Sample records for power coefficient continuously

  1. Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Vitaly I.; Curry, Judith A.

    2005-12-01

    This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.

  2. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    PubMed

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  3. An energy-dependent electron backscattering coefficient

    NASA Astrophysics Data System (ADS)

    Williamson, W., Jr.; Antolak, A. J.; Meredith, R. J.

    1987-05-01

    An energy-dependent electron backscattering coefficient is derived based on the continuous slowing down approximation and the Bethe stopping power. Backscattering coefficients are given for 10-50-keV electrons incident on bulk and thin-film aluminum, silver, and gold targets. The results are compared with the Everhart theory and empirical fits to experimental data. The energy-dependent theory agrees better with experimental work.

  4. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test.

    PubMed

    Aisbett, B; Le Rossignol, P

    2003-09-01

    The VO2-power regression and estimated total energy demand for a 6-minute supra-maximal exercise test was predicted from a continuous incremental exercise test. Sub-maximal VO2-power co-ordinates were established from the last 40 seconds (s) of 150-second exercise stages. The precision of the estimated total energy demand was determined using the 95% confidence interval (95% CI) of the estimated total energy demand. The linearity of the individual VO2-power regression equations was determined using Pearson's correlation coefficient. The mean 95% CI of the estimated total energy demand was 5.9 +/- 2.5 mL O2 Eq x kg(-1) x min(-1), and the mean correlation coefficient was 0.9942 +/- 0.0042. The current study contends that the sub-maximal VO2-power co-ordinates from a continuous incremental exercise test can be used to estimate supra-maximal energy demand without compromising the precision of the accumulated oxygen deficit (AOD) method.

  5. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  6. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  7. A model for a continuous-wave iodine laser

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Tabibi, Bagher M.

    1990-01-01

    A model for a continuous-wave (CW) iodine laser has been developed and compared with the experimental results obtained from a solar-simulator-pumped CW iodine laser. The agreement between the calculated laser power output and the experimental results is generally good for various laser parameters even when the model includes only prominent rate coefficients. The flow velocity dependence of the output power shows that the CW iodine laser cannot be achieved with a flow velocity below 1 m/s for the present solar-simulator-pumped CW iodine laser system.

  8. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  9. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  10. Exploring the potential energy landscape over a large parameter-space

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Mehta, Dhagash; Niemerg, Matthew; Rummel, Markus; Valeanu, Alexandru

    2013-07-01

    Solving large polynomial systems with coefficient parameters are ubiquitous and constitute an important class of problems. We demonstrate the computational power of two methods — a symbolic one called the Comprehensive Gröbner basis and a numerical one called coefficient-parameter polynomial continuation — applied to studying both potential energy landscapes and a variety of questions arising from geometry and phenomenology. Particular attention is paid to an example in flux compactification where important physical quantities such as the gravitino and moduli masses and the string coupling can be efficiently extracted.

  11. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  12. Unsteady propulsion by an intermittent swimming gait

    NASA Astrophysics Data System (ADS)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  13. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2007-01-01

    Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.

  14. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  15. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    PubMed

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  16. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications

    PubMed Central

    Behzadi, Kobra; Baghelani, Masoud

    2013-01-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator. PMID:25685504

  17. Icing flight research: Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes was obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft darg coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (C sub d) of 0.5.

  18. Icing flight research - Aerodynamic effects of ice and ice shape documentation with stereo photography

    NASA Technical Reports Server (NTRS)

    Mikkelsen, K. L.; Mcknight, R. C.; Ranaudo, R. J.; Perkins, P. J., Jr.

    1985-01-01

    Aircraft icing flight research was performed in natural icing conditions. A data base consisting of icing cloud measurements, ice shapes, and aerodynamic measurements is being developed. During research icing encounters the icing cloud was continuously measured. After the encounter, the ice accretion shapes on the wing were documented with a stereo camera system. The increase in wing section drag was measured with a wake survey probe. The overall aircraft performance loss in terms of lift and drag coefficient changes were obtained by steady level speed/power measurements. Selective deicing of the airframe components was performed to determine their contributions to the total drag increase. Engine out capability in terms of power available was analyzed for the iced aircraft. It was shown that the stereo photography system can be used to document ice shapes in flight and that the wake survey probe can measure increases in wing section drag caused by ice. On one flight, the wing section drag coefficient (c sub d) increased approximately 120 percent over the uniced baseline at an aircraft angle of attack of 6 deg. On another flight, the aircraft drag coefficient (c sub d) increased by 75 percent over the uniced baseline at an aircraft lift coefficient (c sub d) of 0.5.

  19. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  20. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr^{-1} in controls compared with 74times 10^{-4}cm^{-1}sr^ {-1} (at 6 MHz) in treated animals. A simplified quantitative approach using video image signals was developed. Results derived both from the r.f. signal analysis and from the video signal analysis are sensitive to the changes in the liver in this animal model.

  1. Volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1982-01-01

    The overall mass-transfer coefficients for the volatilization from water of acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured simultaneously with the oxygen-absorption coefficient in a laboratory stirred water bath. The liquid-film and gas-film coefficients of the two-film model were determined for the ketones from the overall coefficients, and both film resistances were important for volatilization of the ketones.The liquid-film coefficients for the ketones varied with the 0.719 power of the molecular-diffusion coefficient, in agreement with the literature. The liquid-film coefficients showed a variable dependence on molecular weight, with the dependence ranging from the −0.263 power for acetone to the −0.378 power for 2-octanone. This is in contrast with the literature where a constant −0.500 power dependence on the molecular weight is assumed.The gas-film coefficients for the ketones showed no dependence on molecular weight, in contrast with the literature where a −0.500 power is assumed.

  2. Hydrodynamics and Heat Transfer in the Case of Combined Flow in a Annular Channel of Small Cross Section

    NASA Astrophysics Data System (ADS)

    Komov, A. T.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Boltenko, É. A.

    2017-01-01

    The present work is a continuation of experimental investigations conducted at the Moscow Power Engineering Institute (MPEI) on heat-transfer intensification. Brief descriptions of the working section and structure of intensifiers are given and their basic geometric parameters are enumerated. New systematized experimental data on the coefficients of hydraulic resistance and heat transfer in the regime of single-phase convection are given in an extended range of regime parameters and geometric characteristics of the intensifiers. Considerable increase in the heat-transfer coefficient as a function of the geometric characteristics of the intensifier has been established experimentally. The values of the relative fin height, at which these are the maxima of heat transfer and hydraulic resistance, have been established. Calculated dependences for the coefficient of hydraulic resistance and heat transfer have been obtained.

  3. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    PubMed

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  4. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less

  5. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  6. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.

  7. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer

    PubMed Central

    Miao, Zhidong; Liu, Dake

    2017-01-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011

  8. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  9. Electroresponsive Aqueous Silk Protein As “Smart” Mechanical Damping Fluid

    PubMed Central

    2015-01-01

    Here we demonstrate the effectiveness of an electroresponsive aqueous silk protein polymer as a smart mechanical damping fluid. The aqueous polymer solution is liquid under ambient conditions, but is reversibly converted into a gel once subjected to an electric current, thereby increasing or decreasing in viscosity. This nontoxic, biodegradable, reversible, edible fluid also bonds to device surfaces and is demonstrated to reduce friction and provide striking wear protection. The friction and mechanical damping coefficients are shown to modulate with electric field exposure time and/or intensity. Damping coefficient can be modulated electrically, and then preserved without continued power for longer time scales than conventional “smart” fluid dampers. PMID:24750065

  10. FNAS/summer faculty fellowship research continuation program. Task 6: Integrated model development for liquid fueled rocket propulsion systems. Task 9: Aspects of model-based rocket engine condition monitoring and control

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael; Helmicki, Arthur J.

    1993-01-01

    The objective of Phase I of this research effort was to develop an advanced mathematical-empirical model of SSME steady-state performance. Task 6 of Phase I is to develop component specific modification strategy for baseline case influence coefficient matrices. This report describes the background of SSME performance characteristics and provides a description of the control variable basis of three different gains models. The procedure used to establish influence coefficients for each of these three models is also described. Gains model analysis results are compared to Rocketdyne's power balance model (PBM).

  11. Highlights of laser-tissue interaction mechanism

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2001-10-01

    The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.

  12. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  13. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  14. Adaptive pitch control for variable speed wind turbines

    DOEpatents

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  15. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  16. Model for Increasing the Power Obtained from a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng

    2014-06-01

    We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and the environment.

  17. Motion Control of Drives for Prosthetic Hand Using Continuous Myoelectric Signals

    NASA Astrophysics Data System (ADS)

    Purushothaman, Geethanjali; Ray, Kalyan Kumar

    2016-03-01

    In this paper the authors present motion control of a prosthetic hand, through continuous myoelectric signal acquisition, classification and actuation of the prosthetic drive. A four channel continuous electromyogram (EMG) signal also known as myoelectric signals (MES) are acquired from the abled-body to classify the six unique movements of hand and wrist, viz, hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), ulnar deviation (UD) and radial deviation (RD). The classification technique involves in extracting the features/pattern through statistical time domain (TD) parameter/autoregressive coefficients (AR), which are reduced using principal component analysis (PCA). The reduced statistical TD features and or AR coefficients are used to classify the signal patterns through k nearest neighbour (kNN) as well as neural network (NN) classifier and the performance of the classifiers are compared. Performance comparison of the above two classifiers clearly shows that kNN classifier in identifying the hidden intended motion in the myoelectric signals is better than that of NN classifier. Once the classifier identifies the intended motion, the signal is amplified to actuate the three low power DC motor to perform the above mentioned movements.

  18. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loading. 2; Curtiss 838-1C2-18R1 Four-Blade Propeller

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Sorin, Solomon M.

    1946-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the performance of a Curtiss propeller with four 838-lC2-lSRl blades on a YP-47M airplane at high blade loadings and engine powers. The study was made for a range of power coefficients between 0.30 and 1.00 at free-stream Mach numbers of 0.40 and 0.50. The results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio, inasmuch as corrections for the effects of tunnel-wall constriction on the installation have not been applied. Slip-stream pressure surveys across the propeller disk are presented to illustrate blade thrust load distribution for several operating conditions. At a free-stream Mach number of 0.40, nearly constant peak efficiencies were obtained at power coefficients from 0.30 to 0.70. A change in power coefficient from 0.70 to 0.90 reduced the peak efficiency about 5 percent. Blade stall at the tip sections became evident for a power coefficient of 0.91 when the advance-diameter ratio was reduced to 1.87. At a free-stream Mach number of 0.50, the highest propeller efficiencies were obtained for power coefficients from 0.80 to 1.00 at advance-diameter ratios above 2.90. At advance-diameter ratios below 2.90, the highest efficiencies were obtained for power coefficients of 0.60 and 0.70. The envelope of the efficiency curves decreased about 12 percent between advance-diameter ratios of 2.60 and 4.20. Local compressibility effects became evident for a power coefficient of 0.40 when the advance-diameter ratio was decreased to 1.75.

  19. The power of a single trajectory

    NASA Astrophysics Data System (ADS)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  20. A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source

    PubMed Central

    Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan

    2015-01-01

    Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665

  1. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, C. M.; Rearden, B. T.

    2013-07-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)

  2. Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.

  3. When the Test of Mediation is More Powerful than the Test of the Total Effect

    PubMed Central

    O'Rourke, Holly P.; MacKinnon, David P.

    2014-01-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. First, a study compared analytical power of the mediated effect to the total effect in a single mediator model to identify the situations in which the inclusion of one mediator increased statistical power. Results from the first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were non-zero and equal across models. Next, a study identified conditions where power was greater for the test of the total mediated effect compared to the test of the total effect in the parallel two mediator model. Results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results found in the first study. Finally, a study assessed analytical power for a sequential (three-path) two mediator model and compared power to detect the three-path mediated effect to power to detect both the test of the total effect and the test of the mediated effect for the single mediator model. Results indicated that the three-path mediated effect had more power than the mediated effect from the single mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed. PMID:24903690

  4. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  5. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  6. Near-field three-terminal thermoelectric heat engine

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2018-03-01

    We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.

  7. Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms

    PubMed Central

    Fried, Itzhak; Koch, Christof

    2014-01-01

    Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352

  8. Impact of Deforestation and Recovery on Streamflow Recession Statistics

    NASA Astrophysics Data System (ADS)

    Krapu, C.; Kumar, M.

    2016-12-01

    Deforestation is known to influence streamflow and baseflow in particular in sub-humid environments. Baseflow contributions to the recession limb of a flood hydrograph convey information about subsurface stores from which trees also draw water. Recent works based on the assumptions outlined by Brutsaert and Nieber (1977) have proposed analyzing streamflow recession curves on a per-event basis. In this framework, each event's recession curve is governed by a power law relation with per-event scale and shape coefficients. As streamflow recession depends in part upon evapotranspiration demand from trees, these coefficients are hypothesized to contain useful information about catchment vegetation. Analysis was conducted of 13 small experimental catchments in the eastern United States with known forest treatment histories to determine whether or not streamflow recession behavior as observed from daily discharge records could serve as an indicator of deforestation in the drainage basin. Power-law scale coefficients were calculated for each major stormflow event at each test site and a statistical comparison of distribution of fitted coefficients was made between pre-treatment and post-treatment events as well as between pre-treatment and post-recovery events. A second method using these fitted coefficients in conjunction with Gaussian process regression was employed to track the change in the scale coefficient in the 13 catchments described previously as well as two medium-sized catchments in the North Carolina portion of the American Piedmont which did not have extensive records of forest cover. A linear trend analysis of precipitation was performed to determine whether nonstationarity in rainfall could be a confounding cause of changes in event scale coefficients. These results show a statistically significant difference in scale coefficient values in 5/8 treatment catchments and 0/5 control catchments. This suggests that lesser alterations to forest cover may not be detectable but that this method is robust against changes in precipitation. Additionally, we found clear evidence that forest regrowth in the Piedmont sites continued from 1940-1970. As a proof-of-concept, this work suggests that major alterations to forest cover can be inferred from daily data of stream discharge.

  9. Numerical simulation of the change characteristics of power dissipation coefficient of Ti-24Al-15Nb alloy in hot deformation

    NASA Astrophysics Data System (ADS)

    Wang, Kelu; Li, Xin; Zhang, Xiaobo

    2018-03-01

    The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.

  10. When the test of mediation is more powerful than the test of the total effect.

    PubMed

    O'Rourke, Holly P; MacKinnon, David P

    2015-06-01

    Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

  11. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.

    PubMed

    Kalathil, Shaeen; Elias, Elizabeth

    2015-11-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  12. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    PubMed Central

    Kalathil, Shaeen; Elias, Elizabeth

    2014-01-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921

  13. Relations among pure-tone sound stimuli, neural activity, and the loudness sensation

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1972-01-01

    Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.

  14. Changes in government spending on healthcare and population mortality in the European union, 1995–2010: a cross-sectional ecological study

    PubMed Central

    Watkins, Johnathan; Atun, Rifat; Williams, Callum; Zeltner, Thomas; Maruthappu, Mahiben

    2015-01-01

    Objective Economic measures such as unemployment and gross domestic product are correlated with changes in health outcomes. We aimed to examine the effects of changes in government healthcare spending, an increasingly important measure given constrained government budgets in several European Union countries. Design Multivariate regression analysis was used to assess the effect of changes in healthcare spending as a proportion of total government expenditure, government healthcare spending as a proportion of gross domestic product and government healthcare spending measured in purchasing power parity per capita, on five mortality indicators. Additional variables were controlled for to ensure robustness of data. One to five year lag analyses were conducted. Setting and Participants European Union countries 1995–2010. Main outcome measures Neonatal mortality, postneonatal mortality, one to five years of age mortality, under five years of age mortality, adult male mortality, adult female mortality. Results A 1% decrease in government healthcare spending was associated with significant increase in all mortality metrics: neonatal mortality (coefficient −0.1217, p = 0.0001), postneonatal mortality (coefficient −0.0499, p = 0.0018), one to five years of age mortality (coefficient −0.0185, p = 0.0002), under five years of age mortality (coefficient −0.1897, p = 0.0003), adult male mortality (coefficient −2.5398, p = 0.0000) and adult female mortality (coefficient −1.4492, p = 0.0000). One per cent decrease in healthcare spending, measured as a proportion of gross domestic product and in purchasing power parity, was both associated with significant increases (p < 0.05) in all metrics. Five years after the 1% decrease in healthcare spending, significant increases (p < 0.05) continued to be observed in all mortality metrics. Conclusions Decreased government healthcare spending is associated with increased population mortality in the short and long term. Policy interventions implemented in response to the financial crisis may be associated with worsening population health. PMID:26510733

  15. Changes in government spending on healthcare and population mortality in the European union, 1995-2010: a cross-sectional ecological study.

    PubMed

    Budhdeo, Sanjay; Watkins, Johnathan; Atun, Rifat; Williams, Callum; Zeltner, Thomas; Maruthappu, Mahiben

    2015-12-01

    Economic measures such as unemployment and gross domestic product are correlated with changes in health outcomes. We aimed to examine the effects of changes in government healthcare spending, an increasingly important measure given constrained government budgets in several European Union countries. Multivariate regression analysis was used to assess the effect of changes in healthcare spending as a proportion of total government expenditure, government healthcare spending as a proportion of gross domestic product and government healthcare spending measured in purchasing power parity per capita, on five mortality indicators. Additional variables were controlled for to ensure robustness of data. One to five year lag analyses were conducted. European Union countries 1995-2010. Neonatal mortality, postneonatal mortality, one to five years of age mortality, under five years of age mortality, adult male mortality, adult female mortality. A 1% decrease in government healthcare spending was associated with significant increase in all mortality metrics: neonatal mortality (coefficient -0.1217, p = 0.0001), postneonatal mortality (coefficient -0.0499, p = 0.0018), one to five years of age mortality (coefficient -0.0185, p = 0.0002), under five years of age mortality (coefficient -0.1897, p = 0.0003), adult male mortality (coefficient -2.5398, p = 0.0000) and adult female mortality (coefficient -1.4492, p = 0.0000). One per cent decrease in healthcare spending, measured as a proportion of gross domestic product and in purchasing power parity, was both associated with significant increases (p < 0.05) in all metrics. Five years after the 1% decrease in healthcare spending, significant increases (p < 0.05) continued to be observed in all mortality metrics. Decreased government healthcare spending is associated with increased population mortality in the short and long term. Policy interventions implemented in response to the financial crisis may be associated with worsening population health. © The Royal Society of Medicine.

  16. Effect of noise on the power spectrum of passively mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Salvatore, R.A.; Yariv, A.

    1997-01-01

    We analyze the effects of noise on the power spectrum of pulse trains generated by a continuously operating passively mode-locked laser. The shape of the different harmonics of the power spectrum is calculated in the presence of correlated timing fluctuations between neighboring pulses and in the presence of amplitude fluctuations. The spectra at the different harmonics are influenced mainly by the nonstationary timing-jitter fluctuations; amplitude fluctuations slightly modify the spectral tails. Estimation of the coupling term between the longitudinal cavity modes or the effective saturable absorber coefficient is made from the timing-jitter correlation time. Experimental results from an external cavitymore » two-section semiconductor laser are given. The results show timing-jitter fluctuations having a relaxation time much longer than the repetition period. {copyright} 1997 Optical Society of America.« less

  17. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  18. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  19. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  20. Intracavity frequency doubling of a continuous wave Ti:sapphire ring laser and application in resonance Raman spectroscopy of heme protein dynamics

    NASA Astrophysics Data System (ADS)

    Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.

    1995-04-01

    Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.

  1. GENERAL: The Analytic Solution of Schrödinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Quan; Luo, Guang; Cui, Li-Peng; Li, Fang-Yu; Niu, Lian-Bin

    2009-03-01

    The analytic solution of the radial Schrödinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schrödinger equation is V(r) = α1r8 + α2r3 + α3r2 + β3r-1 + β2r-3 + β1r-4. Generally speaking, there is only an approximate solution, but not analytic solution for Schrödinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schrödinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schrödinger equation; and lastly, they discuss the solutions and make conclusions.

  2. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM Device.

    PubMed

    Bertucci, W; Duc, S; Villerius, V; Pernin, J N; Grappe, F

    2005-12-01

    The SRM power measuring crank system is nowadays a popular device for cycling power output (PO) measurements in the field and in laboratories. The PowerTap (CycleOps, Madison, USA) is a more recent and less well-known device that allows mobile PO measurements of cycling via the rear wheel hub. The aim of this study is to test the validity and reliability of the PowerTap by comparing it with the most accurate (i.e. the scientific model) of the SRM system. The validity of the PowerTap is tested during i) sub-maximal incremental intensities (ranging from 100 to 420 W) on a treadmill with different pedalling cadences (45 to 120 rpm) and cycling positions (standing and seated) on different grades, ii) a continuous sub-maximal intensity lasting 30 min, iii) a maximal intensity (8-s sprint), and iiii) real road cycling. The reliability is assessed by repeating ten times the sub-maximal incremental and continuous tests. The results show a good validity of the PowerTap during sub-maximal intensities between 100 and 450 W (mean PO difference -1.2 +/- 1.3 %) when it is compared to the scientific SRM model, but less validity for the maximal PO during sprint exercise, where the validity appears to depend on the gear ratio. The reliability of the PowerTap during the sub-maximal intensities is similar to the scientific SRM model (the coefficient of variation is respectively 0.9 to 2.9 % and 0.7 to 2.1 % for PowerTap and SRM). The PowerTap must be considered as a suitable device for PO measurements during sub-maximal real road cycling and in sub-maximal laboratory tests.

  3. Advanced and innovative wind energy concept development: Dynamic inducer system

    NASA Astrophysics Data System (ADS)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B. H.

    1981-05-01

    The performance benefits of the dynamic inducer tip vane system was demonstrated Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor show that a dynamic inducer can achieve a power coefficient (based pon power blade swept area) of 0.5, which exceeds that of a plain rotor by about 35%. Wind tunnel tests conducted on a one-third scale model of the dynamic inducer achieved a power coefficient of 0.62 which exceeded that of a plain rotor by about 70%. The dynamic inducer substantially improves the performance of conventional rotors and indications are that higher power coefficients can be achieved through additional aerodynamic optimization.

  4. Effect of a rough surface on the aerodynamic characteristics of a two-bladed wind-powered engine with cylindrical blades

    NASA Astrophysics Data System (ADS)

    Tanasheva, N. K.; Kunakbaev, T. O.; Dyusembaeva, A. N.; Shuyushbayeva, N. N.; Damekova, S. K.

    2017-11-01

    We have reported the results of experiments on determining the drag coefficient and the thrust coefficient of a two-bladed wind-powered engine based on the Magnus effect with rotating rough cylinders in the range of air flow velocity of 4-10 m/s (Re = 26800-90000) for a constant rotation number of a cylindrical blade about its own axis. The results show that an increase in the Reynolds number reduces the drag coefficient and the thrust coefficient. The extent of the influence of the relative roughness on the aerodynamic characteristics of the two-bladed wind-powered engine has been experimentally established.

  5. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    PubMed

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  6. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    PubMed Central

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin

    2018-01-01

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310

  7. Continuous monitoring the vehicle dynamics and driver behavior using navigation systems

    NASA Astrophysics Data System (ADS)

    Ene, George

    2017-10-01

    In all fields cost is very important and the increasing amount of data that are needed for active safety systems, like ADAS, lead to implementation of some complex and powerful unit for processing raw data. In this manner is necessary a cost-effective method to estimate the maximum available tire road friction during acceleration and braking by continuous monitoring the vehicle dynamics and driver behavior. The method is based on the hypothesis that short acceleration and braking periods can indicate vehicle dynamics, and thus the available tire road friction coefficient, and also human behavior and his limits. Support for this hypothesis is found in the literature and is supported by the result of experiments conducted under different conditions and seasons.

  8. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  9. Lift and moment coefficients expanded to the seventh power of frequency for oscillating rectangular wings in supersonic flow and applied to a specific flutter problem

    NASA Technical Reports Server (NTRS)

    Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E

    1954-01-01

    Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.

  10. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  11. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  12. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  13. Some theoretical considerations of longitudinal stability in power-on flight with special reference to wind-tunnel testing, November 1942

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.

    1976-01-01

    Some problems relating to longitudinal stability in power-on flight are considered. A derivation is included which shows that, under certain conditions, the rate of change of the pitching moment coefficient with lift coefficient as obtained in wind tunnel tests simulating constant power operation is directly proportional to one of the indices of stability commonly associated with flight analysis, (the slope of the curve relating the elevator angle for trim and lift coefficient). The necessity of analyzing power-on wind tunnel data for trim conditions is emphasized, and a method is provided for converting data obtained from constant thrust tests to simulated constant throttle flight conditions.

  14. Synchronization of distributed power grids with the external loading system

    NASA Astrophysics Data System (ADS)

    Wei, Duqu; Mei, Chuncao

    2018-06-01

    In this paper, the synchronization between spatially distributed power plants and their supported consumers is studied, where the case of Kuramoto-like model power grids connected to an external permanent magnet synchronous motor (PMSM) is taken as an example. We focus on the dependence of the synchronization on the coupling coefficient. To quantitatively study the synchronization degree, we introduce the order parameter and the frequency deviation to measure the synchronization of the coupled system. It is found that as the external coupling coefficient is increased, the distributed power grids and the loading system become more and more synchronized in space, and the complete synchronization appears at a particular value of external coupling coefficient. Our results may provide a useful tip for analyzing the synchronous ability of distributed power grids.

  15. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  16. Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong

    2011-03-01

    The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.

  17. Research of energy characteristics of power amplifier containing KNFS Nd:phosphate glass slabs and MIRO Silver foil reflectors at the “Luch” facility

    NASA Astrophysics Data System (ADS)

    Belov, I. A.; Bel'kov, S. A.; Voronich, I. N.; Garanin, S. G.; Derkach, V. N.; Koshechkin, S. V.; Lysov, M. I.; Markov, S. S.; Savkin, S. V.

    2016-09-01

    The amplifier elements upgrade at the “Luch” laser facility was carried out. Measurements showed that the upgrade of the amplifier elements resulted in the amplifier's small signal gain coefficient K0 increase from 12.9% to 14.3% depending on the capacitor charging voltage; the linear gain coefficient increase was about g0 ≈ (6-8)%. Full-scale laser experiments at the facility showed the power amplifier gain coefficient increase consistent with active medium gain coefficient measurement results.

  18. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  19. Investigation of radiological properties of some shielding materials on charged and uncharged radiation interaction for neutron generator

    NASA Astrophysics Data System (ADS)

    Büyükyıldız, Mehmet

    2017-04-01

    Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10 keV-100 MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015-15 MeV.

