Science.gov

Sample records for power control concept

  1. Power and motivation: important concepts for infection control practitioners.

    PubMed

    Campbell, B

    1991-02-01

    Organizations are composed of people vying with one another for power. Failure to acquire it may result in a limited ability to have an impact on organizational politics, and ultimately can lessen the success of motivating personnel. Therefore, using the power sources described to acquire power and developing strategies to motivate others are essential in attaining the goals of an infection control program. In summary, infection control practitioners have tended to focus on the technical aspects of their roles and may have neglected the development of influencing and motivational strategies that well could have an impact on improving compliance to infection control. Knowledge of key concepts, such as power and motivation, should be as important as any component of an infection control practitioner's training.

  2. Phase control system concepts and simulations. [solar power satellite system

    NASA Technical Reports Server (NTRS)

    Lindsay, V. C.

    1980-01-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  3. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  4. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  5. A New Concept of Controller for Accelerators' Magnet Power Supplies

    NASA Astrophysics Data System (ADS)

    Visintini, Roberto; Cleva, Stefano; Cautero, Marco; Ciesla, Tomasz

    2016-04-01

    The complexity of a particle accelerator implies the remote control of very large numbers of devices, with many different typologies, either distributed along the accelerator or concentrated in locations, often far away from each other. Local and global control systems handle the devices through dedicated communication channels and interfaces. Each controlled device is practically a “smart node” performing a specific task. In addition, very often, those tasks are managed in real-time mode. The performances required to the control interface has an influence on the cost of the distributed nodes as well as on their hardware and software implementation. In large facilities (e.g. CERN) the “smart nodes” derive from specific in-house developments. Alternatively, it is possible to find on the market commercial devices, whose performances (and prices) are spread over a broad range, and spanning from proprietary design (customizable to the user's needs) to open source/design. In this paper, we will describe some applications of smart nodes in the particle accelerators field, with special focus on the power supplies for magnets. In modern accelerators, in fact, magnets and their associated power supplies constitute systems distributed along the accelerator itself, and strongly interfaced with the remote control system as well as with more specific (and often more demanding) orbit/trajectory feedback systems. We will give examples of actual systems, installed and operational on two light sources, Elettra and FERMI, located in the Elettra Research Center in Trieste, Italy.

  6. New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept

    PubMed Central

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method. PMID:24453910

  7. New power sharing control for inverter-dominated microgrid based on impedance match concept.

    PubMed

    Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang

    2013-01-01

    Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method.

  8. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  9. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study

    PubMed Central

    Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre–post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  10. New concepts of process control and visualization in a modern lignite-fired power plant

    SciTech Connect

    Karweina, I.D.

    1998-07-01

    The Schkopau lignite-fired power plant, one of the most advanced power plants to be built, went online in 1996. The plant is fully automated and in particular new developments have been incorporated in the field of process control and control room design in particular, new approaches were ventured. This was the first case ever of process management exclusively with large wall displays and a hand-held mouse. The new concepts have been well accepted by the operating staff. This presentation will cover over two years of experience with this new kind of process management and visual display system.

  11. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  12. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  13. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  14. Teaching power concepts.

    PubMed

    Heineken, J; McCloskey, J C

    1985-01-01

    Concepts and strategies presented here provide nurses with a new perspective from which to analyze and interact with power dynamics. Understanding fundamental concepts of power will help nurses enjoy a more equal status and bargaining position within the community of health professionals and in health care delivery systems. As nurses integrate and utilize this content for enhancing professional practices and client services, our public image will also continue to be strengthened. In so doing, our power base and sphere of influence will also be broadened.

  15. High speed rotorcraft propulsion concepts to control power/speed characteristics

    NASA Technical Reports Server (NTRS)

    Bettner, J. L.; Hawkins, J. M.; Blandford, C. S.

    1992-01-01

    Recent NASA sponsored rotorcraft airframer studies have demonstrated the desire for constant power over a wide range of output speed for turboshaft propulsion systems. This study interrogated several different concepts aimed at maintaining constant power over a speed variation from 100-50 percent with minimum increase in fuel consumption. The baseline engine was an advanced technology 8000 shp, fixed turbine geometry, turboshaft engine. The concepts investigated included variable geometry turbines, variable geometry compressors, power transfer from the HP to LP shafts, counterrotating power turbine with a combiner gearbox, and variable speed transmission integrated with the baseline turboshaft engine. The concept that best satisfies the program objectives with superior engine performance and with the least technical risk is the baseline (fixed geometry turbines) turboshaft engine integrated with the variable speed transmission.

  16. Analysis of several glidepath and speed control autopilot concepts for a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.

    1982-01-01

    Longitudinal performance and control utilization data are compared for several different automatic approach autopilot implementations in a powered lift STOL aircraft. As few as two, to as many as four laws reflecting both backside and frontside control techniques. The data are developed from analysis and simulation, but represent configurations which were demonstrated in flight. Transient response characteristics from initial glidepath offsets are presented, along with system operation in turbulence. In furnishing quantitative data in controlled levels of simulated turbulence, these results provide a useful supplement to various flight investigations (including those employing manual control) that involved a comparison of control techniques in this type of aircraft.

  17. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  18. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  19. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications. Revision 1

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  20. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  1. Culture and concepts of power.

    PubMed

    Torelli, Carlos J; Shavitt, Sharon

    2010-10-01

    Five studies indicate that conceptualizations of power are important elements of culture and serve culturally relevant goals. These studies provide converging evidence that cultures nurture different views of what is desirable and meaningful to do with power. Vertical individualism is associated with a conceptualization of power in personalized terms (i.e., power is for advancing one's personal status and prestige), whereas horizontal collectivism is associated with a conceptualization of power in socialized terms (i.e., power is for benefiting and helping others). Cultural variables are shown to predict beliefs about appropriate uses of power, episodic memories about power, attitudes in the service of power goals, and the contexts and ways in which power is used and defended. Evidence for the cultural patterning of power concepts is observed at both the individual level and the cultural-group level of analysis.

  2. Space Station momentum control and reboost requirements for two power generation concepts

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Lovelace, U. M.; Badi, D. M.; Cuddihy, W. F.

    1986-01-01

    Results are presented of dynamic structural analyses of 75 and 300 kW versions of a solar dynamic (SD) power supply for the Space Station (MSS). The SD is being seriously considered as an alternative to solar panels due to lower areal and mass requirements and higher efficiencies. The functioning principle is to use parabolic concentrators to focus sunlight on a heat engine to boil liquids to drive a turbine. Potential problems are foreseen in terms of the torques which would be experienced by the MSS and the subsequent orbital stability effects. The stability would be altered by changing aerodynmaic drag, altered moment of inertia and angular momentum and the altered center of mass location. The problem is exacerbated by the need to first equip the MSS with solar panels while the SD technology is developed. The analysis shows that the attitude control system will need to be redesigned and resized to accommodate MSS growth with either power system. The effects of the rotating parts of the SD system can be minimized, but further studies are required to determine the effects on the pointing accuracy of the SD, which must be 10 times as precise as that needed by a photovoltaic array.

  3. Power Controller

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  4. Exotic power and propulsion concepts

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

  5. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  6. Space Solar Power: Satellite Concepts

    NASA Technical Reports Server (NTRS)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  7. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  8. Advanced LMMHD space power generation concept

    NASA Astrophysics Data System (ADS)

    Ho, Vincent; Wong, Albert; Kim, Kilyoo; Dhir, Vijay

    Magnetohydrodynamic (MHD) power generation concept has been proposed and studied worldwide as one of the future power generation sources. An advanced one fluid two phase liquid metal (LM) MHD power generation concept was developed for space nuclear power generation design. The concept employs a nozzle to accelerate the liquid metal coolant to an acceptable velocity with Mach number greater than unity. Such nozzle and the MHD power generator replace the turbogenerator of a high temperature Rankine turboelectric cycle concept. As a result, the power generation system contains no movable parts. This provides high reliability, which is a very important factor in space application.

  9. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  10. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  11. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  12. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  13. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  14. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  15. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  16. Multi-kilowatt solar power system concept

    SciTech Connect

    Kirpich, A.; Chung, A.

    1984-08-01

    As part of a feasibility study for large satellite communications, the conceptual design of a multi-kilowatt solar power system has been completed. The concept is based on using two flat-pack SEP solar arrays having a beginning-of-life output of 25 KW. The bulk of this power is supplied to the communication payload at 200 VDC. Further processing to various user voltage levels is performed within the communications subsystem. A limited amount of energy storage is used to maintain the payload during eclipse periods. The system has been designed for a geosynchronous orbit. Key technical issues of this concept are the use of a high distribution voltage (200 VDC) and the effects of electro-static discharge (ESD) associated with the large solar array area. Assessments of these issues are presented together with approaches for reducing deleterious effects to acceptable levels. Housekeeping loads, estimated at 1 KW, are supported by a small segment of the solar array along with a complement of batteries for operation through eclipse periods. This power is provided at 28 VDC. A unique feature of the design is the manner in which the solar array is mounted to the spacecraft. Instead of articulating the solar array with respect to the main spacecraft body, as implemented in many geosynchronous spacecraft, the solar array is fixed to the main body. Both the solar array and main body are then sun oriented. Key advantages of this approach are: elimination of high power slip rings; simple thermal control because sun-pointing results in constant thermal conditions; straightforward structural and mechanical integration resulting largely from elimination of view factor considerations associated with articulated solar arrays.

