent; Virag, Nathalie; Jacquemet, Vincent; Vesin, Jean-Marc; Kappenberger, Lukas

    2010-12-01

    While successful termination by pacing of organized atrial tachycardias has been observed in patients, rapid pacing of AF can induce a local capture of the atrial tissue but in general no termination. The purpose of this study was to perform a systematic evaluation of the ability to capture AF by rapid pacing in a biophysical model of the atria with different dynamics in terms of conduction velocity (CV) and action potential duration (APD). Rapid pacing was applied during 30 s at five locations on the atria, for pacing cycle lengths in the range 60-110% of the mean AF cycle length (AFCL(mean)). Local AF capture could be achieved using rapid pacing at pacing sites located distal to major anatomical obstacles. Optimal pacing cycle lengths were found in the range 74-80% AFCL(mean) (capture window width: 14.6 ± 3% AFCL(mean)). An increase/decrease in CV or APD led to a significant shrinking/stretching of the capture window. Capture did not depend on AFCL, but did depend on the atrial substrate as characterized by an estimate of its wavelength, a better capture being achieved at shorter wavelengths. This model-based study suggests that a proper selection of the pacing site and cycle length can influence local capture results and that atrial tissue properties (CV and APD) are determinants of the response to rapid pacing.

  8. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  9. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  10. Optimum solar electric interplanetary mission opportunities from 1975 to 1990

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1971-01-01

    A collection of optimum trajectory and spacecraft data is presented for unmanned interplanetary missions from 1975 to 1990 using solar electric propulsion. Data are presented for one-way flyby and orbiter missions from Earth to Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. The solar system model assumes planetary ephemerides which very closely approximate the true motion of the planets. Direct and indirect flight profiles are investigated. Data are presented for two representative flight times for each mission. The launch vehicle is the Titan 3 B (core)/Centaur, and a constant jet exhaust speed solar electric propulsion system having a specific mass of 30 kg/kw is completely optimized in terms of power level and jet exhaust speed to yield maximum net spacecraft mass. The hyperbolic excess speeds at departure and arrival and the launch date are optimized for each mission. For orbiter missions, a chemical retro stage is used to brake the spacecraft into a highly eccentric capture orbit about the target planet.

  11. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  12. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  13. Long-term energy capture and the effects of optimizing wind turbine operating strategies

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Formica, W. J.

    1982-01-01

    Methods of increasing energy capture without affecting the turbine design were investigated. The emphasis was on optimizing the wind turbine operating strategy. The operating strategy embodies the startup and shutdown algorithm as well as the algorithm for determining when to yaw (rotate) the axis of the turbine more directly into the wind. Using data collected at a number of sites, the time-dependent simulation of a MOD-2 wind turbine using various, site-dependent operating strategies provided evidence that site-specific fine tuning can produce significant increases in long-term energy capture as well as reduce the number of start-stop cycles and yawing maneuvers, which may result in reduced fatigue and subsequent maintenance.

  14. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  15. Recovery of high-quality RNA from laser capture microdissected human and rodent pancreas.

    PubMed

    Butler, Alexandra E; Matveyenko, Aleksey V; Kirakossian, David; Park, Johanna; Gurlo, Tatyana; Butler, Peter C

    Laser capture microdissection (LCM) is a powerful method to isolate specific populations of cells for subsequent analysis such as gene expression profiling, for example, microarrays or ribonucleic (RNA)-Seq. This technique has been applied to frozen as well as formalin-fixed, paraffin-embedded (FFPE) specimens with variable outcomes regarding quality and quantity of extracted RNA. The goal of the study was to develop the methods to isolate high-quality RNA from islets of Langerhans and pancreatic duct glands (PDG) isolated by LCM. We report an optimized protocol for frozen sections to minimize RNA degradation and maximize recovery of expected transcripts from the samples using quantitative real-time polymerase chain reaction (RT-PCR) by adding RNase inhibitors at multiple steps during the experiment. This technique reproducibly delivered intact RNA (RIN values 6-7). Using quantitative RT-PCR, the expected profiles of insulin, glucagon, mucin6 (Muc6), and cytokeratin-19 (CK-19) mRNA in PDGs and pancreatic islets were detected. The described experimental protocol for frozen pancreas tissue might also be useful for other tissues with moderate to high levels of intrinsic ribonuclease (RNase) activity.

  16. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    PubMed Central

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  17. Optimal deployment of thermal energy storage under diverse economic and climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, Nicholas; Mendes, Gonçalo; Stadler, Michael

    2014-04-01

    This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fractionmore » (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.« less

  18. Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to investigate an approximate model to estimate gammasmeared power distribution without performing any gamma transport calculation. A simple approximate gamma smearing model has been investigated based on the facts that pinwise gamma energy depositions are almost flat over a fuel assembly, and assembly-wise gamma energy deposition is proportional to kappa-fission energy deposition. The approximate gamma smearing model works well for single assembly cases, and can partly improve the gamma smeared power distribution for the whole core model. Although the power distributions can be improved by the approximate gamma smearing model, still there is an issue to explicitly obtain local energy deposition. A new simple approach or gamma transport/diffusion capability may need to be incorporated into MPACT to estimate local energy deposition for more robust multi-physics simulation.« less

  19. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    NASA Astrophysics Data System (ADS)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  20. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System.

    PubMed

    Butler, Mark C; Sullivan, Jack M

    2015-11-01

    To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.

  1. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  2. Robust optimisation-based microgrid scheduling with islanding constraints

    DOE PAGES

    Liu, Guodong; Starke, Michael; Xiao, Bailu; ...

    2017-02-17

    This paper proposes a robust optimization based optimal scheduling model for microgrid operation considering constraints of islanding capability. Our objective is to minimize the total operation cost, including generation cost and spinning reserve cost of local resources as well as purchasing cost of energy from the main grid. In order to ensure the resiliency of a microgrid and improve the reliability of the local electricity supply, the microgrid is required to maintain enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation when the supply of power from the main grid is interrupted suddenly,more » i.e., microgrid transitions from grid-connected into islanded mode. Prevailing operational uncertainties in renewable energy resources and load are considered and captured using a robust optimization method. With proper robust level, the solution of the proposed scheduling model ensures successful islanding of the microgrid with minimum load curtailment and guarantees robustness against all possible realizations of the modeled operational uncertainties. Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling model.« less

  3. Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.

    PubMed

    Ouldridge, Thomas E; Hoare, Rollo L; Louis, Ard A; Doye, Jonathan P K; Bath, Jonathan; Turberfield, Andrew J

    2013-03-26

    DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.

  4. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE PAGES

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik; ...

    2017-07-25

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  5. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molzahn, Daniel K.; Dorfler, Florian K.; Sandberg, Henrik

    Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. Here, this paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

  6. NREL Reveals Potential for Capturing Waste Heat via Nanotubes | News | NREL

    Science.gov Websites

    Reveals Potential for Capturing Waste Heat via Nanotubes News Release: NREL Reveals Potential for Capturing Waste Heat via Nanotubes April 4, 2016 A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to

  7. PcapDB: Search Optimized Packet Capture, Version 0.1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Paul; Steinfadt, Shannon

    PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less

  8. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis.

    PubMed

    Thege, Fredrik I; Lannin, Timothy B; Saha, Trisha N; Tsai, Shannon; Kochman, Michael L; Hollingsworth, Michael A; Rhim, Andrew D; Kirby, Brian J

    2014-05-21

    We have developed and optimized a microfluidic device platform for the capture and analysis of circulating pancreatic cells (CPCs) and pancreatic circulating tumor cells (CTCs). Our platform uses parallel anti-EpCAM and cancer-specific mucin 1 (MUC1) immunocapture in a silicon microdevice. Using a combination of anti-EpCAM and anti-MUC1 capture in a single device, we are able to achieve efficient capture while extending immunocapture beyond single marker recognition. We also have detected a known oncogenic KRAS mutation in cells spiked in whole blood using immunocapture, RNA extraction, RT-PCR and Sanger sequencing. To allow for downstream single-cell genetic analysis, intact nuclei were released from captured cells by using targeted membrane lysis. We have developed a staining protocol for clinical samples, including standard CTC markers; DAPI, cytokeratin (CK) and CD45, and a novel marker of carcinogenesis in CPCs, mucin 4 (MUC4). We have also demonstrated a semi-automated approach to image analysis and CPC identification, suitable for clinical hypothesis generation. Initial results from immunocapture of a clinical pancreatic cancer patient sample show that parallel capture may capture more of the heterogeneity of the CPC population. With this platform, we aim to develop a diagnostic biomarker for early pancreatic carcinogenesis and patient risk stratification.

  9. Immunity to Attentional Capture at Ignored Locations

    PubMed Central

    Ruthruff, Eric; Gaspelin, Nicholas

    2017-01-01

    Certain stimuli have the power to rapidly and involuntarily capture spatial attention against our will. The present study investigated whether such stimuli capture spatial attention even when they appear in ignored regions of visual space. In other words, which force is more powerful: attentional capture or spatial filtering? Participants performed a spatial cuing task, searching for a letter target defined by color (e.g., green) and then reporting that letter’s identity. Two of the four search locations were always irrelevant. Unlike many previous experiments, participants were forced to ignore these locations because they always contained a target-colored distractor letter. Experiment 1 assessed capture by a salient-but-irrelevant abrupt onset cue appearing 150 ms before the search display. One might expect onset cues to capture attention even at ignored locations given that the main function of capture, presumably, is to rapidly alert observers to unexpected yet potentially important stimuli. However, they did not. Experiment 2 replicated this result with a different neutral baseline condition. Experiment 3 replicated the absence of capture effects at ignored locations with an even more potent stimulus: a relevant cue possessing the target color. We propose that people are effectively immune to attentional capture by objects in ignored locations – spatial filtering dominates attentional capture. PMID:29116615

  10. A Lyapunov based approach to energy maximization in renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Iyasere, Erhun

    This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.

  11. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Integrative modeling and novel particle swarm-based optimal design of wind farms

    NASA Astrophysics Data System (ADS)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by allowing simultaneous optimization of the type and the location of the turbines. Layout optimization (using UWFLO) of a hypothetical 25-turbine commercial-scale wind farm provides a remarkable 4.4% increase in capacity factor compared to a conventional array layout. A further 2% increase in capacity factor is accomplished when the types of turbines are also optimally selected. The scope of turbine selection and placement however depends on the land configuration and the nameplate capacity of the farm. Such dependencies are not clearly defined in the existing literature. We develop response surface-based models, which implicitly employ UWFLO, to quantify and analyze the roles of these other crucial design factors in optimal wind farm planning. The wind pattern at a site can vary significantly from year to year, which is not adequately captured by conventional wind distribution models. The resulting ill-predictability of the annual distribution of wind conditions introduces significant uncertainties in the estimated energy output of the wind farm. A new method is developed to characterize these wind resource uncertainties and model the propagation of these uncertainties into the estimated farm output. The overall wind pattern/regime also varies from one region to another, which demands turbines with capabilities uniquely suited for different wind regimes. Using the UWFLO method, we model the performance potential of currently available turbines for different wind regimes, and quantify their feature-based expected market suitability. Such models can initiate an understanding of the product variation that current turbine manufacturers should pursue, to adequately satisfy the needs of the naturally diverse wind energy market. The wind farm design problems formulated in this dissertation involve highly multimodal objective and constraint functions and a large number of continuous and discrete variables. An effective modification of the PSO algorithm is developed to address such challenging problems. Continuous search, as in conventional PSO, is implemented as the primary search strategy; discrete variables are then updated using a nearest-allowed-discrete-point criterion. Premature stagnation of particles due to loss of population diversity is one of the primary drawbacks of the basic PSO dynamics. A new measure of population diversity is formulated, which unlike existing metrics capture both the overall spread and the distribution of particles in the variable space. This diversity metric is then used to apply (i) an adaptive repulsion away from the best global solution in the case of continuous variables, and (ii) a stochastic update of the discrete variables. The new PSO algorithm provides competitive performance compared to a popular genetic algorithm, when applied to solve a comprehensive set of 98 mixed-integer nonlinear programming problems.