  20. A Practical Theory of Micro-Solar Power Sensor Networks

    DTIC Science & Technology

    2009-04-20

    Simulation Platform TOSSIM [LLWC03] ns-2 Matlab C++ AVRORA [TLP05] Reference Hardware Mica2 WINS, Medusa Mica Mica2, Medusa Mica2 Simulated Power Power...scale. From this raw data, we can 162 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 Correlation coefficient F re qu en cy Histogram of correlation...0.5 0.6 0.7 0.8 0.9 1 0 1 2 Correlation coefficient F re qu en cy Histogram of correlation coefficient with solar radiation measurement (Turbidity at

  1. Earth's isostatic gravity anomaly field: Contributions to National Geodetic Satellite Program

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    On the assumption that the compensation for the topographic load is achieved in the manner of Airy-Heiskenenan hypothesis at a compensation depth of 30 kilometers, the spherical harmonic coefficients of the isostatic reduction potential U are computed. The degree power spectra of these coefficients are compared with the power spectra of the isostatic reduction coefficients given by Uotila. Results are presented in tabular form.

  2. Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study

    PubMed Central

    Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.

    2013-01-01

    This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550

  3. Thermo-optical properties of Alexandrite laser crystal

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Ghanbari, Shirin; Matrosov, Vladimir; Yumashev, Konstantin; Major, Arkady

    2018-02-01

    Alexandrite is a well-known material for broadly tunable and power-scalable near-IR lasers. We measured the thermal coefficients of the optical path (TCOP) and thermo-optic coefficients (TOCs) of Alexandrite at 632.8 nm for three principal light polarizations, E || a, E || b and E || c. All TOCs are positive and show a notable polarization-anisotropy, dna/dT = 5.5, dnb/dT = 7.0 and dnc/dT = 14.9×10-6 K-1. We also characterized thermal lensing in a continuous-wave Alexandrite laser which used a Brewster-oriented c-cut 0.16 at.% Cr3+ doped BeAl2O4 crystal pumped at 532 nm and emitted at 750.9 nm (E || b). The measured thermal lens was positive and astigmatic. The sensitivity factors of the thermal lens (Mx,y = dDx,y/dPabs) were found to be Mx = 1.74 and My = 2.38 [m-1/W].

  4. Partial Roc Reveals Superiority of Mutual Rank of Pearson's Correlation Coefficient as a Coexpression Measure to Elucidate Functional Association of Genes

    NASA Astrophysics Data System (ADS)

    Obayashi, Takeshi; Kinoshita, Kengo

    2013-01-01

    Gene coexpression analysis is a powerful approach to elucidate gene function. We have established and developed this approach using vast amount of publicly available gene expression data measured by microarray techniques. The coexpressed genes are used to estimate gene function of the guide gene or to construct gene coexpression networks. In the case to construct gene networks, researchers should introduce an arbitrary threshold of gene coexpression, because gene coexpression value is continuous value. In the viewpoint to introduce common threshold of gene coexpression, we previously reported rank of Pearson's correlation coefficient (PCC) is more useful than the original PCC value. In this manuscript, we re-assessed the measure of gene coexpression to construct gene coexpression network, and found that mutual rank (MR) of PCC showed better performance than rank of PCC and the original PCC in low false positive rate.

  5. Development of an 83.2 MHz, 3.2 kW solid-state RF amplifier using Wilkinson power divider and combiner for a 10 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo

    2017-03-01

    We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.

  6. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  7. Methods to determine pumped irrigation-water withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95

    USGS Publications Warehouse

    Maupin, Molly A.

    1999-01-01

    Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 1990–92 and 1994–95, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the relations among PCC values and selected pumpsite characteristics. Multiple correlation analysis between average PCC values and total head, total horsepower, and total number of pumps revealed the strongest correlation was between average PCC and total head. Linear regression of these two variables resulted in a strong coefficient of determination R2=0 .9 86) and a representative K-factor of 1.463. Pump sites were subdivided into two groups on the basis of total head—0 to 300 feet and greater than 300 feet. Regression of average PCC values for eight pump sites with total head less than 300 feet produced a good correlation of determination (R2=0.870) and a representative K-factor of 1.682. The second group consisted of 10 pump sites with total head greater than 300 feet; regression produced a correlation of R2=0.939 and a representative K-factor of 1.405. Data on pump-site characteristics were successfully used to determine individual PCC and K-factor values. Statistical relations between pumpsite characteristics and PCC values were defined and used to determine regression equations that resulted in good coefficients of determination and representative K-factors. The individual PCC values will be used in the future to calculate irrigation- water withdrawals at sites that are no longer continuously measured. The representative K-factors and regression equations will be used to calculate irrigation-water withdrawals at sites that have not been previously measured and where total head and power consumption are known.

  8. Design and experiment of a directional coupler for X-band long pulse high power microwaves.

    PubMed

    Bai, Zhen; Li, Guolin; Zhang, Jun; Jin, Zhenxing

    2013-03-01

    Higher power and longer pulse are the trend of the development of high power microwave (HPM), and then some problems emerge in measuring the power of HPM because rf breakdown is easier to occur under the circumstance of high power (the level of gigawatt) and long pulse (about 100 ns). In order to measure the power of the dominant TM₀₁ mode of an X-band long pulse overmoded HPM source, a directional coupler with stable coupling coefficient, high directivity, and high power handling capacity in wide band is investigated numerically and experimentally. At the central frequency 9.4 GHz, the simulation results show that the coupling coefficient is -59.6 dB with the directivity of 35 dB and the power handling capacity of 2 GW. The coupling coefficient is calibrated to be accordant with the simulation results. The high power tests are performed on an X-band long pulse HPM source, whose output mode is mainly TM₀₁ mode, and the results show that the measured power and waveform of the directional coupler have a good consistency with the far-field measuring results.

  9. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    NASA Astrophysics Data System (ADS)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  10. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  11. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loadings. 6; Hamilton Standard 6507A-2 Four- and Three-Blade Propellers

    NASA Technical Reports Server (NTRS)

    Saari, Martin J.; Sorin, Solomon M.

    1946-01-01

    An altitude-wind-tunnel investigation has been made to determine the performance of Hamilton Standard 6507A-2 four-blade and three-blade propellers on a YP-47M airplane at high blade loadings and high engine powers. Characteristics of the four-blase propeller were obtained for a range of power coefficients from 0.10 to 1.00 at free-stream Mach numbers of 0.20, 0.30, 0.40. Characteristics of the three-blade propeller were obtained for a range of power coefficients from 0.30 to 1.00 at a free-stream Mach number of 0.40. Results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio because no corrections for the effects of tunnel-wall constriction on the installation were applied. Slipstream surveys are presented to illustrate blade thrust load distribution for certain operating conditions. Within the range of advance-diameter ratios investigated at each free-stream Mach number, the efficiency of the four-blade propeller decreased as the power coefficient was increased from 0.10 to 1.00. For the three-blade propeller, nearly constant maximum efficiencies were obtained for power coefficients from 0.32 to 0.63 at advance-diameter ratios between 1.90 and 3.00. In general, for conditions below the stall and critical tip Mach number, the maximum thrust load shifted from the inboard sections toward the tip sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall or critical tip Mach number, losses in thrust occurred on the outboard blade sections owing to flow break-down; the thrust load increased slightly on the inboard sections.

  12. Fractal ladder models and power law wave equations

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2009-01-01

    The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816

  13. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  14. Parameters optimization for magnetic resonance coupling wireless power transmission.

    PubMed

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  15. Gain compression and its dependence on output power in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Zhukov, A. E.; Maximov, M. V.; Savelyev, A. V.; Shernyakov, Yu. M.; Zubov, F. I.; Korenev, V. V.; Martinez, A.; Ramdane, A.; Provost, J.-G.; Livshits, D. A.

    2013-06-01

    The gain compression coefficient was evaluated by applying the frequency modulation/amplitude modulation technique in a distributed feedback InAs/InGaAs quantum dot laser. A strong dependence of the gain compression coefficient on the output power was found. Our analysis of the gain compression within the frame of the modified well-barrier hole burning model reveals that the gain compression coefficient decreases beyond the lasing threshold, which is in a good agreement with the experimental observations.

  16. Optimizing a tandem disk model

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1983-08-01

    The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.

  17. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up tomore » 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Paredes, Gilberto; Prieto-Guerrero, Alfonso; Nunez-Carrera, Alejandro

    This paper introduces a wavelet-based method to analyze instability events in a boiling water reactor (BWR) during transient phenomena. The methodology to analyze BWR signals includes the following: (a) the short-time Fourier transform (STFT) analysis, (b) decomposition using the continuous wavelet transform (CWT), and (c) application of multiresolution analysis (MRA) using discrete wavelet transform (DWT). STFT analysis permits the study, in time, of the spectral content of analyzed signals. The CWT provides information about ruptures, discontinuities, and fractal behavior. To detect these important features in the signal, a mother wavelet has to be chosen and applied at several scales tomore » obtain optimum results. MRA allows fast implementation of the DWT. Features like important frequencies, discontinuities, and transients can be detected with analysis at different levels of detail coefficients. The STFT was used to provide a comparison between a classic method and the wavelet-based method. The damping ratio, which is an important stability parameter, was calculated as a function of time. The transient behavior can be detected by analyzing the maximum contained in detail coefficients at different levels in the signal decomposition. This method allows analysis of both stationary signals and highly nonstationary signals in the timescale plane. This methodology has been tested with the benchmark power instability event of Laguna Verde nuclear power plant (NPP) Unit 1, which is a BWR-5 NPP.« less

  1. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    NASA Astrophysics Data System (ADS)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  2. Optimal viscous damping of vibrating porous cylinders

    NASA Astrophysics Data System (ADS)

    Jafari Kang, Saeed; Masoud, Hassan

    2017-11-01

    We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of permeability and oscillation frequency on the damping coefficient, which is proportional to the power required to sustain the vibrations. Cylinders of both circular and non-circular cross-sections undergoing transverse and rotational vibrations are considered. Our calculations indicate that the damping coefficient often varies non-monotonically with the permeability. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first since generally the power it takes to steadily drag a permeable object through the fluid is less than the power needed to drive the steady motion of the same but impermeable object. However, the driving power (or damping coefficient) for oscillating bodies is determined by not only the amplitude of the cyclic fluid force experienced by them but also by the phase shift between the force and their periodic motion. An increase in the latter is responsible for excess damping coefficient of vibrating porous cylinders.

  3. Theoretical peak performance and optical constraints for the deflection of an S-type asteroid with a continuous wave laser

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2017-03-01

    This paper presents a theoretical model to evaluate the thrust generated by a continuous wave (CW) laser, operating at moderate intensity (<100 GW/m2), ablating an S-type asteroid made of Forsterite. The key metric to assess the performance of the laser system is the thrust coupling coefficient which is given by the ratio between thrust and associated optical power. Three different models are developed in the paper: a one dimensional steady state model, a full 3D steady state model and a one dimensional model accounting for transient effects resulting from the tumbling motion of the asteroid. The results obtained with these models are used to derive key requirements and constraints on the laser system that allow approaching the ideal performance in a realistic case.

  4. Enhanced Thermoelectric Properties of Cu 2ZnSnSe 4 with Ga-doping

    DOE PAGES

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; ...

    2015-08-10

    Gallium doped Cu 2ZnSnSe 4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S 2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are partmore » of the continuing effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.« less

  5. Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics

    DOE PAGES

    Boyle, Cullen; Liang, Liang; Chen, Yun; ...

    2017-06-06

    Here, the present work demonstrates the feasibility of increasing the values of Seebeck coefficient S and power factor of calcium cobaltite Ca 3Co 4O 9 ceramics through competing dopant grain boundary segregation. The nominal chemistry of the polycrystalline material system investigated is Ca 3–xBi xBa yCo 4O 9 with simultaneous stoichiometric substitution of Bi for Ca and non-stoichiometric addition of minute amounts of Ba. There is continuous increase of S due to Bi substitution and Ba addition. The electrical resistivity also changes upon doping. Overall, the power factor of best performing Bi and Ba co-doped sample is about 0.93 mWmore » m –1 K –2, which is one of the highest power factor values ever reported for Ca 3Co 4O 9, and corresponds to a factor of 3 increase compared to that of the baseline composition Ca 3Co 4O 9. Systematic nanostructure and chemistry characterization was performed on the samples with different nominal compositions. When Bi is the only dopant in Ca 3Co 4O 9, it can be found at both the grain interior and the grain boundaries GBs as a result of segregation. When Bi and Ba are added simultaneously as dopants, competing processes lead to the segregation of Ba and depletion of Bi at the GBs, with Bi present only in the grain interior. Bi substitution in the lattice increases the S at both the low and high temperature regimes, while the segregation of Ba at the GBs dramatically increase the S at low temperature regime.« less

  6. Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Cullen; Liang, Liang; Chen, Yun

    Here, the present work demonstrates the feasibility of increasing the values of Seebeck coefficient S and power factor of calcium cobaltite Ca 3Co 4O 9 ceramics through competing dopant grain boundary segregation. The nominal chemistry of the polycrystalline material system investigated is Ca 3–xBi xBa yCo 4O 9 with simultaneous stoichiometric substitution of Bi for Ca and non-stoichiometric addition of minute amounts of Ba. There is continuous increase of S due to Bi substitution and Ba addition. The electrical resistivity also changes upon doping. Overall, the power factor of best performing Bi and Ba co-doped sample is about 0.93 mWmore » m –1 K –2, which is one of the highest power factor values ever reported for Ca 3Co 4O 9, and corresponds to a factor of 3 increase compared to that of the baseline composition Ca 3Co 4O 9. Systematic nanostructure and chemistry characterization was performed on the samples with different nominal compositions. When Bi is the only dopant in Ca 3Co 4O 9, it can be found at both the grain interior and the grain boundaries GBs as a result of segregation. When Bi and Ba are added simultaneously as dopants, competing processes lead to the segregation of Ba and depletion of Bi at the GBs, with Bi present only in the grain interior. Bi substitution in the lattice increases the S at both the low and high temperature regimes, while the segregation of Ba at the GBs dramatically increase the S at low temperature regime.« less

  7. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  8. Electrical Power Generated from Tidal Currents and Delivered to USCG Station Eastport, ME

    DTIC Science & Technology

    2011-01-21

    35 Theory of Operation The ORPC Pre-Commercial Beta Turbine Generator Unit (“Beta TGU”) uses a hydrokinetic cross flow turbine based on Darrieus ...development in the wind turbine industry. The power coefficient (a measure of energy extraction effectiveness) is defined as follows: 31 2 turbine ...stream area of the device. Axial flow wind turbines have demonstrated power coefficients to an estimated 48% which approaches the theoretical “Betz

  9. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beammore » axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.« less

  10. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    NASA Astrophysics Data System (ADS)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.

    2012-04-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  11. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied. The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  12. Assessing Performance of P-Band Backscattering Coefficients and TSAR in Hemi-Boreal Forest AGB Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Feng, Qi

    2014-11-01

    To assess performance of P-band backscattering coefficients and TSAR for hemi-boreal forest AGB estimation, airborne P-band repeat-path Pol-InSAR data collected by ESAR in Ramingstorp test site during March and May 2007 are applied.The correlation coefficient (R) between P-band backscattering coefficients and in-situ biomass reaches 0.87 for HH polarization. Meanwhile, the R between P-band backscattering power at specific height and in-situ biomass are higher in VV polarization than that in HH and HV polarization. And R between P-band backscattering power and in-situ biomass reaches 0.70 at 5m and 10m height in VV polarization.

  13. Peptide kinetics from picoseconds to microseconds using boxed molecular dynamics: Power law rate coefficients in cyclisation reactions

    NASA Astrophysics Data System (ADS)

    Shalashilin, Dmitrii V.; Beddard, Godfrey S.; Paci, Emanuele; Glowacki, David R.

    2012-10-01

    Molecular dynamics (MD) methods are increasingly widespread, but simulation of rare events in complex molecular systems remains a challenge. We recently introduced the boxed molecular dynamics (BXD) method, which accelerates rare events, and simultaneously provides both kinetic and thermodynamic information. We illustrate how the BXD method may be used to obtain high-resolution kinetic data from explicit MD simulations, spanning picoseconds to microseconds. The method is applied to investigate the loop formation dynamics and kinetics of cyclisation for a range of polypeptides, and recovers a power law dependence of the instantaneous rate coefficient over six orders of magnitude in time, in good agreement with experimental observations. Analysis of our BXD results shows that this power law behaviour arises when there is a broad and nearly uniform spectrum of reaction rate coefficients. For the systems investigated in this work, where the free energy surfaces have relatively small barriers, the kinetics is very sensitive to the initial conditions: strongly non-equilibrium conditions give rise to power law kinetics, while equilibrium initial conditions result in a rate coefficient with only a weak dependence on time. These results suggest that BXD may offer us a powerful and general algorithm for describing kinetics and thermodynamics in chemical and biochemical systems.

  14. New method for calculating the coupling coefficient in graded index optical fibers

    NASA Astrophysics Data System (ADS)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  15. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    NASA Astrophysics Data System (ADS)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  16. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  17. The upper limit of thermoelectric power factors in the metal-band-insulator crossover of the perovskite-type oxygen deficient system SrTiO(₃- δ/₂).

    PubMed

    Onoda, Masashige; Tsukahara, Shuichi

    2011-02-02

    The electronic properties and the thermoelectric power factors in the metal-band-insulator crossover of the perovskite-type oxygen deficient system SrTiO(3 - δ/2) with 0.0046 ≤ δ < 0.06 are explored through measurements of x-ray diffraction, electrical resistivity, thermoelectric power, Hall coefficient and magnetic susceptibility. The metallic transport is confirmed to be basically explained through scattering by electron correlations, acoustic phonons and polar optical phonons, where each scattering coefficient is almost linear in the inverse of the effective carrier concentration estimated from the Hall coefficient. The upper limit of the thermoelectric power factor is 2 × 10( - 3) W m( - 1) K( - 2) with the carrier concentration of 2 × 10(20) cm( - 3) at around the Fermi energy comparable to the Debye temperature.

  18. The upper limit of thermoelectric power factors in the metal-band-insulator crossover of the perovskite-type oxygen deficient system SrTiO3 - δ/2

    NASA Astrophysics Data System (ADS)

    Onoda, Masashige; Tsukahara, Shuichi

    2011-02-01

    The electronic properties and the thermoelectric power factors in the metal-band-insulator crossover of the perovskite-type oxygen deficient system SrTiO3 - δ/2 with 0.0046 <= δ < 0.06 are explored through measurements of x-ray diffraction, electrical resistivity, thermoelectric power, Hall coefficient and magnetic susceptibility. The metallic transport is confirmed to be basically explained through scattering by electron correlations, acoustic phonons and polar optical phonons, where each scattering coefficient is almost linear in the inverse of the effective carrier concentration estimated from the Hall coefficient. The upper limit of the thermoelectric power factor is 2 × 10 - 3 W m - 1 K - 2 with the carrier concentration of 2 × 1020 cm - 3 at around the Fermi energy comparable to the Debye temperature.

  19. Recent mathematical developments in 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  20. Coevolving complex networks in the model of social interactions

    NASA Astrophysics Data System (ADS)

    Raducha, Tomasz; Gubiec, Tomasz

    2017-04-01

    We analyze Axelrod's model of social interactions on coevolving complex networks. We introduce four extensions with different mechanisms of edge rewiring. The models are intended to catch two kinds of interactions-preferential attachment, which can be observed in scientists or actors collaborations, and local rewiring, which can be observed in friendship formation in everyday relations. Numerical simulations show that proposed dynamics can lead to the power-law distribution of nodes' degree and high value of the clustering coefficient, while still retaining the small-world effect in three models. All models are characterized by two phase transitions of a different nature. In case of local rewiring we obtain order-disorder discontinuous phase transition even in the thermodynamic limit, while in case of long-distance switching discontinuity disappears in the thermodynamic limit, leaving one continuous phase transition. In addition, we discover a new and universal characteristic of the second transition point-an abrupt increase of the clustering coefficient, due to formation of many small complete subgraphs inside the network.

  1. Stochastic nature of series of waiting times.

    PubMed

    Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H; Salehi, E; Behjat, E; Qorbani, M; Nezhad, M Khazaei; Zirak, M; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M Reza Rahimi

    2013-06-01

    Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2

  2. Stochastic nature of series of waiting times

    NASA Astrophysics Data System (ADS)

    Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi

    2013-06-01

    Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2

  3. Thermoelectric properties of the LaCoO3-LaCrO3 system using a high-throughput combinatorial approach

    NASA Astrophysics Data System (ADS)

    Talley, K. R.; Barron, S. C.; Nguyen, N.; Wong-Ng, W.; Martin, J.; Zhang, Y. L.; Song, X.

    2017-02-01

    A combinatorial film of the LaCo1-xCrxO3 system was fabricated using the LaCoO3 and LaCrO3 targets at the NIST Pulsed Laser Deposition (PLD) facility. As the ionic size of Cr3+ is greater than that of Co3+, the unit cell volume of the series increases with increasing x. Using a custom screening tool, the Seebeck coefficient of LaCo1-xCrxO3 approaches a measured maximum of 286 μV/K, near to the cobalt-rich end of the film library (with x ≈ 0.49). The resistivity value increases continuously with increasing x. The measured power factor, PF, of this series, which is related to the efficiency of energy conversion, also exhibits a maximum at the composition of x ≈ 0.49, which corresponds to the maximum value of the Seebeck coefficient. Our results illustrate the efficiency of applying the high-throughput combinatorial technique to study thermoelectric materials.

  4. Effective conductivity of a periodic dilute composite with perfect contact and its series expansion

    NASA Astrophysics Data System (ADS)

    Pukhtaievych, Roman

    2018-06-01

    We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ɛ . We assume a perfect thermal contact at constituent interfaces, i.e., a continuity of the normal component of the heat flux and of the temperature. For ɛ small, we prove that the effective conductivity can be represented as a convergent power series in ɛ and we determine the coefficients in terms of the solutions of explicit systems of integral equations.

  5. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.

    PubMed

    Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H

    2012-07-01

    We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.

  6. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  7. Diode-pumped 1.5-1.6 μm laser operation in Er³⁺ doped YbAl₃(BO₃)₄ microchip.

    PubMed

    Chen, Yujin; Lin, Yanfu; Zou, Yuqi; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2014-06-02

    Er3+ doped YbAl3(BO3)4 crystal with large absorption coefficient of 184 cm(-1) at pump wavelength of 976 nm is a promising microchip gain medium of 1.5-1.6 μm laser. End-pumped by a 976 nm diode laser, 1.5-1.6 μm continuous-wave laser with maximum output power of 220 mW and slope efficiency of 8.1% was obtained at incident pump power of 4.54 W in a c-cut 200-μm-thick Er:YbAl3(BO3)4 microchip. When a Co2+:Mg0.4Al2.4O4 crystal was used as the saturable absorber, 1521 nm passively Q-switched pulse laser with about 0.19 μJ energy, 265 ns duration, and 96 kHz repetition rate was realized.

  8. An analytic approach to optimize tidal turbine fields

    NASA Astrophysics Data System (ADS)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  9. Research on high power intra-channel crosstalk attack in optical networks

    NASA Astrophysics Data System (ADS)

    Ren, Shuai; Zhang, Yinfa; Wang, Jingyu; Zhang, Jumei; Rao, Xuejun; Fang, Yuanyuan

    2017-02-01

    The mechanism of high power intra-channel crosstalk attack is analyzed theoretically and the conclusion that power of attack signal and crosstalk coefficient of optical switch are the main factors for which high power intra-channel have destructive effect on quality of legitimate signals is drawn. Effects of high power intra-channel crosstalk attack on quality of legitimate signals and its capability of attack propagation are investigated quantitatively by building the simulation system in VPI software. The results show that legitimate signals through the first and the second stage optical switch are affected by attack and legitimate signal through the third stage optical switch is almost unaffected by attack when power of original attack signal (OAS) is above 20dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB at optical cross connect 1 (OXC1). High power intra-channel crosstalk attack has a certain capability of attack propagation. Attack capability of OAS can be propagated to OXC3 when power of OAS is 27dB more than that of legitimate signals and crosstalk coefficient of optical switch is -20dB. We also find that the secondary attack signal (SAS) does not have capability of attack propagation.

  10. The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe

    NASA Astrophysics Data System (ADS)

    Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul

    2018-03-01

    Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.

  11. Rigorous theory of graded thermoelectric converters including finite heat transfer coefficients

    NASA Astrophysics Data System (ADS)

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2017-11-01

    Maximization of thermoelectric (TE) converter performance with an inhomogeneous material and electric current distribution has been investigated in previous literature neglecting thermal contact resistances to the heat reservoirs. The heat transfer coefficients (HTCs), defined as inverse thermal contact resistances per unit area, are thus infinite, whereas in reality, always parasitic thermal resistances, i.e., finite HTCs, are present. Maximization of the generated electric power and of cooling power in the refrigerator mode with respect to Seebeck coefficients and heat conductivity for a given profile of the material's TE figure of merit Z are mathematically ill-posed problems in the presence of infinite HTCs. As will be shown in this work, a fully self consistent solution is possible for finite HTCs, and in many respects, the results are fundamentally different. A previous theory for 3D devices will be extended to include finite HTCs and is applied to 1D devices. For the heat conductivity profile, an infinite number of solutions exist leading to the same device performance. Cooling power maximization for finite HTCs in 1D will lead to a strongly enhanced corresponding efficiency (coefficient of performance), whereas results with infinite HTCs lead to a non-monotonous temperature profile and coefficient of performance tending to zero for the prescribed heat conductivities. For maximized generated electric power, the corresponding generator efficiency is nearly a constant independent from the finite HTC values. The maximized efficiencies in the generator and cooling mode are equal to the efficiencies for the infinite HTC, provided that the corresponding powers approach zero. These and more findings are condensed in 4 theorems in the conclusions.

  12. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Baumgaertner, A.

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.

  13. CHAMP and GRACE Resonances and the Gravity Field of the Earth

    NASA Astrophysics Data System (ADS)

    Gooding, R. H.; Wagner, C. A.; Klokocnik, J.; Kostelecky, J.