  17. Postmodern Education and the Concept of Power

    ERIC Educational Resources Information Center

    Romer, Thomas Aastrup

    2011-01-01

    This article presents a discussion of how postmodernist, poststructuralist and critical educational thinking relate to different theories of power. I argue that both Critical Theory and some poststructuralist ideas base themselves on a concept of power borrowed from a modernist tradition. I argue as well that we are better off combining a…

  18. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  19. Artist's concept of fusion-powered vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Travel to distant stars is a long-range goal of Marshall Space Flight Center's Advanced Concept Group. One of the many propulsion systems currently being studied is fusion power. The objective of this and many other alternative propulsion systems is to reduce the costs of space access and to reduce the travel time for planetary missions. One of the major factors is providing an alternate engery source for these missions. Pictured is an artist's concept of future interplanetary space flight using fusion power.

  20. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  1. Powered Landing of Phoenix Artist Concept

    NASA Image and Video Library

    2007-07-30

    This artist concept depicts NASA Phoenix Mars Lander a moment before its 2008 touchdown on the arctic plains of Mars. Pulsed rocket engines control the spacecraft speed during the final seconds of descent.

  2. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  3. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  4. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  5. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  6. POWOW: A Modular, High Power Spacecraft Concept

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    2000-01-01

    A robust space infrastructure encompasses a broad range of mission needs along with an imperative to reduce costs of satellites meeting those needs. A critical commodity for science, commercial and civil satellites is power at an affordable cost. The POWOW (POwer WithOut Wires) spacecraft concept was created to provide, at one end of the scale, multi-megawatts of power yet also be composed of modules that can meet spacecraft needs in the kilowatt range. With support from the NASA-sponsored Space Solar Power Exploratory Research and Technology Program, the POWOW spacecraft concept was designed to meet Mars mission needs - while at the same time having elements applicable to a range of other missions. At Mars, the vehicle would reside in an aerosynchronous orbit and beam power to a variety of locations on the surface. It is the purpose of this paper to present the latest concept design results. The Space Power Institute along with four companies: Able Engineering, Inc., Entech, Inc., Primex Aerospace Co., and TECSTAR have produced a modular, power-rich electrically propelled spacecraft design that meets these requirements. In addition, it also meets a range of civil and commercial needs. The spacecraft design is based on multijunction Ill-V solar cells, the new Stretched Lens Aurora (SLA) module, a lightweight array design based on a multiplicity of 8 kW end-of-life subarrays and electric thrusters. The solar cells have excellent radiation resistance and efficiencies above 30%. The SLA has a concentration ratio up to 15x while maintaining an operating temperature of 80 C. The design of the 8 kW array building block will be presented and its applicability to commercial and government missions will be discussed. Electric propulsion options include Hall, MPD and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. The present baseline spacecraft design providing 900 kW using technologies expected to be

  7. MOSFET Power Controller

    NASA Technical Reports Server (NTRS)

    Mitchell, J.; Jones, K.

    1986-01-01

    High current and voltage controlled remotely. Remote Power Conroller includes two series-connected banks of parallel-connected MOSFET's to withstand high current and voltage. Voltage sharing between switch banks, low-impedance, gate-drive circuits used. Provided controlled range for turn on. Individually trimmable to insure simultaneous switching within few nanoseconds during both turn on and turn off. Control circuit for each switch bank and over-current trip circuit float independently and supplied power via transformer T1 from inverter. Control of floating stages by optocouplers.

  8. A Critique of the Concept of "Contingency Power."

    ERIC Educational Resources Information Center

    Lichtenberg, James W.

    Most theory and research on power and social influence in counseling and psychotherapy has focused on the power base and power outcome domains of Olson's (1972) framework which viewed power as a generic concept consisting of the three domains of power base, power process, and power outcome. Statistical approaches to the study of power, influence,…

  9. APS power supply controls

    SciTech Connect

    Saunders, C.W.; Despe, O.D.

    1994-03-31

    The purpose of this document is to provide comprehensive coverage of the APS power supply control design. This includes application software, embedded controller software, networks, and hardware. The basic components will be introduced first, followed by the requirements driving the overall design. Subsequent sections will address each component of the design one by one. Latter sections will address specific applications.

  10. System Concepts for Affordable Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, David; Qualls, Louis

    2008-01-01

    This paper presents an overview of an affordable Fission Surface Power (FSP) system that could be used for NASA applications on the Moon and Mars. The proposed FSP system uses a low temperature, uranium dioxide-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The concept was determined by a 12 month NASA/DOE study that examined design options and development strategies based on affordability and risk. The system is considered a low development risk based on the use of terrestrial-derived reactor technology, high efficiency power conversion, and conventional materials. The low-risk approach was selected over other options that could offer higher performance and/or lower mass.

  11. Oilwell Power Controller (OPC)

    SciTech Connect

    Not Available

    1993-08-01

    The Oil Well Power Controller (OPC) prototype units is nearing completion. This device is an oilwell beam pump controller and data logger. Applications for this device have been for an electrical power saving device, pump off control, parafffin detection, demand power load control, chemical treatment data, dynamometer and pump efficiency data. Preliminary results appear vary promising. A total of ten OPC rod pump controllers were assembled and installed on oilwells in several areas of Central and Western United States. Data was analyzed on these wells and forwarded to the participating oil companies. Cost savings on each individual oil well participating in the OPC testing vary considerably, savings on some situations have been outstanding. In situations where the pump efficiency was determined to be low, the cost savings have been considerable. Cost savings due to preventive maintenance are also present, but are difficult to pin point an exact dollar amount at the present time. A break out of actual cost data obtained on some of the oilwells controlled and monitored with the oilwell power controller.

  12. Advanced Concepts for Sea Control,

    DTIC Science & Technology

    1977-11-01

    technology sea control missions, 1,000 tonnes to advances occur, and the threat needs 25,000 tonnes would be representative change, a proper balance can be...sea loiter aircraft, conventional subcavitating fully-sub- utilizing the stopped rotor concept; merged foils, thus providing a very a small sea...augmentation engines have been platform characteristics at conventional moved from their overhung location to a displacement ship speeds but at a re- . place

  13. Dual arm master controller concept

    SciTech Connect

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  14. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  15. PID Control Effectiveness for Surface Reactor Concepts

    SciTech Connect

    Dixon, David D.; Marsh, Christopher L.; Poston, David I.

    2007-01-30

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

  16. Power semiconductor controlled drives

    NASA Astrophysics Data System (ADS)

    Dubey, Gopal K.

    This book presents power semiconductor controlled drives employing dc motors, induction motors, and synchronous motors. The dynamics of motor and load systems are covered. Open-loop and closed-loop drives are considered, and thyristor, power transistor, and GTO converters are discussed. In-depth coverage is given to ac drives, particularly those fed by voltage and current source inverters and cycloconverters. Full coverage is given to brushless and commutatorless dc drives, including load-commuted synchronous motor drives. Rectifier-controlled dc drives are presented in detail.

  17. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  18. Solid state power controllers

    NASA Technical Reports Server (NTRS)

    Gibbs, R. S.

    1973-01-01

    The rationale, analysis, design, breadboarding and testing of the incremental functional requirements are reported that led to the development of prototype 1 and 5 Amp dc and 1 Amp ac solid state power controllers (SSPC's). The SSPC's are to be considered for use as a replacement of electro-mechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 Vdc. They have the advantage over conventional relay/circuit breaker systems in that they can be located near utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small guage wire for control, computer interface, logic, electrical multiplexing, unboard testing, and power management and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability.

  19. High Current Power Controller

    DTIC Science & Technology

    1981-04-01

    AFWAL-TR-81- 2016 U iui.N HIGH CURRENT Ŕ POWER CONTROLLER P. E. McCOLLUM Audwo ROCKWELL INTERNATIONAL AUTONETICS STRATEGIC SYSTEMS DIVISION 3370...personnel. During norm3l operation, HCP \\.s pose no hazard, bLt unde- certain operating conditions potential noaza-ds do exist. They are: (1) During

  20. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  1. Modern control concepts in hydrology

    NASA Technical Reports Server (NTRS)

    Duong, N.; Johnson, G. R.; Winn, C. B.

    1974-01-01

    Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.

  2. Stirling engine power control

    DOEpatents

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  3. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  4. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  5. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  6. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1980-01-01

    A power control circuit for a three phase induction motor is described. The power factors for the three phases are summed to provide a control signal. This control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  7. The unified power flow controller: A new approach to power transmission control

    SciTech Connect

    Gyugyi, L.; Schauder, C.D.; Williams, S.L.; Rietman, T.R.; Torgerson, D.R.; Edris, A.

    1995-04-01

    This paper shows that the Unified Power Flow Controller (UPFC) is able to control both the transmitted real power and, independently, the reactive power flows at the sending-and the receiving-end of the transmission line. The unique capabilities of the UPFC in multiple line compensation are integrated into a generalized power flow controller that is able to maintain prescribed, and independently controllable, real power and reactive power flow in the line. The paper describes the basic concepts of the proposed generalized P and Q controller and compares it to the more conventional, but related power flow controller, such as the Thyristor-Controlled Series Capacitor and Thyristor-Controlled Phase Angle Regulator. The paper also presents results of computer simulations showing the performance of the UPFC under different system conditions.

  8. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  9. Authority, Power, and the Legitimation of Social Control.

    ERIC Educational Resources Information Center

    Mitchell, Douglas E.; Spady, William G.

    1983-01-01

    To clarify "power" and "authority," the authors review the concepts' history, examine contemporary concepts of social control, identify four authority modes (based on social relations and controls), derive four power resources from these modes, discuss persuasion and exchange as social control mechanisms, and demarcate…

  10. Concept development for a space solar power station

    NASA Astrophysics Data System (ADS)

    Sysoev, V. K.; Pichkhadze, K. M.; Feldman, L. I.; Arapov, E. A.; Luzyanin, A. S.

    2012-12-01

    This paper introduces a concept for the development of a space solar power station, starting from the manufacture of a photoemissive panel to the creation of a prototype of an industrial power plant. Balloon systems play a special role both in the testing of the power plant and in the operation of prototypes of solar power stations.