  13. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid.

    PubMed

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-06-17

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely "archipelago micro-grid (MG)", which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.

  14. Towards Stochastic Optimization-Based Electric Vehicle Penetration in a Novel Archipelago Microgrid

    PubMed Central

    Yang, Qingyu; An, Dou; Yu, Wei; Tan, Zhengan; Yang, Xinyu

    2016-01-01

    Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO2 emissions and operation costs in UCS and LCS. PMID:27322281

  15. Rendezvous Integration Complexities of NASA Human Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack P.; Goodman, John L.

    2009-01-01

    Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.

  16. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  17. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    PubMed

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  18. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.

    PubMed

    Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E

    2017-02-22

    Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Frontiers in Distributed Optimization and Control of Sustainable Power

    Science.gov Websites

    Optimization and Control of Sustainable Power Systems Workshop Frontiers in Distributed Optimization and Control of Sustainable Power Systems Workshop In January 2016, NREL's energy systems integration team hosted a workshop on frontiers in distributed optimization and control of sustainable power systems. The

  20. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that optimality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for agile constellations.

  1. A Basic Study on Optimal Investment of Power Sources Considering Environmental Measures

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper focuses on economic evaluations of a coal-fired thermal power station with a carbon dioxide capture and storage unit (CCS) by which an existing coal-fired thermal power station (COAL) is replaced. Decision makers decide to construct CCS considering both of contrary elements; one is waiting more favorable conditions such as a higher value of carbon credits which CCS has, another is reducing opportunity costs due to delay of construction of CCS. New methods using a real option approach are proposed. Firstly we calculate an economic value of CCS as an American coal option with dividend considering carbon emission costs of COAL as opportunity costs. Secondly we evaluate construction time of CCS using binominal decision tree taking into account the options. Numerical examples show that a real option value of CCS is from 28% to 44% of sales revenue, which are higher than net present values due to a value on waiting for more favorable conditions. And they also show that an earlier construction is exercised and the value becomes lower, the more challenging the benchmark of carbon emissions is or the higher the change rate of maintenance cost of COAL becomes. An effect of a lifetime of power stations is also analyzed.

  2. Development of a nearshore oscillating surge wave energy converter with variable geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, N. M.; Lawson, M. J.; Yu, Y. H.

    This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less

  3. Enforcing elemental mass and energy balances for reduced order models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Agarwal, K.; Sharma, P.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length,more » as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a minimization algorithm based on Lagrangian multiplier method. Enthalpies of product streams are also modified to enforce the energy balance. The approach is illustrated for two ROMs, one based on a CFD model of an entrained-flow gasifier and the other based on the CFD model of a multiphase CO{sub 2} adsorber.« less

  4. Modeling and simulation of CANDU reactor and its regulating system

    NASA Astrophysics Data System (ADS)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.

  5. Optimization of forest wildlife objectives

    Treesearch

    John Hof; Robert Haight

    2007-01-01

    This chapter presents an overview of methods for optimizing wildlife-related objectives. These objectives hinge on landscape pattern, so we refer to these methods as "spatial optimization." It is currently possible to directly capture deterministic characterizations of the most basic spatial relationships: proximity relationships (including those that lead to...

  6. Assessment of Solid Sorbent Systems for Post-Combustion Carbon Dioxide Capture at Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Glier, Justin C.

    In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.

  7. A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC.

    PubMed

    Tan, Jun; Liew, Wen-Sin; Heng, Chun-Huat; Lian, Yong

    2014-08-01

    This paper presents a 2.4 GHz ultra-low-power (ULP) reconfigurable asymmetric transceiver and demonstrates its application in wireless neural recording. Fabricated in 0.13 μm CMOS technology, the transceiver is optimized for sensor-gateway communications within a star-shaped network, and supports both the sensor and gateway operation modes. Binary phase-shift keying (BPSK) modulation with high data rate (DR) of 1 to 8 Mbps is used in the uplink from sensor to gateway, while on-off keying (OOK) modulation with low DR of 100 kbps is adopted in the downlink. A fully integrated Class-E PA with moderate output power has also been proposed and achieves power efficiency of 53%. To minimize area usage, inductor reuse is adopted between PA and LNA, and eliminates the need of lossy T/R switch in the RF signal path. When used as sensor, the transceiver with frequency locked phase-locked loop (PLL) achieves TX (BPSK) power efficiency of 28% @ 0 dBm output power, and RX (OOK) sensitivity of -80 dBm @ 100 kbps while consuming only 780 μW . When configured as gateway, the transceiver achieves sensitivity levels of -92, -84.5, and -77 dBm for 1, 5, and 8 Mbps BPSK, respectively. The transceiver is integrated with an 8-channel neural recording front-end, and neural signals from a rat are captured to verify the system functionality.

  8. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    NASA Astrophysics Data System (ADS)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to hydropower in dry years, with the aim of obtaining greater benefits from water use in the basin

  9. Statistical Learning of Origin-Specific Statically Optimal Individualized Treatment Rules

    PubMed Central

    van der Laan, Mark J.; Petersen, Maya L.

    2008-01-01

    Consider a longitudinal observational or controlled study in which one collects chronological data over time on a random sample of subjects. The time-dependent process one observes on each subject contains time-dependent covariates, time-dependent treatment actions, and an outcome process or single final outcome of interest. A statically optimal individualized treatment rule (as introduced in van der Laan et. al. (2005), Petersen et. al. (2007)) is a treatment rule which at any point in time conditions on a user-supplied subset of the past, computes the future static treatment regimen that maximizes a (conditional) mean future outcome of interest, and applies the first treatment action of the latter regimen. In particular, Petersen et. al. (2007) clarified that, in order to be statically optimal, an individualized treatment rule should not depend on the observed treatment mechanism. Petersen et. al. (2007) further developed estimators of statically optimal individualized treatment rules based on a past capturing all confounding of past treatment history on outcome. In practice, however, one typically wishes to find individualized treatment rules responding to a user-supplied subset of the complete observed history, which may not be sufficient to capture all confounding. The current article provides an important advance on Petersen et. al. (2007) by developing locally efficient double robust estimators of statically optimal individualized treatment rules responding to such a user-supplied subset of the past. However, failure to capture all confounding comes at a price; the static optimality of the resulting rules becomes origin-specific. We explain origin-specific static optimality, and discuss the practical importance of the proposed methodology. We further present the results of a data analysis in which we estimate a statically optimal rule for switching antiretroviral therapy among patients infected with resistant HIV virus. PMID:19122792

  10. Marker optimization for facial motion acquisition and deformation.

    PubMed

    Le, Binh H; Zhu, Mingyang; Deng, Zhigang

    2013-11-01

    A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.

  11. SYSTEM LEVEL IMPLICATIONS OF FLEXIBLE CO2 CAPTURE OPERATION

    EPA Science Inventory

    In ERCOT, turning flexible CO2 capture systems off during infrequent periods of peak electricity demand can avoid hundreds of millions to billions of dollars in capital costs to replace the power output lost to CO2 capture energy requirements.  When CO...

  12. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  13. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  14. First measurement of the vector analyzing power in muon capture by polarized muonic {sup 3}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, W.J.; Behr, J.; Bogorad, P.

    1995-09-01

    This paper describes the first measurement of spin observables in nuclear muon capture by {sup 3}He. The sensitivity of spin observables to the pseudoscalar coupling is described. The triton asymmetry presented has to be corrected for small systematic effects in order to extract the vector analyzing power. The analysis of these effects is currently underway.

  15. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  16. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection.

    PubMed

    Autebert, Julien; Coudert, Benoit; Champ, Jérôme; Saias, Laure; Guneri, Ezgi Tulukcuoglu; Lebofsky, Ronald; Bidard, François-Clément; Pierga, Jean-Yves; Farace, Françoise; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis

    2015-05-07

    A new generation of the Ephesia cell capture technology optimized for CTC capture and genetic analysis is presented, characterized in depth and compared with the CellSearch system as a reference. This technology uses magnetic particles bearing tumour-cell specific EpCAM antibodies, self-assembled in a regular array in a microfluidic flow cell. 48,000 high aspect-ratio columns are generated using a magnetic field in a high throughput (>3 ml h(-1)) device and act as sieves to specifically capture the cells of interest through antibody-antigen interactions. Using this device optimized for CTC capture and analysis, we demonstrated the capture of epithelial cells with capture efficiency above 90% for concentrations as low as a few cells per ml. We showed the high specificity of capture with only 0.26% of non-epithelial cells captured for concentrations above 10 million cells per ml. We investigated the capture behavior of cells in the device, and correlated the cell attachment rate with the EpCAM expression on the cell membranes for six different cell lines. We developed and characterized a two-step blood processing method to allow for rapid processing of 10 ml blood tubes in less than 4 hours, and showed a capture rate of 70% for as low as 25 cells spiked in 10 ml blood tubes, with less than 100 contaminating hematopoietic cells. Using this device and procedure, we validated our system on patient samples using an automated cell immunostaining procedure and a semi-automated cell counting method. Our device captured CTCs in 75% of metastatic prostate cancer patients and 80% of metastatic breast cancer patients, and showed similar or better results than the CellSearch device in 10 out of 13 samples. Finally, we demonstrated the possibility of detecting cancer-related PIK3CA gene mutation in 20 cells captured in the chip with a good correlation between the cell count and the quantitation value Cq of the post-capture qPCR.

  17. Robust portfolio selection based on asymmetric measures of variability of stock returns

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  18. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO 2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references.more » In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.« less

  19. Automated generation and optimization of ballistic lunar capture transfer trajectories

    NASA Astrophysics Data System (ADS)

    Griesemer, Paul Ricord

    The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.

  20. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    NASA Astrophysics Data System (ADS)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  1. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

  2. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  3. Optimal Allocation of Sampling Effort in Depletion Surveys

    EPA Science Inventory

    We consider the problem of designing a depletion or removal survey as part of estimating animal abundance for populations with imperfect capture or detection rates. In a depletion survey, animals are captured from a given area, counted, and withheld from the population. This proc...

  4. Energy and material balance of CO2 capture from ambient air.

    PubMed

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  5. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.

    PubMed

    Lambrecht, Joris M; Kirsch, Robert F

    2014-11-01

    Inertial and magnetic sensors are valuable for untethered, self-contained human movement analysis. Very recently, complete integration of inertial sensors, magnetic sensors, and processing into single packages, has resulted in miniature, low power devices that could feasibly be employed in an implantable motion capture system. We developed a wearable sensor system based on a commercially available system-in-package inertial and magnetic sensor. We characterized the accuracy of the system in measuring 3-D orientation-with and without magnetometer-based heading compensation-relative to a research grade optical motion capture system. The root mean square error was less than 4° in dynamic and static conditions about all axes. Using four sensors, recording from seven degrees-of-freedom of the upper limb (shoulder, elbow, wrist) was demonstrated in one subject during reaching motions. Very high correlation and low error was found across all joints relative to the optical motion capture system. Findings were similar to previous publications using inertial sensors, but at a fraction of the power consumption and size of the sensors. Such ultra-small, low power sensors provide exciting new avenues for movement monitoring for various movement disorders, movement-based command interfaces for assistive devices, and implementation of kinematic feedback systems for assistive interventions like functional electrical stimulation.

  6. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less

  7. Netguns: a technique for capturing Black-backed Woodpeckers

    Treesearch

    Chad P. Lehman; Dylan C. Kesler; Christopher T. Rota; Mark A. Rumble; Eric M. Seckinger; Thomas M. Juntti; Joshua J. Millspaugh

    2011-01-01

    Effective capture techniques are essential for studying bird populations, but commonly used techniques have proven ineffective for capturing Black-backed Woodpeckers (Picoides arcticus) during the nonbreeding period. As a result, little is known about the winter ecology of Black-backed Woodpeckers. We used two netguns, one powered with a 0.308 cartridge and another...