    With the far more precise orbits of CHAMP and GRACE today than was the standard 2-3 decades ago there was and is an unprecedented opportunity for determining precise and valuable values of certain lumped geopotential harmonic coefficients of selected orders independently of comprehensive gravity field models via the recently revived technique that capitalizes on the resonant variation of appropriate orbital elements the inclination in particular Here we first identify important resonances during the lifetime of CHAMP and GRACE in terms of the decaying semimajor axis these being 46 3 77 5 31 2 78 5 and 47 3 for CHAMP and 61 4 for GRACE Then we analyze state vectors for CHAMP and TLE for GRACE A from GFZ and determined the relevant lumped coefficients To increase its lifetime the CHAMP satellite orbit was raised twice in June and December 2002 so CHAMP passed through 31 2 resonance three times More accurate values for these coefficients are obtained than originally and the precision for the 62 4 overtone resonance implicit in 31 2 is striking comparable to that for 31 2 Most recently CHAMP passed throughout the 47 3 resonance yielding the opportunity to determine new lumped coefficients For GRACE we have no state vectors and have to work with the TLE only nevertheless we have lumped coefficients of 61st order from its strong 61 4 resonance In each case the resonant lumped values are compared with those derivable from various global gravity models We thereby confirm the continuing power of the resonance technique

  14. Field-effect-dependent thermoelectric power in highly resistive Sb2Se3 single nanowire

    NASA Astrophysics Data System (ADS)

    Sun, Kien Wen; Ko, Ting-Yu; Shellaiah, Muthaiah

    2018-04-01

    In this paper, we report the results of our experiments on and measurements of electrical resistivity and thermoelectric power (Seebeck coefficient) from single-crystalline antimony triselenide (Sb2Se3) single nanowires (NWs) with high resistivity ( σ 4.37 × 10-4 S/m). A positive Seebeck coefficient of approximately 661 µV/K at room temperature was obtained using a custom-made thermoelectric power probe with an alternating current lock-in method (the 2ω technique), which indicates that the thermal transport is dominated by holes. The measured Seebeck coefficient of the NWs is a factor of 2-3 lower than their bulk counterparts and is comparable to that of a highly conductive Sb2Se3 single NWs (approximately - 750 µV/K). We observed an increase in the Seebeck coefficients with increased bias voltages by field-effect gating, which cannot be explained by the modulation of the Fermi level in the NWs.

  15. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  16. Performance simulation of a plasma magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Huang, Hulin; Li, Linyong; Zhu, Guiping

    2018-05-01

    The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.

  17. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  18. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-01

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/rD∝r-D where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A `box-counting' procedure could also be applied giving the `capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term `fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis. The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are:—Simple way to quantify scale-invariant distributions of complex objects or phenomena by a small number of parameters.—It is becoming evident that the applicability of fractal distributions to geological problems could have a more fundamental basis. Chaotic behaviour could underlay the geotectonic processes and the applicable statistics could often be fractal. The application of fractal distribution analysis has, however, some specific aspects. It is usually difficult to present an adequate interpretation of the obtained values of fractal coefficients for earthquake epicenter or hypocenter distributions. That is why in this paper we aimed at other goals—to verify how a fractal coefficient depends on different spatial distributions. We simulated earthquake spatial data by generating randomly points first in a 3D space - cube, then in a parallelepiped, diminishing one of its sides. We then continued this procedure in 2D and 1D space. For each simulated data set we calculated the points' fractal coefficient (correlation fractal dimension of epicentres) and then checked for correlation between the coefficients values and the type of spatial distribution. In that way one can obtain a set of standard fractal coefficients' values for varying spatial distributions. These then can be used when real earthquake data is analyzed by comparing the real data coefficients values to the standard fractal coefficients. Such an approach can help in interpreting the fractal analysis results through different types of spatial distributions.

  19. Mechanism behind the high thermoelectric power factor of SrTiO3 by calculating the transport coefficients

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Yamanaka, Kazunori

    2013-02-01

    The thermoelectric power factor of SrTiO3 is unusually high with respect to its mobility and band gap. Good thermoelectrics usually have high mobility and a narrow band gap, but such properties are not found in SrTiO3. We have determined the mechanism behind the high power factor by calculating the transport coefficients. The key to understanding the power factor is that different effective masses contribute to different transport phenomena. The discrepancy between the effective mass for the conductivity and the thermoelectric power showed that the conductivity and thermoelectric power are conveyed by electrons with different effective masses in the Brillouin zone. Light electrons were responsible for the high conductivity, whereas heavy electrons were responsible for the high thermoelectric power. The high carrier concentrations of more than 1020 cm-3 did not reduce the thermoelectric power of SrTiO3 above the classical limit. This indicates that the electrons carrying the thermoelectric power were not degenerate. This is achieved by a decrease in the Fermi energy and the contribution of the heavy electrons to the Seebeck coefficient. The strong dielectric screening also contributed to the high power factor. The Coulomb scattering by ionized impurities, which would usually reduce the carrier mobility, was effectively screened. These results clarify the mechanism behind the contribution of different types of electrons, and show that high thermoelectric power does not necessarily reduce conductivity. Our findings provide a new direction for the band engineering of thermoelectric materials.

  20. How to Test the SME with Space Missions?

    NASA Technical Reports Server (NTRS)

    Hees, A.; Lamine, B.; Le Poncin-Lafitte, C.; Wolf, P.

    2013-01-01

    In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radio science observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.

  1. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    PubMed

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  2. Enhancing thermoelectric properties through a three-terminal benzene molecule

    NASA Astrophysics Data System (ADS)

    Sartipi, Z.; Vahedi, J.

    2018-05-01

    The thermoelectric transport through a benzene molecule with three metallic terminals is discussed. Using general local and non-local transport coefficients, we investigated different conductance and thermopower coefficients within the linear response regime. Based on the Onsager coefficients which depend on the number of terminal efficiencies, efficiency at maximum power is also studied. In the three-terminal setup with tuning temperature differences, a great enhancement of the figure of merit is observed. Results also show that the third terminal model can be useful in improving the efficiency at maximum output power compared to the two-terminal model.

  3. Aerodynamic Analyses and Database Development for Ares I Vehicle First Stage Separation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Pei, Jing; Pinier, Jeremy T.; Klopfer, Goetz H.; Holland, Scott D.; Covell, Peter F.

    2011-01-01

    This paper presents the aerodynamic analysis and database development for first stage separation of Ares I A106 crew launch vehicle configuration. Separate 6-DOF databases were created for the first stage and upper stage and each database consists of three components: (a) isolated or freestream coefficients, (b) power-off proximity increments, and (c) power-on proximity increments. The isolated and power-off incremental databases were developed using data from 1% scaled model tests in AEDC VKF Tunnel A. The power-on proximity increments were developed using OVERFLOW CFD solutions. The database also includes incremental coefficients for one BDM and one USM failure scenarios.

  4. The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi)13 alloys

    NASA Astrophysics Data System (ADS)

    Skokov, K. P.; Karpenkov, A. Yu.; Karpenkov, D. Yu.; Gutfleisch, O.

    2013-05-01

    Using our data on magnetic entropy change ΔSm, adiabatic temperature change ΔTad and heat capacity CH for La(FeCoSi)13 alloys, the upper limit of heat Qc transferred per cycle, and the lowest limit of consumed work Wc were established for magnetic refrigerators operating in Δμ0H =1.9 T. In order to estimate the cooling power, attributable to thermoelectric refrigerators with La(FeCoSi)13, thermal conductivity λ, resistivity ρ, and Seebeck coefficient α were measured and the maximal cooling power QL, the input power Pi, and coefficient of performance have been calculated.

  5. Optimal Congestion Management in Electricity Market Using Particle Swarm Optimization with Time Varying Acceleration Coefficients

    NASA Astrophysics Data System (ADS)

    Boonyaritdachochai, Panida; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes an optimal power redispatching approach for congestion management in deregulated electricity market. Generator sensitivity is considered to indicate the redispatched generators. It can reduce the number of participating generators. The power adjustment cost and total redispatched power are minimized by particle swarm optimization with time varying acceleration coefficients (PSO-TVAC). The IEEE 30-bus and IEEE 118-bus systems are used to illustrate the proposed approach. Test results show that the proposed optimization scheme provides the lowest adjustment cost and redispatched power compared to the other schemes. The proposed approach is useful for the system operator to manage the transmission congestion.

  6. Motion of charged particles normal to an irregular magnetic field. [astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1975-01-01

    The motion is analyzed of charged particles in a fluctuating magnetic field which varies only in directions normal to its mean direction, such as that which would be generated by an ensemble of magnetosonic waves propagating normal to an ambient magnetic field. The appropriate generalization of gradient-drift motion is derived in terms of the power spectrum of the magnetic fluctuations, and an effective spatial diffusion coefficient is obtained. Several special cases are considered, including a Gaussian power spectrum, a power-law spectrum with a cutoff, and a general power-law spectrum. A possible magnitude is calculated for the spatial diffusion coefficient of the solar wind.

  7. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic implications. U. S. Geological Survey Professional Paper, 252. Paik, K., & Kumar, P. (2004). Hydraulic geometry and the nonlinearity of the network instantaneous response, Water Resource Research, 40, W03602. Stall, J. B., & Fok, Y. S. (1968). Hydraulic geometry of Illinois streams. University of Illinois Water Resources Center Research Report, 15. Stall, J. B., & Yang, C. T. (1970). Hydraulic geometry of 12 selected stream systems of the United States. University of Illinois Water Resources Center Research Report, 32.

  8. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    PubMed Central

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  9. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    PubMed

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  10. Geomorphic effectiveness of long profile shape and role of inherent geological controls, Ganga River Basin, India

    NASA Astrophysics Data System (ADS)

    Sonam, Sonam; Jain, Vikrant

    2017-04-01

    River long profile is one of the fundamental geomorphic parameters which provides a platform to study interaction of geological and geomorphic processes at different time scales. Long profile shape is governed by geological processes at 10 ^ 5 - 10 ^ 6 years' time scale and it controls the modern day (10 ^ 0 - 10 ^ 1 years' time scale) fluvial processes by controlling the spatial variability of channel slope. Identification of an appropriate model for river long profile may provide a tool to analyse the quantitative relationship between basin geology, profile shape and its geomorphic effectiveness. A systematic analysis of long profiles has been carried for the Himalayan tributaries of the Ganga River basin. Long profile shape and stream power distribution pattern is derived using SRTM DEM data (90 m spatial resolution). Peak discharge data from 34 stations is used for hydrological analysis. Lithological variability and major thrusts are marked along the river long profile. The best fit of long profile is analysed for power, logarithmic and exponential function. Second order exponential function provides the best representation of long profiles. The second order exponential equation is Z = K1*exp(-β1*L) + K2*exp(-β2*L), where Z is elevation of channel long profile, L is the length, K and β are coefficients of the exponential function. K1 and K2 are the proportion of elevation change of the long profile represented by β1 (fast) and β2 (slow) decay coefficients of the river long profile. Different values of coefficients express the variability in long profile shapes and is related with the litho-tectonic variability of the study area. Channel slope of long profile is estimated taking the derivative of exponential function. Stream power distribution pattern along long profile is estimated by superimposing the discharge and long profile slope. Sensitivity analysis of stream power distribution with decay coefficients of the second order exponential equation is evaluated for a range of coefficient values. Our analysis suggests that the amplitude of stream power peak value is dependent on K1, the proportion of elevation change coming under the fast decay exponent and the location of stream power peak is dependent of the long profile decay coefficient (β1). Different long profile shapes owing to litho-tectonic variability across the Himalayas are responsible for spatial variability of stream power distribution pattern. Most of the stream power peaks lie in the Higher Himalaya. In general, eastern rivers have higher stream power in hinterland area and low stream power in the alluvial plains. This is responsible for, 1) higher erosion rate and sediment supply in hinterland of eastern rivers, 2) the incised and stable nature of channels in the western alluvial plains and 3) aggrading channels with dynamic nature in the eastern alluvial plains. Our study shows that the spatial variability of litho-units defines the coefficients of long profile function which in turn controls the position and magnitude of stream power maxima and hence the geomorphic variability in a fluvial system.

  11. Tidal Energy Resource Assessment for McMurdo Station, Antarctica

    DTIC Science & Technology

    2016-12-01

    highest power coefficient possible, only to provide a high- fidelity data set for a simple geometry turbine model at reasonably high blade chord Reynolds...highest power coefficient possible, only to provide a high-fidelity data set for a simple geometry turbine model at reasonably high blade chord...Reynolds numbers. Tip speed ratio, , is defined as = where is the anglular velocity of the blade and is the

  12. Power laws for gravity and topography of Solar System bodies

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the power law can be found by rescaling the values known for other bodies. Third, an ensemble of synthetic shapes that follow the defined power law can be generated and gravity-from-shape can be found. The averaged power spectrum can be used as an a priori constraint for the gravity field and variance of power can be computed for individual degrees.

  13. Perfusion dynamics assessment with Power Doppler ultrasound in skeletal muscle during maximal and submaximal cycling exercise.

    PubMed

    Heres, H M; Schoots, T; Tchang, B C Y; Rutten, M C M; Kemps, H M C; van de Vosse, F N; Lopata, R G P

    2018-06-01

    Assessment of limitations in the perfusion dynamics of skeletal muscle may provide insight in the pathophysiology of exercise intolerance in, e.g., heart failure patients. Power doppler ultrasound (PDUS) has been recognized as a sensitive tool for the detection of muscle blood flow. In this volunteer study (N = 30), a method is demonstrated for perfusion measurements in the vastus lateralis muscle, with PDUS, during standardized cycling exercise protocols, and the test-retest reliability has been investigated. Fixation of the ultrasound probe on the upper leg allowed for continuous PDUS measurements. Cycling exercise protocols included a submaximal and an incremental exercise to maximal power. The relative perfused area (RPA) was determined as a measure of perfusion. Absolute and relative reliability of RPA amplitude and kinetic parameters during exercise (onset, slope, maximum value) and recovery (overshoot, decay time constants) were investigated. A RPA increase during exercise followed by a signal recovery was measured in all volunteers. Amplitudes and kinetic parameters during exercise and recovery showed poor to good relative reliability (ICC ranging from 0.2-0.8), and poor to moderate absolute reliability (coefficient of variation (CV) range 18-60%). A method has been demonstrated which allows for continuous (Power Doppler) ultrasonography and assessment of perfusion dynamics in skeletal muscle during exercise. The reliability of the RPA amplitudes and kinetics ranges from poor to good, while the reliability of the RPA increase in submaximal cycling (ICC = 0.8, CV = 18%) is promising for non-invasive clinical assessment of the muscle perfusion response to daily exercise.

  14. Plasma power recycling at the divertor surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xian -Zhu; Guo, Zehua

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  15. Plasma power recycling at the divertor surface

    DOE PAGES

    Tang, Xian -Zhu; Guo, Zehua

    2016-12-03

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  16. Interval estimation and optimal design for the within-subject coefficient of variation for continuous and binary variables

    PubMed Central

    Shoukri, Mohamed M; Elkum, Nasser; Walter, Stephen D

    2006-01-01

    Background In this paper we propose the use of the within-subject coefficient of variation as an index of a measurement's reliability. For continuous variables and based on its maximum likelihood estimation we derive a variance-stabilizing transformation and discuss confidence interval construction within the framework of a one-way random effects model. We investigate sample size requirements for the within-subject coefficient of variation for continuous and binary variables. Methods We investigate the validity of the approximate normal confidence interval by Monte Carlo simulations. In designing a reliability study, a crucial issue is the balance between the number of subjects to be recruited and the number of repeated measurements per subject. We discuss efficiency of estimation and cost considerations for the optimal allocation of the sample resources. The approach is illustrated by an example on Magnetic Resonance Imaging (MRI). We also discuss the issue of sample size estimation for dichotomous responses with two examples. Results For the continuous variable we found that the variance stabilizing transformation improves the asymptotic coverage probabilities on the within-subject coefficient of variation for the continuous variable. The maximum like estimation and sample size estimation based on pre-specified width of confidence interval are novel contribution to the literature for the binary variable. Conclusion Using the sample size formulas, we hope to help clinical epidemiologists and practicing statisticians to efficiently design reliability studies using the within-subject coefficient of variation, whether the variable of interest is continuous or binary. PMID:16686943

  17. Design of multiplier-less sharp transition width non-uniform filter banks using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Bindiya T., S.; Elias, Elizabeth

    2015-01-01

    In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan; Wang, Zhiqiang

    This paper presents a detailed parametric sensitivity analysis for a wireless power transfer (WPT) system in electric vehicle application. Specifically, several key parameters for sensitivity analysis of a series-parallel (SP) WPT system are derived first based on analytical modeling approach, which includes the equivalent input impedance, active / reactive power, and DC voltage gain. Based on the derivation, the impact of primary side compensation capacitance, coupling coefficient, transformer leakage inductance, and different load conditions on the DC voltage gain curve and power curve are studied and analyzed. It is shown that the desired power can be achieved by just changingmore » frequency or voltage depending on the design value of coupling coefficient. However, in some cases both have to be modified in order to achieve the required power transfer.« less

  19. SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations

    DOE PAGES

    Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.

    2016-02-25

    Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less

  20. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  1. Three-phase inductive-coupled structures for contactless PHEV charging system

    NASA Astrophysics Data System (ADS)

    Lee, Jia-You; Shen, Hung-Yu; Li, Cheng-Bin

    2016-07-01

    In this article, a new-type three-phase inductive-coupled structure is proposed for the contactless plug-in hybrid electric vehicle (PHEV) charging system regarding with SAE J-1773. Four possible three-phase core structures are presented and subsequently investigated by the finite element analysis. To study the correlation between the core geometric parameter and the coupling coefficient, the magnetic equivalent circuit model of each structure is also established. In accordance with the simulation results, the low reluctance and the sharing of flux path in the core material are achieved by the proposed inductive-coupled structure with an arc-shape and three-phase symmetrical core material. It results in a compensation of the magnetic flux between each phase and a continuous flow of the output power in the inductive-coupled structure. Higher coupling coefficient between inductive-coupled structures is achieved. A comparison of coupling coefficient, mutual inductance, and self-inductance between theoretical and measured results is also performed to verify the proposed model. A 1 kW laboratory scale prototype of the contactless PHEV charging system with the proposed arc-shape three-phase inductive-coupled structure is implemented and tested. An overall system efficiency of 88% is measured when two series lithium iron phosphate battery packs of 25.6 V/8.4 Ah are charged.

  2. Combined temperature and density series for fluid-phase properties. I. Square-well spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, J. Richard; Schultz, Andrew J.; Kofke, David A.

    Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B{sub 2}(β) η + B{sub 3}(β) η{sup 2} + B{sub 4}(β) η{sup 3} + ⋯, where Z is the compressibility factor, η is the packing fraction, and the B{sub i}(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the B{sub i} coefficients can be expressed in closed form asmore » a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the B{sub i} coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.« less

  3. 46 CFR 42.20-25 - Correction for block coefficient.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Correction for block coefficient. 42.20-25 Section 42.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-25 Correction for block coefficient. If the block coefficient (Cb...

  4. Downward continuation of the free-air gravity anomalies to the ellipsoid using the gradient solution and terrain correction: An attempt of global numerical computations

    NASA Technical Reports Server (NTRS)

    Wang, Y. M.

    1989-01-01

    The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere-at least to the ellipsoid. The goal is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (the g sub 1 term). The terrain correction was also computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. The fast Fourier transformation was applied to the computations.

  5. The study of the influence of the diameter ratio and blade number to the performance of the cross flow wind turbine by using 2D computational fluid dynamics modeling

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas

    2018-02-01

    Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.

  6. Effect of mesoporous structure on the Seebeck coefficient and electrical properties of SrTi0.8Nb0.2O3

    NASA Astrophysics Data System (ADS)

    Park, Chang-Sun; Hong, Min-Hee; Cho, Hyung Hee; Park, Hyung-Ho

    2017-07-01

    The porosity of mesoporous SrTi0.8Nb0.2O3 (STNO) was controlled by changing the surfactant concentration to investigate the porosity effect on the thermoelectric properties. Mesoporous structure typically induces a large decrease in the carrier mobility and a small increase in the carrier concentration owing to carrier scattering and oxygen vacancies. These changes in the carrier mobility and concentration induce a change in the thermoelectric properties by enhancing the Seebeck coefficient owing to an increase in the electrical resistivity and carrier filtering effect. Brij-S10 surfactant induces a carrier filtering effect in STNO, and so the Seebeck coefficient could be enhanced even with increasing carrier concentration. Because the Seebeck coefficient affects the power factor more strongly than the electrical resistivity does, incorporation of Brij-S10 surfactant into STNO films increases the power factor. The maximum value of the power factor, approximately 2.2 × 10-4 W/mK2 at 200 °C, was obtained at a Brij-S10 molar ratio of 0.075. From this result, we can expect the application of STNO as a thermoelectric material with an enhanced power factor through successful adoption of mesoporous structure.

  7. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  8. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  9. Study on the applicability of dynamic light scattering (DLS) to microemulsions including supercritical carbon dioxide-swollen micelles.

    PubMed

    Cadogan, Shane Patrick; Hahn, Christian Joachim; Rausch, Michael Heinrich; Fröba, Andreas Paul

    2017-08-01

    The applicability of dynamic light scattering (DLS) for the characterization of the size of supercritical carbon dioxide (sc-CO 2 )-swollen micelles in a polyester polyol-based multicomponent microemulsion with nonionic surfactant has been thoroughly proved for the first time in this work. Systematic experiments confirming that a hydrodynamic mode is observable in either a homodyne or a heterodyne detection scheme as well as the evaluation of the influence of the laser power applied to the slightly colored microemulsion have ensured an accurate implementation of this technique for a technically relevant system. The correlation times associated with the translational diffusion coefficient of the swollen micelles in a continuous liquid phase were measured for temperatures from (298.15 to 338.15)K at pressures of (90 and 100)bar. While there was no significant effect of pressure, it was found that the translational diffusion coefficient increases with increasing temperature as expected. We postulate this is primarily related to the effect of decreasing viscosity of the continuous phase. An estimation of the hydrodynamic diameter of the sc-CO 2 -swollen micelles is in good agreement with values for similar systems reported in the literature. For the derivation of absolute sizes for corresponding systems, also dynamic viscosity and refractive index data will be determined simultaneously in a currently developed closed experimental loop. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. DYNAMIC AND STATIC PARAMETERS OF THE AQUEOUS HOMOGENEOUS ARMOUR RESEARCH REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrell, C.W.; McElroy, W.N.

    1959-06-01

    A brief description of the aqueous homogeneous Armour Research Reactor is given. The negative reactivity coefficient resulting from a temperature increase was determined over a fuel temperature range of 37 to 150 deg F. Possession of an accurately calibrated rod and temperature coefficient permitted a direct measurement of the void coefficient. The reactor was taken to different power levels, and from the calibrated rod the total reduction in excess reactivity was obtained. During the power increase program additional U/sup 235/ and water were added to the core to determine the worth of U/sup 235/ and water. (W.D.M.)

  11. Electro-optical equivalent calibration technology for high-energy laser energy meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less

  12. Day-Ahead Short-Term Forecasting Electricity Load via Approximation

    NASA Astrophysics Data System (ADS)

    Khamitov, R. N.; Gritsay, A. S.; Tyunkov, D. A.; E Sinitsin, G.

    2017-04-01

    The method of short-term forecasting of a power consumption which can be applied to short-term forecasting of power consumption is offered. The offered model is based on sinusoidal function for the description of day and night cycles of power consumption. Function coefficients - the period and amplitude are set up is adaptive, considering dynamics of power consumption with use of an artificial neural network. The presented results are tested on real retrospective data of power supply company. The offered method can be especially useful if there are no opportunities of collection of interval indications of metering devices of consumers, and the power supply company operates with electrical supply points. The offered method can be used by any power supply company upon purchase of the electric power in the wholesale market. For this purpose, it is necessary to receive coefficients of approximation of sinusoidal function and to have retrospective data on power consumption on an interval not less than one year.

  13. Laser Plasma Microthruster Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Phipps, Claude R.

    2003-05-01

    The micro laser plasma thruster (μLPT) is a sub-kilogram thruster that is capable of meeting the Air Force requirements for the Attitude Control System on a 100-kg class small satellite. The μLPT uses one or more 4W diode lasers to ablate a solid fuel, producing a jet of hot gas or plasma which creates thrust with a high thrust/power ratio. A pre-prototype continuous thrust experiment has been constructed and tested. The continuous thrust experiment uses a 505 mm long continuous loop fuel tape, which consists of a black laser-absorbing fuel material on a transparent plastic substrate. When the laser is operated continuously, the exhaust plume and thrust vector are steered in the direction of the tape motion. Thrust steering can be avoided by pulsing the laser. A torsion pendulum thrust stand has been constructed and calibrated. Many fuel materials and substrates have been tested. Best performance from a non-energetic fuel material was obtained with black polyvinyl chloride (PVC), which produced an average of 70 μN thrust and coupling coefficient (Cm) of 190 μN/W. A proprietary energetic material was also tested, in which the laser initiates a non-propagating detonation. This material produced 500 μN of thrust.

  14. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    NASA Astrophysics Data System (ADS)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  15. A statistical model of the wave field in a bounded domain

    NASA Astrophysics Data System (ADS)

    Hellsten, T.

    2017-02-01

    Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.

  16. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine.

    PubMed

    Consul, Claudio A; Willden, Richard H J; McIntosh, Simon C

    2013-02-28

    This paper explores the influence of blockage and free-surface deformation on the hydrodynamic performance of a generic marine cross-flow turbine. Flows through a three-bladed turbine with solidity 0.125 are simulated at field-test blade Reynolds numbers, O(10(5)-10(6)), for three different cross-stream blockages: 12.5, 25 and 50 per cent. Two representations of the free-surface boundary are considered: rigid lid and deformable free surface. Increasing the blockage is observed to lead to substantial increases in the power coefficient; the highest power coefficient computed is 1.23. Only small differences are observed between the two free-surface representations, with the deforming free-surface turbine out-performing the rigid lid turbine by 6.7 per cent in power at the highest blockage considered. This difference is attributed to the increase in effective blockage owing to the deformation of the free surface. Hydrodynamic efficiency, the ratio of useful power generated to overall power removed from the flow, is found to increase with blockage, which is consistent with the presence of a higher flow velocity through the core of the turbine at higher blockage ratios. Froude number is found to have little effect on thrust and power coefficients, but significant influence on surface elevation drop across the turbine.

  17. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  18. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  19. Investigations of ionospheric sporadic Es layer using oblique sounding method

    NASA Astrophysics Data System (ADS)

    Minullin, R.

    The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.

  20. Azimuthal ULF Structure and Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.

    2015-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. There is still much to be understood about the interaction between charged particles and ULF waves in the inner magnetosphere and how they influence particle diffusion. We investigate how ULF wave power distribution in azimuth affects radial diffusion of charged particles. Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. The power profiles obtained from in situ measurements will be used to conduct particle simulations to see how well do the simulated diffusion coefficients agree with diffusion coefficients estimated directly from in situ measurements. We also look at the ULF wave power distribution across different modes. In order to use in situ point measurements from spacecraft, it is typically assumed that all of the wave power exists in m=1 mode. How valid is this assumption? Do higher modes contain a major fraction of the total power? If yes, then under what conditions? One strategy is to use the obtained realistic azimuthal power profiles from in situ measurements (such as from the Van Allen Probes) to drive simulations and see how the power distributions across modes larger than one depends on parameters such as the level of geomagnetic activity.

  1. Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases

    ERIC Educational Resources Information Center

    Parkinson, William A.

    2009-01-01

    Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…

  2. Macroscopic damping model for structural dynamics with random polycrystalline configurations

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Cui, Junzhi; Yu, Yifan; Xiang, Meizhen

    2018-06-01

    In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.