  11. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  12. PowerPoint and Concept Maps: A Great Double Act

    ERIC Educational Resources Information Center

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  13. PowerPoint and Concept Maps: A Great Double Act

    ERIC Educational Resources Information Center

    Simon, Jon

    2015-01-01

    This article explores how concept maps can provide a useful addition to PowerPoint slides to convey interconnections of knowledge and help students see how knowledge is often non-linear. While most accounting educators are familiar with PowerPoint, they are likely to be less familiar with concept maps and this article shows how the tool can be…

  14. Laser power transmission concepts for Martian applications

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Conway, E. J.; Meador, W. E.; Humes, D. H.

    1989-01-01

    Long-term, highly reliable, flexible power will be required to support many diverse activities on Mars and for rapid development of the Mars environment. The potential of laser power transmission for supporting science, materials processing, transportation, and human habitats is discussed. Some advantageous locations for laser power stations in Mars orbit are developed.

  15. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  16. Critical areas: Satellite power systems concepts

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Critical Areas are defined and discussed in the various areas pertinent to satellite power systems. The presentation is grouped into five areas (General, Space Systems, Solar Energy Conversion, Microwave Systems, and Environment/Ecology) with a sixth area (Power Relay) considered separately in an appendix. Areas for Future Consideration as critical areas are discussed in a second appendix.

  17. Spectrum management considerations of adaptive power control in satellite networks

    NASA Technical Reports Server (NTRS)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  18. A Concept for a Radioisotope Powered Lunar CubeSat

    NASA Astrophysics Data System (ADS)

    Cataldo, R. L.

    2016-11-01

    Presented is a concept for a small lander or cubesat lunar mission that would benefit from a low-power milli-watt radioisotope power source (RPS). A RPS would provide long-lived electrical and thermal power enabling a long-lived lunar mission.

  19. Contingency power concepts for helicopter turboshaft engine

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.

    1984-01-01

    Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.

  20. Contingency power concepts for helicopter turboshaft engine

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.

    1984-01-01

    Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.

  1. Extending the Power of the Concept Map

    ERIC Educational Resources Information Center

    Passmore, Graham J.

    2004-01-01

    This pilot study introduces a scale to assess structural knowledge in concept maps. The need to increase our understanding of structural knowledge through improved assessment is made evident in a review of research that indicates that its quality is related to problem-solving abilities. The new scale is derived from Biggs and Collis' (1982)…

  2. Extending the Power of the Concept Map

    ERIC Educational Resources Information Center

    Passmore, Graham J.

    2004-01-01

    This pilot study introduces a scale to assess structural knowledge in concept maps. The need to increase our understanding of structural knowledge through improved assessment is made evident in a review of research that indicates that its quality is related to problem-solving abilities. The new scale is derived from Biggs and Collis' (1982)…

  3. High-torque power wrench, a concept

    NASA Technical Reports Server (NTRS)

    Cox, E. F.

    1968-01-01

    High-torque power wrench is small enough to be handled by one or two men yet has sufficient torque to remove 1-1/2- to 4-inch nuts from high-pressure tanks and valves. The action can be made automatic by use of solenoid-operated valves and suitable switches.

  4. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  5. Concepts for central solar electric power generation

    NASA Technical Reports Server (NTRS)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  6. Theoretical Concept of Power vs. Oppression

    ERIC Educational Resources Information Center

    Hartlep, Nicholas D.

    2008-01-01

    This urban synthesis paper encompasses the works of Drs. Joel Handler, Yeheskel Hasenfeld, Ann Winfield, John Rury, and Jean Anyon. The main purpose of this paper is to synthesize arguments contained within their books relating to the theory of power vs. oppression as it plays out within our society. This synthesizing acknowledges and elucidates…

  7. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  8. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  9. Power-control switch

    NASA Technical Reports Server (NTRS)

    Kessler, L. L.

    1976-01-01

    Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.

  10. Using Scatterplots to Teach the Critical Power Concept

    ERIC Educational Resources Information Center

    Pettitt, Robert W.

    2012-01-01

    The critical power (CP) concept has received renewed attention and excitement in the academic community. The CP concept was originally conceived as a model derived from a series of exhaustive, constant-load, exercise bouts. All-out exercise testing has made quantification of the parameters for the two-component model easier to arrive at, which may…

  11. Using Scatterplots to Teach the Critical Power Concept

    ERIC Educational Resources Information Center

    Pettitt, Robert W.

    2012-01-01

    The critical power (CP) concept has received renewed attention and excitement in the academic community. The CP concept was originally conceived as a model derived from a series of exhaustive, constant-load, exercise bouts. All-out exercise testing has made quantification of the parameters for the two-component model easier to arrive at, which may…

  12. Supercritical Brayton Cycle Nuclear Power System Concepts

    SciTech Connect

    Wright, Steven A.

    2007-01-30

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  13. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  14. Concept identification for a power take-off shielding campaign.

    PubMed

    Tinc, P J; Madden, E; Park, S; Weil, R; Sorensen, J A

    2015-01-01

    ABSTRACT Machinery entanglements, specifically power take-off (PTO) entanglements, are a leading cause of injuries and fatalities on farms. In order to address this life-threatening issue, a social marketing campaign is being developed to reduce barriers and emphasize motivators to shielding. This article discusses the process of designing, testing, and selecting concepts to be used in the campaign. Small-group discussions (triads) were held to test 13 message concepts. Participants were asked to provide feedback and select the two messages that they believed to be most powerful. Upon completion, three message concepts were selected to be finalized.

  15. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  16. Concept Mapping, PowerPoint, and a Pedagogy of Access

    ERIC Educational Resources Information Center

    Kinchin, Ian M.

    2006-01-01

    This article explores the synergy that can be created when concept-mapping techniques are used in collaboration with the construction of PowerPoint presentations to increase the richness of the learning experience. Some weaknesses of the typical PowerPoint format are highlighted with a description of how they can be overcome through a more…

  17. Toward "Constructing" the Concept of Statistical Power: An Optical Analogy.

    ERIC Educational Resources Information Center

    Rogers, Bruce G.

    This paper presents a visual analogy that may be used by instructors to teach the concept of statistical power in statistical courses. Statistical power is mathematically defined as the probability of rejecting a null hypothesis when that null is false, or, equivalently, the probability of detecting a relationship when it exists. The analogy…

  18. Concepts for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  19. A new concept of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  20. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  1. Advanced radiator concepts. [for nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Begg, L. L.; Engdahl, E. H.

    1989-01-01

    Two radiator systems to reject heat from future space nuclear power systems were conceptually designed. One design would dissipate 1.7 MWt of heat at 600 K, and the other would reject 2.4 MWt at 875 K. The low-temperature radiator utilized a pumped loop system constructed of titanium, and achieved a specific mass of 5.8 kg/sq m, including pumps and structure. The high-temperature radiator system utilized potassium heat pipes constructed of SiC-reinforced titanium, and achieved a specific mass of 5.5 kg/sq m. Both radiators took advantage of light, high-thermal-conductivity carbon/graphite composite fins to distribute and radiate the rejected heat.

  2. Accommodation of Nuclear Power and Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.; Bolch, Wesley e.; Thomas, J. Kelley

    1990-01-01

    The use of nuclear systems for propulsion and power are being examined as system options for implementing the lunar and Mars human exploration missions currently being studied by NASA. Systems might include nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles, operating reactors on coorbiting platforms, radioisotope thermoelectric generators, and others. The space station, as a transportation node, would have to store, assemble, launch and refurbish elements containing these systems. Care must be taken to safeguard humans from the radiation imposed by these systems, in addition to the naturally occuring background of the space environment. Key issues need to be identified early to enable their proper consideration in planning activities and the baseline space station design. A study was conducted over the past year with Texas A&M University to identify and explore key issues and quantify findings in a way useful to the Space Station Program.

  3. Who's the Boss? Concepts of Social Power Across Development.

    PubMed

    Gülgöz, Selin; Gelman, Susan A

    2016-10-14

    Power differences are observed in children's early relationships, yet little is known about how children conceptualize social power. Study 1 recruited adults (n = 35) to assess the validity of a series of vignettes to measure five dimensions of social power. Using these vignettes, Study 2 (149 three- to nine-year-olds, 42 adults) and Study 3 (86 three- to nine-year-olds, 22 adults) showed that children visiting a science museum at a middle class university town are sensitive to several dimensions of social power from a young age; however, an adult-like breadth of power concepts does not develop until 7-9 years. Children understand social power whether the powerful character is malevolent or benevolent, though malevolent power is easier to detect for children and adults.

  4. Adaptive Power Control for Space Communications

    NASA Technical Reports Server (NTRS)

    Thompson, Willie L., II; Israel, David J.

    2008-01-01

    This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).

  5. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1995-01-01

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power now control which is unattainable with more conventional devices.

  6. Transmission series power flow control

    SciTech Connect

    Nelson, R.J.; Bian, J.; Williams, S.L.

    1994-12-31

    This paper presents the characteristics of two gate turn-off (GTO) thyristor voltage-sourced inverter-based series power flow control devices, namely the Series Power Flow Controller (SPFC) and the Unified Power Flow Controller (UPFC). These devices represent series extensions of the STATCON, an inverter-based shunt device developed under a tailored collaboration by EPRI, TVA and the Westinghouse Science and Technology Center, which will soon be placed in service on the TVA 161kV transmission system for transmission voltage control. Operation of the SPFC and UPFC is illustrated through the use of easily-constructed circle diagrams on the P-Q plane. The circle diagrams provide the transmission planning engineer with a simple means to assess the performance of these devices on the transmission system. A concluding example illustrates that the UPFC provides a level of power flow control which is unattainable with more conventional devices.