  8. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2013-03-19

    This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.

  9. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.

    PubMed

    Mooney, Luke M; Herr, Hugh M

    2016-01-28

    Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously shown to reduce the metabolic cost of walking. We measured the metabolic, kinetic and kinematic effects of wearing a battery powered bilateral ankle exoskeleton. Six participants walked on a level treadmill at 1.4 m/s under three conditions: exoskeleton not worn, exoskeleton worn in a powered-on state, and exoskeleton worn in a powered-off state. Metabolic rates were measured with a portable pulmonary gas exchange unit, body marker positions with a motion capture system, and ground reaction forces with a force-plate instrumented treadmill. Inverse dynamics were then used to estimate ankle, knee and hip torques and mechanical powers. The active ankle exoskeleton provided a mean positive power of 0.105 ± 0.008 W/kg per leg during the push-off region of stance phase. The net metabolic cost of walking with the active exoskeleton (3.28 ± 0.10 W/kg) was an 11 ± 4 % (p = 0.019) reduction compared to the cost of walking without the exoskeleton (3.71 ± 0.14 W/kg). Wearing the ankle exoskeleton significantly reduced the mean positive power of the ankle joint by 0.033 ± 0.006 W/kg (p = 0.007), the knee joint by 0.042 ± 0.015 W/kg (p = 0.020), and the hip joint by 0.034 ± 0.009 W/kg (p = 0.006). This study shows that the ankle exoskeleton does not exclusively reduce positive mechanical power at the ankle joint, but also mitigates positive power at the knee and hip. Furthermore, the active ankle exoskeleton did not simply replace biological ankle function in walking, but rather augmented the total (biological + exoskeletal) ankle moment and power. This study underscores the need for comprehensive models of human-exoskeleton interaction and global optimization methods for the discovery of new control strategies that optimize the physiological impact of leg exoskeletons.

  10. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  11. Optimal power flow with optimal placement TCSC device on 500 kV Java-Bali electrical power system using genetic Algorithm-Taguchi method

    NASA Astrophysics Data System (ADS)

    Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian

    2018-02-01

    The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.

  12. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System

    PubMed Central

    Butler, Mark C.; Sullivan, Jack M.

    2015-01-01

    Purpose To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Methods Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. Results The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. Conclusions A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies. PMID:26551329

  13. Pilot testing of a membrane system for postcombustion CO 2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, Tim; Kniep, Jay; Wei, Xiaotong

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO 2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO 2 capture system to treat coal-derived flue gas containing 20 tonnes CO 2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), andmore » the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO 2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the viability of CO 2 recycle to the boiler as envisioned in the MTR process design. The impact of this CO 2 recycle on boiler efficiency was quantified and incorporated into a TEA of the membrane capture process applied to a full-scale power plant. As with previous studies, the TEA showed the membrane process to be lower cost than the conventional solvent capture process even at 90% CO 2capture. A sensitivity study indicates that the membrane capture cost decreases significantly if the 90% capture requirement is relaxed. Depending on the process design, a minimum capture cost is achieved at 30-60% capture, values that would meet proposed CO 2 emission regulations for coal-fired power plants. In summary, this project has successfully advanced the MTR membrane capture process through small pilot testing (technology readiness level 6). The technology is ready for future scale-up to the 10 MWe size.« less

  14. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steckler, N.; Florita, A.; Zhang, J.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecastsmore » relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.« less

  15. Real Time Phase Noise Meter Based on a Digital Signal Processor

    NASA Technical Reports Server (NTRS)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  16. Studying the energy variation in the powered Swing-By in the Sun-Mercury system

    NASA Astrophysics Data System (ADS)

    Ferreira, A. F. S.; Prado, A. F. B. A.; Winter, O. C.; Santos, D. P. S.

    2017-10-01

    A maneuver where a spacecraft passes close to Mercury and uses the gravity of this body combined with an impulse applied at the periapsis, with different magnitudes and directions, is presented. The main objective of this maneuver is the fuel economy in space missions. Using this maneuver, it is possible to insert the spacecraft into an orbit captured around the Sun or Mercury. Trajectories escaping the Solar System are also obtained and mapped. Maps of the spacecraft energy variation relative to the Sun and the types of orbits resulting from the maneuver are presented, based in numerical integrations. The results show that applying the impulse out of the direction of motion can optimize the maneuver due to the effect of the combination of the impulse and the gravity.

  17. Using texts in science education: cognitive processes and knowledge representation.

    PubMed

    van den Broek, Paul

    2010-04-23

    Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.

  18. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  19. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  20. Tour of Jupiter Galilean moons: Winning solution of GTOC6

    NASA Astrophysics Data System (ADS)

    Colasurdo, Guido; Zavoli, Alessandro; Longo, Alessandro; Casalino, Lorenzo; Simeoni, Francesco

    2014-09-01

    The paper presents the trajectory designed by the Italian joint team Politecnico di Torino & Sapienza Università di Roma (Team5), winner of the 6th edition of the Global Trajectory Optimization Competition (GTOC6). In the short time available in these competitions, Team5 resorted to basic knowledge, simple tools and a powerful indirect optimization procedure. The mission concerns a 4-year tour of the Jupiter Galilean moons. The paper explains the strategy that was preliminarily devised and eventually implemented by looking for a viable trajectory. The first phase is a capture that moves the spacecraft from the arrival hyperbola to a low-energy orbit around Jupiter. Six series of flybys follow; in each one the spacecraft orbits Jupiter in resonance with a single moon; criteria to construct efficient chains of resonant flybys are presented. Transfer legs move the spacecraft from resonance with a moon to another one; precise phasing of the relevant moons is required; mission opportunities in a 11-year launch window are found by assuming ballistic trajectories and coplanar circular orbits for the Jovian satellites. The actual trajectory is found by using an indirect technique.

  1. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  2. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  3. Pathways to Carbon-Negative Liquid Biofuels

    NASA Astrophysics Data System (ADS)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they depend.

  4. WE-F-BRB-01: The Power of Ontologies and Standardized Terminologies for Capturing Clinical Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, P.

    2015-06-15

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, itmore » is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented.« less

  5. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO 2 from the flue gas. The sorbent exhibits a much higher affinity for CO 2 than N 2, H 2O or O 2, enabling effective CO 2 separation from the flue gas. We also carried out a detailed process design and analysis ofmore » the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO 2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO 2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO 2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO 2 captured for TDA’s VSA based system is $38.90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO 2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO 2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.« less

  6. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theroine, C.; Ebran, A.; Meot, V.

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  7. Air Force/Industry F-35/F-22 Technology Interchange Workshop for Small Business Innovation Research (SBIR): Plenary Session

    DTIC Science & Technology

    2007-11-28

    order to optimize pilot performance in the JSF tactical maneuvering environment • Binaural Capture and Synthesis of Ambient Soundscapes –Create a...technique for capturing and replicating ambient soundscapes , and use the technique to statistically model ambient soundscapes for a wide range of...Actuator (HTCA) • Binaural Capture and Synthesis of Ambient Soundscapes • High Temperature PM Actuator Motor • Manufacturing of New Active Noise

  8. Power optimal single-axis articulating strategies

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.

    1991-01-01

    Power optimal single axis articulating PV array motion for Space Station Freedom is investigated. The motivation is to eliminate one of the articular joints to reduce Station costs. Optimal (maximum power) Beta tracking is addressed for local vertical local horizontal (LVLH) and non-LVLH attitudes. Effects of intra-array shadowing are also presented. Maximum power availability while Beta tracking is compared to full sun tracking and optimal alpha tracking. The results are quantified in orbital and yearly minimum, maximum, and average values of power availability.

  9. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    PubMed

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  10. Anodal right ventricular capture during left ventricular stimulation in CRT-implantable cardioverter defibrillators.

    PubMed

    Thibault, Bernard; Roy, Denis; Guerra, Peter G; Macle, Laurent; Dubuc, Marc; Gagné, Pierre; Greiss, Isabelle; Novak, Paul; Furlani, Aldo; Talajic, Mario

    2005-07-01

    Cardiac resynchronization therapy (CRT) has been shown to improve symptoms of patients with moderate to severe heart failure. Optimal CRT involves biventricular or left ventricular (LV) stimulation alone, atrio-ventricular (AV) delay optimization, and possibly interventricular timing adjustment. Recently, anodal capture of the right ventricle (RV) has been described for patients with CRT-pacemakers. It is unknown whether the same phenomenon exists in CRT systems associated with defibrillators (CRT-ICD). The RV leads used in these systems are different from pacemaker leads: they have a larger diameter and shocking coils, which may affect the occurrence of anodal capture. We looked for anodal RV capture during LV stimulation in 11 consecutive patients who received a CRT-ICD system with RV leads with a true bipolar design. Fifteen patients who had RV leads with an integrated design were used as controls. Anodal RV and LV thresholds were determined at pulse width (pw) durations of 0.2, 0.5, and 1.0 ms. RV anodal capture during LV pacing was found in 11/11 patients at some output with true bipolar RV leads versus 0/15 patients with RV leads with an integrated bipolar design. Anodal RV capture threshold was more affected by changes in pw duration than LV capture threshold. In CRT-ICD systems, RV leads with a true bipolar design with the proximal ring also used as the anode for LV pacing are associated with a high incidence of anodal RV capture during LV pacing. This may affect the clinical response to alternative resynchronization methods using single LV stimulation or interventricular delay programming.

  11. A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study

    PubMed Central

    Puthiyedth, Nisha; Riveros, Carlos; Berretta, Regina; Moscato, Pablo

    2015-01-01

    Background The joint study of multiple datasets has become a common technique for increasing statistical power in detecting biomarkers obtained from smaller studies. The approach generally followed is based on the fact that as the total number of samples increases, we expect to have greater power to detect associations of interest. This methodology has been applied to genome-wide association and transcriptomic studies due to the availability of datasets in the public domain. While this approach is well established in biostatistics, the introduction of new combinatorial optimization models to address this issue has not been explored in depth. In this study, we introduce a new model for the integration of multiple datasets and we show its application in transcriptomics. Methods We propose a new combinatorial optimization problem that addresses the core issue of biomarker detection in integrated datasets. Optimal solutions for this model deliver a feature selection from a panel of prospective biomarkers. The model we propose is a generalised version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new methodology via a challenging meta-analysis task involving six prostate cancer microarray datasets. The results are then compared to the popular RankProd meta-analysis tool and to what can be obtained by analysing the individual datasets by statistical and combinatorial methods alone. Results Application of the integrated method resulted in a more informative signature than the rank-based meta-analysis or individual dataset results, and overcomes problems arising from real world datasets. The set of genes identified is highly significant in the context of prostate cancer. The method used does not rely on homogenisation or transformation of values to a common scale, and at the same time is able to capture markers associated with subgroups of the disease. PMID:26106884

  12. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    NASA Astrophysics Data System (ADS)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  13. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) can be a promising technology to reduce CO2 emissions in the electric sector. However, the high cost and energy penalties of current carbon capture devices, as well as methane leakage from natural ga...

  14. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  15. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    USGS Publications Warehouse

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  16. How green can black be? Assessing the potential for equipping USA's existing coal fleet with carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Patrizio, Piera; Leduc, Sylvain; Mesfun, Sennai; Yowargana, Ping; Kraxner, Florian

    2017-04-01

    The mitigation of adverse environmental impacts due to climate change requires the reduction of carbon dioxide emissions - also from the U.S. energy sector, a dominant source of greenhouse-gas emissions. This is especially true for the existing fleet of coal-fired power plants, accounting for roughly two-thirds of the U.S. energy sectors' total CO2 emissions. With this aim, different carbon mitigation options have been proposed in literature, such as increasing the energy efficiency, co-firing of biomass and/or the adoption of carbon capturing technologies (BECCS). However, the extent to which these solutions can be adopted depends on a suite of site specific factors and therefore needs to be evaluated on a site-specific basis. We propose a spatially explicit approach to identify candidate coal plants for which carbon capture technologies are economically feasible, according to different economic and policy frameworks. The methodology implies the adoption of IIASA's techno economic model BeWhere, which optimizes the cost of the entire BECCS supply chain, from the biomass resources to the storage of the CO2 in the nearest geological sink. The results shows that biomass co-firing appears to be the most appealing economic solution for a larger part of the existing U.S. coal fleet, while the adoption of CCS technologies is highly dependent on the level of CO2 prices as well as on local factors such as the type of coal firing technology and proximity of storage sites.