  3. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included in the price of the program. Source code is written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly Languages. This program is available on a 5.25 inch 360K MS-DOS format diskette. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  4. Estimation of the biserial correlation and its sampling variance for use in meta-analysis.

    PubMed

    Jacobs, Perke; Viechtbauer, Wolfgang

    2017-06-01

    Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial correlation coefficients can therefore be integrated with product-moment correlation coefficients in the same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for meta-analytic purposes and reports simulation results comparing different methods for estimating the coefficient's sampling variance. The findings indicate that commonly employed methods yield inconsistent estimates of the sampling variance across a broad range of research situations. In contrast, consistent estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature. A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the construction of confidence intervals for individual coefficients with close to nominal coverage probabilities in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.

  6. On Generalized Continuous D Semi-Classical Hermite and Chebychev Orthogonal Polynomials of Class One

    NASA Astrophysics Data System (ADS)

    Azatassou, E.; Hounkonnou, M. N.

    2002-10-01

    In this contribution, starting from the system of equations for recurrence coefficients generated by continuous D semi-classical Laguerre-Freud equations of class 1, we deduce the β constant recurrence relation coefficient γn leading to the generalized D semi-classical Hermite and Chebychev orthogonal polynomials of class 1. Various interesting cases are pointed out.

  7. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  8. Validation of a novel wearable, wireless technology to estimate oxygen levels and lactate threshold power in the exercising muscle.

    PubMed

    Farzam, Parisa; Starkweather, Zack; Franceschini, Maria A

    2018-04-01

    There is a growing interest in monitoring muscle oxygen saturation (SmO 2 ), which is a localized measure of muscle oxidative metabolism and can be acquired continuously and noninvasively using near-infrared spectroscopy (NIRS) methods. Most NIRS systems are cumbersome, expensive, fiber coupled devices, with use limited to lab settings. A novel, low cost, wireless, wearable has been developed for use in athletic training. In this study, we evaluate the advantages and limitations of this new simple continuous-wave (CW) NIRS device with respect to a benchtop, frequency-domain near-infrared spectroscopy (FDNIRS) system. Oxygen saturation and hemoglobin/myoglobin concentration in the exercising muscles of 17 athletic individuals were measured simultaneously with the two systems, while subjects performed an incremental test on a stationary cycle ergometer. In addition, blood lactate concentration was measured at the end of each increment with a lactate analyzer. During exercise, the correlation coefficients of the SmO 2 and hemoglobin/myoglobin concentrations between the two systems were over 0.70. We also found both systems were insensitive to the presence of thin layers of varying absorption, mimicking different skin colors. Neither system was able to predict the athletes' lactate threshold power accurately by simply using SmO 2 thresholds. Instead, the proprietary software of the wearable device was able to predict the athletes' lactate threshold power within half of one power increment of the cycling test. These results indicate this novel wearable device may provide a physiological indicator of athlete's exertion. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: for some measures, one night is enough.

    PubMed

    Israel, Benjamin; Buysse, Daniel J; Krafty, Robert T; Begley, Amy; Miewald, Jean; Hall, Martica

    2012-09-01

    Quantify the short-term stability of multiple indices of sleep and nocturnal physiology in good sleeper controls and primary insomnia patients. Intra-class correlation coefficients (ICC) were used to quantify the short-term stability of study outcomes. Sleep laboratory. Fifty-four adults with primary insomnia (PI) and 22 good sleeper controls (GSC). Visually scored sleep outcomes included indices of sleep duration, continuity, and architecture. Quantitative EEG outcomes included power in the delta, theta, alpha, sigma, and beta bands during NREM sleep. Power spectral analysis was used to estimate high-frequency heart rate variability (HRV) and the ratio of low- to high-frequency HRV power during NREM and REM sleep. With the exception of percent stage 3+4 sleep; visually scored sleep outcomes did not exhibit short-term stability across study nights. Most QEEG outcomes demonstrated short-term stability in both groups. Although power in the beta band was stable in the PI group (ICC = 0.75), it tended to be less stable in GSCs (ICC = 0.55). Both measures of cardiac autonomic tone exhibited short-term stability in GSCs and PIs during NREM and REM sleep. Most QEEG bandwidths and HRV during sleep show high short-term stability in good sleepers and patients with insomnia alike. One night of data is, thus, sufficient to derive reliable estimates of these outcomes in studies focused on group differences or correlates of QEEG and/or HRV. In contrast, one night of data is unlikely to generate reliable estimates of PSG-assessed sleep duration, continuity or architecture, with the exception of slow wave sleep.

  10. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.

  11. Statistical models of power-combining circuits for O-type traveling-wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Kats, A. M.; Klinaev, Iu. V.; Gleizer, V. V.

    1982-11-01

    The design outlined here allows for imbalances in the power of the devices being combined and for differences in phase. It is shown that the coefficient of combination is described by a beta distribution of the first type when a small number of devices are being combined and that the coefficient is asymptotically normal in relation to both the number of devices and the phase variance of the tube's output signals. Relations are derived that make it possible to calculate the efficiency of a power-combining circuit and the reproducibility of the design parameters when standard devices are used.

  12. Hydrodynamics, mass transfer, and yeast culture performance of a column bioreactor with ejector.

    PubMed

    Prokop, A; Janík, P; Sobotka, M; Krumphanzl, V

    1983-04-01

    A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.

  13. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky's truncation coefficients

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Hirt, Christian; Kuhn, Michael

    2018-04-01

    Spectral gravity forward modelling is a technique that converts a band-limited topography into its implied gravitational field. This conversion implicitly relies on global integration of topographic masses. In this paper, a modification of the spectral technique is presented that provides gravity effects induced only by the masses located inside or outside a spherical cap centred at the evaluation point. This is achieved by altitude-dependent Molodensky's truncation coefficients, for which we provide infinite series expansions and recurrence relations with a fixed number of terms. Both representations are generalized for an arbitrary integer power of the topography and arbitrary radial derivative. Because of the altitude-dependency of the truncation coefficients, a straightforward synthesis of the near- and far-zone gravity effects at dense grids on irregular surfaces (e.g. the Earth's topography) is computationally extremely demanding. However, we show that this task can be efficiently performed using an analytical continuation based on the gradient approach, provided that formulae for radial derivatives of the truncation coefficients are available. To demonstrate the new cap-modified spectral technique, we forward model the Earth's degree-360 topography, obtaining near- and far-zone effects on gravity disturbances expanded up to degree 3600. The computation is carried out on the Earth's surface and the results are validated against an independent spatial-domain Newtonian integration (1 μGal RMS agreement). The new technique is expected to assist in mitigating the spectral filter problem of residual terrain modelling and in the efficient construction of full-scale global gravity maps of highest spatial resolution.

  15. A new scheme for grading the quality of scientific reports that evaluate imaging modalities for cerebrovascular diseases.

    PubMed

    Qureshi, Adnan I

    2007-10-01

    Imaging of head and neck vasculature continues to improve with the application of new technology. To judge the value of new technologies reported in the literature, it is imperative to develop objective standards optimized against bias and favoring statistical power and clinical relevance. A review of the existing literature identified the following items as lending scientific value to a report on imaging technology: prospective design, comparison with an accepted modality, unbiased patient selection, standardized image acquisition, blinded interpretation, and measurement of reliability. These were incorporated into a new grading scheme. Two physicians tested the new scheme and an established scheme to grade reports published in the medical literature. Inter-observer reliability for both methods was calculated using the kappa coefficient. A total of 22 reports evaluating imaging modalities for cervical internal carotid artery stenosis were identified from a literature search and graded by both schemes. Agreement between the two physicians in grading the level of scientific evidence using the new scheme was excellent (kappa coefficient: 0.93, p<0.0001). Agreement using the established scheme was less rigorous (kappa coefficient: 0.39, p<0.0001). The weighted kappa coefficients were 0.95 and 0.38 for the new and established schemes, respectively. Overall agreement was higher for the newer scheme (95% versus 64%). The new grading scheme can be used reliably to categorize the strength of scientific knowledge provided by individual studies of vascular imaging. The new method could assist clinicians and researchers in determining appropriate clinical applications of newly reported technical advances.

  16. Mathematical issues in eternal inflation

    NASA Astrophysics Data System (ADS)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  17. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.

    PubMed

    Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun

    2015-07-10

    Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.

  18. Bayesian power spectrum inference with foreground and target contamination treatment

    NASA Astrophysics Data System (ADS)

    Jasche, J.; Lavaux, G.

    2017-10-01

    This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.

  19. Model of Silicon Refining During Tapping: Removal of Ca, Al, and Other Selected Element Groups

    NASA Astrophysics Data System (ADS)

    Olsen, Jan Erik; Kero, Ida T.; Engh, Thorvald A.; Tranell, Gabriella

    2017-04-01

    A mathematical model for industrial refining of silicon alloys has been developed for the so-called oxidative ladle refining process. It is a lumped (zero-dimensional) model, based on the mass balances of metal, slag, and gas in the ladle, developed to operate with relatively short computational times for the sake of industrial relevance. The model accounts for a semi-continuous process which includes both the tapping and post-tapping refining stages. It predicts the concentrations of Ca, Al, and trace elements, most notably the alkaline metals, alkaline earth metal, and rare earth metals. The predictive power of the model depends on the quality of the model coefficients, the kinetic coefficient, τ, and the equilibrium partition coefficient, L for a given element. A sensitivity analysis indicates that the model results are most sensitive to L. The model has been compared to industrial measurement data and found to be able to qualitatively, and to some extent quantitatively, predict the data. The model is very well suited for alkaline and alkaline earth metals which respond relatively fast to the refining process. The model is less well suited for elements such as the lanthanides and Al, which are refined more slowly. A major challenge for the prediction of the behavior of the rare earth metals is that reliable thermodynamic data for true equilibrium conditions relevant to the industrial process is not typically available in literature.

  20. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  1. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  2. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  3. Cavitating behaviour analysis of Darrieus-type cross flow water turbines

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Pellone, C.; Maître, T.

    2010-08-01

    The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.

  4. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration.

  5. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    PubMed Central

    Chen, Yan; Zhao, Cheng-qiang; Ye, Gang; Liu, Can-dong; Xu, Wen-dong

    2016-01-01

    Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome. PMID:27630706

  6. Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less

  7. Spread prediction model of continuous steel tube based on BP neural network

    NASA Astrophysics Data System (ADS)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  8. Analysis of Mach number 0.8 turboprop slipstream wing/nacelle interactions

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Neuhart, D. H.; Dahlin, J. A.

    1981-01-01

    Data from wind tunnel tests of a powered propeller and nacelle mounted on a supercritical wing are analyzed. Installation of the nacelle significantly affected the wing flow and the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over the wing nacelle that can be installed on the original wing without any appreciable interference to the wing upper surface pressure is described.

  9. Application of an efficient hybrid scheme for aeroelastic analysis of advanced propellers

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Sankar, N. L.; Reddy, T. S. R.; Huff, D. L.

    1989-01-01

    An efficient 3-D hybrid scheme is applied for solving Euler equations to analyze advanced propellers. The scheme treats the spanwise direction semi-explicitly and the other two directions implicitly, without affecting the accuracy, as compared to a fully implicit scheme. This leads to a reduction in computer time and memory requirement. The calculated power coefficients for two advanced propellers, SR3 and SR7L, and various advanced ratios showed good correlation with experiment. Spanwise distribution of elemental power coefficient and steady pressure coefficient differences also showed good agreement with experiment. A study of the effect of structural flexibility on the performance of the advanced propellers showed that structural deformation due to centrifugal and aero loading should be included for better correlation.

  10. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22  μm.

    PubMed

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory

    2017-11-01

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1  cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.

  11. The ejector-loop fermenter: Description and performance of the apparatus.

    PubMed

    Moresi, M; Bartolo Gianturco, G; Sebastiani, E

    1983-12-01

    A novel fermentation unit, the ejector-loop fermenter (ELF), consisting of an outer-loop tower fermenter, a centrifugal pump, a plate-heat exchanger, and a gas-liquid ejector, was designed and constructed. Aeration was achieved by continuously recirculating the fermentation medium through two different nozzle devices instead of using the traditional expensive air compressor. By carrying out a whey fermentation with Kluyveromyces fragilis as the test organism, either in the ELF or in conventional stirred fermenter, it was possible to confirm that the high sheat streses and mixing shock occurring in the ejector nozzle and diffuser sections did not affect microbial growth. Within the range of experimental power consumption per unit volume (-0.1-5 kW/m(3)), the oxygen transfer capability of the ELF per unit power input was found to vary from 1 to 2.5 kg O(2) kW(-1)h(-1). Moreover, it is shown that there is suficient room for improvement in the performance of the ELF unit by care fully designing the aeration device. In fact, at constant volumetric oxygen transfer coefficient, the power consumpotion per unit volume in a 4-mm nozzle was found to be about 40% less than that in a 6-mm nozzle.

  12. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less

  13. Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22 μm

    DOE PAGES

    Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...

    2017-10-18

    The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less

  14. QKD Via a Quantum Wavelength Router Using Spatial Soliton

    NASA Astrophysics Data System (ADS)

    Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.

    2011-05-01

    A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.

  15. Subtracting infrared renormalons from Wilson coefficients: Uniqueness and power dependences on ΛQCD

    NASA Astrophysics Data System (ADS)

    Mishima, Go; Sumino, Yukinari; Takaura, Hiromasa

    2017-06-01

    In the context of operator product expansion (OPE) and using the large-β0 approximation, we propose a method to define Wilson coefficients free from uncertainties due to IR renormalons. We first introduce a general observable X (Q2) with an explicit IR cutoff, and then we extract a genuine UV contribution XUV as a cutoff-independent part. XUV includes power corrections ˜(ΛQCD2/Q2)n which are independent of renormalons. Using the integration-by-regions method, we observe that XUV coincides with the leading Wilson coefficient in OPE and also clarify that the power corrections originate from UV region. We examine scheme dependence of XUV and single out a specific scheme favorable in terms of analytical properties. Our method would be optimal with respect to systematicity, analyticity and stability. We test our formulation with the examples of the Adler function, QCD force between Q Q ¯, and R -ratio in e+e- collision.

  16. Performance of the Boeing LRV wheels in a lunar soil simulant. Report 2: Effects of speed, Wheel load, and soil

    NASA Technical Reports Server (NTRS)

    Melzer, K.

    1971-01-01

    Two nearly identical Boeing-GM wire-mesh Lunar Roving Vehicle (LRV) wheels were laboratory tested in a lunar soil simulant to determine the influence of wheel speed and acceleration, wheel load, presence of a fender, travel direction, and soil strength on the wheel performance. Constant-slip and three types of programmed-slip tests were conducted with a single-wheel dynamometer system. Test results indicated that performance of single LRV wheels in terms of pull coefficient, power number, and efficiency were not influenced by wheel speed and acceleration, travel direction, the presence of a fender, or wheel load. Of these variables, only load influenced sinkage, which increased with increasing load. For a given slip, the pull coefficient and power number increased with increasing soil strength. However, for a given pull coefficient or slope, slip was less in firmer soil; thus, the power number decreased and efficiency increased with increasing soil strength.

  17. Infinite time interval backward stochastic differential equations with continuous coefficients.

    PubMed

    Zong, Zhaojun; Hu, Feng

    2016-01-01

    In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).

  18. Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perfetti, Christopher M; Rearden, Bradley T

    2013-01-01

    The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less

  19. Optimal Output of Distributed Generation Based On Complex Power Increment

    NASA Astrophysics Data System (ADS)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  20. Balancing Power Absorption Against Structural Loads With Viscous Drag and Power-Takeoff Efficiency Considerations

    DOE PAGES

    Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...

    2017-11-17

    The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less

  1. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    NASA Astrophysics Data System (ADS)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.

    2014-05-01

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  2. Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.

    PubMed

    Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem

    2015-09-01

    We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.

  3. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.

    PubMed

    Heerenbrink, M Klein; Johansson, L C; Hedenström, A

    2015-05-08

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models.

  4. Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight

    PubMed Central

    Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.

    2015-01-01

    Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098

  5. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.

  6. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  7. Analysis of the effects of boundary-layer control in the take-off and power-off landing performance characteristics of a liaison type of airplane

    NASA Technical Reports Server (NTRS)

    Horton, Elmer A; Loftin, Laurence K; Racisz, Stanley F; Quinn, John

    1951-01-01

    A performance analysis has been made to determine whether boundary-layer control by suction might reduce the minimum take-off and landing distances of a four-place or five-place airplane or a liaison type of airplane below those obtainable with conventional high-lift devices. The airplane was assumed to have a cruise duration of 5 hours at 60-percent power and to be operating from airstrips having a ground friction coefficient of 0.2 or a combined ground and braking coefficient of 0.4. The payload was fixed at 1500 pounds, the wing span was varied from 25 to 100 feet, the aspect ratio was varied from 5 to 15, and the power was varied from 300 to 1300 horsepower. Maximum lift coefficients of 5.0 and 2.8 were assumed for the airplanes with and without boundary-layer-control --equipment weight was included. The effects of the boundary-layer control on total take-off distance, total power-off landing distance, landing and take-off ground run, stalling speed, sinking speed, and gliding speed were determined.

  8. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  9. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan

    The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less

  11. Responses in large-scale structure

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  12. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03892a Click here for additional data file.

    PubMed Central

    Lilienthal, S.; Klein, M.; Orbach, R.; Willner, I.; Remacle, F.

    2017-01-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series. PMID:28507669

  13. Dynamics and locomotion of flexible foils in a frictional environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N-periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  14. Dynamics and locomotion of flexible foils in a frictional environment.

    PubMed

    Wang, Xiaolin; Alben, Silas

    2018-01-01

    Over the past few decades, oscillating flexible foils have been used to study the physics of organismal propulsion in different fluid environments. Here, we extend this work to a study of flexible foils in a frictional environment. When the foil is oscillated by heaving at one end but is not free to locomote, the dynamics change from periodic to non-periodic and chaotic as the heaving amplitude increases or the bending rigidity decreases. For friction coefficients lying in a certain range, the transition passes through a sequence of N -periodic and asymmetric states before reaching chaotic dynamics. Resonant peaks are damped and shifted by friction and large heaving amplitudes, leading to bistable states. When the foil is free to locomote, the horizontal motion smoothes the resonant behaviours. For moderate frictional coefficients, steady but slow locomotion is obtained. For large transverse friction and small tangential friction corresponding to wheeled snake robots, faster locomotion is obtained. Travelling wave motions arise spontaneously, and move with horizontal speeds that scale as transverse friction coefficient to the power 1/4 and input power that scales as the transverse friction coefficient to the power 5/12. These scalings are consistent with a boundary layer form of the solutions near the foil's leading edge.

  15. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    NASA Astrophysics Data System (ADS)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  16. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  17. Recovery of sparse translation-invariant signals with continuous basis pursuit

    PubMed Central

    Ekanadham, Chaitanya; Tranchina, Daniel; Simoncelli, Eero

    2013-01-01

    We consider the problem of decomposing a signal into a linear combination of features, each a continuously translated version of one of a small set of elementary features. Although these constituents are drawn from a continuous family, most current signal decomposition methods rely on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of basic waveforms), and apply sparse optimization methods to select and solve for the relevant coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that approximate translates of features via adjustment of their coefficients. We formulate a constrained convex optimization problem, in which the full set of dictionary coefficients represents a linear approximation of the signal, the auxiliary coefficients are constrained so as to only represent translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary interpolation functions are omitted, and we thus refer to our methodology as continuous basis pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-invariant source, one using a first-order Taylor approximation, and another using a form of trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy in these methods, demonstrating empirically that trigonometric CBP substantially outperforms Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases can generally achieve equally good or better approximations with much coarser sampling than BP, leading to a reduction in dictionary dimensionality. PMID:24352562

  18. Gas-film coefficients for streams

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1983-01-01

    Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.

  19. Co-Ordination Compounds as Sensitizers for Percussion Cap Compositions

    DTIC Science & Technology

    1949-01-01

    table. TABLE III Time elapsed (hours) Mixture Sensitivity* (inches/ £ lb.) Ballistic Pendulum » Power coefficient C. of V. of trace lengths...dimension C = 50-52. The power co-efficient is obtained by dividing the average trace length for 10 of the caps under trial by the average trace ...resulting in a high C. of V. The trace lengths as measured were as follows: 8.25, 8.30, 4.55, 10.65, 9.55, 9.0C, 8.46, 8.42, 8.21, 8.34 inches. The

  20. The SASS scattering coefficient algorithm. [Seasat-A Satellite Scatterometer

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Grantham, W. L.; Boggs, D. H.; Sweet, J. L.

    1980-01-01

    This paper describes the algorithms used to convert engineering unit data obtained from the Seasat-A satellite scatterometer (SASS) to radar scattering coefficients and associated supporting parameters. A description is given of the instrument receiver and related processing used by the scatterometer to measure signal power backscattered from the earth's surface. The applicable radar equation used for determining scattering coefficient is derived. Sample results of SASS data processed through current algorithm development facility (ADF) scattering coefficient algorithms are presented which include scattering coefficient values for both water and land surfaces. Scattering coefficient signatures for these two surface types are seen to have distinctly different characteristics. Scattering coefficient measurements of the Amazon rain forest indicate the usefulness of this type of data as a stable calibration reference target.

  1. A parameter identification method for the rotordynamic coefficients of a high Reynolds number hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Rouvas, C.; Childs, D. W.

    1993-01-01

    In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.

  2. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less

  3. Coherent Power Analysis in Multilevel Studies Using Parameters from Surveys

    ERIC Educational Resources Information Center

    Rhoads, Christopher

    2017-01-01

    Researchers designing multisite and cluster randomized trials of educational interventions will usually conduct a power analysis in the planning stage of the study. To conduct the power analysis, researchers often use estimates of intracluster correlation coefficients and effect sizes derived from an analysis of survey data. When there is…

  4. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  5. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, Vanston R.; Miller, Donald R.

    1984-01-01

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

  6. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  7. Thermoelectric properties of an interacting quantum dot based heat engine

    NASA Astrophysics Data System (ADS)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  8. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue.

    PubMed

    Drinkwater, Eric J; Galna, Brook; McKenna, Michael J; Hunt, Patrick H; Pyne, David B

    2007-05-01

    During the concentric movement of the bench press, there is an initial high-power push after chest contact, immediately followed by a characteristic area of low power, the so-called "sticking region." During high-intensity lifting, a decline in power can result in a failed lift attempt. The purpose of this study was to determine the validity of an optical encoder to measure power and then employ this device to determine power changes during the initial acceleration and sticking region during fatiguing repeated bench press training. Twelve subjects performed a free weight bench press, a Smith Machine back squat, and a Smith Machine 40-kg bench press throw for power validation measures. All barbell movements were simultaneously monitored using cinematography and an optical encoder. Eccentric and concentric mean and peak power were calculated using time and position data derived from each method. Validity of power measures between the video (criterion) and optical encoder scores were evaluated by standard error of the estimate (SEE) and coefficient of variation (CV). Seven subjects then performed 4 sets of 6 free weight bench press repetitions progressively increasing from 85 to 95% of their 6 repetition maximum, with each repetition continually monitored by an optical encoder. The SEE for power ranged from 3.6 to 14.4 W (CV, 1.0-3.0%; correlation, 0.97-1.00). During the free weight bench press training, peak power declined by approximately 55% (p < 0.01) during the initial acceleration phase of the final 2 repetitions of the final set. Although decreases in power of the sticking point were significant (p < 0.01), as early as repetition 5 (-40%) they reached critically low levels in the final 2 repetitions (>-95%). In conclusion, the optical encoder provided valid measures of kinetics during free weight resistance training movements. The decline in power during the initial acceleration phase appears a factor in a failed lift attempt at the sticking point.

  9. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  10. Zero Pearson coefficient for strongly correlated growing trees

    NASA Astrophysics Data System (ADS)

    Dorogovtsev, S. N.; Ferreira, A. L.; Goltsev, A. V.; Mendes, J. F. F.

    2010-03-01

    We obtained Pearson’s coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1) . If the number of connections of new vertices exceeds one (m>1) , then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent γ does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson’s coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  11. Zero Pearson coefficient for strongly correlated growing trees.

    PubMed

    Dorogovtsev, S N; Ferreira, A L; Goltsev, A V; Mendes, J F F

    2010-03-01

    We obtained Pearson's coefficient of strongly correlated recursive networks growing by preferential attachment of every new vertex by m edges. We found that the Pearson coefficient is exactly zero in the infinite network limit for the recursive trees (m=1). If the number of connections of new vertices exceeds one (m>1), then the Pearson coefficient in the infinite networks equals zero only when the degree distribution exponent gamma does not exceed 4. We calculated the Pearson coefficient for finite networks and observed a slow power-law-like approach to an infinite network limit. Our findings indicate that Pearson's coefficient strongly depends on size and details of networks, which makes this characteristic virtually useless for quantitative comparison of different networks.

  12. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations - Past and Present

    NASA Astrophysics Data System (ADS)

    Perez, Pedro B.; Hamawi, John N.

    2017-09-01

    Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.

  13. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia

    NASA Astrophysics Data System (ADS)

    Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.

    2010-06-01

    Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.

  14. Method of producing microporous joints in metal bodies

    DOEpatents

    Danko, Joseph C.

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  15. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    PubMed Central

    Beasley, T. Mark

    2013-01-01

    Increasing the correlation between the independent variable and the mediator (a coefficient) increases the effect size (ab) for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation due to increases in a at some point outweighs the increase of the effect size (ab) and results in a loss of statistical power. This phenomenon also occurs with nonparametric bootstrapping approaches because the variance of the bootstrap distribution of ab approximates the variance expected from normal theory. Both variances increase dramatically when a exceeds the b coefficient, thus explaining the power decline with increases in a. Implications for statistical analysis and applied researchers are discussed. PMID:24954952

  16. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  17. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  18. Impact of representation of hydraulic structures in modelling a Severn barrage

    NASA Astrophysics Data System (ADS)

    Bray, Samuel; Ahmadian, Reza; Falconer, Roger A.

    2016-04-01

    In this study, enhancements to the numerical representation of sluice gates and turbines were made to the hydro-environmental model Environmental Fluid Dynamics Code (EFDC), and applied to the Severn Tidal Power Group Cardiff-Weston Barrage. The extended domain of the EFDC Continental Shelf Model (CSM) allows far-field hydrodynamic impact assessment of the Severn Barrage, pre- and post-enhancement, to demonstrate the importance of accurate hydraulic structure representation. The enhancements were found to significantly affect peak water levels in the Bristol Channel, reducing levels by nearly 1 m in some areas, and even affect predictions as far-field as the West Coast of Scotland, albeit to a far lesser extent. The model was tested for sensitivity to changes in the discharge coefficient, Cd, used in calculating discharge through sluice gates and turbines. It was found that the performance of the Severn Barrage is not sensitive to changes to the Cd value, and is mitigated through the continual, rather than instantaneous, discharge across the structure. The EFDC CSM can now be said to be more accurately predicting the impacts of tidal range proposals, and the investigation of sensitivity to Cd improves the confidence in the modelling results, despite the uncertainty in this coefficient.