  7. Mars power system concept definition study. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  8. Mars power system concept definition study. Volume 1: Study results

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1994-12-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  9. Agent Concept for Intelligent Distributed Coordination in the Electric Power Grid

    SciTech Connect

    SMATHERS, DOUGLAS C.; GOLDSMITH, STEVEN Y.

    2001-03-01

    Intelligent agents and multi-agent systems promise to take information management for real-time control of the power grid to a new level. This report presents our concept for intelligent agents to mediate and coordinate communications between Control Areas and Security Coordinators for real-time control of the power grid. An appendix describes the organizations and publications that deal with agent technologies.

  10. Power and Control in Kathmandu: A Comparison of Attempted Power, Actual Power, and Achieved Power.

    PubMed

    Emery, Clifton R; Thapa, Sirjana; Wu, Shali

    2016-05-05

    We argue that the concept of power has been inadvertently sidelined in recent theory and research on husband violence. Three types of relationship power may matter with respect to husband violence: attempted power, actual power, and achieved power. Analyses of a randomly selected representative sample of 270 married or partnered women in Kathmandu showed that actual power was related to husband violence prevalence, severity, and injury. Achieved power was related to husband violence prevalence and severity, and attempted power was related to husband violence injury. Implications are discussed.

  11. Electric Vehicle Power Controller.

    DTIC Science & Technology

    1981-12-01

    Anthony M. "Distributed Control Boosts Process Reliability," Electronics, 163-164 (15 April 1976). 9. Van Cott, Harold P., Robert G. Kinkade Human...Care should be take; to est imate vector size requiremrents and initialization. SUM: PUSH IX ;PUT ACC. PINTER IN HL POP HL LD A,(HL) ;FIRST WORD LE B

  12. GGOT total pressure loss control concept evaluation

    NASA Technical Reports Server (NTRS)

    Blumenthal, R. F.

    1993-01-01

    Total pressure loss is one of the most important parameters in the design of a turbine. This parameter effects not only the turbine performance, but consequently the engine power balance and engine performance. Computational Fluid Dynamics (CFD) can be an effective tool in predicting turbine total pressure loss, and also for performing sensitivity studies to achieve an optimal design with respect to pressure loss. In the present study, the AEROVISC code was used to predict the total pressure loss in the Turbine Technology Team Gas Generator Oxidizer Turbine (GGOT). The objectives in this study are two-fold. It is first necessary to determine an optimal methodology in predicting total pressure loss. The type of grid, grid density and distribution are parameters which may affect the loss prediction. Also, the effect of using a standard K-epsilon turbulence model with wall functions versus a two-layer turbulence model needs to be investigated. The use of grid embedding to resolve areas with high flow gradients needs to be explored. The second objective of the study is to apply the optimal methodology toward evaluating different tip leakage control concepts.

  13. Lunar Fission Surface Power System Design and Implementation Concept

    SciTech Connect

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-20

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  14. Lunar Fission Surface Power System Design and Implementation Concept

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  15. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  16. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  17. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  18. a Technical Overview of the "suntower" Solar Power Satellite Concept

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2002-03-01

    During 1995-1996, the National Aeronautics and Space Administration (NASA) conducted a far-reaching reexamination of the technologies, systems concepts and terrestrial markets that might be involved in future space solar power (SSP) systems. The principal objective of this "fresh look" study was to determine whether a solar power satellite (SPS) and associated systems could be defined that could deliver energy into terrestrial electrical power grids at prices equal to or below ground alternatives in a variety of markets, do so without major environmental drawbacks, and which could be developed at a fraction of the initial investment projected for the SPS Reference System of the late 1970s. One of the key concepts emerging from the "fresh look" SSP study is the "SunTower" SPS system. This concept exploits a variety of innovative technologies and design approaches to achieve a potential breakthrough in establishing the technical and programmatic feasibility on initial commercial SSP operations. Capable of being deployed to either low Earth orbit or middle Earth orbit altitudes and various inclinations, the SunTower concept involves essentially no in-space infrastructure and requires no unique heavy lift launch vehicle. The concept, which can provide power to global market places appears to allow up to a factor of 30:1 reduction in initial investment requirements, compared to the 1979 SPS Reference Concept. This paper presents a technical overview of the SunTower SPS concept, including key technologies, sensitivity trades, operational scenarios. Potential non-SPS space program uses of the SunTower concept and related technologies are identified, including human exploration, space science and commercial space applications.

  19. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  20. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  1. Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.

  2. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  3. Optical power source control system

    NASA Astrophysics Data System (ADS)

    Husbands, C. R.

    1984-05-01

    An optical power source control system having a four port optical coupler, an optical receiver and associated comparator circuits operably connected to the optical transmission line connecting the source to an output connector. When the output connector is mated with another connector, the receiver senses the optical energy reflected from the glass/air and air/glass interfaces of the connectors and provides an appropriate signal. This signal is sufficiently high when compared to a threshold voltage level to permit the power source to operate. When the output connector is in the unmated condition the reflected optical power from the air/glass interface is no longer present and therefore the signal from the receiver falls below the threshold voltage level. With this reduced signal level, power flow to the optical source is removed or reduced thereby controlling the operation of the optical power source.

  4. Physicians' Professionally Responsible Power: A Core Concept of Clinical Ethics.

    PubMed

    McCullough, Laurence B

    2016-02-01

    The gathering of power unto themselves by physicians, a process supported by evidence-based practice, clinical guidelines, licensure, organizational culture, and other social factors, makes the ethics of power--the legitimation of physicians' power--a core concept of clinical ethics. In the absence of legitimation, the physician's power over patients becomes problematic, even predatory. As has occurred in previous issues of the Journal, the papers in the 2016 clinical ethics issue bear on the professionally responsible deployment of power by physicians. This introduction explores themes of physicians' power in papers from an international group of authors who address autonomy and trust, the virtues of perinatal hospice, conjoined twins in ethics and law, addiction and autonomy in clinical research on addicting substances, euthanasia of patients with dementia in Belgium, and a pragmatic approach to clinical futility.

  5. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  6. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  7. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  8. Advanced Electric Distribution, Switching, and Conversion Technology for Power Control

    NASA Technical Reports Server (NTRS)

    Soltis, James V.

    1998-01-01

    The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.

  9. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2003-01-01

    A study was recently carried out by a team from JPL and the DOE to investigate the utility of a DOE-developed 3 kWe surface fission power system for Mars missions. The team was originally tasked to perform a study to evaluate the usefulness and feasibility of incorporation of such a power system into a landed mission. In the course of the study it became clear that the application of such a power system was enabling to a wide variety of potential missions. Of these, two missions were developed, one for a stationary lander and one for a reactor-powered rover. This paper discusses the design of the rover mission, which was developed around the concept of incorporating the fission power system directly into a large rover chassis to provide high power, long range traverse capability. The rover design is based on a minimum extrapolation of technology, and adapts existing concepts developed at JPL for the 2009 Mars Science Laboratory (MSL) rover, lander and EDL systems. The small size of the reactor allowed its incorporation directly into an existing large MSL rover chassis design, allowing direct use of MSL aeroshell and pallet lander elements, beefed up to support the significantly greater mass involved in the nuclear power system and its associated shielding. This paper describes the unique design challenges encountered in the development of this mission architecture and incorporation of the fission power system in the rover, and presents a detailed description of the final design of this innovative concept for providing long range, long duration mobility on Mars.

  10. Evaluation and Comparison of Space Solar Power Concepts

    NASA Astrophysics Data System (ADS)

    Feingold, Harvey

    2002-01-01

    The SSP Exploratory Research and Technology (SERT) program undertaken by NASA in the 1999- 2000 timeframe was the third in a recent series of NASA sponsored studies of Space Solar Power (SSP) that began with the 1995 SSP "Fresh Look" Study, and was followed by the SSP Concept Definition Study in 1998. In all three studies, a major focus has been on identifying system concepts, architectures and technologies that may ultimately produce a practical, economically viable source of electrical power to help satisfy the world's growing energy needs. As part of the SERT program, members of the study team developed several new and innovative SSP concepts that sprung from a desire to address the problem areas of previous system concepts with new technology and system solutions. In the previous SSP studies it has been shown that systems analyses and sensitivity studies are key to understanding the merits of different system concepts and technologies, particularly with respect to their impact on the mass and cost of space hardware and their ultimate economic impact on the cost of SSP-produced electricity. Enabled by analytical models and tools developed over the series of SSP studies, seven different system concepts as well as different technology choices within these concepts were quantitatively compared with one another on the basis of the mass and cost metrics suggested above. Accompanying sensitivity studies have permitted examination of how variations in the projected capabilities of different technologies could affect conclusions drawn from these analyses. This paper summarizes the results of these analytical efforts and from those results, identifies the most promising SSP concepts, including their key technologies and their comparative advantages and disadvantages.

  11. Evaluation and comparison of space solar power concepts

    NASA Astrophysics Data System (ADS)

    Feingold, Harvey; Carrington, Connie

    2003-08-01

    The SSP Exploratory Research and Technology (SERT) program undertaken by NASA in the 1999-2000 timeframe was the third in a recent series of NASA sponsored studies of Space Solar Power (SSP) that began with the 1995 SSP "Fresh Look" Study, and was followed by the SSP Concept Definition Study in 1998. In all three studies, a major focus has been on identifying system concepts, architectures and technologies that may ultimately produce a practical, economically viable source of electrical power to help satisfy the world's growing energy needs. As part of the SERT program, members of the study team developed several new and innovative SSP concepts that sprung from a desire to address the problem areas of previous system concepts with new technology and system solutions. In the previous SSP studies it has been shown that systems analyses and sensitivity studies are key to understanding the merits of different system concepts and technologies, particularly with respect to their impact on the mass and cost of space hardware and their ultimate economic impact on the cost of SSP-produced electricity. Enabled by analytical models and tools developed over the series of SSP studies, seven different system concepts as well as different technology choices within these concepts were quantitatively compared with one another on the basis of the mass and cost metrics suggested above. Accompanying sensitivity studies have permitted examination of how variations in the projected capabilities of different technologies could affect conclusions drawn from these analyses. This paper summarizes the results of these analytical efforts and from those results, identifies the most promising SSP concepts, including their key technologies and their comparative advantages and disadvantages.