  17. A global design of high power Nd 3+-Yb 3+ co-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Zhang; Chuncan, Wang; Tigang, Ning

    2008-09-01

    A global optimization method - niche hybrid genetic algorithm (NHGA) based on fitness sharing and elite replacement is applied to optimize Nd3+-Yb3+ co-doped fiber lasers (NYDFLs) for obtaining maximum signal output power. With a objective function and different pumping powers, five critical parameters (the fiber length, L; the proportion of pump power for pumping Nd3+, η; Nd3+ and Yb3+ concentrations, NNd and NYb and output mirror reflectivity, Rout) of the given NYDFLs are optimized by solving the rate and power propagation equations. Results show that dividing equally the input pump power among 808 nm (Nd3+) and 940 nm (Yb3+) is not an optimal choice and the pump power of Nd3+ ions should be kept around 10-13.78% of the total pump power. Three optimal schemes are obtained by NHGA and the highest slope efficiency of the laser is able to reach 80.1%.

  18. Response of Integrated CO 2 Capture and Storage Systems in Saline Aquifers and Fractured Shale Formations to Changes in CO 2 Capture Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan

    Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less

  19. Response of Integrated CO 2 Capture and Storage Systems in Saline Aquifers and Fractured Shale Formations to Changes in CO 2 Capture Costs

    DOE PAGES

    Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan; ...

    2017-08-18

    Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less

  20. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  1. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    PubMed

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

  2. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood

    NASA Astrophysics Data System (ADS)

    King, Carey W.; Gülen, Gürcan; Cohen, Stuart M.; Nuñez-Lopez, Vanessa

    2013-09-01

    This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO2 from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO2 enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO2 in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO2 demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO2 from three coal-fired power plants to produce oil via CO2-EOR over 20 years and assuming no CO2 emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO2 capture to produce 80% of the oil within five years). Upon applying a CO2 emissions penalty of 602009/tCO2 to fossil fuel emissions to ensure that coal-fired power plants with CO2 capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.

  3. Toward a Developmental Psychology of Sehnsucht (Life Longings): The Optimal (Utopian) Life

    ERIC Educational Resources Information Center

    Scheibe, Susanne; Freund, Alexandra M.; Baltes, Paul B.

    2007-01-01

    The topic of an optimal or utopian life has received much attention across the humanities and the arts but not in psychology. The German concept of Sehnsucht captures individual and collective thoughts and feelings about one's optimal or utopian life. Sehnsucht (life longings; LLs) is defined as an intense desire for alternative states and…

  4. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  5. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  6. Evolving a Method to Capture Science Stakeholder Inputs to Optimize Instrument, Payload, and Program Design

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.

    2012-03-01

    We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.

  7. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  8. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  9. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  10. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    NASA Astrophysics Data System (ADS)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  11. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    NASA Astrophysics Data System (ADS)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  12. Jumpstarting commercial-scale CO 2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE PAGES

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; ...

    2015-04-27

    CO 2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO 2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO 2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the costmore » of production on the price of their product, due to the addition of CO 2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO 2 capture by using the CO 2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO 2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  13. Space manufacturing III; Proceedings of the Fourth Conference, Princeton University, Princeton, N.J., May 14-17, 1979

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Krop, C.

    1979-01-01

    Papers are presented on the various technological, political, economic, environmental and social aspects of large manufacturing facilities in space. Specific topics include the potential global market for satellite solar power stations in 2025, the electrostatic separation of lunar soil, methods for extraterrestrial materials processing, the socio-political status of efforts toward the development of space manufacturing facilities, the financing of space industrialization, the optimization of space manufacturing systems, the design and project status of Mass Driver Two, and the use of laser-boosted lighter-than-air-vehicles as heavy-lift launch vehicles. Attention is also given to systems integration in the development of controlled ecological life support systems, the design of a space manufacturing facility to use lunar materials, high performance solar sails, the environmental effects of the satellite power system reference design, the guidance, trajectory and capture of lunar materials ejected from the moon by mass driver, the relative design merits of zero-gravity and one-gravity space environments, consciousness alteration in space and the prospecting and retrieval of asteroids.

  14. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  15. SWITCH-China: A Systems Approach to Decarbonizing China's Power System.

    PubMed

    He, Gang; Avrin, Anne-Perrine; Nelson, James H; Johnston, Josiah; Mileva, Ana; Tian, Jianwei; Kammen, Daniel M

    2016-06-07

    We present an integrated model, SWITCH-China, of the Chinese power sector with which to analyze the economic and technological implications of a medium to long-term decarbonization scenario while accounting for very-short-term renewable variability. On the basis of the model and assumptions used, we find that the announced 2030 carbon peak can be achieved with a carbon price of ∼$40/tCO2. Current trends in renewable energy price reductions alone are insufficient to replace coal; however, an 80% carbon emission reduction by 2050 is achievable in the Intergovernmental Panel on Climate Change Target Scenario with an optimal electricity mix in 2050 including nuclear (14%), wind (23%), solar (27%), hydro (6%), gas (1%), coal (3%), and carbon capture and sequestration coal energy (26%). The co-benefits of carbon-price strategy would offset 22% to 42% of the increased electricity costs if the true cost of coal and the social cost of carbon are incorporated. In such a scenario, aggressive attention to research and both technological and financial innovation mechanisms are crucial to enabling the transition at a reasonable cost, along with strong carbon policies.

  16. Integrated gasification combined cycle using Egyptian Maghara coal-rice straw feedstock.

    PubMed

    Hegazy, A; Ghallab, A O; Ashour, F H

    2017-06-01

    Rice straw is an agricultural waste that causes an annoying problem in Egypt if it is not well exploited. This study focuses on using this waste in power generation by co-gasification of Egyptian Maghara coal and rice straw blends using entrained flow gasifier technology. Aspen Plus was used to conduct a parametric study for investigation of the effect of changing the inputs to the gasifier on the produced gas composition. Three different input parameters, influencing the performance of the gasifier, including the percentage of coal to rice straw in the blend, the fraction of added water to the blend, and the mass percentage of oxygen with respect to the mass of the blend fed to the gasifier were analysed. Two alternative power production schemes (with and without carbon capturing) have been investigated. The obtained optimum feed conditions are: 40% coal in the feed blend, 20% water concentration in the feed slurry, and 80% oxygen with respect to the dry feed blend to the gasifier. For (10 0000 kg per hour) of the feed blend, the power generated was 270.1 MW in the case of non-carbon capturing, while in the case of carbon capturing, 263.52 MW was generated. Although it produces less power, applying carbon capturing techniques means handling less flue gas and thus using smaller gas turbines and results in more environmentally friendly emissions.

  17. Improved porous silicon (P-Si) microarray based PSA (prostate specific antigen) immunoassay by optimized surface density of the capture antibody

    PubMed Central

    Lee, SangWook; Kim, Soyoun; Malm, Johan; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas

    2014-01-01

    Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5ngmL−1, 80pgmL−1, and 800fgmL−1 when arraying the PSA antibody, H117 at the concentration 15µgmL−1, 35µgmL−1 and 154µgmL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800fgmL−1 to 500ngmL−1. The microarray showed a LOD of 800fgmL−1 and a dynamic range of 800 fgmL−1 to 80ngmL−1 in serum spiked samples. PMID:24016590

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.

    CO 2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO 2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO 2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the costmore » of production on the price of their product, due to the addition of CO 2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO 2 capture by using the CO 2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO 2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  19. Voltage stability index based optimal placement of static VAR compensator and sizing using Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee

    2017-07-01

    This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.

  20. Measure of robustness for complex networks

    NASA Astrophysics Data System (ADS)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.

  1. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    PubMed Central

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  2. Emergency strategy optimization for the environmental control system in manned spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin

    2018-02-01

    It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.

  3. Surface modification of graphite-encapsulated iron nanoparticles by RF excited Ar/NH3 gas mixture plasma and their application to Escherichia coli capture

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki

    2016-09-01

    Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5  ×  104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.

  4. Analytical Model for Mean Flow and Fluxes of Momentum and Energy in Very Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2018-01-01

    As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land-atmosphere coupling or air-water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.

  5. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    PubMed

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  6. Value recovery from two mechanized bucking operations in the southeastern United States

    Treesearch

    Kevin Boston; Glen. Murphy

    2003-01-01

    The value recovered from two mechanized bucking operations in the southeastern United States was compared with the optimal value computed using an individual-stem log optimization program, AVIS. The first operation recovered 94% of the optimal value. The main cause for the value loss was a failure to capture potential sawlog volume; logs were bucked to a larger average...

  7. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  8. Model based adaptive control of a continuous capture process for monoclonal antibodies production.

    PubMed

    Steinebach, Fabian; Angarita, Monica; Karst, Daniel J; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-04-29

    A two-column capture process for continuous processing of cell-culture supernatant is presented. Similar to other multicolumn processes, this process uses sequential countercurrent loading of the target compound in order maximize resin utilization and productivity for a given product yield. The process was designed using a novel mechanistic model for affinity capture, which takes both specific adsorption as well as transport through the resin beads into account. Simulations as well as experimental results for the capture of an IgG antibody are discussed. The model was able to predict the process performance in terms of yield, productivity and capacity utilization. Compared to continuous capture with two columns operated batch wise in parallel, a 2.5-fold higher capacity utilization was obtained for the same productivity and yield. This results in an equal improvement in product concentration and reduction of buffer consumption. The developed model was used not only for the process design and optimization but also for its online control. In particular, the unit operating conditions are changed in order to maintain high product yield while optimizing the process performance in terms of capacity utilization and buffer consumption also in the presence of changing upstream conditions and resin aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    USGS Publications Warehouse

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  10. Dependence of optimal separative power of the “high-speed” Iguasu centrifuge on pressure of working gas

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Davidenko, O. V.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    The results of optimization calculations of the separative power of the ’’high-speed” Iguasu gas centrifuge are presented. Iguasu gas centrifuge has the rotational speed of 1000 m/s, the rotor length of 1 m. The dependence of the optimal separative power on the pressure of the working gas on the rotor wall was obtained using the numerical simulations. It is shown, that maximum of the optimal separative power corresponds to the pressure of 1100 mmHg. Maximum value of separative power is 31.9 SWU.

  11. A Simple Method for Amplifying RNA Targets (SMART)

    PubMed Central

    McCalla, Stephanie E.; Ong, Carmichael; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav

    2012-01-01

    We present a novel and simple method for amplifying RNA targets (named by its acronym, SMART), and for detection, using engineered amplification probes that overcome existing limitations of current RNA-based technologies. This system amplifies and detects optimal engineered ssDNA probes that hybridize to target RNA. The amplifiable probe-target RNA complex is captured on magnetic beads using a sequence-specific capture probe and is separated from unbound probe using a novel microfluidic technique. Hybridization sequences are not constrained as they are in conventional target-amplification reactions such as nucleic acid sequence amplification (NASBA). Our engineered ssDNA probe was amplified both off-chip and in a microchip reservoir at the end of the separation microchannel using isothermal NASBA. Optimal solution conditions for ssDNA amplification were investigated. Although KCl and MgCl2 are typically found in NASBA reactions, replacing 70 mmol/L of the 82 mmol/L total chloride ions with acetate resulted in optimal reaction conditions, particularly for low but clinically relevant probe concentrations (≤100 fmol/L). With the optimal probe design and solution conditions, we also successfully removed the initial heating step of NASBA, thus achieving a true isothermal reaction. The SMART assay using a synthetic model influenza DNA target sequence served as a fundamental demonstration of the efficacy of the capture and microfluidic separation system, thus bridging our system to a clinically relevant detection problem. PMID:22691910

  12. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    NASA Astrophysics Data System (ADS)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  13. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  14. Hybrid intelligent monironing systems for thermal power plant trips

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  15. Low-Pressure Long-Term Xenon Storage for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Back, Dwight D.; Ramos, Charlie; Meyer, John A.