  19. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  20. Power Profiles and In Vitro Optical Quality of Scleral Contact Lenses: Effect of the Aperture and Power.

    PubMed

    Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune

    2018-05-01

    To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (P<0.05), these showed small impact in the image quality of each convolution. Insignificant power fluctuations were obtained along the optical zone measured for each scleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.

  1. An ultra-low power (ULP) bandage-type ECG sensor for efficient cardiac disease management.

    PubMed

    Shin, Kunsoo; Park, G G; Kim, J P; Lee, T H; Ko, B H; Kim, Y H

    2013-01-01

    This paper proposed an ultra-low power bandage-type ECG sensor (the size: 76 × 34 × 3 (mm(3)) and the power consumption: 1 mW) which allows for a continuous and real-time monitoring of a user's ECG signals over 24h during daily activities. For its compact size and lower power consumption, we designed the analog front-end, the SRP (Samsung Reconfigurable Processor) based DSP of 30 uW/MHz, and the ULP wireless RF of 1 nJ/bit. Also, to tackle motion artifacts(MA), a MA monitoring technique based on the HCP (Half-cell Potential) is proposed which resulted in the high correlation between the MA and the HCP, the correlation coefficient of 0.75 ± 0.18. To assess its feasibility and validity as a wearable health monitor, we performed the comparison of two ECG signals recorded form it and a conventional Holter device. As a result, the performance of the former is a little lower as compared with the latter, although showing no statistical significant difference (the quality of the signal: 94.3% vs 99.4%; the accuracy of arrhythmia detection: 93.7% vs 98.7%). With those results, it has been confirmed that it can be used as a wearable health monitor due to its comfortability, its long operation lifetime and the good quality of the measured ECG signal.

  2. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult duemore » to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.« less

  3. Unifying Pore Network Modeling, Continuous Time Random Walk Theory and Experiment - Accomplishments and Future Directions

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.

    2008-05-01

    This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact of heterogeneity is discussed. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will profoundly increase the range of velocities in the aquifer, thus considerably delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale.

  4. The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.

    NASA Astrophysics Data System (ADS)

    Loridan, V.; Ripoll, J. F.; De Vuyst, F.

    2017-12-01

    Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.

  5. The Effect of Condensate Inundation on Steam Condensation Heat Transfer to Wire-Wrapped Tubing.

    DTIC Science & Technology

    1983-06-01

    wrapped in a helical manner. The measured condensing coefficient was approximately three times that predicted by the Nusselt equation for a smooth tube...Du. Em0At Block 20 (continued) --"- condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt coefficient calculated for the...of 0.029 was found, while it was 0.061 for the roped tubes. The average condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt

  6. Reliability assessment of ballistic jump squats and bench throws.

    PubMed

    Alemany, Joseph A; Pandorf, Clay E; Montain, Scott J; Castellani, John W; Tuckow, Alexander P; Nindl, Bradley C

    2005-02-01

    The purpose of this investigation was to determine the test-retest reliability and coefficient of variation of 2 novel physical performance tests. Ten healthy men (22.0 +/- 3.0 years, 87.0 +/- 8.0 kg, 20.0 +/- 5.0% body fat) performed 30 continuous and dynamic jump squats (JS) and bench throws (BT) on 4 separate occasions. The movements were performed under loaded conditions utilizing 30% of subject's predetermined 1 repetition maximum in the back squat and bench press. Mean power (MP; W), peak power (PP; W), mean velocity (MV; m.s(-1)), peak velocity (PV; m.s(-1)), and total work (TW; J) were assessed using a ballistic measurement system (Innervations Inc., Muncie, IN). Data were analyzed using repeated measures analysis of variance with Duncan's post hoc test when mean differences were p < or = 0.05. Intraclass correlation coefficient (ICC) and within-subject coefficient of variation (CV%) were also calculated. All values are presented as mean +/- SE. BT variables were statistically similar across the 4 sessions: MP (350.0 +/- 13.9 W), PP (431.4 +/- 18.5 W) MV (1.6 +/- 0.03 m.s(-1)), PV (2.0 +/- 0.03 m.s(-1)), and TW (199.1 +/- 7.2 J). For JS, session 3 PP (1,669.8 +/- 111.2 W) was significantly greater vs. sessions 1, 2, and 4 (1,601.2 +/- 58.4 W). Session 4 MP (1,403.2 +/- 88.6 W) and MV (1.9 +/- 0.1 m.s(-1)) for JS were significantly lower during sessions 1, 2, and 3 (MP: 1,479.4.5 +/- 44.8 W, MV: 2.0 +/- 0.05 m.s(-1)). TW (834.7 +/- 24.3 J) and PV (2.2 +/- 0.04 m.s(-1)) were statistically similar during all sessions for JS. The CVs ranged from 3.0 to 7.6% for the BT and 3.2 to 5.7% for the JS. ICCs for MP, PP, MV, PV, and TW were 0.92, 0.95, 0.94, 0.91, and 0.95, respectively, during BT. ICCs during JS for MP, PP, MV, PV, and TW were 0.96, 0.98, 0.94, 0.94, and 0.89, respectively. The results of the current study support the use of a 30 continuous and dynamic BT protocol as a reliable upper-body physical performance test, which can be administered with minimal practice. Slightly greater variability for JS was observed, although the test had high reliability.

  7. Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Kehagias, Alex; Liguori, Michele; Riotto, Antonio; Shiraishi, Maresuke; Tansella, Vittorio

    2018-01-01

    Primordial inflation may represent the most powerful collider to test high-energy physics models. In this paper we study the impact on the inflationary power spectrum of the comoving curvature perturbation in the specific model where massive higher spin fields are rendered effectively massless during a de Sitter epoch through suitable couplings to the inflaton field. In particular, we show that such fields with spin s induce a distinctive statistical anisotropic signal on the power spectrum, in such a way that not only the usual g2 M-statistical anisotropy coefficients, but also higher-order ones (i.e., g4 M,g6 M,…,g(2 s -2 )M and g(2 s )M) are nonvanishing. We examine their imprints in the cosmic microwave background and galaxy power spectra. Our Fisher matrix forecasts indicate that the detectability of gL M depends very weakly on L : all coefficients could be detected in near future if their magnitudes are bigger than about 10-3.

  8. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers.

    PubMed

    Zhou, Jiawei; Zhu, Hangtian; Liu, Te-Huan; Song, Qichen; He, Ran; Mao, Jun; Liu, Zihang; Ren, Wuyang; Liao, Bolin; Singh, David J; Ren, Zhifeng; Chen, Gang

    2018-04-30

    Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

  9. Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation

    PubMed Central

    Xie, Hao; Liu, Yujia; Jin, Dayong; Santangelo, Philip J.; Xi, Peng

    2014-01-01

    Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0–2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power. PMID:24323224

  10. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  11. Inferential Procedures for Correlation Coefficients Corrected for Attenuation.

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph; And Others

    1988-01-01

    A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)

  12. Dissecting random and systematic differences between noisy composite data sets.

    PubMed

    Diederichs, Kay

    2017-04-01

    Composite data sets measured on different objects are usually affected by random errors, but may also be influenced by systematic (genuine) differences in the objects themselves, or the experimental conditions. If the individual measurements forming each data set are quantitative and approximately normally distributed, a correlation coefficient is often used to compare data sets. However, the relations between data sets are not obvious from the matrix of pairwise correlations since the numerical value of the correlation coefficient is lowered by both random and systematic differences between the data sets. This work presents a multidimensional scaling analysis of the pairwise correlation coefficients which places data sets into a unit sphere within low-dimensional space, at a position given by their CC* values [as defined by Karplus & Diederichs (2012), Science, 336, 1030-1033] in the radial direction and by their systematic differences in one or more angular directions. This dimensionality reduction can not only be used for classification purposes, but also to derive data-set relations on a continuous scale. Projecting the arrangement of data sets onto the subspace spanned by systematic differences (the surface of a unit sphere) allows, irrespective of the random-error levels, the identification of clusters of closely related data sets. The method gains power with increasing numbers of data sets. It is illustrated with an example from low signal-to-noise ratio image processing, and an application in macromolecular crystallography is shown, but the approach is completely general and thus should be widely applicable.

  13. Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs with TracePro opto-mechanical design software

    NASA Astrophysics Data System (ADS)

    Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda

    2009-02-01

    The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.

  14. Power generation costs and ultimate thermal hydraulic power limits in hypothetical advanced designs with natural circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffey, R.B.; Rohatgi, U.S.

    Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less

  15. Viscous, radiating hypersonic flow about a blunt body

    NASA Technical Reports Server (NTRS)

    Passamaneck, R. S.

    1974-01-01

    The viscous, radiating hypersonic flow past an axisymmetric blunt body is analyzed based on the Navier-Stokes equations, plus a radiative equation of transfer derived from the Milne-Eddington differential approximation. The fluid is assumed to be a perfect gas with constant specific heats, a constant Prandtl number of order unity, a viscosity coefficient varying as a power of the temperature, and an absorption coefficient varying as the first power of the density and as a power of the temperature. The gray gas assumption is invoked, thereby making the absorption coefficient independent of the spectral frequency. Limiting forms of the solutions are studied as the freestream Mach number freestream Reynolds number and the temperature ratio across the shock wave, go to infinity, and as the Bouguer number and the density ratio across the shock wave go to zero. The method of matched asymptotic expansions is used in the analysis, and it is shown that there is a far-field precursor, composed of two regions, in which the fluid mechanics can be neglected for all practical purposes but included for completeness.

  16. Flight Investigation to Determine the Effect of Jet Exhaust on Drag, Trim Characteristics, and Afterbody Pressures of a 0.125-Scale Rocket Model of the Mcdonnell F-101A Airplane

    NASA Technical Reports Server (NTRS)

    Kennedy, Thomas L.

    1956-01-01

    A flight investigation was conducted to determine the effect of jet exhaust on the drag, trim characteristics, and afterbody pressures on a 0.125-scale rocket model of the McDonnell F-101A airplance. Power-off data were obtained over a Mach number range of 1.04 to 1.9 and power-on data were obtained at a Mach number of about 1.5. The data indicated that with power-on the change in external drag coefficient was within the data accuracy and there was a decrease in trim angle of attack of 1.27 degrees with a corresponding decrease of 0.07 in lift coefficient. Correspondingly, pressure coefficients on the side and bottom of the fuselage indicated a positive increment near the jet exit. As the distance downstream of the jet exit increased, the increment on the bottom of the fuselage increased, whereas the increments on the side decreased to a negative peak.

  17. Mechanical nonlinearity elimination with a micromechanical clamped-free semicircular beams resonator

    NASA Astrophysics Data System (ADS)

    Chen, Dongyang; Chen, Xuying; Wang, Yong; Liu, Xinxin; Guan, Yangyang; Xie, Jin

    2018-04-01

    This paper reports a micro-machined clamped-free semicircular beam resonator aiming to eliminate the nonlinearity that widely exists in traditional mechanical resonators. Cubic coefficients over vibration displacement due to axial extension of the beams are analyzed through theoretical modelling, and the corresponding frequency effect is demonstrated. With the device working in the elastic vibration mode, the cubic coefficients are eliminated by using a free end to release the nonlinear extension of beams and thus the inside axial stress. The amplitude-frequency (A-f) effect is overcome in a large region of source power, and the coefficient of frequency softening is linearized in a large region of polarization voltage. As a result, the resonator can be driven at larger vibration amplitude to achieve a high signal to noise ratio and power handling performance.

  18. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK{sup −1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW permore » thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.« less

  19. Identification of unmeasured variables in the set of model constraints of the data reconciliation in a power unit

    NASA Astrophysics Data System (ADS)

    Szega, Marcin; Nowak, Grzegorz Tadeusz

    2013-12-01

    In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems

  20. Affected sib pair tests in inbred populations.

    PubMed

    Liu, W; Weir, B S

    2004-11-01

    The affected-sib-pair (ASP) method for detecting linkage between a disease locus and marker loci was first established 50 years ago, and since then numerous modifications have been made. We modify two identity-by-state (IBS) test statistics of Lange (Lange, 1986a, 1986b) to allow for inbreeding in the population. We evaluate the power and false positive rates of the modified tests under three disease models, using simulated data. Before estimating false positive rates, we demonstrate that IBS tests are tests of both linkage and linkage disequilibrium between marker and disease loci. Therefore, the null hypothesis of IBS tests should be no linkage and no LD. When the population inbreeding coefficient is large, the false positive rates of Lange's tests become much larger than the nominal value, while those of our modified tests remain close to the nominal value. To estimate power with a controlled false positive rate, we choose the cutoff values based on simulated datasets under the null hypothesis, so that both Lange's tests and the modified tests generate same false positive rate. The powers of Lange's z-test and our modified z-test are very close and do not change much with increasing inbreeding. The power of the modified chi-square test also stays stable when the inbreeding coefficient increases. However, the power of Lange's chi-square test increases with increasing inbreeding, and is larger than that of our modified chi-square test for large inbreeding coefficients. The power is high under a recessive disease model for both Lange's tests and the modified tests, though the power is low for additive and dominant disease models. Allowing for inbreeding is therefore appropriate, at least for diseases known to be recessive.

  1. Determination of rolling resistance coefficient based on normal tyre stiffness

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  2. Continuous opacity from Ne^-

    NASA Astrophysics Data System (ADS)

    John, T. L.

    1996-04-01

    Free-free absorption coefficients of the negative neon ion are calculated by the phase-shift approximation based on multiconfiguration Hartree-Fock continuum wave functions. These wave functions accurately account for electron-neon correlation and polarization, and yield scattering cross-sections in excellent agreement with the latest experimental values. The coefficients are expected to give the best current estimates of Ne^- continuous absorption. We find that Ne^- makes only a small contribution (less than 0.3 per cent) to stellar opacities, including hydrogen-deficient stars with enhanced Ne abundances.

  3. Statistical Analysis of a Round-Robin Measurement Survey of Two Candidate Materials for a Seebeck Coefficient Standard Reference Material

    DTIC Science & Technology

    2009-02-01

    data was linearly fit, and the slope yielded the Seebeck coefficient. A small resis - tor was epoxied to the top of the sample, and the oppo- site end...space probes in its radioisotope thermoelectric generators (RTGs) and is of current interest to automobile manufacturers to supply additional power... resis - tivity or conductivity, thermal conductivity, and Seebeck coefficient. These required measurements are demanding, especially the thermal

  4. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    NASA Technical Reports Server (NTRS)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  5. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men.

    PubMed

    Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2014-10-01

    To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Broadband UV spectroscopy system used for monitoring of SO 2 and NO emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.; Wang, H. S.; Somesfalean, G.; Wang, Z. Y.; Lou, X. T.; Wu, S. H.; Zhang, Z. G.; Qin, Y. K.

    2010-11-01

    A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO 2) and nitric oxide (NO) from a 220-ton h -1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO 2 and NO from the CFB boiler fluctuated in the range of 750-1300 mg m -3 and 100-220 mg m -3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO 2 and lower for NO. The relatively high emission concentrations of SO 2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.

  7. Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Hatzikraniotis, E.; Zorbas, K. T.; Samaras, I.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2010-09-01

    Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.

  8. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SHG in DASMS single-crystal film producing ultraviolet

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Khatavkar, Sanchit; Thakur, Mrinal

    2002-03-01

    Single-crystal film of the molecular salt, DASMS (noncentrosymmetric phase), has been grown using the modified shear method.^1 The DASMS film is orange in color, showing strong birefringence. The absorption spectrum of DASMS has a maximum at 590 nm, with the onset at about 600 nm and continuing to UV but with a dip around 400 nm. Such a spectrum allows efficient SHG at short wavelengths (400 nm). A Ti:Sapphire laser producing 200 fs pulses at 82 MHz with an average power of 50mW was used for the SHG experiment. The fundamental wavelength was 760nm giving SHG at 380 nm corresponding to the dip in the absorption spectrum. The beam was focused on the film using a 4" focal length lens. From the power measurements, an efficiency of 0.1% in SHG has been observed in a 1μm thick film indicating that the magnitude of d-coefficient is larger than 2000 pm/V. 1. M. Thakur and S. Meyler, Macromolecules, 18 2341 (1985); M. Thakur, Y. Shani, G.C. Chi and K. O'Brien, Synth. Met., 28 D595 (1989).

  10. Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling.

    PubMed

    Maier, Thomas; Schmid, Lucas; Müller, Beat; Steiner, Thomas; Wehrlin, Jon Peter

    2017-06-01

    The aim of this study was to compare the accuracy among a high number of current mobile cycling power meters used by elite and recreational cyclists against a first principle-based mathematical model of treadmill cycling. 54 power meters from 9 manufacturers used by 32 cyclists were calibrated. While the cyclist coasted downhill on a motorised treadmill, a back-pulling system was adjusted to counter the downhill force. The system was then loaded 3 times with 4 different masses while the cyclist pedalled to keep his position. The mean deviation (trueness) to the model and coefficient of variation (precision) were analysed. The mean deviations of the power meters were -0.9±3.2% (mean±SD) with 6 power meters deviating by more than±5%. The coefficients of variation of the power meters were 1.2±0.9% (mean±SD), with Stages varying more than SRM (p<0.001) and PowerTap (p<0.001). In conclusion, current power meters used by elite and recreational cyclists vary considerably in their trueness; precision is generally high but differs between manufacturers. Calibrating and adjusting the trueness of every power meter against a first principle-based reference is advised for accurate measurements. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Self-organization of developing embryo using scale-invariant approach

    PubMed Central

    2011-01-01

    Background Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. Methods In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. Results and conclusion The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. PMID:21635789

  12. Self-organization of developing embryo using scale-invariant approach.

    PubMed

    Tiraihi, Ali; Tiraihi, Mujtaba; Tiraihi, Taki

    2011-06-03

    Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. © 2011 Tiraihi et al; licensee BioMed Central Ltd.

  13. Pitch and heave dynamics of an elastically-mounted cyber-physical hydrofoil

    NASA Astrophysics Data System (ADS)

    Su, Yunxing; Onoue, Kyohei; Miller, Michael; Breuer, Kenneth

    2017-11-01

    The energy harvesting performance of an elastically-mounted hydrofoil (chord, c, span, s) subject to a prescribed pitching motion is studied using a cyber-physical force-feedback control system. We vary the mass, m, the frequency of the pitching motion, ω, the parameters of the elastic support (stiffness, k and damping, b) and the Reynolds number, Re . The extracted energy is obtained from measured heave force and velocity, Fẏ . The ratio between the pitching frequency and the natural frequency of the system, ω /√{ k / m } , and the damping coefficient, b / (0.5 ρUsc) , are found to play a major role. In particular, the maximum power output is achieved at a frequency ratio of 1, which corresponds to an optimal phase difference of 90° between the driven pitch and passive heave motions. At the resonance condition, the damping coefficient defines the heaving amplitude, H, and thus the width of the wake and the Strouhal number, St = fH / U . The power coefficient, Cp = < Fẏ / (0.5 ρU3 sc) > , reaches a maximum of 0.65 at a damping coefficient around 1.5, regardless of the Reynolds number (Re = 20,000 - 55,000). The contribution of the pitch component to power extraction is found to be small (< 10% of the heave component). This work is funded by ARPA-e.

  14. A new method for flight test determination of propulsive efficiency and drag coefficient

    NASA Technical Reports Server (NTRS)

    Bull, G.; Bridges, P. D.

    1983-01-01

    A flight test method is described from which propulsive efficiency as well as parasite and induced drag coefficients can be directly determined using relatively simple instrumentation and analysis techniques. The method uses information contained in the transient response in airspeed for a small power change in level flight in addition to the usual measurement of power required for level flight. Measurements of pitch angle and longitudinal and normal acceleration are eliminated. The theoretical basis for the method, the analytical techniques used, and the results of application of the method to flight test data are presented.

  15. Investigation of thermoelectricity in KScSn half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  16. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  17. Numerical investigation of impact of relative humidity on droplet accumulation and film cooling on compressor blades

    NASA Astrophysics Data System (ADS)

    Bugarin, Luz Irene

    During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.

  18. Poincaré plot analysis of autocorrelation function of RR intervals in patients with acute myocardial infarction.

    PubMed

    Chuang, Shin-Shin; Wu, Kung-Tai; Lin, Chen-Yang; Lee, Steven; Chen, Gau-Yang; Kuo, Cheng-Deng

    2014-08-01

    The Poincaré plot of RR intervals (RRI) is obtained by plotting RRIn+1 against RRIn. The Pearson correlation coefficient (ρRRI), slope (SRRI), Y-intercept (YRRI), standard deviation of instantaneous beat-to-beat RRI variability (SD1RR), and standard deviation of continuous long-term RRI variability (SD2RR) can be defined to characterize the plot. Similarly, the Poincaré plot of autocorrelation function (ACF) of RRI can be obtained by plotting ACFk+1 against ACFk. The corresponding Pearson correlation coefficient (ρACF), slope (SACF), Y-intercept (YACF), SD1ACF, and SD2ACF can be defined similarly to characterize the plot. By comparing the indices of Poincaré plots of RRI and ACF between patients with acute myocardial infarction (AMI) and patients with patent coronary artery (PCA), we found that the ρACF and SACF were significantly larger, whereas the RMSSDACF/SDACF and SD1ACF/SD2ACF were significantly smaller in AMI patients. The ρACF and SACF correlated significantly and negatively with normalized high-frequency power (nHFP), and significantly and positively with normalized very low-frequency power (nVLFP) of heart rate variability in both groups of patients. On the contrary, the RMSSDACF/SDACF and SD1ACF/SD2ACF correlated significantly and positively with nHFP, and significantly and negatively with nVLFP and low-/high-frequency power ratio (LHR) in both groups of patients. We concluded that the ρACF, SACF, RMSSDACF/SDACF, and SD1ACF/SD2ACF, among many other indices of ACF Poincaré plot, can be used to differentiate between patients with AMI and patients with PCA, and that the increase in ρACF and SACF and the decrease in RMSSDACF/SDACF and SD1ACF/SD2ACF suggest an increased sympathetic and decreased vagal modulations in both groups of patients.

  19. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    NASA Astrophysics Data System (ADS)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  20. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  1. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-08

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  2. Sample size determination for a three-arm equivalence trial of Poisson and negative binomial responses.

    PubMed

    Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen

    2017-01-01

    Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.

  3. Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats

    USGS Publications Warehouse

    Thogmartin, Wayne E.; McKann, Patrick C.

    2014-01-01

    Power laws describe the functional relationship between 2 quantities, such as the frequency of a group as the multiplicative power of group size. We examined whether the annual size of well-surveyed wintering populations of endangered Indiana bats (Myotis sodalis) followed a power law, and then leveraged this relationship to predict whether the aggregation of Indiana bats in winter was influenced by global climate processes. We determined that Indiana bat wintering populations were distributed according to a power law (mean scaling coefficient α = −0.44 [95% confidence interval {95% CI} = −0.61, −0.28). The antilog of these annual scaling coefficients ranged between 0.67 and 0.81, coincident with the three-fourths power found in many other biological phenomena. We associated temporal patterns in the annual (1983–2011) scaling coefficient with the North Atlantic Oscillation (NAO) index in August (βNAOAugust = −0.017 [90% CI = −0.032, −0.002]), when Indiana bats are deciding when and where to hibernate. After accounting for the strong effect of philopatry to habitual wintering locations, Indiana bats aggregated in larger wintering populations during periods of severe winter and in smaller populations in milder winters. The association with August values of the NAO indicates that bats anticipate future winter weather conditions when deciding where to roost, a heretofore unrecognized role for prehibernation swarming behavior. Future research is needed to understand whether the three-fourths–scaling patterns we observed are related to scaling in metabolism.

  4. Mode Propagation in Nonuniform Circular Ducts with Potential Flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; Ingard, K. U.

    1982-01-01

    A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.

  5. On the continuity of the stationary state distribution of DPCM

    NASA Astrophysics Data System (ADS)

    Naraghi-Pour, Morteza; Neuhoff, David L.

    1990-03-01

    Continuity and singularity properties of the stationary state distribution of differential pulse code modulation (DPCM) are explored. Two-level DPCM (i.e., delta modulation) operating on a first-order autoregressive source is considered, and it is shown that, when the magnitude of the DPCM prediciton coefficient is between zero and one-half, the stationary state distribution is singularly continuous; i.e., it is not discrete but concentrates on an uncountable set with a Lebesgue measure of zero. Consequently, it cannot be represented with a probability density function. For prediction coefficients with magnitude greater than or equal to one-half, the distribution is pure, i.e., either absolutely continuous and representable with a density function, or singular. This problem is compared to the well-known and still substantially unsolved problem of symmetric Bernoulli convolutions.

  6. Fuselage and nozzle pressure distributions on a 1/12-scale F-15 propulsion model at transonic speeds. [conducted in langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.

    1979-01-01

    Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model were determined. The effects of nozzle power setting and horizontal tail deflection angle on the pressure coefficient distributions were investigated.

  7. Integer Solutions of Binomial Coefficients

    ERIC Educational Resources Information Center

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  8. The Determination of Soil-plant Transfer Coefficients of Cesium-137 and Other Elements by γ-Ray Measurement and PIXE Analysis, for use in the Remediation of Fukushima

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Fujita, A.; Toyama, S.; Terakawa, A.; Matsuyama, S.; Arai, H.; Osada, N.; Takyu, S.; Matsuyama, T.; Koshio, S.; Watanabe, K.; Ito, S.; Kasahara, K.

    Edible wild plants growing in the area around the Fukushima Daiichi nuclear power plant remain contaminated. It is important to identify plants with low levels of contamination for the restoration of agriculture in the area. We collected specimens of 10 wild plant species growing in Iitate village which is one of the most highly contaminated areas and also sampled the soil beneath each plant. We measured the specific activity of 137Cs and the concentrations of Na, Mg, Al, Si, P, S, K, Ca, Fe, Zn, Rb and Sr in these samples using a germanium detector and PIXE analysis, respectively. We compared the soil-plant transfer coefficient of 137Cs with those of each element and determined their correlation with 137Cs. It was found that a low Sr transfer coefficient could be used to determine the plants with a low 137Cs transfer coefficient. We suggest that PIXE analysis is a useful analysis technique for agricultural remediation projects in highly contaminated areas around the Fukushima Daiichi nuclear power plant.