  12. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  13. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  14. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  15. Space Solar Power Concepts: Demonstrations to Pilot Plants

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.

  16. The power of genomic control.

    PubMed Central

    Bacanu, S A; Devlin, B; Roeder, K

    2000-01-01

    Although association analysis is a useful tool for uncovering the genetic underpinnings of complex traits, its utility is diminished by population substructure, which can produce spurious association between phenotype and genotype within population-based samples. Because family-based designs are robust against substructure, they have risen to the fore of association analysis. Yet, if population substructure could be ignored, this robustness can come at the price of power. Unfortunately it is rarely evident when population substructure can be ignored. Devlin and Roeder recently have proposed a method, termed "genomic control" (GC), which has the robustness of family-based designs even though it uses population-based data. GC uses the genome itself to determine appropriate corrections for population-based association tests. Using the GC method, we contrast the power of two study designs, family trios (i.e., father, mother, and affected progeny) versus case-control. For analysis of trios, we use the TDT test. When population substructure is absent, we find GC is always more powerful than TDT; furthermore, contrary to previous results, we show that as a disease becomes more prevalent the discrepancy in power becomes more extreme. When population substructure is present, however, the results are more complex: TDT is more powerful when population substructure is substantial, and GC is more powerful otherwise. We also explore general issues of power and implementation of GC within the case-control setting and find that, economically, GC is at least comparable to and often less expensive than family-based methods. Therefore, GC methods should prove a useful complement to family-based methods for the genetic analysis of complex traits. PMID:10801388

  17. Satellite Power Systems (SPS) Concept Definition Study. Volume 3: SPS Concept Evolution

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    A solar photovoltaic satellite based upon the utilization of a GaAlAs solar cell is defined. Topics covered include silicon-based photovoltaics, solar thermal power conversion, microwave energy transmission, power distribution, structures, attitude control and stationkeeping, thermal, and information management and control.

  18. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  19. A Robust Modular IGBT Power Supply for Magnetic Confinement Concepts

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Ken; Carscadden, John; Prager, Jim

    2009-11-01

    Among current challenges in fusion science, and in particular within the Innovative Confinement Concepts (ICC) community, is the ability to generate increased power levels for pulsed magnets, arc plasma sources, radio frequency (RF) heating and current drive schemes at reasonable cost with current generation solid state devices. Continuous wave (CW) tube based power supplies are typically large and expensive, making them prohibitive for smaller experimental facilities or not cost effective when only pulsed input power is required. Next generation solid state power supplies could allow for multiple use applications with a single well developed module that can be easily reconfigured. As such, this type of robust power supply could be beneficial to several important fusion applications including high power RF heating and current drive schemes, high current pulsed magnets and plasma pre-ionization sources. Data will be presented on design characteristics and testing of a modular robust solid state power supply based on Insulate Gate Bi-polar Transistor (IGBT) technologies and developed by Eagle Harbor Technologies, INC. The modular power supply system can be assembled in multiple ways to address a wide range of applications and needs for the magnetic confinement community.

  20. The power behind empowerment for staff nurses: using Foucault's concepts.

    PubMed

    Udod, Sonia A

    2008-01-01

    The concept of staff nurse empowerment is often evoked in dialogue concerning the nature of nurses' practice in improving their work environments. Nurse empowerment has been the subject of vigorous discussion in healthcare settings, and has been researched largely through an organizational perspective. In this paper, nurse empowerment is analyzed by drawing upon a critical science approach as an alternative theoretical lens. Power is integral to empowerment, and occurs in the context of relations of power. The author uses the ideas of Michel Foucault to address the different ways in which power relations shape nurses' experiences in the workplace. Foucault conceptualizes power as a form of power that envelops staff nurses and nurse managers and, more specifically, as a set of disciplinary techniques. Rather than discussing power solely as a repressive force, Foucault identifies the productive aspects of power. His analysis of where power resides suggests a thought-provoking approach to staff nurse empowerment that has the potential to change nurses' practice through points of resistance, and thus has implications for improving the quality of nurses' work life.

  1. NSTX power supply real time controller

    SciTech Connect

    Neumeyer, C.; Hatcher, R.; Marsala, R.; Ramakrishnan, S.

    2000-01-06

    The NSTX is a new national facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. The NSTX depends on a real time, high speed, synchronous, and deterministic control system acting on a system of thyristor rectifier power supplies to (1) establish the initial magnetic field configuration; (2) initiate plasma within the vacuum vessel; (3) inductively drive plasma current; and (4) control plasma position and shape. For the initial ``day 0'' 1st plasma operations (Feb. 1999), the system was limited to closed loop proportional-integral current control of the power supplies based on preprogrammed reference waveforms. For the ``day 1'' phase of operations beginning Sept. 1999 the loop has been closed on plasma current and position. This paper focuses on the Power Supply Real Time Controller (PSRTC).

  2. Physicians’ Professionally Responsible Power: A Core Concept of Clinical Ethics

    PubMed Central

    McCullough, Laurence B.

    2016-01-01

    The gathering of power unto themselves by physicians, a process supported by evidence-based practice, clinical guidelines, licensure, organizational culture, and other social factors, makes the ethics of power—the legitimation of physicians’ power—a core concept of clinical ethics. In the absence of legitimation, the physician’s power over patients becomes problematic, even predatory. As has occurred in previous issues of the Journal, the papers in the 2016 clinical ethics issue bear on the professionally responsible deployment of power by physicians. This introduction explores themes of physicians’ power in papers from an international group of authors who address autonomy and trust, the virtues of perinatal hospice, conjoined twins in ethics and law, addiction and autonomy in clinical research on addicting substances, euthanasia of patients with dementia in Belgium, and a pragmatic approach to clinical futility. PMID:26671961

  3. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  4. RoMPS concept review automatic control of space robot, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  5. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel

  6. Technical assessment of an aeroelectric solar power concept

    SciTech Connect

    James, E C; Zukoski, E; Wormeck, J

    1981-02-01

    The aeroelectric solar power concept has been evaluated. The evaluation is based on a one-dimensional flow analysis which invokes the conservation of mass, momentum and energy of the fluid mixture (air, water vapor and water droplets) flowing through the powerplant. A performance evaluation computer code is developed which can be used to assess the concept under diverse conditions and in preliminary design. For purposes of this evaluation, the geometry of the powerplant has been specified. Aerodynamic flow losses have been estimated using a compendium of pipe flow data for each component of the power plant. These losses are utilized in the flow analysis. Flow losses have been estimated to be approximately one-third of the stream's dynamic pressure (1/2 pu/sup 2/) in the tower's cylinder section. Geometric or configuration changes can be made to reduce aerodynamic loss.

  7. Solar power satellite concepts and potential related space systems

    NASA Technical Reports Server (NTRS)

    Redding, T. E.

    1977-01-01

    Recent parametric studies of alternate SPS design concepts have shown that the concept appears technically feasible. The parametric studies were based on the use of advanced technology silicon solar cells for solar energy conversion. Solar array blanket unit masses of 0.31 to 0.46 kg/sq m were investigated. Conversion efficiencies of 15 to 17 percent air mass zero (AMO at 247 K) with a concentration ratio of two were considered. The systems were sized for a ground power output of 10 GW. To the level of detail studied, no design or operational problems were encountered that did not appear amenable to solution; however, the economic viability of the SPS concepts studied is obviously dependent upon a combination of technology advancement and/or the costs of competitive sources.

  8. A High Deflection Diaphragm concept (HDD) for power transmission shafting

    NASA Astrophysics Data System (ADS)

    Stocco, Joseph A.

    This paper will present a flexible metal diaphragm concept for power transmission shifting or couplings which must not only carry torque, but are also required to accommodate large amounts of axial and angular misalignments. The concept was developed through an analytical research investigation of diaphragm stress and their performance characteristics. This research will be described. The quality, reliability, meantime between failure and expected life characteristics of HDD diaphragms will be presented in this work. As proof of the design concept, diaphragms for a particular hypothetical application were fabricated into a prototype shaft, and tested. The results of this validation study will also be described herein. During the course of the testing program, it was decided to extend the analysis and the test evaluation to examine the effects of inducing damage in a diaphragm, as might occur during hostile encounters or abnormal operation.

  9. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  10. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  11. Power control for heat engines

    SciTech Connect

    Dineen, John J.

    1984-01-01

    A power control arrangement for a Stirling engine includes a sleeve mounted in each cylinder for axial movement and a port in the sleeve leading to a dead space. The port is covered by the piston at a position that is determined by the piston position and the axial adjustment of the sleeve. The compression phase of the Stirling cycle for that piston begins when the port is covered, so the position of the sleeve is used to set the Stirling engine power level.