    2001-01-01

    This Phase 2 effort demonstrated an alternative Xe storage and regulation system using activated carbon (AC) as a secondary storage media (ACSFR). This regulator system is nonmechanical, simple, inexpensive, and lighter. The ACSFR system isolates the thruster from the compressed gas tank, and allows independent multiple setpoint thruster operation. The flow using an ACSFR can also be throttled by applying increments in electrical power. Primary storage of Xe by AC is not superior to compressed gas storage with regard to weight, but AC storage can provide volume reduction, lower pressures in space, and potentially in situ Xe purification. With partial fill designs, a primary AC storage vessel for Xe could also eliminate problems with two-phase storage and regulate pressure. AC could also be utilized in long-term large quantity storage of Xe serving as a compact capture site for boil-off. Several Xe delivery ACSFR protocols between 2 and 45 sccm, and 15 min to 7 hr, were tested with an average flow variance of 1.2 percent, average power requirements of 5 W, and repeatability s of about 0.4 percent. Power requirements are affected by ACSFR bed sizing and flow rate/ duration design points, and these flow variances can be reduced by optimizing PID controller parameters.

  16. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    NASA Astrophysics Data System (ADS)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  17. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  18. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.

    PubMed

    Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond

    2016-01-01

    To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).

  20. DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware

    PubMed Central

    Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin

    2016-01-01

    To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312

  1. Prospects of lean ignition with the quarter wave coaxial cavity igniter

    NASA Astrophysics Data System (ADS)

    Pertl, Franz Andreas Johannes

    New ignition sources are needed to operate the next generation of lean high efficiency internal combustion engines. A significant environmental and economic benefit could be obtained from these lean engines. Toward this goal, the quarter wave coaxial cavity resonator, QWCCR, igniter was examined. A detailed theoretical analysis of the resonator was performed relating geometric and material parameters to performance characteristics, such as resonator quality factor and developed tip electric field. The analysis provided for the construction and evaluation of a resonator for ignition testing. The evaluation consisted of ignition tests with liquefied-petroleum-gas (LPG) air mixtures of varying composition. The combustion of these mixtures was contained in a closed steel vessel with a precombustion pressure near one atmosphere. The resonator igniter was fired in this vessel with a nominal 150 W microwave pulse of varying duration, to determine ignition energy limits for various mixtures. The mixture compositions were determined by partial pressure measurement and the ideal gas law. Successful ignition was determined through observation of the combustion through a view port. The pulse and reflected microwave power were captured in real time with a high-speed digital storage oscilloscope. Ignition energies and power levels were calculated from these measurements. As a comparison, these ignition experiments were also carried out with a standard non-resistive spark plug, where gap voltage and current were captured for energy calculations. The results show that easily ignitable mixtures around stoichiometric and slightly rich compositions are ignitable with the QWCCR using the similar kinds of energies as the conventional spark plug in the low milli-Joule range. Energies for very lean mixtures could not be determined reliably for the QWCCR for this prototype test, but could be lower than that for a conventional spark. Given the capability of high power, high energy delivery, and opportunity for optimization, the QWCCR has the potential to deliver more energy per unit time than a conventional spark plug and thus should be considered be as a lean ignition source.

  2. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing

    PubMed Central

    Chung, Jongsuk; Son, Dae-Soon; Jeon, Hyo-Jeong; Kim, Kyoung-Mee; Park, Gahee; Ryu, Gyu Ha; Park, Woong-Yang; Park, Donghyun

    2016-01-01

    Targeted capture massively parallel sequencing is increasingly being used in clinical settings, and as costs continue to decline, use of this technology may become routine in health care. However, a limited amount of tissue has often been a challenge in meeting quality requirements. To offer a practical guideline for the minimum amount of input DNA for targeted sequencing, we optimized and evaluated the performance of targeted sequencing depending on the input DNA amount. First, using various amounts of input DNA, we compared commercially available library construction kits and selected Agilent’s SureSelect-XT and KAPA Biosystems’ Hyper Prep kits as the kits most compatible with targeted deep sequencing using Agilent’s SureSelect custom capture. Then, we optimized the adapter ligation conditions of the Hyper Prep kit to improve library construction efficiency and adapted multiplexed hybrid selection to reduce the cost of sequencing. In this study, we systematically evaluated the performance of the optimized protocol depending on the amount of input DNA, ranging from 6.25 to 200 ng, suggesting the minimal input DNA amounts based on coverage depths required for specific applications. PMID:27220682

  3. Field Test of Wake Steering at an Offshore Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  4. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  5. Field Test of Wake Steering at an Offshore Wind Farm

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.; ...

    2017-02-06

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  6. On the concept of sloped motion for free-floating wave energy converters.

    PubMed

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  7. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  8. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality

    NASA Astrophysics Data System (ADS)

    Fourrate, K.; Loulidi, M.

    2006-01-01

    We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.

  9. Stochastic approximation methods-Powerful tools for simulation and optimization: A survey of some recent work on multi-agent systems and cyber-physical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, George; Wang, Le Yi; Zhang, Hongwei

    2014-12-10

    Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomlymore » switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided.« less

  10. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  11. Comparing post-combustion CO2 capture operation at retrofitted coal-fired power plants in the Texas and Great Britain electric grids

    NASA Astrophysics Data System (ADS)

    Cohen, Stuart M.; Chalmers, Hannah L.; Webber, Michael E.; King, Carey W.

    2011-04-01

    This work analyses the carbon dioxide (CO2) capture system operation within the Electric Reliability Council of Texas (ERCOT) and Great Britain (GB) electric grids using a previously developed first-order hourly electricity dispatch and pricing model. The grids are compared in their 2006 configuration with the addition of coal-based CO2 capture retrofits and emissions penalties from 0 to 100 US dollars per metric ton of CO2 (USD/tCO2). CO2 capture flexibility is investigated by comparing inflexible CO2 capture systems to flexible ones that can choose between full- and zero-load CO2 capture depending on which operating mode has lower costs or higher profits. Comparing these two grids is interesting because they have similar installed capacity and peak demand, and both are isolated electricity systems with competitive wholesale electricity markets. However, differences in capacity mix, demand patterns, and fuel markets produce diverging behaviours of CO2 capture at coal-fired power plants. Coal-fired facilities are primarily base load in ERCOT for a large range of CO2 prices but are comparably later in the dispatch order in GB and consequently often supply intermediate load. As a result, the ability to capture CO2 is more important for ensuring dispatch of coal-fired facilities in GB than in ERCOT when CO2 prices are high. In GB, higher overall coal prices mean that CO2 prices must be slightly higher than in ERCOT before the emissions savings of CO2 capture offset capture energy costs. However, once CO2 capture is economical, operating CO2 capture on half the coal fleet in each grid achieves greater emissions reductions in GB because the total coal-based capacity is 6 GW greater than in ERCOT. The market characteristics studied suggest greater opportunity for flexible CO2 capture to improve operating profits in ERCOT, but profit improvements can be offset by a flexibility cost penalty.

  12. Subsystem design in aircraft power distribution systems using optimization

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriram

    2000-10-01

    The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.

  13. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch heuristics are discussed using a case study of the UCI central plant. Thermal energy storage introduces a time horizon into the dispatch optimization which requires novel solution strategies. Highly efficient and responsive generators are required to meet the increasingly dynamic loads of today's efficient buildings and intermittent local renewable wind and solar power. Fuel cell gas turbine hybrids will play an integral role in the complex and ever-changing solution to local electricity production.

  14. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency.

  15. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency. PMID:21655130

  16. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  17. A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Cioaca, Alexandru

    A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimila- tion is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration.

  18. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  19. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  20. Optimal Congestion Management in Electricity Market Using Particle Swarm Optimization with Time Varying Acceleration Coefficients

    NASA Astrophysics Data System (ADS)

    Boonyaritdachochai, Panida; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes an optimal power redispatching approach for congestion management in deregulated electricity market. Generator sensitivity is considered to indicate the redispatched generators. It can reduce the number of participating generators. The power adjustment cost and total redispatched power are minimized by particle swarm optimization with time varying acceleration coefficients (PSO-TVAC). The IEEE 30-bus and IEEE 118-bus systems are used to illustrate the proposed approach. Test results show that the proposed optimization scheme provides the lowest adjustment cost and redispatched power compared to the other schemes. The proposed approach is useful for the system operator to manage the transmission congestion.

  1. Capturing the Elite in Marine Conservation in Northeast Kalimantan.

    PubMed

    Kusumawati, Rini; Visser, Leontine

    This article takes the existence of power networks of local elites as a social fact of fundamental importance and the starting point for the study of patronage in the governance of the coastal waters of East Kalimantan. We address the question of how to capture the elites for project implementation, rather than assuming the inevitability of elite capture of project funds. We analyze the multiple-scale networks of local power holders ( punggawa ) and the collaboration and friction between the political-economic interests and historical values of local actors and the scientific motivations of international environmental organizations. We describe how collaboration and friction between members of the elite challenge models that categorically exclude or co-opt local elites in foreign projects. In-depth ethnographic study of these networks shows their resilience through flows of knowledge and power in a highly volatile coastal environment. Results indicate the need for inclusion in decision making of local entrepreneurs, and - indirectly - their dependents in decentralized coastal governance.

  2. ORPC RivGen controller performance raw data - Igiugig 2015

    DOE Data Explorer

    McEntee, Jarlath

    2015-12-18

    Contains raw data for operations of Ocean Renewable Power Company (ORPC) RivGen Power System in Igiugig 2015 in Matlab data file format. Two data files capture the data and timestamps for data, including power in, voltage, rotation rate, and velocity.

  3. Study on the optimization allocation of wind-solar in power system based on multi-region production simulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhicheng; Yuan, Bo; Zhang, Fuqiang

    2018-06-01

    In this paper, a power supply optimization model is proposed. The model takes the minimum fossil energy consumption as the target, considering the output characteristics of the conventional power supply and the renewable power supply. The optimal capacity ratio of wind-solar in the power supply under various constraints is calculated, and the interrelation between conventional power supply and renewable energy is analyzed in the system of high proportion renewable energy integration. Using the model, we can provide scientific guidance for the coordinated and orderly development of renewable energy and conventional power sources.

  4. An introduction to optimal power flow: Theory, formulation, and examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Rebennack, Steffen

    The set of optimization problems in electric power systems engineering known collectively as Optimal Power Flow (OPF) is one of the most practically important and well-researched subfields of constrained nonlinear optimization. OPF has enjoyed a rich history of research, innovation, and publication since its debut five decades ago. Nevertheless, entry into OPF research is a daunting task for the uninitiated--both due to the sheer volume of literature and because OPF's ubiquity within the electric power systems community has led authors to assume a great deal of prior knowledge that readers unfamiliar with electric power systems may not possess. This articlemore » provides an introduction to OPF from an operations research perspective; it describes a complete and concise basis of knowledge for beginning OPF research. The discussion is tailored for the operations researcher who has experience with nonlinear optimization but little knowledge of electrical engineering. Topics covered include power systems modeling, the power flow equations, typical OPF formulations, and common OPF extensions.« less

  5. Optimizing Radiometric Fidelity to Enhance Aerial Image Change Detection Utilizing Digital Single Lens Reflex (DSLR) Cameras

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew D.

    Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and acuity occurring around -0.7 to -0.3EV exposure bias. The ideal values for sensor gain, was found to be ISO 100, with ISO 200 a less desirable. This study offers researchers a better understanding of the effects of camera capture settings on RSI pairs and their influence on image-based change detection.

  6. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  7. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  8. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    NASA Astrophysics Data System (ADS)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.

  9. Climate optimized planting windows for cotton in the lower Mississippi Delta region

    USDA-ARS?s Scientific Manuscript database

    Unique, variable summer climate of the lower Mississippi Delta region poses a critical challenge to cotton producers in deciding when to plant for optimized production. Traditional 2- to 4-year agronomic field trials conducted in this area fail to capture the effects of long-term climate variabiliti...

  10. Bulk Data Dissemination in Low Power Sensor Networks: Present and Future Directions

    PubMed Central

    Xu, Zhirong; Hu, Tianlei; Song, Qianshu

    2017-01-01

    Wireless sensor network-based (WSN-based) applications need an efficient and reliable data dissemination service to facilitate maintenance, management and data distribution tasks. As WSNs nowadays are becoming pervasive and data intensive, bulk data dissemination protocols have been extensively studied recently. This paper provides a comprehensive survey of the state-of-the-art bulk data dissemination protocols. The large number of papers available in the literature propose various techniques to optimize the dissemination protocols. Different from the existing survey works which separately explores the building blocks of dissemination, our work categorizes the literature according to the optimization purposes: Reliability, Scalability and Transmission/Energy efficiency. By summarizing and reviewing the key insights and techniques, we further discuss on the future directions for each category. Our survey helps unveil three key findings for future direction: (1) The recent advances in wireless communications (e.g., study on cross-technology interference, error estimating codes, constructive interference, capture effect) can be potentially exploited to support further optimization on the reliability and energy efficiency of dissemination protocols; (2) Dissemination in multi-channel, multi-task and opportunistic networks requires more efforts to fully exploit the spatial-temporal network resources to enhance the data propagation; (3) Since many designs incur changes on MAC layer protocols, the co-existence of dissemination with other network protocols is another problem left to be addressed. PMID:28098830

  11. Wireless sensor placement for structural monitoring using information-fusing firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan

    2017-10-01

    Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.

  12. Optimal Scheduling of Time-Shiftable Electric Loads in Expeditionary Power Grids

    DTIC Science & Technology

    2015-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDITIONARY POWER GRIDS by John G...to 09-25-2015 4. TITLE AND SUBTITLE OPTIMAL SCHEDULING OF TIME-SHIFTABLE ELECTRIC LOADS IN EXPEDI- TIONARY POWER GRIDS 5. FUNDING NUMBERS 6. AUTHOR(S...eliminate unmanaged peak demand, reduce generator peak-to-average power ratios, and facilitate a persistent shift to higher fuel efficiency. Using

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alptekin, Gokhan

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less

  14. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    NASA Astrophysics Data System (ADS)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  15. A novel technology for the detection, enrichment, and separation of trace amounts of target DNA based on amino-modified fluorescent magnetic composite nanoparticles.

    PubMed

    Wang, Guannan; Su, Xingguang

    2010-06-01

    A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV-vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.

  16. A Three-Stage Enhanced Reactive Power and Voltage Optimization Method for High Penetration of Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Xinda; Huang, Renke; Vallem, Mallikarjuna R.

    This paper presents a three-stage enhanced volt/var optimization method to stabilize voltage fluctuations in transmission networks by optimizing the usage of reactive power control devices. In contrast with existing volt/var optimization algorithms, the proposed method optimizes the voltage profiles of the system, while keeping the voltage and real power output of the generators as close to the original scheduling values as possible. This allows the method to accommodate realistic power system operation and market scenarios, in which the original generation dispatch schedule will not be affected. The proposed method was tested and validated on a modified IEEE 118-bus system withmore » photovoltaic data.« less

  17. Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop

    NASA Astrophysics Data System (ADS)

    Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick

    2018-01-01

    Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.

  18. Mineral inversion for element capture spectroscopy logging based on optimization theory

    NASA Astrophysics Data System (ADS)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  19. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    USGS Publications Warehouse

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury adsorption on unburned carbon and minimizing the concentration of sulfuric acid vapor in the flue gas. Equipment options for improving Hg capture include addition of fabric filters, use of halogenated sorbents, and addition of flue gas desulfurization (FGD) scrubbers, listed in order of increasing cost. The capital cost of adding FGD scrubbers to existing plants is probably too high to be justified on the grounds of Hg removal alone. However, if future regulations require reductions in sulfur dioxide emissions, and FGDs are installed to meet these standards, further reduction in Hg emissions will be a co-benefit of this installation.In this revised version, corrected results for the suite of 42 samples of feed coal and 8 density separates determined by inductively coupled plasma-mass spectrometry (ICP-MS) replace results originally reported in the 2014 version of this report. In many cases, especially for the transition metals, values reported here are lower than those originally reported, and in some cases, the corrected results are less than 50 percent of their original values. Note that results for mercury (Hg) and halogens contained in the original report are unaffected by revisions to ICP-MS data included here. This revised version also includes the following updates: (1) data for selenium, which were not available for inclusion in the original publication, are now provided; (2) results for ICP-MS trace element data are expressed here on a whole-coal dry basis to facilitate comparison with published results for coals elsewhere; and (3) the text has been updated to take into account the U.S. Supreme Court decision of June 29, 2015, which puts on hold implementation of U.S. Environmental Protection Agency Mercury and Air Toxics Standards in the United States.

  20. HILTOP supplement: Heliocentric interplanetary low thrust trajectory optimization program, supplement 1

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    Modifications and improvements are described that were made to the HILTOP electric propulsion trajectory optimization computer program during calendar years 1973 and 1974. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn.

  1. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment.

    PubMed

    Nejdl, Lukas; Kudr, Jiri; Cihalova, Kristyna; Chudobova, Dagmar; Zurek, Michal; Zalud, Ludek; Kopecny, Lukas; Burian, Frantisek; Ruttkay-Nedecky, Branislav; Krizkova, Sona; Konecna, Marie; Hynek, David; Kopel, Pavel; Prasek, Jan; Adam, Vojtech; Kizek, Rene

    2014-08-01

    Remote-controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote-controlled robotic platform (ORPHEUS-HOPE) for bacterial detection. For the platform ORPHEUS-HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1-naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-efficiency power production from natural gas with carbon capture

    NASA Astrophysics Data System (ADS)

    Adams, Thomas A.; Barton, Paul I.

    A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.

  3. Quantifying Selection with Pool-Seq Time Series Data.

    PubMed

    Taus, Thomas; Futschik, Andreas; Schlötterer, Christian

    2017-11-01

    Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Locational Marginal Pricing in the Campus Power System at the Power Distribution Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Gu, Yi; Zhang, Yingchen

    2016-11-14

    In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less

  5. Data centers as dispatchable loads to harness stranded power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kibaek; Yang, Fan; Zavala, Victor M.

    Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less

  6. Data centers as dispatchable loads to harness stranded power

    DOE PAGES

    Kim, Kibaek; Yang, Fan; Zavala, Victor M.; ...

    2016-07-20

    Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirrito, A.J.

    Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less

  8. Fractal Dimension of EEG Activity Senses Neuronal Impairment in Acute Stroke

    PubMed Central

    Zappasodi, Filippo; Olejarczyk, Elzbieta; Marzetti, Laura; Assenza, Giovanni; Pizzella, Vittorio; Tecchio, Franca

    2014-01-01

    The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD’s ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4–10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures’ activities in stroke recovery. PMID:24967904

  9. Fractal dimension of EEG activity senses neuronal impairment in acute stroke.

    PubMed

    Zappasodi, Filippo; Olejarczyk, Elzbieta; Marzetti, Laura; Assenza, Giovanni; Pizzella, Vittorio; Tecchio, Franca

    2014-01-01

    The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we tested the FD's ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis. Resting EEG was collected in 36 patients 4-10 days after a unilateral ischemic stroke in the middle cerebral artery territory and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD, its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in patients than in controls (1.447±0.092 vs 1.525±0.105) and its reduction was paired to a worse acute clinical status. FD decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result highlights the functional relevance of the balance between homologous brain structures' activities in stroke recovery.

  10. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  11. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer

    PubMed Central

    Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue

    2017-01-01

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496

  12. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.

    PubMed

    Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue

    2017-08-18

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.

  13. Adhesion modulation using glue droplet spreading in spider capture silk

    PubMed Central

    Zhang, Ci; Blackledge, Todd A.

    2017-01-01

    Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. PMID:28490605

  14. Study on data acquisition system based on reconfigurable cache technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qinchuan; Li, Min; Jiang, Jun

    2018-03-01

    Waveform capture rate is one of the key features of digital acquisition systems, which represents the waveform processing capability of the system in a unit time. The higher the waveform capture rate is, the larger the chance to capture elusive events is and the more reliable the test result is. First, this paper analyzes the impact of several factors on the waveform capture rate of the system, then the novel technology based on reconfigurable cache is further proposed to optimize system architecture, and the simulation results show that the signal-to-noise ratio of signal, capacity, and structure of cache have significant effects on the waveform capture rate. Finally, the technology is demonstrated by the engineering practice, and the results show that the waveform capture rate of the system is improved substantially without significant increase of system's cost, and the technology proposed has a broad application prospect.

  15. Adhesion modulation using glue droplet spreading in spider capture silk.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Blackledge, Todd A; Dhinojwala, Ali

    2017-05-01

    Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. © 2017 The Author(s).

  16. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  17. Field Testing of Cryogenic Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayre, Aaron; Frankman, Dave; Baxter, Andrew

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cementmore » kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.« less

  18. Optimal placement of FACTS devices using optimization techniques: A review

    NASA Astrophysics Data System (ADS)

    Gaur, Dipesh; Mathew, Lini

    2018-03-01

    Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.

  19. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  20. Assessment of Greenhouse Gas Retrofit Issues for Coal Fired Power Plants

    EPA Science Inventory

    Several studies have been published on carbon capture technology as an independent island. In contrast, this evaluation considered the impact on the existing plant and the potential improvements to ease the retrofit of a carbon capture process. This paper will provide insight i...

  1. Carbon Smackdown: Carbon Capture

    ScienceCinema

    Jeffrey Long

    2017-12-09

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  2. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  3. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  4. Design of investment management optimization system for power grid companies under new electricity reform

    NASA Astrophysics Data System (ADS)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  5. Improving Power Density of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  6. Improving Power Density of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Prahl, Joseph; Loparo, Kenneth

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  7. Improving Free-Piston Stirling Engine Power Density

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  8. Bench Scale Process for Low Cost CO 2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less

  9. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    NASA Astrophysics Data System (ADS)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen forests might result from plant adaptation to optimize canopy carbon gain. Finally, this proposed trait-driven prognostic phenology model could potentially be incorporated into next generation TBMs to improve simulation of carbon and water fluxes in the tropics.

  10. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey

    2005-05-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.

  11. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Forecasting Lightning Threat Using WRF Proxy Fields

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, Joel David

    The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework,more » and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO 2 capture. The sorbent model includes a detailed treatment of transport and amine-CO 2- H 2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.« less

  14. Essays on variational approximation techniques for stochastic optimization problems

    NASA Astrophysics Data System (ADS)

    Deride Silva, Julio A.

    This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence of estimators, and a problem for creating probabilistic scenarios on renewable energies estimation. In Chapter 7 we re-visited one of the "folk theorems" in statistics, where a family of Bayes estimators under 0-1 loss functions is claimed to converge to the maximum a posteriori estimator. This assertion is studied under the scope of the hypo-convergence theory, and the density functions are included in the class of upper semicontinuous functions. We conclude this chapter with an example in which the convergence does not hold true, and we provided sufficient conditions that guarantee convergence. The last chapter, Chapter 8, addresses the important topic of creating probabilistic scenarios for solar power generation. Scenarios are a fundamental input for the stochastic optimization problem of energy dispatch, especially when incorporating renewables. We proposed a model designed to capture the constraints induced by physical characteristics of the variables based on the application of an epi-spline density estimation along with a copula estimation, in order to account for partial correlations between variables.