  9. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  10. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    PubMed

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  11. Analysis and design of continuous class-E power amplifier at sub-nominal condition

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Kai; Zhang, Tianliang

    2017-12-01

    The continuous class-E power amplifier at sub-nominal condition is proposed in this paper. The class-E power amplifier at continuous mode means it can be high efficient on a series matching networks while at sub-nominal condition means it only requires the zero-voltage-switching condition. Comparing with the classical class-E power amplifier, the proposed design method releases two additional design freedoms, which increase the class-E power amplifier's design flexibility. Also, the proposed continuous class-E power amplifier at sub-nominal condition can perform high efficiency over a broad bandwidth. The performance study of the continuous class-E power amplifier at sub-nominal condition is derived and the design procedure is summarised. The normalised switch voltage and current waveforms are investigated. Furthermore, the influences of different sub-nominal conditions on the power losses of the switch-on resistor and the output power capability are also discussed. A broadband continuous class-E power amplifier based on a Gallium Nitride (GaN) transistor is designed and testified to verify the proposed design methodology. The measurement results show, it can deliver 10-15 W output power with 64-73% power-added efficiency over 1.4-2.8 GHz.

  12. Membranes produced by plasma enhanced chemical vapor deposition technique for low temperature fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ennajdaoui, Aboubakr; Roualdes, Stéphanie; Brault, Pascal; Durand, Jean

    A plasma polymerization process using a continuous glow discharge has been implemented for preparing proton conducting membranes from trifluoromethane sulfonic acid and styrene. The chemical and physical structure of plasma membranes has been investigated using FTIR and SEM. The films are homogeneous with a good adhesion on commercial gas diffusion layer (E-Tek ®). Their deposition rate can be increased with increasing flow rate and input power. The thermogravimetric analysis under air of plasma polymers has showed a thermal stability up to 140 °C. Compared to the pulsed glow discharge studied in a previous paper, the continuous glow discharge has enabled to enhance the proton conductivity of membranes by a factor 3 (up to 1.7 mS cm -1). Moreover, the low methanol permeability (methanol diffusion coefficient down to 5 × 10 -13 m 2 s -1) of membranes has been confirmed by this study. In an industrial context, a reactor prototype has been developed to manufacture by plasma processes all active layers of fuel cell cores to be integrated in original compact PEMFC or DMFC.

  13. Power spectrum analysis with least-squares fitting: amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers.

    PubMed

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2010-07-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and +1/n on the value of the fitted diffusion coefficient. Here, n is the number of power spectra averaged over, so typical calibrations contain 10%-20% bias. Both the sign and the size of the bias depend on the weighting scheme applied. Hence, so do length-scale calibrations based on the diffusion coefficient. The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self-interaction and aliasing, calibration of Ornstein-Uhlenbeck models in finance, models for cell migration in biology, etc. Because the bias takes the form of a simple multiplicative factor on the fitted amplitude (e.g. the diffusion coefficient), it is straightforward to remove and the user will need minimal modifications to his or her favorite least-squares fitting programs. Results are demonstrated and illustrated using synthetic data, so we can compare fits with known true values. We also fit some commonly occurring power spectra once-and-for-all in the sense that we give their parameter values and associated error bars as explicit functions of experimental power-spectral values.

  14. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  15. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  16. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  17. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  18. Consumptive Water-Use Coefficients for the Great Lakes Basin and Climatically Similar Areas

    USGS Publications Warehouse

    Shaffer, Kimberly H.; Runkle, Donna L.

    2007-01-01

    Consumptive water use is the portion of water withdrawn (for a particular use) that is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. This report, which is organized by water?use categories, includes consumptive?use coefficients for the Great Lakes Basin (including Canada) and for areas climatically similar to the Great Lakes Basin. This report also contains an annotated bibliography of consumptive water?use coefficients. Selected references are listed for consumptive?use data from elsewhere in the world. For the industrial water?use category, the median consumptive?use coefficients were 10 percent for the Great Lakes Basin, climatically similar areas, and the world; the 25th and 75th percentiles for these geographic areas were comparable within 6 percent. The combined domestic and public?supply consumptive?use statistics (median, 25th and 75th percentiles) were between 10 to 20 percent for the various geographic areas. Although summary statistics were similar for coefficients in the livestock and irrigation water?use categories for the Great Lakes Basin and climatically similar areas, statistic values for the world on a whole were substantially lower (15 to 28 percent lower). Commercial and thermoelectric power consumptive?use coefficient statistics (median, 25th, and 75th percentile) also were comparable for the Great Lakes Basin and climatically similar areas, within 2 percent. References for other countries were not found for commercial and thermoelectric power water?use categories. The summary statistics for the mining consumptive?use coefficients varied, likely because of differences in types of mining, processes, or equipment.

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  20. Phototherapy for Improvement of Performance and Exercise Recovery: Comparison of 3 Commercially Available Devices.

    PubMed

    De Marchi, Thiago; Schmitt, Vinicius Mazzochi; Danúbia da Silva Fabro, Carla; da Silva, Larissa Lopes; Sene, Juliane; Tairova, Olga; Salvador, Mirian

    2017-05-01

      Recent studies suggest the prophylactic use of low-powered laser/light has ergogenic effects on athletic performance and postactivity recovery. Manufacturers of high-powered lasers/light devices claim that these can produce the same clinical benefits with increased power and decreased irradiation time; however, research with high-powered lasers is lacking.   To evaluate the magnitude of observed phototherapeutic effects with 3 commercially available devices.   Randomized double-blind placebo-controlled study.   Laboratory.   Forty healthy untrained male participants.   Participants were randomized into 4 groups: placebo, high-powered continuous laser/light, low-powered continuous laser/light, or low-powered pulsed laser/light (comprising both lasers and light-emitting diodes). A single dose of 180 J or placebo was applied to the quadriceps.   Maximum voluntary contraction, delayed-onset muscle soreness (DOMS), and creatine kinase (CK) activity from baseline to 96 hours after the eccentric exercise protocol.   Maximum voluntary contraction was maintained in the low-powered pulsed laser/light group compared with placebo and high-powered continuous laser/light groups in all time points (P < .05). Low-powered pulsed laser/light demonstrated less DOMS than all groups at all time points (P < .05). High-powered continuous laser/light did not demonstrate any positive effects on maximum voluntary contraction, CK activity, or DOMS compared with any group at any time point. Creatine kinase activity was decreased in low-powered pulsed laser/light compared with placebo (P < .05) and high-powered continuous laser/light (P < .05) at all time points. High-powered continuous laser/light resulted in increased CK activity compared with placebo from 1 to 24 hours (P < .05).   Low-powered pulsed laser/light demonstrated better results than either low-powered continuous laser/light or high-powered continuous laser/light in all outcome measures when compared with placebo. The increase in CK activity using the high-powered continuous laser/light compared with placebo warrants further research to investigate its effect on other factors related to muscle damage.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes withmore » the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.« less

  2. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    PubMed Central

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  3. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  4. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  5. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    NASA Astrophysics Data System (ADS)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  6. Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravante, Steve; Fenske, George; Demas, Nicholas

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less

  7. Sample Size Calculation for Estimating or Testing a Nonzero Squared Multiple Correlation Coefficient

    ERIC Educational Resources Information Center

    Krishnamoorthy, K.; Xia, Yanping

    2008-01-01

    The problems of hypothesis testing and interval estimation of the squared multiple correlation coefficient of a multivariate normal distribution are considered. It is shown that available one-sided tests are uniformly most powerful, and the one-sided confidence intervals are uniformly most accurate. An exact method of calculating sample size to…

  8. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  9. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    NASA Technical Reports Server (NTRS)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph

    2016-01-01

    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  10. Initial Ship Design Using a Pearson Correlation Coefficient and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Moon, Byung Young; Kim, Soo Young; Kang, Gyung Ju

    In this paper we analyzed correlation between geometrical character and resistance, and effective horse power by using Pearson correlation coefficient which is one of the data mining methods. Also we made input data to ship's geometrical character which has strong correlation with output data. We calculated effective horse power and resistance by using Neuro-Fuzzy system. To verify the calculation, 9 of 11 container ships' data were improved as data of Neuro-Fuzzy system and the others were improved as verification data. After analyzing rate of error between existing data and calculation data, we concluded that calculation data have sound agreement with existing data.

  11. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  12. Lack of maintenance of shortwave diathermy equipment has a negative impact on power output.

    PubMed

    Guirro, Rinaldo Roberto de Jesus; Guirro, Elaine Caldeira de Oliveira; Alves de Sousa, Natanael Teixeira

    2014-04-01

    Although shortwave diathermy has been widely used by physiotherapists, there are a few studies assessing the performance of the equipment in use. The aim of the present study was to evaluate the procedures adopted by physiotherapists as users of shortwave diathermy continuous (CSWD), as well as to measure the power output and frequency of CSWD equipment. [Subjects and Methods] Twenty-three physical therapists were interviewed and 23 CSWD equipment were evaluated. Admeasurement was carried out by using a standard phantom to simulate the electrode-skin distance, which ranged from 0.5 to 3.0 cm. Data analysis was performed by using descriptive statistics, ANOVA, and a post-hoc Tukey's test or Pearson's correlation coefficient. [Results] The questionnaires showed that 48% of the interviewees use the correct electrode-skin distance, 70% use a single electrical outlet, and 35% use a grounded electrical outlet, and that 48% of the physiotherapy tables and 61% of the plinths were made of wood. However, only 13% of the interviewees perform yearly preventive maintenance. The highest power (95.56 W) was achieved at electrode-skin distances ranging from 1.0 to 1.5 cm, with distances of 2.5 cm and 3.0 cm being null in four and eight equipment, respectively. There was a negative correlation between power output and electrode-skin distance as well as between power output and purchase date. [Conclusion] The physiotherapists involved in this study had inadequate knowledge about the correct use of CSWD equipment, which may adversely affect its performance and patient safety.

  13. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.

  14. Electric Power Consumption Coefficients for U.S. Industries: Regional Estimation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo

    Economic activity relies on electric power provided by electrical generation, transmission, and distribution systems. This paper presents a method developed at Los Alamos National Laboratory to estimate electric power consumption by different industries in the United States. Results are validated through comparisons with existing literature and benchmarking data sources. We also discuss the limitations and applications of the presented method, such as estimating indirect electric power consumption and assessing the economic impact of power outages based on input-output economic models.

  15. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  16. Efficiency estimation method of three-wired AC to DC line transfer

    NASA Astrophysics Data System (ADS)

    Solovev, S. V.; Bardanov, A. I.

    2018-05-01

    The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.

  17. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    PubMed

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  18. Getting super-excited with modified dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal

    We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating themore » power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.« less

  19. Investigation of a 4.5-Inch-Mean-Diameter Two-Stage Axial-Flow Turbine Suitable for Auxiliary Power Drives

    NASA Technical Reports Server (NTRS)

    Wong, Robert Y.; Monroe, Daniel E.

    1959-01-01

    The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.

  20. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  1. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  2. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    NASA Astrophysics Data System (ADS)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  3. Theoretical Determination of Axial Fan Performance

    NASA Technical Reports Server (NTRS)

    Struve, E.

    1943-01-01

    The report presents a method for the computation of axial fan characteristics. The method is based on the assumption that the law of constancy of the circulation along the blade holds, approximately, for all fan conditions for which the blade elements operate at normal angles of attack (up to the stalling angles). Pressure head coefficient K(sub a) and power coefficient K(sub u) for the force components in the axial and tangential directions, respectively, and analogous to the lift and drag coefficients C(sub y) and C(sub x) are conveniently introduced.

  4. A spline-based parameter estimation technique for static models of elastic structures

    NASA Technical Reports Server (NTRS)

    Dutt, P.; Taasan, S.

    1986-01-01

    The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.

  5. Laterally coupled distributed feedback lasers emitting at 2 μm with quantum dash active region and high-duty-cycle etched semiconductor gratings

    NASA Astrophysics Data System (ADS)

    Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim

    2017-02-01

    Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.

  6. Wavelet-based Encoding Scheme for Controlling Size of Compressed ECG Segments in Telecardiology Systems.

    PubMed

    Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben

    2017-09-12

    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.

  7. Experimental study on the sound absorption characteristics of continuously graded phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Qu, Z. G.; He, X. C.; Lu, D. L.

    2016-10-01

    Novel three-dimensional (3D) continuously graded phononic crystals (CGPCs) have been designed, and fabricated by 3D printing. Each of the CGPCs is an entity instead of a combination of several other samples, and the porosity distribution of the CGPC along the incident direction is nearly linear. The sound absorption characteristics of CGPCs were experimentally investigated and compared with those of uniform phononic crystals (UPCs) and discretely stepped phononic crystals (DSPCs). Experimental results show that CGPCs demonstrate excellent sound absorption performance because of their continuously graded structures. CGPCs have higher sound absorption coefficients in the large frequency range and more sound absorption coefficient peaks in a specific frequency range than UPCs and DSPCs. In particular, the sound absorption coefficients of the CGPC with a porosity of 0.6 and thickness of 30 mm are higher than 0.56 when the frequency is 1350-6300 Hz and are all higher than 0.2 in the studied frequency range (1000-6300 Hz). CGPCs are expected to have potential application in noise control, especially in the broad frequency and low-frequency ranges.

  8. Analysis of oscillatory motion of a light airplane at high values of lift coefficient

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1983-01-01

    A modified stepwise regression is applied to flight data from a light research air-plane operating at high angles at attack. The well-known phenomenon referred to as buckling or porpoising is analyzed and modeled using both power series and spline expansions of the aerodynamic force and moment coefficients associated with the longitudinal equations of motion.

  9. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    USDA-ARS?s Scientific Manuscript database

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  10. Development of stock correlation networks using mutual information and financial big data.

    PubMed

    Guo, Xue; Zhang, Hu; Tian, Tianhai

    2018-01-01

    Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices.

  11. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  12. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka; Slosar, Anze

    2017-01-01

    The Lyman-alpha forest has become a powerful cosmological probe of the underlying matter distribution at high redshift. It is a highly non-linear field with much information present beyond the two-point statistics of the power spectrum. The flux probability distribution function (PDF) in particular has been used as a successful probe of small-scale physics. In addition to the cosmological evolution however, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over the binned PDF as is commonly done. Since the n-th coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. In addition, we use hydrodynamic cosmological simulations to demonstrate that in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a finite small number of well-measured quantities.

  13. The washout of combustion-generated hydrogen chloride. [rocket exhaust raindrop scavenging quantification

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.; Hrdina, D.; Knutson, E. O.

    1980-01-01

    The coefficient for the washout from a rocket exhaust cloud of HCl generated by the combustion of an ammonium perchlorate-based solid rocket propellant such as that to be used for the Space Shuttle Booster is determined. A mathematical model of HCl scavenging by rain is developed taking into account rain droplet size, fall velocity and concentration under various rain conditions, partitioning of exhaust HCl between liquid and gaseous phases, the tendency of HCl to promote water vapor condensation and the concentration and size of droplets within the exhaust cloud. The washout coefficient is calculated as a function of total cloud water content, total HCl content at 100% relative humidity, condensation nuclei concentration and rain intensity. The model predictions are compared with experimental results obtained in scavenging tests with solid rocket exhaust and raindrops of different sizes, and the large reduction in washout coefficient at high relative humidities predicted by the model is not observed. A washout coefficient equal to 0.0000512 times the -0.176 power of the mass concentration of HCl times the 0.773 power of the rainfall intensity is obtained from the experimental data.

  14. Principal shapes and squeezed limits in the effective field theory of large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less

  15. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka; Slosar, Anze

    2018-01-01

    The Lyman-alpha forest has become a powerful cosmological probe at intermediate redshift. It is a highly non-linear field with much information present beyond the power spectrum. The flux probability flux distribution (PDF) in particular has been a successful probe of small scale physics. However, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring the coefficients of the Legendre polynomial expansion of the PDF offers several advantages over measuring the binned values as is commonly done. Since the n-th Legendre coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. Additionally, in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a small amount of well-measured quantities. Finally, we find that measuring fewer quasars with high signal-to-noise produces a higher amount of recoverable information.

  16. Development of stock correlation networks using mutual information and financial big data

    PubMed Central

    Guo, Xue; Zhang, Hu

    2018-01-01

    Stock correlation networks use stock price data to explore the relationship between different stocks listed in the stock market. Currently this relationship is dominantly measured by the Pearson correlation coefficient. However, financial data suggest that nonlinear relationships may exist in the stock prices of different shares. To address this issue, this work uses mutual information to characterize the nonlinear relationship between stocks. Using 280 stocks traded at the Shanghai Stocks Exchange in China during the period of 2014-2016, we first compare the effectiveness of the correlation coefficient and mutual information for measuring stock relationships. Based on these two measures, we then develop two stock networks using the Minimum Spanning Tree method and study the topological properties of these networks, including degree, path length and the power-law distribution. The relationship network based on mutual information has a better distribution of the degree and larger value of the power-law distribution than those using the correlation coefficient. Numerical results show that mutual information is a more effective approach than the correlation coefficient to measure the stock relationship in a stock market that may undergo large fluctuations of stock prices. PMID:29668715

  17. A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting

    PubMed Central

    Wang, Hongguang

    2018-01-01

    Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting. PMID:29768450

  18. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.

    PubMed

    Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T

    2011-02-01

    The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  20. Comparison of Measures of Predictive Power.

    ERIC Educational Resources Information Center

    Tarling, Roger

    1982-01-01

    The Mean Cost Rating, P(A) from Signal Detection Theory, Kendall's rank correlation coefficient tau, and Goodman and Kruskal's gamma measures of predictive power are compared and shown to be different transformations of the statistic S. Gamma is generally preferred for hypothesis testing. Measures of association for ordered contingency tables are…

  1. 40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...

  2. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  3. Demonstration of Scalable Nernst Voltage in a Coiled Galfenol Wire

    NASA Astrophysics Data System (ADS)

    Codecido, Emilio; Yang, Zihao; Marquez, Jason; Zheng, Yuanhua; Heremans, Joseph; Myers, Roberto

    Transverse thermopower by the Nernst effect is usually considered far too weak an effect for waste heat recovery and power generation. We propose that magnetostriction provides a pathway to enhance the Nernst effect because it increases phonon and magnon coupling. Here, we measure the Nernst coefficient in the magnetostrictive alloy, Galfenol (Fe0.85Ga0.15) and observe an extraordinarily large Nernst coefficient at room temperature of 4 μV/KT. Next we demonstrate a new geometry for efficient and low cost power generation by wrapping Galfenol wire around a hot cylinder. This coil geometry results in a radial temperature gradient direction. With a magnetic field applied in the axial direction, a uniform Nernst electric field is produced along the azimuthal direction at every point along the coil. As a result of this geometry, the Nernst voltage is shown to increase linearly with wire length, proving the concept of scalable Nernst thermal power generation.

  4. Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers

    PubMed Central

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047

  5. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of velocities in the reservoir, thus significantly delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale. This is illustrated by the multi-scale approach in which transport at core, gridblock and field scale is viewed as a series of particle transitions between discrete nodes governed by probability distributions. At each scale of interest a distribution that represents transport physics (and the heterogeneity) is used as an input to model a subsequent reservoir scale. The extensions to reactive transport are discussed.

  6. Neurometric assessment of intraoperative anesthetic

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1998-01-01

    The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administer the correct amount of anesthetic.

  7. High powered rocketry: design, construction, and launching experience and analysis

    NASA Astrophysics Data System (ADS)

    Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Owens Cyr, Waycen; Lamsal, Chiranjivi

    2018-01-01

    In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined by using altitude back-tracking method and found to be 0.825. Speed of the exhaust determined to be 2.5 km s-1 by analyzing the thrust curve of the rocket. Acceleration in the coasting phase of the flight, represented by the second-degree polynomial of a small leading coefficient, have been found to approach ‘-g’ asymptotically.

  8. Wind-Tunnel Investigation at Low Speed of the Pitching Stability Derivatives of a 1/9-Scale Powered Model of the Convair XFY-1 Vertically Rising Airplane, TED No. NACA DE 373

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.

    1953-01-01

    An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.

  9. Spiraling elliptic Laguerre-Gaussian soliton in isotropic nonlocal competing cubic-quintic nonlinear media

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Li, JingZhen; Xie, WeiXin

    2018-06-01

    This paper introduce a kind of spiraling elliptic Laguerre-Gaussian (SELG) soliton which has complicated structures in its profile and phase, and find that it can be formed in nonlocal cubic, quantic and competing cubic-quintic nonlinear media, respectively. The different-order SELG solitons with the same ellipticity have the same rotation period, cross-term phase coefficient, critical power and different critical orbital angular momentums (OAM). However, with the increase of ellipticity, the rotation period, cross-term phase coefficient, critical power and OAM are all increased. In particular, there are bistable SELG solitons stemmed by the competing effect between self-focusing cubic and self-defocusing quintic nonlinearities.

  10. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  11. Improvement of the variable storage coefficient method with water surface gradient as a variable

    USDA-ARS?s Scientific Manuscript database

    The variable storage coefficient (VSC) method has been used for streamflow routing in continuous hydrological simulation models such as the Agricultural Policy/Environmental eXtender (APEX) and the Soil and Water Assessment Tool (SWAT) for more than 30 years. APEX operates on a daily time step and ...

  12. The Free-Free Absorption Coefficients of the Negative Helium Ion

    NASA Astrophysics Data System (ADS)

    John, T. L.

    1994-08-01

    Free-free absorption coefficients of the negative helium ion are calculated by a phaseshift approximation, using continuum data that accurately account for electron-atom correlation and polarization. The approximation is considered to yield results within a few per cent of numerical values for wavelengths greater than 1 m, over the temperature range 1400-10080 K. These coefficients are expected to give the best current estimates of He - continuous absorption. Key words: atomic data - atomic processes - stars: atmospheres - infrared: general.

  13. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization.

    PubMed

    Bayiz, Yagiz; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-05-08

    In this work, a multi-objective optimization framework is developed for optimizing low Reynolds number ([Formula: see text]) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying [Formula: see text] and Rossby number ([Formula: see text], or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing the lift coefficient and minimizing the power coefficient in dimensionless space, explicitly revealing the trade-off between lift generation and power consumption. The results indicate that revolving wings are more efficient when the required average lift coefficient [Formula: see text] is low (<1 for [Formula: see text] and  <1.6 for [Formula: see text]), while flapping wings are more efficient in achieving higher [Formula: see text]. With the dimensionless power loading as the single-objective performance measure to be maximized, rotary flight is more efficient than flapping wings for [Formula: see text] regardless of the amount of energy storage assumed in the flapping wing actuation mechanism, while flapping flight is more efficient for [Formula: see text]. It is observed that wings with low [Formula: see text] perform better when higher [Formula: see text] is needed, whereas higher [Formula: see text] cases are more efficient at [Formula: see text] regions. However, for the selected geometry and [Formula: see text], the efficiency is weakly dependent on [Formula: see text] when the dimensionless power loading is maximized.

  14. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  15. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  16. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  17. An agreement coefficient for image comparison

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin

    2006-01-01

    Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison.

  18. A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning

    2011-01-01

    Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (< 10(exp 4) pC/N). For instance, more than 80% of PEHT related papers are on transverse "31" mode cantilever beam type PEHTs (CBPEHTs) having piezoelectric coefficients of about 100 pC/N. The level of harvested electrical power for CBPEHTs is on the order of microW even at resonance mode. In order to harvest more electrical energy across broader bandwidth, high effective piezoelectric coefficient structures are needed. In this study, we investigate a "33" longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting for the PZT-Stack is established. The modeled results matched well with experimental measurements. This study demonstrated that high effective piezoelectric coefficient structures enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-footprint PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer stacks for active or semi-active adaptive control to damp, harvest or transform unwanted dynamic vibrations into useful electrical energy.

  19. A Study of Reasons for Participation in Continuing Professional Education in the U.S. Nuclear Power Industry

    ERIC Educational Resources Information Center

    McCamey, Randy B.

    2003-01-01

    The need for workers in the U.S. nuclear power industry to continually update their knowledge, skills, and abilities is critical to the safe and reliable operation of the country's nuclear power facilities. To improve their skills, knowledge, and abilities, many professionals in the nuclear power industry participate in continuing professional…

  20. Consequences of Base Time for Redundant Signals Experiments

    PubMed Central

    Townsend, James T.; Honey, Christopher

    2007-01-01

    We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may contribute a large proportion of the total reaction time variance. PMID:18670591

  1. Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Zhou, Wei-Xing

    2006-10-01

    Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.

  2. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  3. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    NASA Astrophysics Data System (ADS)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  4. Developments in Marine Current Turbine Research at the United States Naval Academy (Invited)

    NASA Astrophysics Data System (ADS)

    Flack, K. A.; Luznik, L.

    2013-12-01

    A series of tests have been performed on a 1/25th scale model of a two bladed horizontal axis marine current turbine. The tests were conducted in a large tow tank facility at the United States Naval Academy. The turbine model has a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to the lift coefficient in the operating range of Rec ≈ 4 x 105. Baseline test were conducted to obtain torque, thrust and rotational speed at a range of tip speed ratios (TSR) from 5 < TSR < 11. The power and thrust coefficients for the model turbine match expected results from blade-element-momentum theory. The lift and drag curves for the numerical model were obtained by testing a 2D NACA 63-618 airfoil in a wind tunnel. Additional tests were performed at two rotor depths (1.3D and 2.25D) in the presence of intermediate and deep water waves. The average values for power and thrust coefficient are weakly dependent on turbine depth. The waves yield a small increase in turbine performance which can be explained by Stokes drift velocity. Phase averaged results indicate that the oscillatory wave velocity results in significant variations in measured turbine torque and rotational speed as a function of wave phase. The turbine rotation speed, power, and thrust reach a maximum with the passing of the wave crest and a minimum with the passing of the wave trough. The torque appears dependent on vertical velocity, which lags the horizontal velocity by 90° of wave phase. Variations of the performance parameters are of the same order of magnitude as the average value, especially when the turbine is near the mean free surface and in the presence of high energy waves. These results demonstrate the impact of surface gravity waves on power production and structural loading. Future tests will focus on measuring and modeling the wake of the turbine for unsteady flow conditions. Model Turbine Power Coefficient vs, Tip Speed Ratio

  5. New transmission scheme to enhance throughput of DF relay network using rate and power adaptation

    NASA Astrophysics Data System (ADS)

    Taki, Mehrdad; Heshmati, Milad

    2017-09-01

    This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.

  6. Definition of the Mathematical Model Coefficients on the Weld Size of Butt Joint Without Edge Preparation

    NASA Astrophysics Data System (ADS)

    Sidorov, Vladimir P.; Melzitdinova, Anna V.

    2017-10-01

    This paper represents the definition methods for thermal constants according to the data of the weld width under the normal-circular heat source. The method is based on isoline contouring of “effective power - temperature conductivity coefficient”. The definition of coefficients provides setting requirements to the precision of welding parameters support with the enough accuracy for an engineering practice.

  7. On the solar cycle variation in the barometer coefficients of high latitude neutron monitors

    NASA Technical Reports Server (NTRS)

    Kusunose, M.; Ogita, N.

    1985-01-01

    Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.