  12. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  13. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  14. Satellite power system concept development and evaluation program system definition technical assessment report

    SciTech Connect

    Not Available

    1980-12-01

    The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW of electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  15. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission is currently under study by the Office of Space Science under the Project Prometheus Program. JIMO is examining the use of Nuclear Electric Propulsion (NEP) to carry scientific payloads to three Jovian moons. A potential power system concept includes dual 100 kWe Brayton converters, a deployable pumped loop heat rejection subsystem, and a 400 Vac Power Management and Distribution (PMAD) bus. Many trades were performed in aniving at this candidate power system concept. System-level studies examined design and off-design operating modes, determined startup requirements, evaluated subsystem redundancy options, and quantified the mass and radiator area of reactor power systems from 20 to 200 kWe. In the Brayton converter subsystem, studies were performed to investigate converter packaging options, and assess the induced torque effects on spacecraft dynamics due to rotating machinery. In the heat rejection subsystem, design trades were conducted on heat transport approaches, material and fluid options, and deployed radiator geometries. In the PMAD subsystem, the overall electrical architecture was defined and trade studies examined distribution approaches, voltage levels, and cabling options.

  16. Controlling power systems during emergencies

    SciTech Connect

    Kirschen, D.S.; Wollenberg, B.F.; Irisarri, G.D.; Bann, J.J.; Miller, B.N.

    1989-04-01

    Economic and social factors in many parts of the world now require power systems to be operated at less generation reserve and closer to transmission flow and contingency voltage limits than formerly practiced. The result has been an increase in the complexity of power systems operations. The installation of computerized Energy Management Systems (EMS) has helped alleviate some of these difficulties: Supervisory Control And Data-Acquisition (SCADA) systems have made possible the centralization of the decision-making process. Advanced applications such as optimal power flow and security analysis have helped operators maintain the system in a secure and optimal state. Expert system technology is now being implemented in EMS installations to provide operators with the tools necessary to meet the needs just described. This article explores some applications of expert systems to power system control and shows how they can be used to alleviate the burden on the operators during emergency periods. To this end, the design and implementation of two applications are presented: An intelligent alarm processor (IAP); and A program for the diagnosis of system faults (DSF).

  17. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  18. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  19. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  20. A Robust Modular IGBT Power Supply for Innovative Confinement Concepts

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James

    2012-10-01

    Eagle Harbor Technologies (EHT) has developed an IGBT-based switching module for pulsed high power (> 10 MW) RF applications. These modules contain a control voltage supply (isolated to 30 kV) and fiber optically isolated drive circuitry, which allows for easy integration into a wide variety of power supply configurations. Each module is capable of switching 2.5 kA (pulsed) or at 1 kV or switching 100 kW (CW) up to megahertz frequencies with rise times of 40 ns. The modules are designed for precise switching control, which reduces jitter (< 5 ns) between modules, enabling robust series operation. EHT will present the final module design and performance results. In addition, data will be presented from two power supplies utilizing the EHT module: a 10 kV series stack that drives a resistive load at 500 A and a half bridge configuration that drives series resonant network with over 5 MW oscillating power.

  1. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  2. Heat Rejection Concepts for Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James

    2005-01-01

    This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.

  3. The solar power satellite concept - A space program perspective

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1978-01-01

    The Space Shuttle will reduce the cost of transportation to space from thousands of dollars per pound to hundreds of dollars per pound. Studies of future systems indicate that these costs may be further reduced to tens of dollars per pound by using large space freighters, which would be required to build solar power satellites. It is pointed out that the Space Shuttle will provide a versatile tool in the 1980's to support the exploration of the solar power satellite concept as well as other space programs of the future. Three apparently different applications, related to materials processing in space, advanced satellite communications, and solar power satellites, have a number of common requirements. These include the need for large solar power arrays in space and/or the need to construct large systems in space. Consequently, a space program which includes development of the techniques for large power supplies and structural systems provides the basis for selecting and implementing any or all of these promising applications.

  4. Solar powered actuator with continuously variable auxiliary power control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.

  5. Solid state systems concepts. [solar power satellite transmission

    NASA Technical Reports Server (NTRS)

    Schroeder, I. K.

    1980-01-01

    Two prototype solid state phased array systems concepts for potential use in the Solar Power Satellite are described; the end-mounted and the sandwich systems. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. In the end-mounted system 36-watt amplifiers are mounted on the ground-plane, whereas in the sandwich the amplifiers are elevated to the dipoles, and their waste heat is dissipated by beryllium oxide discs. The feed lines are underneath the ground-plane, and a coaxial transmission line is carried all the way to the amplifier input. Also discussed is solid state amplifier development.

  6. A new concept of solar power satellite: Tethered-SPS

    NASA Astrophysics Data System (ADS)

    Sasaki, Susumu; Tanaka, Koji; Higuchi, Ken; Okuizumi, Nobukatsu; Kawasaki, Shigeo; Shinohara, Naoki; Senda, Kei; Ishimura, Kousei

    2007-02-01

    Tethered solar power satellite (Tethered-SPS) consisting of a large panel with a capability of power generation/transmission and a bus system which are connected by multi-wires is proposed as an innovative solar power satellite (SPS). The power generation/transmission panel is composed of a huge number of perfectly equivalent power modules. The electric power generated by the solar cells at the surface of each module is converted to the microwave power in the same module. Since the modules are controlled by the bus system using wireless LAN, no wired signal/power interfaces are required between the modules. The attitude in which the microwave transmission antenna is directed to the ground is maintained by the gravity gradient force. The tethered panel is composed of individual tethered subpanels which are loosely connected to each other. This configuration enables an evolutional construction in which the function of the SPS grows as the construction proceeds. A scale model of the tethered subpanel can be used for the first step demonstration experiment of the SPS in the near future.

  7. Automated power management and control

    NASA Technical Reports Server (NTRS)

    Dolce, James L.

    1991-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.

  8. Solar power satellite system definition study. Part 3: Preferred concept system definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A concise but complete system description for the preferred concept of the Solar Power Satellite System is presented. Significant selection decisions included the following: (1) single crystal silicon solar cells; (2) glass encapsulated solar cell blankets; (3) concentration ratio 1; (4) graphite composite materials for primary structure; (5) electric propulsion for attitude control; (6) klystron RF amplifier tubes for the transmitter; (7) one kilometer diameter transmitter with a design trans mission link output power of 5,000 megawatts; (8) construction in low earth orbit with self-powered transfer of satellite modules to geosynchronous orbit; and (9) two-stage winged fully reusable rocket vehicle for transportation to low earth orbit.

  9. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  10. Comparative performance of solar thermal power generation concepts

    NASA Technical Reports Server (NTRS)

    Wen, L.; Wu, Y. C.

    1976-01-01

    A performance comparison is made between the central receiver system (power tower) and a distributed system using either dishes or troughs and lines to transport fluids to the power station. These systems were analyzed at a rated capacity of 30 MW of thermal energy delivered in the form of superheated steam at 538 C (1000 F) and 68 atm (1000 psia), using consistent weather data, collector surface waviness, pointing error, and electric conversion efficiency. The comparisons include technical considerations for component requirements, land utilization, and annual thermal energy collection rates. The relative merits of different representative systems are dependent upon the overall conversion as expressed in the form of performance factors in this paper. These factors are essentially indices of the relative performance effectiveness for different concepts based upon unit collector area. These performance factors enable further economic tradeoff studies of systems to be made by comparing them with projected production costs for these systems.

  11. The critical power concept in all-out isokinetic exercise.

    PubMed

    Dekerle, Jeanne; Barstow, Thomas J; Regan, Luke; Carter, Helen

    2014-11-01

    The critical power concept has been applied to constant-load exhaustive exercise and recently validated for 3-min all-out exercise. To test the application of critical power to a 3-min all-out isokinetic cycling exercise. Single-group, experimental, comparative design. Nine participants performed a 3-min all-out isokinetic test and 4-5 constant-load exhaustive trials, at 60 and 100 rpm, on an electrically-braked cycle. The linear P-t-1 relationship was modelled using a 2-parameter model (slope: critical power; intercept: Anaerobic Work Capacity). End power and accumulated work done above EP were calculated from the 3-min tests. No significant difference and a significant correlation was found between end power and critical power (60 rpm: 259 ± 40 W vs. 245 ± 38 W, P > 0.05; r = 0.85, P<0.01; 100 rpm: 227 ± 57 W vs. 212 ± 44 W, P > 0.05; r = 0.86, P<0.01). The Bias ± 95% limits of agreement were 14 ± 42 W at 60 rpm and 15 ± 57 W at 100 rpm. Work done above EP (60 rpm: 14.7 ± 3.0 kJ; 100 rpm: 17.3 ± 3.1 kJ) was not significantly different to the anaerobic work capacity (60 rpm: 16.2 ± 3.2 kJ; 100 rpm: 20.6 ± 6.4 kJ; P>0.05) but with only a significant correlation at 60 rpm (r = -0.71, P<0.05). The 2-parameter model underpinning the critical power construct can be applied to a 3-min all-out isokinetic test. End power does not differ and correlates with critical power. However, a further insight into levels of agreement leads to some scepticism concerning the use of the two variables interchangeably. The great intra-subject differences between work done above EP and the intercept of the P-t-1 relationship should also be considered. Copyright © 2013. Published by Elsevier Ltd.

  12. Using concept mapping principles in PowerPoint.

    PubMed

    Kinchin, I M; Cabot, L B

    2007-11-01

    The use of linear PowerPoint templates to support lectures may inadvertently encourage dental students to adopt a passive approach to learning and a narrow appreciation of the field of study. Such presentations may support short-term learning gains and validate assessment regimes that promote surface learning approaches at the expense of developing a wider appreciation of the field that is necessary for development of clinical expertise. Exploitation of concept mapping principles can provide a balance for the negative learning behaviour that is promoted by the unreflective use of PowerPoint. This increases the opportunities for students to access holistic knowledge structures that are indicators of expertise. We illustrate this using the example of partial denture design and show that undergraduates' grasp of learning and teaching issues is sufficiently sophisticated for them to appreciate the implications of varying the mode of presentation. Our findings indicate that students understand the strategic value of bullet-pointed presentations for short-term assessment goals and the benefits of deep learning mediated by concept mapping that may support longer term professional development. Students are aware of the tension between these competing agendas.