  15. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    NASA Astrophysics Data System (ADS)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  16. A Unified Framework for Street-View Panorama Stitching

    PubMed Central

    Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei

    2016-01-01

    In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481

  17. Salmon fishing by bears and the dawn of cooperative predation.

    PubMed

    Stringham, Stephen F

    2012-11-01

    Although bears are an epitome of solitary predation, black (Ursus americanus) and brown bears (U. arctos) occasionally act in pairs to capture salmon (Onchorynchous spp.). I sought to identify conditions that promote pairing and how this relates to optimal foraging. This study on Alaskan black bears assessed whether each mode of fishing (solo vs. paired) occurs mainly where it is most efficient at harvesting salmon--that is, whether modal group size (1 vs. 2) is also optimal size. Not in this case. Pairing increased captures per attempt (benefit/cost ratio = profitability) by up to 47% and captures per minute by up to 5.2-fold. Yet, the ratio of paired versus solo fishing was significantly lower than either profitability or chance explains. Modal group size was 1, optimal size was 2. This discrepancy did not result from intervention by other current benefits and costs, but from unnecessary defensiveness toward any rapidly approaching conspecific, even though it was chasing salmon, not threatening. For bears to regularly hunt cooperatively, they would have to more readily habituate to agonistic-like predatory actions, communicate intentions from > 10 m apart, and assess situational variations in benefit/cost ratios for solo versus paired hunting. It would be revealing to discover how social carnivores overcame these challenges.

  18. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less

  19. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  20. High-Performance Computing Data Center Power Usage Effectiveness |

    Science.gov Websites

    Power Usage Effectiveness When the Energy Systems Integration Facility (ESIF) was conceived, NREL set an , ventilation, and air conditioning (HVAC), which captures fan walls, fan coils that support the data center

  1. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  2. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  3. Optimizing habitat location for black-tailed prairie dogs in southwestern South Dakota

    Treesearch

    John Hof; Michael Bevers; Daniel W. Uresk; Gregory L. Schenbeck

    2002-01-01

    A spatial optimization model was formulated and used to maximize black-tailed prairie dog populations in the Badlands National Park and the Buffalo Gap National Grassland in South Dakota. The choice variables involved the strategic placement of limited additional protected habitat. Population dynamics were captured in formulations that reflected exponential population...

  4. Intelligent and robust optimization frameworks for smart grids

    NASA Astrophysics Data System (ADS)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.

  5. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  6. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

    PubMed

    Sander, Jil; Schultze, Joachim L; Yosef, Nir

    2017-03-01

    Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). niryosef@berkeley.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Parkinson, Alexander; Bates, Philip J.; Zak, Gene

    2015-12-01

    It is important to understand how laser energy scatters within the transparent component in order to predict and optimize the laser transmission welding process. This paper examines the influence of part thickness, glass fiber and crystallinity levels on the distribution of laser light after transmission through amorphous polycarbonate (PC) and semi-crystalline polymers such as polyamide 6 (PA6), polypropylene (PP), and polyethylene (PE). An experimental technique based on laser-scanned lines of progressively increasing power was used to assess the transmitted energy distribution. This distribution was characterized using a two-parameter model that captures scattered and un-scattered components of the laser beam. The results clearly show how the scattering is increased by increasing the numbers of interactions between laser light and phase boundaries either by increasing the particle concentration (i.e., glass fiber level and crystallinity) or increasing part thickness.

  8. [Medical image compression: a review].

    PubMed

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  9. Operational load estimation of a smart wind turbine rotor blade

    NASA Astrophysics Data System (ADS)

    White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.

    2009-03-01

    Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.

  10. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1984-01-01

    Applying vortex generators from 20 to 100 percent span of the Mod-2 rotor resulted in a projected increase in annual energy capture of 20 percent and reduced the wind speed at which rated power is reached by nearly 3 m/sec. Application of vortex generators from 20 to 70 percent span, the fixed portion of the Mod-2 rotor, resulted in a projected increase in annual energy capture of about half this. This improved performance came at the cost of a small increase in cyclic blade loads in below rated power conditions. Cyclic blade loads were found to correlate well with the change in wind speed during one rotor revolution.

  11. Decision making for best cogeneration power integration into a grid

    NASA Astrophysics Data System (ADS)

    Al Asmar, Joseph; Zakhia, Nadim; Kouta, Raed; Wack, Maxime

    2016-07-01

    Cogeneration systems are known to be efficient power systems for their ability to reduce pollution. Their integration into a grid requires simultaneous consideration of the economic and environmental challenges. Thus, an optimal cogeneration power are adopted to face such challenges. This work presents a novelty in selectinga suitable solution using heuristic optimization method. Its aim is to optimize the cogeneration capacity to be installed according to the economic and environmental concerns. This novelty is based on the sensitivity and data analysis method, namely, Multiple Linear Regression (MLR). This later establishes a compromise between power, economy, and pollution, which leads to find asuitable cogeneration power, and further, to be integrated into a grid. The data exploited were the results of the Genetic Algorithm (GA) multi-objective optimization. Moreover, the impact of the utility's subsidy on the selected power is shown.

  12. Optimal Power Flow Pursuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Simonetto, Andrea

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less

  13. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    NASA Astrophysics Data System (ADS)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  14. Dynamic modeling and control of a solid-sorbent CO{sub 2} capture process with two-stage bubbling fluidized bed adsorber reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modekurti, S.; Bhattacharyya, D.; Zitney, S.

    2012-01-01

    Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developedmore » in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.« less

  15. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  16. Recent enlightening strategies for co2 capture: a review

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia

    2017-05-01

    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  17. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    PubMed

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.

  18. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the activity of Ca-based materials at CaL conditions for CO2 capture and energy storage.

  19. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  20. Recovering tubewise power from three-dimensional nodal kinetics calculation during material relocation in an HWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalimullah; Morris, E.E.; Yang, W.S.

    1994-12-31

    To analyze severe accidents in some special-purpose heavy-water reactors made of assemblies consisting of a number of coaxial tubes of aluminum-clad U-Al fuel and aluminum-clad neutron-capturing material, a mechanistic model, MARTINS, for tube beatup, melting, and molten material relocation has been developed and integrated with the DIF3D nodal hexagonal-z reactor kinetics and other phenomenological modules. The DIF3D kinetics homogenizes all materials located and computes the total power produced in an axial segment of a fuel assembly. This paper presents an approximate method, used in MARTINS, to calculate the distribution of this total nodal power into the intact fuel and capturingmore » material tubes and the meat-cladding mixtures relocating during tube disruption. The method accounts for the change in intraassembly radial power profile due to assembly geometry change with the progress of segment-by-segment disruption of different tubes. Earlier methods to recover pinwise power from nodal calculation for liquid-metal-cooled reactors and light water reactors (X-Y and hexagonal unit cells) are not practical for a disrupting assembly having material relocation. Figure 1 shows the assembly`s end view, divided into rings for modeling and analysis. A ring is a coolant subchannel plus the outer surrounding tube. The present method for distributing the nodal power consists of two parts: (a) calculation of the relative values of ring-by-ring power per unit uranium mass and power per unit mass of neutron-capturing material in a given assembly segment, and (b) normalization of these relative values such that the total power of all rings (intact tubes and U-Al-Cp meat-cladding mixtures, where Cp implies the neutron-capturing material) equals the DIF3D-calculated nodal power for the assembly axial segment.« less

  1. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  2. Optimizing the wireless power transfer over MIMO Channels

    NASA Astrophysics Data System (ADS)

    Wiedmann, Karsten; Weber, Tobias

    2017-09-01

    In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  3. A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO 2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Phillip J.; Siegelman, Rebecca L.; Forse, Alexander C.

    A new diamine-functionalized metal–organic framework comprised of 2,2-dimethyl-1,3-diaminopropane (dmpn) appended to the Mg 2+ sites lining the channels of Mg 2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) is characterized for the removal of CO 2 from the flue gas emissions of coal-fired power plants. Unique to members of this promising class of adsorbents, dmpn–Mg2(dobpdc) displays facile step-shaped adsorption of CO 2 from coal flue gas at 40 °C and near complete CO 2 desorption upon heating to 100 °C, enabling a high CO 2 working capacity (2.42 mmol/g, 9.1 wt %) with a modest 60 °C temperature swing. Evaluation of the thermodynamic parametersmore » of adsorption for dmpn–Mg 2(dobpdc) suggests that the narrow temperature swing of its CO 2 adsorption steps is due to the high magnitude of its differential enthalpy of adsorption (Δhads = -73 ± 1 kJ/mol), with a larger than expected entropic penalty for CO 2 adsorption (Δsads = -204 ± 4 J/mol·K) positioning the step in the optimal range for carbon capture from coal flue gas. In addition, thermogravimetric analysis and breakthrough experiments indicate that, in contrast to many adsorbents, dmpn–Mg 2(dobpdc) captures CO 2 effectively in the presence of water and can be subjected to 1000 humid adsorption/desorption cycles with minimal degradation. Solid-state 13C NMR spectra and single-crystal X-ray diffraction structures of the Zn analogue reveal that this material adsorbs CO 2 via formation of both ammonium carbamates and carbamic acid pairs, the latter of which are crystallographically verified for the first time in a porous material. Taken together, these properties render dmpn–Mg 2(dobpdc) one of the most promising adsorbents for carbon capture applications.« less

  4. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for implementation of mercury-specific controls discussed elsewhere in this volume.

  5. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  6. A Diaminopropane-Appended Metal-Organic Framework Enabling Efficient CO2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism.

    PubMed

    Milner, Phillip J; Siegelman, Rebecca L; Forse, Alexander C; Gonzalez, Miguel I; Runčevski, Tomče; Martell, Jeffrey D; Reimer, Jeffrey A; Long, Jeffrey R

    2017-09-27

    A new diamine-functionalized metal-organic framework comprised of 2,2-dimethyl-1,3-diaminopropane (dmpn) appended to the Mg 2+ sites lining the channels of Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) is characterized for the removal of CO 2 from the flue gas emissions of coal-fired power plants. Unique to members of this promising class of adsorbents, dmpn-Mg 2 (dobpdc) displays facile step-shaped adsorption of CO 2 from coal flue gas at 40 °C and near complete CO 2 desorption upon heating to 100 °C, enabling a high CO 2 working capacity (2.42 mmol/g, 9.1 wt %) with a modest 60 °C temperature swing. Evaluation of the thermodynamic parameters of adsorption for dmpn-Mg 2 (dobpdc) suggests that the narrow temperature swing of its CO 2 adsorption steps is due to the high magnitude of its differential enthalpy of adsorption (Δh ads = -73 ± 1 kJ/mol), with a larger than expected entropic penalty for CO 2 adsorption (Δs ads = -204 ± 4 J/mol·K) positioning the step in the optimal range for carbon capture from coal flue gas. In addition, thermogravimetric analysis and breakthrough experiments indicate that, in contrast to many adsorbents, dmpn-Mg 2 (dobpdc) captures CO 2 effectively in the presence of water and can be subjected to 1000 humid adsorption/desorption cycles with minimal degradation. Solid-state 13 C NMR spectra and single-crystal X-ray diffraction structures of the Zn analogue reveal that this material adsorbs CO 2 via formation of both ammonium carbamates and carbamic acid pairs, the latter of which are crystallographically verified for the first time in a porous material. Taken together, these properties render dmpn-Mg 2 (dobpdc) one of the most promising adsorbents for carbon capture applications.

  7. Development of a protocol to optimize electric power consumption and life cycle environmental impacts for operation of wastewater treatment plant.

    PubMed

    Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin

    2016-12-01

    In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.

  8. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    PubMed

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  9. Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.

    2017-12-01

    Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.

  10. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galatà, A., E-mail: alessio.galata@lnl.infn.it; Patti, G.; Celona, L.