  8. Electro-Thermal Transient Simulation of Silicon Carbide Power Mosfet

    DTIC Science & Technology

    2013-06-01

    ionization rate than electron in silicon carbide , the breakdown voltage almost remains constant even at elevated temperatures . This is due to the positive... temperature coefficient of holes in case of silicon carbide as discussed in [7, 8]. The higher ambient temperature influences the leakage current...in the RLC ring down circuit . E. Power Dissipation and Lattice Temperature The power dissipation for any switching device is dependent on the

  9. Monolithic solid oxide fuel cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.

  10. Numerical analysis of phase change materials for thermal control of power battery of high power dissipations

    NASA Astrophysics Data System (ADS)

    Xia, X.; Zhang, H. Y.; Deng, Y. C.

    2016-08-01

    Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.

  11. Quantitative Characterization of Shear-Induced Platelet Receptor Shedding: Glycoprotein Ibα, Glycoprotein VI, and Glycoprotein IIb/IIIa.

    PubMed

    Chen, Zengsheng; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2017-11-07

    The structural integrity of platelet receptors is essential for platelets to play the normal hemostatic function. The high non-physiologic shear stress (NPSS) commonly exists in blood-contacting medical devices and has been shown to cause platelet receptor shedding. The loss of platelet receptors may impair the normal hemostatic function of platelets. The aim of this study was to quantify NPSS-induced shedding of three key receptors on the platelet surface. Human blood was subjected to the matrix of well-defined shear stresses and exposure times, generated by using a custom-designed blood-shearing device. The expression of three key platelet receptors, glycoprotein (GP) Ibα, GPVI, and GPIIb/IIIa, in sheared blood was quantified using flow cytometry. The quantitative relationship between the loss of each of the three receptors on the platelet surface and shear condition (shear stress level and exposure time) was explored. It was found that these relationships followed well the power law functional form. The coefficients of the power law models for the shear-induced shedding of these platelet receptors were derived with coefficients of determination (R) of 0.77, 0.73, and 0.78, respectively. The power law models with these coefficients may be potentially used to predict the shear-induced platelet receptor shedding of human blood.

  12. An approach for fixed coefficient RNS-based FIR filter

    NASA Astrophysics Data System (ADS)

    Srinivasa Reddy, Kotha; Sahoo, Subhendu Kumar

    2017-08-01

    In this work, an efficient new modular multiplication method for {2k-1, 2k, 2k+1-1} moduli set is proposed to implement a residue number system (RNS)-based fixed coefficient finite impulse response filter. The new multiplication approach reduces the number of partial products by using pre-loaded product block. The reduction in partial products with the proposed modular multiplication improves the clock frequency and reduces the area and power as compared with the conventional modular multiplication. Further, the present approach eliminates a binary number to residue number converter circuit, which is usually needed at the front end of RNS-based system. In this work, two fixed coefficient filter architectures with the new modular multiplication approach are proposed. The filters are implemented using Verilog hardware description language. The United Microelectronics Corporation 90 nm technology library has been used for synthesis and the results area, power and delay are obtained with the help of Cadence register transfer level compiler. The power delay product (PDP) is also considered for performance comparison among the proposed filters. One of the proposed architecture is found to improve PDP gain by 60.83% as compared with the filter implemented with conventional modular multiplier. The filters functionality is validated with the help of Altera DSP Builder.

  13. Wind-tunnel measurements of the chordwise pressure distribution and profile drag of a research airplane model incorporating a 17-percent-thick supercritical wing

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1973-01-01

    The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.

  14. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  15. High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence.

    PubMed

    Banik, Ananya; Shenoy, U Sandhya; Saha, Sujoy; Waghmare, Umesh V; Biswas, Kanishka

    2016-10-05

    Understanding the basis of electronic transport and developing ideas to improve thermoelectric power factor are essential for production of efficient thermoelectric materials. Here, we report a significantly large thermoelectric power factor of ∼31.4 μW/cm·K 2 at 856 K in Ag and In co-doped SnTe (i.e., SnAg x In x Te 1+2x ). This is the highest power factor so far reported for SnTe-based material, which arises from the synergistic effects of Ag and In on the electronic structure and the improved electrical transport properties of SnTe. In and Ag play different but complementary roles in modifying the valence band structure of SnTe. In-doping introduces resonance levels inside the valence bands, leading to a significant improvement in the Seebeck coefficient at room temperature. On the other hand, Ag-doping reduces the energy separation between light- and heavy-hole valence bands by widening the principal band gap, which also results in an improved Seebeck coefficient. Additionally, Ag-doping in SnTe enhances the p-type carrier mobility. Co-doping of In and Ag in SnTe yields synergistically enhanced Seebeck coefficient and power factor over a broad temperature range because of the synergy of the introduction of resonance states and convergence of valence bands, which have been confirmed by first-principles density functional theory-based electronic structure calculations. As a consequence, we have achieved an improved thermoelectric figure of merit, zT ≈ 1, in SnAg 0.025 In 0.025 Te 1.05 at 856 K.

  16. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  17. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  18. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  19. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    PubMed

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  20. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine

    PubMed Central

    Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.

    2016-01-01

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076

  1. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.

    PubMed

    Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S

    The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.

  2. Presentation of computer code SPIRALI for incompressible, turbulent, plane and spiral grooved cylindrical and face seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.

    1994-01-01

    A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.

  3. Development of a generalized perturbation theory method for sensitivity analysis using continuous-energy Monte Carlo methods

    DOE PAGES

    Perfetti, Christopher M.; Rearden, Bradley T.

    2016-03-01

    The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less

  4. Studying the Power of the Integrative Weaning Index in Predicting the Success Rate of the Spontaneous Breathing Trial in Patients under Mechanical Ventilation.

    PubMed

    Ebrahimabadi, Sahar; Moghadam, Ahmad Bagheri; Vakili, Mohammadali; Modanloo, Mahnaz; Khoddam, Homeira

    2017-08-01

    The use of weaning predictive indicators can avoid early extubation and wrongful prolonged mechanical ventilation. This study aimed to determine the power of the integrative weaning index (IWI) in predicting the success rate of the spontaneous breathing trial (SBT) in patients under mechanical ventilation. In this prospective study, 105 patients undergoing mechanical ventilation for over 48 h were enrolled. Before weaning initiation, the IWI was calculated and based on the defined cutoff point (≥25), the success rate of the SBT was predicted. In case of weaning from the device, 2-h SBT was performed and the physiologic and respiratory indices were continuously studied while being intubated. If they were in the normal range besides the patient's tolerance, the test was considered as a success. The result was then compared with the IWI and further analyzed. The SBT was successful in 90 (85.7%) and unsuccessful in 15 (14.3%) cases. The difference between the true patient outcome after SBT, and the IWI prediction was 0.143 according to the Kappa agreement coefficient ( P < 0.001). Moreover, regarding the predictive power, IWI had high sensitivity (95.6%), specificity (40%), positive and negative predictive values (90.5% and 60), positive and negative likelihood ratios (1.59 and 0.11), and accuracy (86.7%). The IWI as a more objective indicator has acceptable accuracy and power for predicting the 2-h SBT result. Therefore, in addition to the reliable prediction of the final weaning outcome, it has favorable power to predict if the patient is ready to breathe spontaneously as the first step to weaning.

  5. Studying the Power of the Integrative Weaning Index in Predicting the Success Rate of the Spontaneous Breathing Trial in Patients under Mechanical Ventilation

    PubMed Central

    Ebrahimabadi, Sahar; Moghadam, Ahmad Bagheri; Vakili, Mohammadali; Modanloo, Mahnaz; Khoddam, Homeira

    2017-01-01

    Background and Aims: The use of weaning predictive indicators can avoid early extubation and wrongful prolonged mechanical ventilation. This study aimed to determine the power of the integrative weaning index (IWI) in predicting the success rate of the spontaneous breathing trial (SBT) in patients under mechanical ventilation. Materials and Methods: In this prospective study, 105 patients undergoing mechanical ventilation for over 48 h were enrolled. Before weaning initiation, the IWI was calculated and based on the defined cutoff point (≥25), the success rate of the SBT was predicted. In case of weaning from the device, 2-h SBT was performed and the physiologic and respiratory indices were continuously studied while being intubated. If they were in the normal range besides the patient's tolerance, the test was considered as a success. The result was then compared with the IWI and further analyzed. Results: The SBT was successful in 90 (85.7%) and unsuccessful in 15 (14.3%) cases. The difference between the true patient outcome after SBT, and the IWI prediction was 0.143 according to the Kappa agreement coefficient (P < 0.001). Moreover, regarding the predictive power, IWI had high sensitivity (95.6%), specificity (40%), positive and negative predictive values (90.5% and 60), positive and negative likelihood ratios (1.59 and 0.11), and accuracy (86.7%). Conclusion: The IWI as a more objective indicator has acceptable accuracy and power for predicting the 2-h SBT result. Therefore, in addition to the reliable prediction of the final weaning outcome, it has favorable power to predict if the patient is ready to breathe spontaneously as the first step to weaning. PMID:28904477

  6. Influence of refractive index and solar concentration on optical power absorption in slabs

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1988-01-01

    The optical power absorbed by a slab at the focus of a parabolic dish concentrator is calculated. The calculations are plotted versus maximum angle of incidence of irradiation (which corresponds to solar concentration) with absorption coefficient as a parameter for several different indices of refraction that represent real materials.

  7. The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes

    NASA Astrophysics Data System (ADS)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-07-01

    The effects of temperature dependent radiative and nonradiative recombination (Shockley-Read-Hall, spontaneous radiative, and Auger coefficients) on the spectral and power characteristics of a blue multiple quantum well (MQW) superluminescent light emitting diode (SLD or SLED) have been studied. The study is based on the rate equations model, where three rate equations corresponding to MQW active region, separate confinement heterostructure (SCH) layer, and spectral density of optical power are solved self-consistently with no k-selection energy dependent gain and quasi-Fermi level functions at steady state. We have taken into account the temperature effects on Shockley-Read-Hall (SRH), spontaneous radiative, and Auger recombination in the rate equations and have investigated the effects of temperature rising from 300 K to 375 K at a fixed current density. We examine this procedure for a moderate current density and interpret the spectral radiation power and light output power diagrams. The investigation reveals that the main loss due to temperature is related to Auger coefficient.

  8. CFD study of some factors affecting performance of HAWT with swept blades

    NASA Astrophysics Data System (ADS)

    Khalafallah, M. G.; Ahmed, A. M.; Emam, M. K.

    2017-05-01

    Most modern high-power wind turbines are horizontal axis type with straight twisted blades. Upgrading power and performance of these turbines is considered a challenge. A recent trend towards improving the horizontal axis wind turbine (HAWT) performance is to use swept blades or sweep twist adaptive blades. In the present work, the effect of blade curvature, sweep starting point and sweep direction on the wind turbine performance was investigated. The CFD simulation method was validated against available experimental data of a 0.9 m diameter HAWT. The wind turbine power and thrust coefficients at different tip speed ratios were calculated. Flow field, pressure distribution and local tangential and streamwise forces were also analysed. The results show that the downstream swept blade has the highest Cp value at design point as compared with the straight blade profile. However, the improvement in power coefficient is accompanied by a thrust increase. Results also show that the best performance is obtained when the starting blade sweeps at 25% of blade radius for different directions of sweep.

  9. The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices

    NASA Astrophysics Data System (ADS)

    Rezvanian, O.; Brown, C.; Zikry, M. A.; Kingon, A. I.; Krim, J.; Irving, D. L.; Brenner, D. W.

    2008-07-01

    It is shown that measured and calculated time-dependent electrical resistances of closed gold Ohmic switches in radio frequency microelectromechanical system (rf-MEMS) devices are well described by a power law that can be derived from a single asperity creep model. The analysis reveals that the exponent and prefactor in the power law arise, respectively, from the coefficient relating creep rate to applied stress and the initial surface roughness. The analysis also shows that resistance plateaus are not, in fact, limiting resistances but rather result from the small coefficient in the power law. The model predicts that it will take a longer time for the contact resistance to attain a power law relation with each successive closing of the switch due to asperity blunting. Analysis of the first few seconds of the measured resistance for three successive openings and closings of one of the MEMS devices supports this prediction. This work thus provides guidance toward the rational design of Ohmic contacts with enhanced reliabilities by better defining variables that can be controlled through material selection, interface processing, and switch operation.

  10. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  11. RF structure design of the China Material Irradiation Facility RFQ

    NASA Astrophysics Data System (ADS)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  12. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE PAGES

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew; ...

    2018-04-05

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  13. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  14. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    PubMed Central

    Kim, Kyungmok

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471

  15. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  16. The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.

    PubMed

    Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng

    2012-10-21

    A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.

  17. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  18. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors.

    PubMed

    Yip, Eugene; Yun, Jihyun; Wachowicz, Keith; Gabos, Zsolt; Rathee, Satyapal; Fallone, B G

    2017-01-01

    Hybrid magnetic resonance imaging and radiation therapy devices are capable of imaging in real-time to track intrafractional lung tumor motion during radiotherapy. Highly accelerated magnetic resonance (MR) imaging methods can potentially reduce system delay time and/or improves imaging spatial resolution, and provide flexibility in imaging parameters. Prior Data Assisted Compressed Sensing (PDACS) has previously been proposed as an acceleration method that combines the advantages of 2D compressed sensing and the KEYHOLE view-sharing technique. However, as PDACS relies on prior data acquired at the beginning of a dynamic imaging sequence, decline in image quality occurs for longer duration scans due to drifts in MR signal. Novel sliding window-based techniques for refreshing prior data are proposed as a solution to this problem. MR acceleration is performed by retrospective removal of data from the fully sampled sets. Six patients with lung tumors are scanned with a clinical 3 T MRI using a balanced steady-state free precession (bSSFP) sequence for 3 min at approximately 4 frames per second, for a total of 650 dynamics. A series of distinct pseudo-random patterns of partial k-space acquisition is generated such that, when combined with other dynamics within a sliding window of 100 dynamics, covers the entire k-space. The prior data in the sliding window are continuously refreshed to reduce the impact of MR signal drifts. We intended to demonstrate two different ways to utilize the sliding window data: a simple averaging method and a navigator-based method. These two sliding window methods are quantitatively compared against the original PDACS method using three metrics: artifact power, centroid displacement error, and Dice's coefficient. The study is repeated with pseudo 0.5 T images by adding complex, normally distributed noise with a standard deviation that reduces image SNR, relative to original 3 T images, by a factor of 6. Without sliding window implemented, PDACS-reconstructed dynamic datasets showed progressive increases in image artifact power as the 3 min scan progresses. With sliding windows implemented, this increase in artifact power is eliminated. Near the end of a 3 min scan at 3 T SNR and 5× acceleration, implementation of an averaging (navigator) sliding window method improves our metrics by the following ways: artifact power decreases from 0.065 without sliding window to 0.030 (0.031), centroid error decreases from 2.64 to 1.41 mm (1.28 mm), and Dice coefficient agreement increases from 0.860 to 0.912 (0.915). At pseudo 0.5 T SNR, the improvements in metrics are as follows: artifact power decreases from 0.110 without sliding window to 0.0897 (0.0985), centroid error decreases from 2.92 mm to 1.36 mm (1.32 mm), and Dice coefficient agreements increases from 0.851 to 0.894 (0.896). In this work we demonstrated the negative impact of slow changes in MR signal for longer duration PDACS dynamic scans, namely increases in image artifact power and reductions of tumor tracking accuracy. We have also demonstrated sliding window implementations (i.e., refreshing of prior data) of PDACS are effective solutions to this problem at both 3 T and simulated 0.5 T bSSFP images. © 2016 American Association of Physicists in Medicine.

  19. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  20. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    not observed at low energy level , are developed at high power levels . No matter how low the absorption is. the effect is objectionable at high-energy... levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...Presence of impurities can complicate the exponential tail. particularly at low absorption levels . The impurities may enter 12 the lattice singly or

  1. Millimeter Wave Radio Frequency Propagation Model Development

    DTIC Science & Technology

    2014-08-28

    two. According to the Beer - Lambert law , this term is defined as the absorption coefficient. When n’’ is positive, radiation is absorbed. If it is...4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply...size distribution has a power- law relationship to rainfall rate. From this knowledge, coefficients were developed based on Marshall and Palmer, Laws

  2. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  3. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  4. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    PubMed

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Neurometric assessment of intraoperative anesthetic

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1998-07-07

    The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administer the correct amount of anesthetic. 7 figs.

  6. Neurometric assessment of intraoperative anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangas, L.J.; Keller, P.E.

    1998-07-07

    The present invention is a method and apparatus for collecting EEG data, reducing the EEG data into coefficients, and correlating those coefficients with a depth of unconsciousness or anesthetic depth, and which obtains a bounded first derivative of anesthetic depth to indicate trends. The present invention provides a developed artificial neural network based method capable of continuously analyzing EEG data to discriminate between awake and anesthetized states in an individual and continuously monitoring anesthetic depth trends in real-time. The present invention enables an anesthesiologist to respond immediately to changes in anesthetic depth of the patient during surgery and to administermore » the correct amount of anesthetic. 7 figs.« less

  7. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.

  8. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  9. Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme

    NASA Astrophysics Data System (ADS)

    Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.

    2018-03-01

    Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.

  10. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    NASA Astrophysics Data System (ADS)

    Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.

    2016-04-01

    Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c

  11. Magnetic properties of α' martensite in austenitic stainless steel studied by a minor-loop scaling law

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Kikuchi, Nobuhiro; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2010-08-01

    We study the scaling behavior of magnetic minor hysteresis loops in strain-induced ferromagnetic α' martensites in an austenitic 316-type stainless steel. A scaling relationship between the hysteresis loss and the remanence, with a power law exponent of approximately 1.35, was found irrespective of the volume fraction of the α' martensites as well as temperature. The coefficient of the power law largely decreases with volume fraction, whereas it increases with a decrease in temperature and exhibits a kink at around 40 K, close to the Néel temperature of an austenitic γ' phase. The behavior of the coefficient was interpreted from the viewpoint of the morphology and exchange interaction of α' martensites.

  12. Depletion layer recombination effects on the radiation damage hardness of gallium arsenide cells

    NASA Technical Reports Server (NTRS)

    Garlick, G. F. J.

    1985-01-01

    The significant effect of junction depletion layer recombination on the efficiency of windowed GaAs cells was demonstrated. The effect becomes more pronounced as radiation damage occurs. The depletion is considered for 1 MeV electron fluences up to 10 to the 16th power e/sq m. The cell modeling separates damage in emitter and base or buffer layers using different damage coefficients is reported. The lower coefficient for the emitter predicts less loss of performance at fluences greater than 10 to the 15th power e/sq cm. A method for obtaining information on junction recombination effects as damage proceeds is described; this enables a more complete diagnosis of damage to be made.

  13. Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar

    NASA Astrophysics Data System (ADS)

    Hasanov, Alemdar; Erdem, Arzu

    2008-08-01

    The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.

  14. Quantitative Electron Probe Microanalysis: State of the Art

    NASA Technical Reports Server (NTRS)

    Carpernter, P. K.

    2005-01-01

    Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.

  15. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  16. Enhancements in Deriving Smoke Emission Coefficients from Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ellison, Luke; Ichoku, Charles

    2011-01-01

    Smoke emissions have long been quantified after-the-fact by simple multiplication of burned area, biomass density, fraction of above-ground biomass, and burn efficiency. A new algorithm has been suggested, as described in Ichoku & Kaufman (2005), for use in calculating smoke emissions directly from fire radiative power (FRP) measurements such that the latency and uncertainty associated with the previously listed variables are avoided. Application of this new, simpler and more direct algorithm is automatic, based only on a fire's FRP measurement and a predetermined coefficient of smoke emission for a given location. Attaining accurate coefficients of smoke emission is therefore critical to the success of this algorithm. In the aforementioned paper, an initial effort was made to derive coefficients of smoke emission for different large regions of interest using calculations of smoke emission rates from MODIS FRP and aerosol optical depth (AOD) measurements. Further work had resulted in a first draft of a 1 1 resolution map of these coefficients. This poster will present the work done to refine this algorithm toward the first production of global smoke emission coefficients. Main updates in the algorithm include: 1) inclusion of wind vectors to help refine several parameters, 2) defining new methods for calculating the fire-emitted AOD fractions, and 3) calculating smoke emission rates on a per-pixel basis and aggregating to grid cells instead of doing so later on in the process. In addition to a presentation of the methodology used to derive this product, maps displaying preliminary results as well as an outline of the future application of such a product into specific research opportunities will be shown.

  17. Numerical Simulation of Wear in a C/C Composite Multidisk Clutch (Preprint)

    DTIC Science & Technology

    2009-04-01

    subroutine FRIC, in the commercial finite element software ( ABAQUS , 6.5-1, Pawtucket, RI) [25], to calculate the local wear depth increment (decrease in...temperature continuity and the heat balance conditions must be satisfied. The subroutine FRIC in ABAQUS code [25] is called only when the contact point is...0.33, thermal expansion coefficients αr = 0.31x10-6/K, αz = 0.29x10-6/K, friction coefficient µ = 0.20, heat convection coefficient h = 100 W/m2K

  18. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

    NASA Astrophysics Data System (ADS)

    Tiwat, Pongthavornkamol; Lei, Pang; Xinhua, Wang; Sen, Huang; Guoguo, Liu; Tingting, Yuan; Xinyu, Liu

    2015-07-01

    An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented. Project supported by the National Natural Science Foundation of China (No. 61204086).

  19. Comparison of Short-Wavelength Reduced-Illuminance and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy.

    PubMed

    Strauss, Rupert W; Muñoz, Beatriz; Jha, Anamika; Ho, Alexander; Cideciyan, Artur V; Kasilian, Melissa L; Wolfson, Yulia; Sadda, SriniVas; West, Sheila; Scholl, Hendrik P N; Michaelides, Michel

    2016-08-01

    To compare grading results between short-wavelength reduced-illuminance and conventional autofluorescence imaging in Stargardt macular dystrophy. Reliability study. setting: Moorfields Eye Hospital, London (United Kingdom). Eighteen patients (18 eyes) with Stargardt macular dystrophy. A series of 3 fundus autofluorescence images using 3 different acquisition parameters on a custom-patched device were obtained: (1) 25% laser power and total sensitivity 87; (2) 25% laser power and freely adjusted sensitivity; and (3) 100% laser power and freely adjusted total sensitivity (conventional). The total area of 2 hypoautofluorescent lesion types (definitely decreased autofluorescence and poorly demarcated questionably decreased autofluorescence) was measured. Agreement in grading between the 3 imaging methods was assessed by kappa coefficients (κ) and intraclass correlation coefficients. The mean ± standard deviation area for images acquired with 25% laser power and freely adjusted total sensitivity was 2.04 ± 1.87 mm(2) for definitely decreased autofluorescence (n = 15) and 1.86 ± 2.14 mm(2) for poorly demarcated questionably decreased autofluorescence (n = 12). The intraclass correlation coefficient (95% confidence interval) was 0.964 (0.929, 0.999) for definitely decreased autofluorescence and 0.268 (0.000, 0.730) for poorly demarcated questionably decreased autofluorescence. Short-wavelength reduced-illuminance and conventional fundus autofluorescence imaging showed good concordance in assessing areas of definitely decreased autofluorescence. However, there was significantly higher variability between imaging modalities for assessing areas of poorly demarcated questionably decreased autofluorescence. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    NASA Astrophysics Data System (ADS)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in <500W and kW output power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  1. Effects of autonomic ganglion blockade on fractal and spectral components of blood pressure and heart rate variability in free-moving rats.

    PubMed

    Castiglioni, Paolo; Di Rienzo, Marco; Radaelli, Alberto

    2013-11-01

    Fractal analysis is a promising tool for assessing autonomic influences on heart rate (HR) and blood pressure (BP) variability. The temporal spectrum of scale coefficients, α(t), was recently proposed to describe the cardiovascular fractal dynamics. Aim of our work is to evaluate sympathetic influences on cardiovascular variability analyzing α(t) and spectral powers of HR and BP after ganglionic blockade. BP was recorded in 11 rats before and after autonomic blockade by hexamethonium infusion (HEX). Systolic and diastolic BP, pulse pressure and pulse interval were derived beat-by-beat. Segments longer than 5 min were selected at baseline and HEX to estimate power spectra and α(t). Comparisons were made by paired t-test. HEX reduced all spectral components of systolic and diastolic BP, the reduction being particularly significant around the frequency of Mayer waves; it induced a reduction on α(t) coefficients at t<2s and an increase on coefficients at t>8s. HEX reduced only slower components of pulse interval power spectrum, but decreased significantly faster scale coefficients (t<8s). HEX only marginally affected pulse pressure variability. Results indicate that the sympathetic outflow contributes to BP fractal dynamics with fractional Gaussian noise (α<1) at longer scales and fractional Brownian motion (α>1) at shorter scales. Ganglionic blockade also removes a fractional Brownian motion component at shorter scales from HR dynamics. Results may be explained by the characteristic time constants between sympathetic efferent activity and cardiovascular effectors. Therefore fractal analysis may complete spectral analysis with information on the correlation structure of the data. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.

    PubMed

    Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan

    2009-02-01

    Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.

  3. Music enhances performance and perceived enjoyment of sprint interval exercise.

    PubMed

    Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A

    2015-05-01

    Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.

  4. High Powered Rocketry: Design, Construction, and Launching Experience and Analysis

    ERIC Educational Resources Information Center

    Paulson, Pryce; Curtis, Jarret; Bartel, Evan; Cyr, Waycen Owens; Lamsal, Chiranjivi

    2018-01-01

    In this study, the nuts and bolts of designing and building a high powered rocket have been presented. A computer simulation program called RockSim was used to design the rocket. Simulation results are consistent with time variations of altitude, velocity, and acceleration obtained in the actual flight. The actual drag coefficient was determined…

  5. What Supports an Aeroplane? Force, Momentum, Energy and Power in Flight

    ERIC Educational Resources Information Center

    Robertson, David

    2014-01-01

    Some apparently confusing aspects of Newton's laws as applied to an aircraft in normal horizontal flight are neatly resolved by a careful analysis of force, momentum, energy and power. A number of related phenomena are explained at the same time, including the lift and induced drag coefficients, used empirically in the aviation industry.

  6. Correlation Coefficients: Appropriate Use and Interpretation.

    PubMed

    Schober, Patrick; Boer, Christa; Schwarte, Lothar A

    2018-05-01

    Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in the magnitude of another variable, either in the same (positive correlation) or in the opposite (negative correlation) direction. Most often, the term correlation is used in the context of a linear relationship between 2 continuous variables and expressed as Pearson product-moment correlation. The Pearson correlation coefficient is typically used for jointly normally distributed data (data that follow a bivariate normal distribution). For nonnormally distributed continuous data, for ordinal data, or for data with relevant outliers, a Spearman rank correlation can be used as a measure of a monotonic association. Both correlation coefficients are scaled such that they range from -1 to +1, where 0 indicates that there is no linear or monotonic association, and the relationship gets stronger and ultimately approaches a straight line (Pearson correlation) or a constantly increasing or decreasing curve (Spearman correlation) as the coefficient approaches an absolute value of 1. Hypothesis tests and confidence intervals can be used to address the statistical significance of the results and to estimate the strength of the relationship in the population from which the data were sampled. The aim of this tutorial is to guide researchers and clinicians in the appropriate use and interpretation of correlation coefficients.