  13. PSS Controller for Wind Power Generation Systems

    NASA Astrophysics Data System (ADS)

    Domínguez-García, J. L.; Gomis-Bellmunt, O.; Bianchi, F.; Sumper, A.

    2012-10-01

    Small signal stability analysis for power systems with wind farm interaction is presented. Power systems oscillation modes can be excited by disturbance or fault in the grid. Variable speed wind turbines can be regulated to reduce these oscillations, stabilising the power system. A power system stabiliser (PSS) control loop for wind power is designed in order to increase the damping of the oscillation modes. The proposed power system stabiliser controller is evaluated by small signal analysis.

  14. ["Damage control surgery" concept in gastrointestinal surgery].

    PubMed

    Li, Ning

    2011-01-01

    In recent years, damage control is well established as a potentially life-saving procedure in a few selected critically injured patients. The "damage control" concept also has been shown to increase overall survival and is likely to modify the management of critically ill patients suffering from gastrointestinal disease. In these patients the "lethal triad" of hypothermia, acidosis, and coagulopathy acts as a vicious cycle that often can not be interrupted and marks the limit of the patient's ability to cope with the physiological consequences of traditional and extensive surgical procedures. The principles of damage control are to control bleeding, obstruction, and/or infection until the physiologic derangement has been restored and the patient could undergo a prolonged operation for definitive repair. This approach is unfolded in three phases. During the initial operation, the surgeon carries out only the absolute minimum necessary to improve patient's condition and to control bleeding, obstruction, and/or infection. The second phase consists of secondary resuscitation in the intensive care unit, characterized by maximization of hemodynamics, correction of coagulopathy, rewarming, and complete ventilatory support. During the third phase, definitive operation is performed.

  15. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  16. Power control system and method

    DOEpatents

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  17. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  18. Power inverter implementing phase skipping control

    DOEpatents

    Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa

    2016-10-18

    A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.

  19. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  20. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30

  1. Power Saving Control for Battery-Powered Portable WLAN APs

    NASA Astrophysics Data System (ADS)

    Ogawa, Masakatsu; Hiraguri, Takefumi

    This paper proposes a power saving control function for battery-powered portable wireless LAN (WLAN) access points (APs) to extend the battery life. The IEEE802.11 standard does not support power saving control for APs. To enable a sleep state for an AP, the AP forces the stations (STAs) to refrain from transmitting frames using the network allocation vector (NAV) while the AP is sleeping. Thus the sleep state for the AP can be employed without causing frame loss at the STAs. Numerical analysis and computer simulation reveal that the newly proposed control technique conserves power compared to the conventional control.

  2. Solar-powered oxygen delivery: proof of concept.

    PubMed

    Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M

    2016-05-01

    A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.

  3. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management

    PubMed Central

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-01-01

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm2), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip. PMID:26610497

  4. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.

    PubMed

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-11-19

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip.

  5. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  6. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  7. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  8. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  9. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  10. Three-Phase Power Factor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Three-Phase Power-Factor Controller develops a control signal for each motor winding. As motor loading decreases, rms value of applied voltage is decreased by feedback-control circuit. Power consumption is therefore lower than in unregulated operation. Controller employs phase detector for each of three phases of delta-connected induction motor. Phase-difference sum is basis for control.

  11. Candidate advanced energy storage concepts for multimegawatt burst power systems

    NASA Astrophysics Data System (ADS)

    Boretz, John E.; Sollo, Charles

    Three candidate advanced energy storage systems are reviewed and compared with the Thermionic Operating Reactor (THOR) concept. The three systems considered are the flywheel generator, the lithium-metal sulfide battery and the alkaline fuel cell. From a minimum mass viewpoint, only the regenerative fuel cell (RFC) can result in a lighter system than THOR. Because of its lower operating temperature, as compared to THOR, a considerable reduction in materials problems is to be expected when compared to the extremely high operating temperatures of the THOR system. Frozen heat pipes and their impact on response time as well as the complexity of the required retraction/extension mechanism of the THOR system would tend to place the RFC system in a much lower category of development risk. Finally, if spot shielding of sensitive electronic and power conditioning equipment becomes necessary for the reactor radiation environment of the THOR system, the weight advantage of the RFC system may become even greater.

  12. Bimodal, Low Power Pellet Bed Reactor System Design Concept

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Liscum-Powell, Jennifer; Pelaccio, Dennis G.

    1994-07-01

    A conceptual design is presented of a bimodal system that employs a pellet bed reactor heat source, helium-xenon Closed Brayton Cycle (CBC) engines, UC fuel, super-alloy structure materials, and hydrogen for propulsion operation. In addition to incorporating state-of-the-art, low risk technologies, and as much off-the-shelf hardware as possible in order to meet a near-term flight demonstration date, the system offers unique design and safety features. These design features include: (a) modularity to support a wide range of electric power and thermal propulsion requirements, (b) sectored, annular reactor core and multiple CBC engines for redundancy and to eliminate a single point failure in the coolant loop, (c) efficient CBC engines, (d) low maximum fuel temperature (<1600 K) that is maintained almost constant during power and propulsion modes, (e) spherical fuel mini-spheres or pellets that provide full retention of fission products and scalability to higher power levels, (f) two independent reactor control systems with built-in redundancy, (h) passive decay heat removal from the reactor core, (g) ground testing of the fully assembled system using electric heaters and unfueled mini-spheres or pellets, (h) negative temperature reactivity feedback for improved reactor operation and safety, (i) high specific impulse (650s-750s) and specific power (11.0- 21.9 We/kg), at relatively low power levels (10-40 kWe).

  13. Satellite power system: Concept development and evaluation program, reference system report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Satellite Power System (SPS) Reference System is discussed and the technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies are emphasized. The reference System concept features a gallium-aluminum-arsenide, and silicon solar cell options. Other aspects of an SPS are the construction of bases in space, launch and mission control bases on earth, and fleets of various transportation vehicles to support the construction and maintenance operations of the satellites.

  14. Thermal design, analysis and comparison on three concepts of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  15. A lightweight focusing reflector concept for space power applications

    NASA Astrophysics Data System (ADS)

    Wallace, T.; Bussard, R. W.

    A very lightweight membrane mirror system which can function as a flat or concave mirror and has applications in space power systems is described. The structural properties, including steady-state design and dynamic effects, are addressed along with optical properties. Operational issues are briefly discussed, including orbit stabilization, deformation by solar pressure, and pointing control. The design of the mirror provides a simple means of altering the mirror focal length.

  16. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  17. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  18. Electron ripple injection concept for transport control

    SciTech Connect

    Choe, W.; Ono, M.; Hwang, Y.S.

    1992-01-01

    Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the [del]B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v[perpendicular]/v[parallel] [much gt] 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of [delta] ([double bond] [del]B/B[sub av]) [approximately] 5% is attainable. At this ripple fraction, electrons are trapped if v[perpendicular]/v[parallel] [much gt] 1> (2[delta])[sup [minus][1/2

  19. A hybrid approach to space power control

    NASA Technical Reports Server (NTRS)

    Gholdston, E. W.; Janik, D. F.; Newton, K. A.

    1990-01-01

    Conventional control systems have traditionally been utilized for space-based power designs. However, the use of expert systems is becoming important for NASA applications. Rocketdyne has been pursuing the development of expert systems to aid and enhance control designs of space-based power systems. The need for integrated expert systems is vital for the development of autonomous power systems.

  20. Deep impurity trapping concepts for power semiconductor devices

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1982-01-01

    High voltage semiconductor switches using deep impurity doped silicon now appear feasible for high voltage (1-100 kV), high power (10 Kw) switching and protection functions for future space power applications. Recent discoveries have demonstrated several practical ways of gating deep impurity doped silicon devices in planar configurations and of electrically controlling their characteristics, leading to a vast array of possible circuit applications. A new family of semiconductor switching devices and transducers are possible based on this technology. New deep impurity devices could be simpler than conventional p-n junction devices and yet use the same basic materials and processing techniques. In addition, multiple functions may be possible on a single device as well as increased ratings.

  1. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  2. Power-Aware Compiler Controllable Chip Multiprocessor

    NASA Astrophysics Data System (ADS)

    Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori

    A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.

  3. Pool power control in remelting systems

    DOEpatents

    Williamson, Rodney L [Albuquerque, NM; Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  4. A new controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  5. A new controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  6. Coordinated power control of unified power flow controller and its application for enhancing dynamic power system performance

    NASA Astrophysics Data System (ADS)

    Fang, Wanliang

    This thesis focuses on reporting my research study on a problem area relating to use of Unified Power Flow Controller (UPFC) for coordinating load flow in power systems so as to enhance their static and dynamic performance by having more secure and economical operation and higher dynamic stability margin. UPFC is considered as one of the most promising devices for implementing the Flexible AC Transmission System (FACTS) concept. Although development of UPFC is still on an infant stage, probing into its impact on power system operation is actively pursued and significant effort has been devoted to put it forward as a practical FACTS device and as a challenging academic research object. In order to consider UPFC as a basic power system element, it has to be involved in associated load flow computation essentially for power system control analysis and operational planning. An up front problem for design engineers is therefore pointing to a need to modify existing load flow program so as to accommodate interactions of UPFCs. A lot of research output start coming out but their computational efficiency are not high enough. In this regard, I propose two methods to perform the UPFC embedded load flow calculation to cater for two different types of application. The first one caters for analyzing direct control of load flow on transmission lines with embedded UPFCs. In this type of problem, active and reactive power of the lines, as well as the magnitude of bus voltages are priori given. The load flow solution can then be obtained and enables the UPFC parameters to be determined with a significantly improved computational efficiency. The second one works in contrary to the first one by which parameters of UPFCs are given before hand and the load flow calculation is performed for conforming a feasible operation. It can be regarded as an indirect load flow control calculation which is useful in planning stage for incorporating UPFC into existing system and/or carrying out

  7. Electron ripple injection concept for transport control

    SciTech Connect

    Choe, W.; Ono, M.; Hwang, Y.S.