    2016-02-15

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which themore » selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.« less

  11. Model implementation for dynamic computation of system cost

    NASA Astrophysics Data System (ADS)

    Levri, J.; Vaccari, D.

    The Advanced Life Support (ALS) Program metric is the ratio of the equivalent system mass (ESM) of a mission based on International Space Station (ISS) technology to the ESM of that same mission based on ALS technology. ESM is a mission cost analog that converts the volume, power, cooling and crewtime requirements of a mission into mass units to compute an estimate of the life support system emplacement cost. Traditionally, ESM has been computed statically, using nominal values for system sizing. However, computation of ESM with static, nominal sizing estimates cannot capture the peak sizing requirements driven by system dynamics. In this paper, a dynamic model for a near-term Mars mission is described. The model is implemented in Matlab/Simulink' for the purpose of dynamically computing ESM. This paper provides a general overview of the crew, food, biomass, waste, water and air blocks in the Simulink' model. Dynamic simulations of the life support system track mass flow, volume and crewtime needs, as well as power and cooling requirement profiles. The mission's ESM is computed, based upon simulation responses. Ultimately, computed ESM values for various system architectures will feed into an optimization search (non-derivative) algorithm to predict parameter combinations that result in reduced objective function values.

  12. Low-power sensor module for long-term activity monitoring.

    PubMed

    Leuenberger, Kaspar; Gassert, Roger

    2011-01-01

    Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.

  13. Designing an efficient rectifying cut-wire metasurface for electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbé Tékam, Gabin T.; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2017-02-01

    Electromagnetic energy harvesting, i.e., capturing energy from ambient microwave signals, may become an essential part in extending the battery lifetime of wearable devices. Here, we present a design of a microwave energy harvester based on a cut-wire metasurface with an integrated PN junction diode. The cut wire with a quasistatic electric-dipole moment is designed to have a resonance at 6.75 GHz, leading to a substantial cross-section for absorption. The external microwaves create a unidirectional current through the rectifying action of the integrated diode. Using an electrical-circuit model, we design the operating frequency and the resistive load of the cut wire. Subsequently, by optimizing our design using full-wave numerical simulations, we obtain an energy harvesting efficiency of 50% for incident power densities in agreement with the typical power density of WiFi signals. Finally, we study the effect of connecting adjacent unit cells of the metasurface in parallel by a thin highly inductive wire and we demonstrate that this allows for the collection of current from all individual cells, while the microwave resonance of the unit cell is not significantly altered, thus solving the wiring problem that arises in many nonlinear metamaterials.

  14. Electromagnetic analysis of the plasma chamber of an ECR-based charge breeder

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Patti, G.; Celona, L.; Mascali, D.; Neri, L.; Torrisi, G.

    2016-02-01

    The optimization of the efficiency of an ECR-based charge breeder is a twofold task: efforts must be paid to maximize the capture of the injected 1+ ions by the confined plasma and to produce high charge states to allow post-acceleration at high energies. Both tasks must be faced by studying in detail the electrons heating dynamics, influenced by the microwave-to-plasma coupling mechanism. Numerical simulations are a powerful tools for obtaining quantitative information about the wave-to-plasma interaction process: this paper presents a numerical study of the microwaves propagation and absorption inside the plasma chamber of the PHOENIX charge breeder, which the selective production of exotic species project, under construction at Legnaro National Laboratories, will adopt as charge breeder. Calculations were carried out with a commercial 3D FEM solver: first, all the resonant frequencies were determined by considering a simplified plasma chamber; then, the realistic geometry was taken into account, including a cold plasma model of increasing complexity. The results gave important information about the power absorption and losses and will allow the improvement of the plasma model to be used in a refined step of calculation reproducing the breeding process itself.

  15. Optimized MPPT-based converter for TEG energy harvester to power wireless sensor and monitoring system in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Xing, Shaoxu; Anakok, Isil; Zuo, Lei

    2017-04-01

    Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.

  16. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide with PEV refueling. Electric vehicle refueling does not typically affect DER design at low PEV travel levels, but can as electric vehicle travel increases. However, as PEV travel increases, the stochastic nature of PEV refueling disappears, and the optimization problem may become deterministic.

  17. In silico screening of carbon-capture materials

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.; Kim, Jihan; Swisher, Joseph A.; Jariwala, Kuldeep; Rycroft, Chris H.; Bhown, Abhoyjit S.; Deem, Michael W.; Haranczyk, Maciej; Smit, Berend

    2012-07-01

    One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.

  18. TRIC: Capturing the direct cellular targets of promoter‐bound transcriptional activators

    PubMed Central

    Dugan, Amanda; Pricer, Rachel; Katz, Micah

    2016-01-01

    Abstract Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p‐benzoyl‐L‐phenylalanine (Bpa), a genetically incorporated photo‐crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast. PMID:27213278

  19. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  20. Optimization principles and the figure of merit for triboelectric generators.

    PubMed

    Peng, Jun; Kang, Stephen Dongmin; Snyder, G Jeffrey

    2017-12-01

    Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times.

  1. Genetic algorithm optimization of transcutaneous energy transmission systems for implantable ventricular assist devices.

    PubMed

    Byron, Kelly; Bluvshtein, Vlad; Lucke, Lori

    2013-01-01

    Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.

  2. Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehuda-Zada, Y.; Ben-Gurion University; Pritchard, K.

    2015-07-01

    Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials thanmore » conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H reaction). The study of investigating the capture process probability for neutron energy of 5.1 meV to 2.27 meV (4 - 6 A) is presented. - Alpha particles and tritons travel for a few microns in the scintillation material (α ∼0.007 mm, T ∼0.04 mm) losing energy and ionizing the ZnS. The mean free path of the two particles in each of the component materials and the complete compound was investigated. - The ionization of the ZnS(Ag) scintillation material produces blue light photons with luminescence wavelength of 450 nm. The amount of light output produced for different grain sizes of ZnS is discussed. - A large portion of the scintillation photons are reabsorbed during their passage through the scintillation material. - The blue photons that reach the WLS fibers are absorbed by fluorescent dye and are re-emitted as green photons, conducted by the fiber to the SiPM photo-sensor. This work presents the CANDOR unique design and its design constrains, the results measured by the ultra-thin {sup 6}LiF:ZnS(Ag)-based neutron detector versus the simulation results for several binder concentrations. The light measurement attenuation results along with the measured stopping power were utilized to predict the sensitivity results of configuration with different ZnS grain size, weight ratios and fibers geometry (number and location). The simulations enable to optimize the final sensor design. This design successfully achieved both the high gamma rejection with a sensitive and accurate neutron event detection of 80 percent. (authors)« less

  3. Application of CFB technology for large power generating units and CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units aremore » used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.« less

  4. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  5. Optimal Output of Distributed Generation Based On Complex Power Increment

    NASA Astrophysics Data System (ADS)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  6. Homotopy method for optimization of variable-specific-impulse low-thrust trajectories

    NASA Astrophysics Data System (ADS)

    Chi, Zhemin; Yang, Hongwei; Chen, Shiyu; Li, Junfeng

    2017-11-01

    The homotopy method has been used as a useful tool in solving fuel-optimal trajectories with constant-specific-impulse low thrust. However, the specific impulse is often variable for many practical solar electric power-limited thrusters. This paper investigates the application of the homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Difficulties arise when the two commonly-used homotopy functions are employed for trajectory optimization. The optimal power throttle level and the optimal specific impulse are coupled with the commonly-used quadratic and logarithmic homotopy functions. To overcome these difficulties, a modified logarithmic homotopy function is proposed to serve as a gateway for trajectory optimization, leading to decoupled expressions of both the optimal power throttle level and the optimal specific impulse. The homotopy method based on this homotopy function is proposed. Numerical simulations validate the feasibility and high efficiency of the proposed method.

  7. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  8. The optimization of nuclear power plants operation modes in emergency situations

    NASA Astrophysics Data System (ADS)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  9. Optimization of vibratory energy harvesters with stochastic parametric uncertainty: a new perspective

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-04-01

    Vibration energy harvesting has been shown as a promising power source for many small-scale applications mainly because of the considerable reduction in the energy consumption of the electronics and scalability issues of the conventional batteries. However, energy harvesters may not be as robust as the conventional batteries and their performance could drastically deteriorate in the presence of uncertainty in their parameters. Hence, study of uncertainty propagation and optimization under uncertainty is essential for proper and robust performance of harvesters in practice. While all studies have focused on expectation optimization, we propose a new and more practical optimization perspective; optimization for the worst-case (minimum) power. We formulate the problem in a generic fashion and as a simple example apply it to a linear piezoelectric energy harvester. We study the effect of parametric uncertainty in its natural frequency, load resistance, and electromechanical coupling coefficient on its worst-case power and then optimize for it under different confidence levels. The results show that there is a significant improvement in the worst-case power of thus designed harvester compared to that of a naively-optimized (deterministically-optimized) harvester.

  10. A Monoclonal–Monoclonal Antibody Based Capture ELISA for Abrin

    PubMed Central

    Tam, Christina C.; Cheng, Luisa W.; He, Xiaohua; Merrill, Paul; Hodge, David; Stanker, Larry H.

    2017-01-01

    Abrin, one of the most highly potent toxins in the world, is derived from the plant, Abrus precatorius. Because of its high toxicity, it poses potential bioterror risks. Therefore, a need exists for new reagents and technologies that would be able to rapidly detect abrin contamination as well as lead to new therapeutics. We report here a group of abrin-specific monoclonal antibodies (mAbs) that recognize abrin A-chain, intact A–B chain toxin, and agglutinin by Western blot. Additionally, these mAbs were evaluated for their ability to serve as capture antibodies for a sandwich (capture) ELISA. All possible capture–detector pairs were evaluated and the best antibody pair identified and optimized for a capture ELISA. The capture ELISA based on this capture–detector mAb pair had a limit of detection (L.O.D) of ≈1 ng/mL measured using three independent experiments. The assay did not reveal any false positives with extracts containing other potential ribosome-inactivating proteins (RIPs). Thus, this new capture ELISA uses mAbs for both capture and detection; has no cross-reactivity against other plant RIPs; and has a sensitivity comparable to other reported capture ELISAs using polyclonal antibodies as either capture or detector. PMID:29057799

  11. Feasibility study of algae-based Carbon Dioxide capture ...

    EPA Pesticide Factsheets

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertaken to evaluate the benefits of using algae to reduce CO2 emissions from industrial and small-scale utility power boilers. The operations are being studied for the use of CO2 from flue gas for algae growth along with the production of biofuels and other useful products to prepare a comprehensive characterization of the economic feasibility of using algae to capture CO2. Information is being generated for analyses of the potential for these technologies to advance in the market and assist in meeting environmental goals, as well as to examine their associated environmental implications. Three electric power generation plants (coal and fuel oil fired) equipped to send flue-gas emissions to algae culture at demonstration facilities are being studied. Data and process information are being collected and developed to facilitate feasibility and modeling evaluations of the CO2 to algae technology. An understanding of process requirements to apply this technology to existing industries would go far in advancing carbon capture opportunities. Documenting the successful use of this technology could help bring “low-tech”, low-cost, CO2 to algae, carbon capture to multiple size industries and

  12. Determining the optimal load for jump squats: a review of methods and calculations.

    PubMed

    Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U

    2004-08-01

    There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.

  13. Short-Term Planning of Hybrid Power System

    NASA Astrophysics Data System (ADS)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  14. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  15. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  16. Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less

  17. CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize themore » energy needed for the process.« less

  18. Power-constrained supercomputing

    NASA Astrophysics Data System (ADS)

    Bailey, Peter E.

    As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound. Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels, from the processor level to the cluster level.

  19. A dynamic multi-level optimal design method with embedded finite-element modeling for power transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.

  20. Distortion outage minimization in Nakagami fading using limited feedback

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hong; Dey, Subhrakanti

    2011-12-01

    We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.

Top