  7. Python Waveform Cross-Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Dennise

    PyWCC is a tool to compute seismic waveform cross-correlation coefficients on single-component or multiple-component seismic data across a network of seismic sensors. PyWCC compares waveform data templates with continuous seismic data, associates the resulting detections, identifies the template with the highest cross-correlation coefficient, and outputs a catalog of detections above a user-defined absolute cross-correlation threshold value.

  8. Asymmetric B-factory note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, M.

    Three main issues giving purpose to our visit to CERN, ESRF and DESY were to: assess the current thinking at CERN on whether Eta, the gas desorption coefficient, would continue to decrease with continued with continued beam cleaning, determine if the time between NEG reconditioning could be expanded, and acquire a knowledge of the basic fabrication processes and techniques for producing beam vacuum chambers of copper.

  9. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater.

    PubMed

    Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E

    2017-12-01

    Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  11. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  12. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    NASA Astrophysics Data System (ADS)

    Chow, Raymond

    The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined, reaching a comparable increase of 1.4% by a trailing edge thickness of 15%c. Decreasing inboard twist only acted to increase thrust without increasing power capture any further at U infinity = 11 m/s. While increasing inboard blade twist decreased power, but decreased thrust at even a higher rate. Vortex generators were not successively configured to significantly improve power capture in this study. Two of the three configurations examined actually decreased power capture and increased the separation region. The results found in this study are not believed to be representative of a properly sized and located array of VGs. The presence of the nose cone and nacelle body at the hub of the rotor is found to have a minimal effect on the power and thrust of the overall rotor. The downstream wake structure however is changed by the nacelle, potentially useful for wake tailoring when turbines are closely spaced together.

  13. TU-FG-BRB-03: Basis Vector Model Based Method for Proton Stopping Power Estimation From Experimental Dual Energy CT Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S; Politte, D; O’Sullivan, J

    2016-06-15

    Purpose: This work aims at reducing the uncertainty in proton stopping power (SP) estimation by a novel combination of a linear, separable basis vector model (BVM) for stopping power calculation (Med Phys 43:600) and a statistical, model-based dual-energy CT (DECT) image reconstruction algorithm (TMI 35:685). The method was applied to experimental data. Methods: BVM assumes the photon attenuation coefficients, electron densities, and mean excitation energies (I-values) of unknown materials can be approximated by a combination of the corresponding quantities of two reference materials. The DECT projection data for a phantom with 5 different known materials was collected on a Philipsmore » Brilliance scanner using two scans at 90 kVp and 140 kVp. The line integral alternating minimization (LIAM) algorithm was used to recover the two BVM coefficient images using the measured source spectra. The proton stopping powers are then estimated from the Bethe-Bloch equation using electron densities and I-values derived from the BVM coefficients. The proton stopping powers and proton ranges for the phantom materials estimated via our BVM based DECT method are compared to ICRU reference values and a post-processing DECT analysis (Yang PMB 55:1343) applied to vendorreconstructed images using the Torikoshi parametric fit model (tPFM). Results: For the phantom materials, the average stopping power estimations for 175 MeV protons derived from our method are within 1% of the ICRU reference values (except for Teflon with a 1.48% error), with an average standard deviation of 0.46% over pixels. The resultant proton ranges agree with the reference values within 2 mm. Conclusion: Our principled DECT iterative reconstruction algorithm, incorporating optimal beam hardening and scatter corrections, in conjunction with a simple linear BVM model, achieves more accurate and robust proton stopping power maps than the post-processing, nonlinear tPFM based DECT analysis applied to conventional reconstructions of low and high energy scans. Funding Support: NIH R01CA 75371; NCI grant R01 CA 149305.« less

  14. Continued fractions with limit periodic coefficients

    NASA Astrophysics Data System (ADS)

    Buslaev, V. I.

    2018-02-01

    The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.

  15. Placental three-dimensional power Doppler indices in mid-pregnancy and late pregnancy complicated by gestational diabetes mellitus.

    PubMed

    Surányi, A; Kozinszky, Z; Molnár, A; Nyári, T; Bitó, T; Pál, A

    2013-10-01

    The aim of our study was to evaluate placental three-dimensional power Doppler indices in diabetic pregnancies in the second and third trimesters and to compare them with those of the normal controls. Placental vascularization of pregnant women was determined by three-dimensional power Doppler ultrasound technique. The calculated indices included vascularization index (VI), flow index (FI), and vascularization flow index (VFI). Uncomplicated pregnancies (n = 113) were compared with pregnancies complicated by gestational diabetes mellitus (n = 56) and diabetes mellitus (n = 43). The three-dimensional power Doppler indices were not significantly different between the two diabetic subgroups. All the indices in diabetic patients were significantly reduced compared with those in non-diabetic individuals (p < 0.001). Placental three-dimensional power Doppler indices are slightly diminished throughout diabetic pregnancy [regression coefficients: -0.23 (FI), -0.06 (VI), and -0.04 (VFI)] and normal pregnancy [regression coefficients: -0.13 (FI), -0.20 (VI), and -0.11 (VFI)]. The uteroplacental circulation (umbilical and uterine artery) was not correlated significantly to the three-dimensional power Doppler indices. If all placental indices are low during late pregnancy, then the odds of the diabetes are significantly high (adjusted odds ratio: 1.10). A decreased placental vascularization could be an adjunct sonographic marker in the diagnosis of diabetic pregnancy in mid-gestation and late gestation. © 2013 John Wiley & Sons, Ltd.

  16. An empirical approach to the stopping power of solids and gases for ions from 3Li to 18Ar

    NASA Astrophysics Data System (ADS)

    Paul, Helmut; Schinner, Andreas

    2001-08-01

    A large collection of stopping power data for projectiles from 3Li to 18Ar is investigated as a possible basis for producing a table of stopping powers. We divide the experimental stopping powers for a particular projectile (nuclear charge Z1) by those for alpha particles in the same element, as given in ICRU Report 49. With proper normalization, we then obtain experimental stopping power ratios Srel that lie approximately on a single curve, provided we treat solid and gaseous targets separately, and provided we exclude H 2 and He targets. For every projectile, this curve is then fitted by a 3-parameter sigmoid function Srel= Srel( a, b, c). We find that the three parameters a, b and c depend smoothly on Z1 and can themselves be fitted by suitable functions af, bf and cf of Z1, separately for solid and gaseous targets. The low energy limit (coefficient a) for solids agrees approximately with the prediction by Lindhard and Scharff. We find that agas< asol in almost all cases. Introducing the coefficients af , bf and cf in Srel, we can calculate the stopping power for any ion (3⩽ Z1⩽18), and for any element (except H 2 and He) and any mixture or compound contained in the ICRU table.

  17. Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.

    PubMed

    Li, Xiangzheng; Liao, Hua; Du, Yun-Fei; Wang, Ce; Wang, Jin-Wei; Liu, Yanan

    2018-03-01

    The electric power sector is one of the primary sources of CO 2 emissions. Analyzing the influential factors that result in CO 2 emissions from the power sector would provide valuable information to reduce the world's CO 2 emissions. Herein, we applied the Divisia decomposition method to analyze the influential factors for CO 2 emissions from the power sector from 11 countries, which account for 67% of the world's emissions from 1990 to 2013. We decompose the influential factors for CO 2 emissions into seven areas: the emission coefficient, energy intensity, the share of electricity generation, the share of thermal power generation, electricity intensity, economic activity, and population. The decomposition analysis results show that economic activity, population, and the emission coefficient have positive roles in increasing CO 2 emissions, and their contribution rates are 119, 23.9, and 0.5%, respectively. Energy intensity, electricity intensity, the share of electricity generation, and the share of thermal power generation curb CO 2 emissions and their contribution rates are 17.2, 15.7, 7.7, and 2.8%, respectively. Through decomposition analysis for each country, economic activity and population are the major factors responsible for increasing CO 2 emissions from the power sector. However, the other factors from developed countries can offset the growth in CO 2 emissions due to economic activities.

  18. The reliability of isoinertial force-velocity-power profiling and maximal strength assessment in youth.

    PubMed

    Meylan, César M P; Cronin, John B; Oliver, Jon L; Hughes, Michael M G; Jidovtseff, Boris; Pinder, Shane

    2015-03-01

    The purpose of this study was to quantify the inter-session reliability of force-velocity-power profiling and estimated maximal strength in youth. Thirty-six males (11-15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = - 1 to 14%; coefficient of variation [CV] = 3-18%; intraclass correlation coefficient [ICC] = 0.74-0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0-3%; CV = 23-25%; ICC = 0.35-0.54) and load at maximal power (CIM = - 1 to 2%; CV = 10-13%; ICC = 0.26-0.61). Isoinertial force-velocity-power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.

  19. Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Levy, Clara; Mangeney, Anne; Bonilla, Fabian; Hibert, Clément; Calder, Eliza S.; Smith, Patrick J.

    2015-11-01

    Accurate modeling of rockfalls and pyroclastic flows is still an open issue, partly due to a lack of measurements related to their dynamics. Using seismic data from the Soufrière Hills Volcano, Montserrat, and granular flow modeling, we show that the power laws relating the seismic energy Es to the seismic duration ts and relating the loss of potential energy ΔEp to the flow duration tf are very similar, like the power laws observed at Piton de la Fournaise, Reunion Island. Observations showing that tf≃ts suggest a constant ratio Es/ΔEp≃10-5. This similarity in these two power laws can be obtained only when the granular flow model uses a friction coefficient that decreases with the volume transported. Furthermore, with this volume-dependent friction coefficient, the simulated force applied by the flow to the ground correlates well with the seismic energy, highlighting the signature of this friction weakening effect in seismic data.

  20. Radiological Impact of Tritium from Gaseous Effluent Releases at Cook Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Young, Joshua Allan

    The purpose of this study was to investigate the washout of tritiated water by snow and rain from gaseous effluent releases at Donald C. Cook Nuclear Power Plant. Primary concepts studied were determination of washout coefficients for rainfall and snowfall; correlations between rainfall and snow fall tritium concentrations with tritium concentrations in the spent fuel pool, reactor cooling systems, and tritium release rates; and calculations of received doses from the process of recapture. The dose calculations are under the assumption of a maximally exposed individual to get the most conservative estimate of the effect that washout of tritiated water has on individuals around the plant site. This study is in addition to previous work that has been conducted at Cook Nuclear Power Plant for several years. The calculated washout coefficients were typically within the range of 1x10-7s -1 to 1x10-5s-1. A strong correlation between tritium concentration within the spent fuel pool and the tritium release rates was determined.

  1. Measuring modules for the research of compensators of reactive power with voltage stabilization in MATLAB

    NASA Astrophysics Data System (ADS)

    Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir

    2017-10-01

    A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.

  2. Investigation of installation effects of single-engine convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Burley, J. R., II; Berrier, B. L.

    1982-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.

  3. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    NASA Astrophysics Data System (ADS)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  4. Chain Pooling modeling selection as developed for the statistical analysis of a rotor burst protection experiment

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1977-01-01

    As many as three iterated statistical model deletion procedures were considered for an experiment. Population model coefficients were chosen to simulate a saturated 2 to the 4th power experiment having an unfavorable distribution of parameter values. Using random number studies, three model selection strategies were developed, namely, (1) a strategy to be used in anticipation of large coefficients of variation, approximately 65 percent, (2) a strategy to be sued in anticipation of small coefficients of variation, 4 percent or less, and (3) a security regret strategy to be used in the absence of such prior knowledge.

  5. VHDL-AMS modelling and simulation of a planar electrostatic micromotor

    NASA Astrophysics Data System (ADS)

    Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.

    2003-09-01

    System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.

  6. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    NASA Astrophysics Data System (ADS)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  7. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  8. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    2013-01-01

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  9. Effect of surface deposits on electromagnetic propagation in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1991-01-01

    A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  10. Behavioral Modeling and Characterization of Nonlinear Operation in RF and Microwave Systems

    DTIC Science & Technology

    2005-01-01

    the model further reinforces the intuition gained by employing this modeling technique. 84 Chapter 5 Remote Characterization of RF Devices 5.1...was used to extract the power series coefficients, 21 dBm. This further reinforces the conclusion that the nonlinear coefficients should be extracted...are becoming important. The fit of the odd-ordered model reinforces this hypothesis since the phase component of the fit roughly splits the

  11. A novel approach to detect respiratory phases from pulmonary acoustic signals using normalised power spectral density and fuzzy inference system.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2016-07-01

    Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea. To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases. Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated. In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively. The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method. © 2014 John Wiley & Sons Ltd.

  12. Stochastic modeling of the migration of Cs-137 in the soil considering a power law tailing in space

    NASA Astrophysics Data System (ADS)

    Oka, Hiroki; Hatano, Yuko

    2016-04-01

    We develop a theoretical model to reproduce the measured data of Cs-137 in the soil due to the Fukushima Daiichi NPP accident. In our past study, we derived the analytic solution under the generalized Robin boundary condition (Oka-Yamamoto solution). This is a generalization of the He-Walling solution (1996). We compared our solution with the Fukushima soil data of for 3 years after the accident and found that the concentration of Cs-137 has a discrepancy from our solution, specifically in a deep part because the depth profiles have a power law tailing. Therefore, we improved our model in the following aspect. When Cs particle (or Cs solution) migrate in the soil, the diffusion coefficient should be the results of many processes in the soil. These processes include the effect of various materials which constitute the soil (clay, litter, sand), or the variations of pore size in the soil. Hence we regard the diffusion coefficient as the stochastic variable, we derive the model. Specifically, we consider the solution of ADE to be the conditional probability C(x,t|D) in terms of the diffusion coefficient D and calculate C(x,t)=∫_(0~∞) C(x,t|D)*f(D)*dD, where f(D) is the probability density function of D. This model has a power law tailing in space like the space-fractional ADE.

  13. Measurement of CO 2, CO, SO 2, and NO emissions from coal-based thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Chakraborty, N.; Mukherjee, I.; Santra, A. K.; Chowdhury, S.; Chakraborty, S.; Bhattacharya, S.; Mitra, A. P.; Sharma, C.

    Measurements of CO 2 (direct GHG) and CO, SO 2, NO (indirect GHGs) were conducted on-line at some of the coal-based thermal power plants in India. The objective of the study was three-fold: to quantify the measured emissions in terms of emission coefficient per kg of coal and per kWh of electricity, to calculate the total possible emission from Indian thermal power plants, and subsequently to compare them with some previous studies. Instrument IMR 2800P Flue Gas Analyzer was used on-line to measure the emission rates of CO 2, CO, SO 2, and NO at 11 numbers of generating units of different ratings. Certain quality assurance (QA) and quality control (QC) techniques were also adopted to gather the data so as to avoid any ambiguity in subsequent data interpretation. For the betterment of data interpretation, the requisite statistical parameters (standard deviation and arithmetic mean) for the measured emissions have been also calculated. The emission coefficients determined for CO 2, CO, SO 2, and NO have been compared with their corresponding values as obtained in the studies conducted by other groups. The total emissions of CO 2, CO, SO 2, and NO calculated on the basis of the emission coefficients for the year 2003-2004 have been found to be 465.667, 1.583, 4.058, and 1.129 Tg, respectively.

  14. Modelling the reworking effects of bioturbation on the incorporation of radionuclides into the sediment column: implications for the fate of particle-reactive radionuclides in Irish Sea sediments.

    PubMed

    Cournane, S; León Vintró, L; Mitchell, P I

    2010-11-01

    A microcosm laboratory experiment was conducted to determine the impact of biological reworking by the ragworm Nereis diversicolor on the redistribution of particle-bound radionuclides deposited at the sediment-water interface. Over the course of the 40-day experiment, as much as 35% of a (137)Cs-labelled particulate tracer deposited on the sediment surface was redistributed to depths of up to 11 cm by the polychaete. Three different reworking models were employed to model the profiles and quantify the biodiffusion and biotransport coefficients: a gallery-diffuser model, a continuous sub-surface egestion model and a biodiffusion model. Although the biodiffusion coefficients obtained for each model were quite similar, the continuous sub-surface egestion model provided the best fit to the data. The average biodiffusion coefficient, at 1.8 +/- 0.9 cm(2) y(-1), is in good agreement with the values quoted by other workers on the bioturbation effects of this polychaete species. The corresponding value for the biotransport coefficient was found to be 0.9 +/- 0.4 cm y(-1). The effects of non-local mixing were incorporated in a model to describe the temporal evolution of measured (99)Tc and (60)Co radionuclide sediment profiles in the eastern Irish Sea, influenced by radioactive waste discharged from the Sellafield reprocessing plant. Reworking conditions in the sediment column were simulated by considering an upper mixed layer, an exponentially decreasing diffusion coefficient, and appropriate biotransport coefficients to account for non-local mixing. The diffusion coefficients calculated from the (99)Tc and (60)Co cores were in the range 2-14 cm(2) y(-1), which are consistent with the values found by other workers in the same marine area, while the biotransport coefficients were similar to those obtained for a variety of macrobenthic organisms in controlled laboratories and field studies.

  15. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.

  16. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    PubMed

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  17. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters.

    PubMed

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.

  18. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  19. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

    PubMed Central

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179

  20. Numerical simulation of a powered-lift landing, tracking flow features using overset grids, and simulation of high lift devices on a fighter-lift-and-control wing

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1993-01-01

    Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.

  1. A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3

    NASA Astrophysics Data System (ADS)

    Benedict, Christopher J.; Rao, Ashok; Sanjeev, Ganesh; Okram, G. S.; Babu, P. D.

    2016-01-01

    In this communication, the effect of electron beam irradiation on the structural, electrical, thermo-electric power and magnetic properties of LaCoO3 cobaltites have been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with rhombohedral structure. Increase in electrical resistivity data is observed with increase in dosage of electron beam irradiation. Analysis of the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature regime for all samples. The Seebeck coefficient (S) of the pristine and the irradiated samples exhibits a crossover from positive to negative values, and a colossal value of Seebeck coefficient (32.65 mV/K) is obtained for pristine sample, however, the value of S decreases with increase in dosage of irradiation. The analysis of Seebeck coefficient data confirms that the small polaron hopping model is operative in the high temperature region. The magnetization results give clear evidence of increase in effective magnetic moment due to increase in dosage of electron beam irradiation.

  2. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  3. A note on the electrochemical nature of the thermoelectric power

    NASA Astrophysics Data System (ADS)

    Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, Ph.

    2016-04-01

    While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system's chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the phenomenological expression of the electrical current resulting from thermoelectric effects may be directly obtained from the drift-diffusion equation.

  4. Tests for a disease-susceptibility locus allowing for an inbreeding coefficient (F).

    PubMed

    Song, Kijoung; Elston, Robert C

    2003-11-01

    We begin by discussing the false positive test results that arise because of cryptic relatedness and population substructure when testing a disease susceptibility locus. We extend and evaluate the Hardy-Weinberg disequilibrium (HWD) method, allowing for an inbreeding coefficient (F) in a similar way that Devlin and Roeder (1999) allowed for inbreeding in a case-control study. Then we compare the HWD measure and the common direct measure of linkage disequilibrium, both when there is no population substructure (F = 0) and when there is population substructure (F not = 0), for a single marker. The HWD test statistic gives rise to false positives caused by population stratification. These false positives can be controlled by adjusting the test statistic for the amount of variance inflation caused by the inbreeding coefficient (F). The power loss for the HWD test that arises when controlling for population structure is much less than that which arises for the common direct measure of linkage disequilibrium. However, in the multiplicative model, the HWD test has virtually no power even when allowing for non-zero F.

  5. Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Biondi, M. A.

    1974-01-01

    A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations.

  6. Research and Implementation of Heart Sound Denoising

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  7. Probing Schrodinger equation with a continued fraction potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasr; Alamri, Sultan Z.; Rassem, M.

    2018-06-01

    We suggest a new perturbed form of the quantum potential and investigate the possible solutions of Schrodinger equation. The new form can be written as a finite or infinite continued fraction. a comparison has been given between the continued fractional potential and the non-perturbed potential. We suggest the validity of this continued fractional quantum form in some quantum systems. As the order of the continued fraction increases the difference between the perturbed and the ordinary potentials decreases. The physically acceptable solutions critically depend on the values of the continued fraction coefficients αi .

  8. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  9. Thermoelectric Behavior of PbSe Single Crystals

    DOE PAGES

    Kogo, Gilbert; Pradhan, Aswini K.; Roy, Utpal N.

    2016-12-05

    The electrical conductivity and Seebeck coefficient of PbSe single crystals grown by the Bridgman technique display metallic behavior. The Seebeck coefficient increases linearly with increasing temperature and showed positive Seebeck values, typically valid for a p-type PbSe crystal. The electronic thermal conductivity decreases with increase in temperature. The power factor increases gradually with temperature until the maximum value of 6.51 × 10 -3 W/mK2 at 260 K, other values are 5.95 × 10 -3 W/mK 2 at 300 K, and 5.40 × 10 -3 W/mK 2 at 320 K. Our results demonstrate that as-grown PbSe crystal is generically p-type duemore » to excess in Pb and can be a potential candidate for thermoelectric power generation.« less

  10. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.

    1983-08-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7-21 percent and operating at a Reynolds number of 3 x 10 to the 6th. Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18 percent, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yield peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63(2)-015 airfoil showed an annual energy output increase of 17-27 percent, depending on rotor solidity, compared to an NACA 0015 airfoil.

  11. Darrieus wind-turbine airfoil configurations

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.; Fritschen, J. R.

    1982-06-01

    The purpose was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63 sub 2-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63 sub 2-015 airfoil to an appropriate shape.

  12. Quadratic spline subroutine package

    USGS Publications Warehouse

    Rasmussen, Lowell A.

    1982-01-01

    A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)

  13. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  14. Dual Rotating Rake Measurements of Higher-Order Duct Modes: Validation Using Experimental and Numerical Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.

    2018-01-01

    A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.

  15. Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography.

    PubMed

    Ghosn, Mohamad G; Tuchin, Valery V; Larin, Kirill V

    2007-06-01

    Noninvasive functional imaging, monitoring, and quantification of analytes transport in epithelial ocular tissues are extremely important for therapy and diagnostics of many eye diseases. In this study the authors investigated the capability of optical coherence tomography (OCT) for noninvasive monitoring and quantification of diffusion of different analytes in sclera and cornea of rabbit eyes. A portable time-domain OCT system with wavelength of 1310 +/- 15 nm, output power of 3.5 mW, and resolution of 25 mum was used in this study. Diffusion of different analytes was monitored and quantified in rabbit cornea and sclera of whole eyeballs. Diffusion of water, metronidazole (0.5%), dexamethasone (0.2%), ciprofloxacin (0.3%), mannitol (20%), and glucose solution (20%) were examined, and their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods. Permeability coefficients were calculated as a function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) x 10(-6) cm/s in cornea and (6.18 +/- 1.08) x 10(-6) cm/s in sclera. The permeability coefficient of drugs with small concentrations (where water was the major solvent) was found to be in the range of that of water in the same tissue type, whereas permeability coefficients of higher concentrated solutions varied significantly. Results suggest that the OCT technique might be a powerful tool for noninvasive diffusion studies of different analytes in ocular tissues. However, additional methods of OCT signal acquisition and processing are required to study the diffusion of agents of small concentrations.

  16. Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units

    NASA Astrophysics Data System (ADS)

    Wang, Zhenwei; Berghaus, Jörg Oberste; Yick, Sing; Decès-Petit, Cyrille; Qu, Wei; Hui, Rob; Maric, Radenka; Ghosh, Dave

    A metal-supported solid oxide fuel cell (SOFC) composed of a Ni-Ce 0.8Sm 0.2O 2- δ (Ni-SDC) cermet anode and an SDC electrolyte was fabricated by suspension plasma spraying on a Hastelloy X substrate. The cathode, an Sm 0.5Sr 0.5CoO 3 (SSCo)-SDC composite, was screen-printed and fired in situ. The dynamic behaviour of the cell was measured while subjected to complete fuel shutoff and rapid start-up cycles, as typically encountered in auxiliary power units (APU) applications. A promising performance - with a maximum power density (MPD) of 0.176 W cm -2 at 600 °C - was achieved using humidified hydrogen as fuel and air as the oxidant. The cell also showed excellent resistance to oxidation at 600 °C during fuel shutoff, with only a slight drop in performance after reintroduction of the fuel. The Cr and Mn species in the Hastelloy X alloy appeared to be preferentially oxidized while the oxidation of nickel in the metallic substrate was temporarily alleviated. In rapid start-up cycles with a heating rate of 60 °C min -1, noticeable performance deterioration took place in the first two thermal cycles, and then continued at a much slower rate in subsequent cycles. A postmortem analysis of the cell suggested that the degradation was mainly due to the mismatch of the thermal expansion coefficient across the cathode/electrolyte interface.

  17. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer coated particle, the droplet is found to have lost a greater proportion of its initial water content. A greater degree of slowing in the evaporative flux can be achieved by increasing the chain length of the surface active alcohol, leading to a greater degree of dehydration.

  18. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  19. High thermoelectricpower factor in graphene/hBN devices

    PubMed Central

    Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y.

    2016-01-01

    Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene’s extraordinary heat conduction, active cooling has not been considered feasible due to graphene’s low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2. We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m−1⋅K−1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m−1⋅K−1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m−1⋅K−1, in MoS2. We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices. PMID:27911824

  20. Measurement of the steady surface pressure distribution on a single rotation large scale advanced prop-fan blade at Mach numbers from 0.03 to 0.78

    NASA Technical Reports Server (NTRS)

    Bushnell, Peter

    1988-01-01

    The aerodynamic pressure distribution was determined on a rotating Prop-Fan blade at the S1-MA wind tunnel facility operated by the Office National D'Etudes et de Recherches Aerospatiale (ONERA) in Modane, France. The pressure distributions were measured at thirteen radial stations on a single rotation Large Scale Advanced Prop-Fan (LAP/SR7) blade, for a sequence of operating conditions including inflow Mach numbers ranging from 0.03 to 0.78. Pressure distributions for more than one power coefficient and/or advanced ratio setting were measured for most of the inflow Mach numbers investigated. Due to facility power limitations the Prop-Fan test installation was a two bladed version of the eight design configuration. The power coefficient range investigated was therefore selected to cover typical power loading per blade conditions which occur within the Prop-Fan operating envelope. The experimental results provide an extensive source of information on the aerodynamic behavior of the swept Prop-Fan blade, including details which were elusive to current computational models and do not appear in the two-dimensional airfoil data.

Top