    1992-10-01

    Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the {del}B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v{perpendicular}/v{parallel} {much_gt} 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of {delta} ({double_bond} {del}B/B{sub av}) {approximately} 5% is attainable. At this ripple fraction, electrons are trapped if v{perpendicular}/v{parallel} {much_gt} 1> (2{delta}){sup {minus}{1/2}} {approx}3. A resonant cavity box was fabricated for efficient heating of the trapped electrons. It is also capable of measuring the effect of the field ripple in conjunction with trapped electrons. Some preliminary results are given.

  8. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  9. Integrated bioenergy conversion concepts for small scale gasification power systems

    NASA Astrophysics Data System (ADS)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  10. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  11. Wireless Power Control for Tactical MANET: Power Rate Bounds

    DTIC Science & Technology

    2016-09-01

    Best performance is the power-rate performance delivered by the perfect and centralized WPC con- troller. Our findings are that the distributed WPC...following capabilities: • Instantaneous and perfect measurements of the noise and interference at each receiver • Instantaneous and perfect control of...genie” having access to perfect measurements and instantaneously selects best possible power-rate trade-offs. Local control typically as- signs

  12. Power Electronics Thermal Control (Presentation)

    SciTech Connect

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  13. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  14. Digital controlling system to the set of high power LEDs

    NASA Astrophysics Data System (ADS)

    Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej

    2013-07-01

    In the paper is described the concept and architecture of the multi-channel control system for set of high-power LEDs. The broadband source of radiation for prototype illuminator is dedicated to the investigation of Low Level Laser Therapy procedures. The general scheme of the system, detailed schemes, control algorithm and its implementation description in FPGA structure is presented. The temperature conditions and the opportunity to work with a microcomputer are characterized.

  15. Power and Control in Families of Alcoholics.

    ERIC Educational Resources Information Center

    Nardi, Peter M.

    1987-01-01

    Asserts that the study of human behavior is the study of social interaction. Describes a theoretical perspective from sociology and shows how it relates to the alcoholic family. Analyzes the dynamics within a family affected by alcoholism to examine who has the power, who maintains control, how one loses power, and how power is exhibited. (NB)

  16. Food control concept: A county perspective

    SciTech Connect

    Calvert, B.E.

    1995-12-31

    This paper explains the Benton County, Washington responsibilities for implementing the ingestion exposure pathway protective actions. These responsibilities were successfully demonstrated in the September 13-14, 1994 FEMA evaluated exercise involving the Washington Public Power Supply System`s WNP-2 commercial nuclear power reactor.

  17. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  18. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  19. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  20. Control for nuclear thermionic power source

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D. (Inventor)

    1978-01-01

    A control for a power source which includes nuclear fuel interspersed with thermionic converters, is described. A power regulator maintains a substantially constant output voltage to a variable load, and a control circuit drives a neutron flux regulator in accordance with the current supplied to the power regulator and the neutron flux density in the region of the converters. The control circuit generates a control signal which is the difference between the neutron flux density and a linear function of the current, and drives the neutron regulator in a direction to decrease or increase the neutron flux according to the polarity of the control signal.

  1. Commercialization of the power factor controller

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of the Motor Power Controller, also known as the Power Factor Controller, is to improve power factor and reduce power dissipation in induction motors operating below full load. These purposes were studied and tested in detail. The Motor Power Controller is capable of raising power factors from 0.2 to 0.8 and results in energy savings. It was found that many motors, in their present operating applications, are classified as unstable. The electronic nature of the controller vs. the electrical nature of the motor, compound this problem due to the differences in response time of the two devices. Many tests were successfully completed, the most indicating greater savings than anticipated. Also, there was an effect on efficiency which was not included in the calculations.

  2. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  3. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  4. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  5. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  6. Power-Factor Controller With Regenerative Braking

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Modified power-factor motor-control circuit operates motor as a phase-controlled generator when load attempts to turn at higher than synchronous speed. An induction motor is required to act at times as a brake. Circuit modification allows power-factor controller to save energy in motoring mode and convert automatically to an induction-generator controller in generating, or braking, mode.

  7. Control and Power in Educational Computing.

    ERIC Educational Resources Information Center

    Kahn, Peter H., Jr.; Friedman, Batya

    Educational computing based on the primacy of human agency is explored, considering ways in which power can be apportioned and exercised in order to enhance educational computing. Ideas about power and control are situated epistemologically. A first consideration is educating for human control of computer technology. Research suggests that…

  8. Analysis and control of unified active power filter

    NASA Astrophysics Data System (ADS)

    Muthu, Subramanian

    1999-11-01

    The combined series and shunt active filters have been proposed to alleviate the power quality problems at the demand-side power systems. However, the conventional approach for the control of the combined active filter systems have resulted in large operating capacity of the shunt active filter because reactive power compensation involves only the shunt active filter. Furthermore, the harmonic mitigation problems are handled mainly by indirect harmonic compensation schemes rather than direct harmonic isolation schemes. This thesis presents the analysis and control of Unified Active Power Filter (UAPF) and proposes a novel concept of load reactive power compensation involving both the series active filter and the shunt active filter. The thesis also applies discrete-time sliding-mode control technique to enhance the performance of the combined active filter system in terms of fast dynamic response and effective solution to harmonic mitigation problems. The thesis also presents simulation and experimental results to provide verification of the proposed UAPF concept. The involvement of series active filter for reactive power compensation is achieved by controlling the phase difference between the load voltage and the utility voltage. The complete steady-state operating characteristics of UAPF are analyzed with the identification of the different operating modes of UAPF and the analysis of active and reactive power handled by the active filter components. The performance of UAPF to meet the stringent power quality standards are realized by applying discrete-time sliding-mode control schemes for the load voltage regulation and the active power factor correction. The control algorithms are developed to track a given load voltage and line current reference signals respectively. The effect of computational delay in DSP implementation is studied extensively and the control law is designed with the consideration for the computational delay. The systematic approach for the

  9. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  10. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  11. SPR-8 multi-mega watt space power system (MMW-SPS) concept description and concept refinement plan

    SciTech Connect

    Walter, C.E.

    1985-04-15

    The SPR-8 MMW-SPS concept can satisfy both continuous and burst mode power requirements. At 10 MWe continuous mode power for 5 yr and 75 MWe burst mode power for 200 sec, the SPR-8 concept can power radar systems for detecting ballistic missile launchings and for discriminating between warheads and decoys. When enemy action is detected the SPR-8 MMW-SPS can power a rail gun, free electron laser, or particle beam and destroy the missile in the boost phase or warheads in space flight. The SPR-8 concept is based on the SPR-6 system (ref. 1) for providing continuous mode power. The system uses a fast UN-fueled, lithium-cooled reactor. Heat is transferred from the lithium coolant to potassium in a shell and tube heat exchanger-boiler. Potassium vapor is expanded through a turbine in a saturated Rankine cycle. After passing through the turbine the potassium is condensed in a compact heat exchanger by transferring heat to the radiator working fluid. An advanced radiator design is envisioned. Much work will be required in radiator technology to achieve low mass and plan form. For completeness of the SPR-8 system concept, a charged liquid droplet radiator is assumed but other types should be considered. Mechanical pumps are used for simplicity, but other types should be considered. A block diagram of the SPR-8 system is given.

  12. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  13. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  14. Plasma instrumentation for fusion power reactor control

    SciTech Connect

    Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

    1985-07-01

    Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

  15. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 7: System/subsystems requirements databook

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.

  16. Rate-Controlling Mechanisms in Five-Power-Law Creep

    SciTech Connect

    Michael E. Kassner

    2004-04-20

    OAK-B135 Rate-Controlling Mechanisms in Five-Power-Law Creep. The initial grant emphasized the rate-controlling processes for five power-law creep. The effort has six aspects: (1) Theory of Taylor hardening from the Frank dislocation network in five power law substructures. (2) The dual dynamical and hardening nature of dislocations in five power law substructures. (3) Determination of the existence of long-range internal stress in five-power law creep dislocation substructures. (4) Dynamic recovery mechanisms associated with dislocation heterogeneities during five power law creep. (5) Versatility of five power law creep concept to other (hcp) crystal structures. (6) Writing of a book on ''Fundamental of Creep in Metals and Alloys'' by M.E. Kassner and Maria-Teresa Perez-Frado (postdoctoral scholar, funded by this project) Elsevier Press, 2004, in press. These areas are consistent with the original goals of this project as delineated in the original proposal to Basic Energy Sciences. The progress in each of these areas will be discussed separately and there will be an attempt to tie each aspect together so as to allow a summary regarding the conclusions with respect to the rate-controlling mechanisms of five power-law creep.

  17. Power module control moment gyro

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The directed design modifications to the Skylab/ATM CMG for application to the Power Module include new rotors of a different material with high resistance to stress corrosion cracking. The spin bearing retainer fix which was determined during the post Skylab mission was incorporated, and the speed pickoff was improved through the use of pickoff thermal cycling screening tests. The unlimited gimbal freedom on box axes was incorporated using slip ring assemblies. The on-orbit replacement capability was also incorporated for the CMG assembly and the inverter assembly.

  18. Case-control studies: basic concepts.

    PubMed

    Vandenbroucke, Jan P; Pearce, Neil

    2012-10-01

    The purpose of this article is to present in elementary mathematical and statistical terms a simple way to quickly and effectively teach and understand case-control studies, as they are commonly done in dynamic populations-without using the rare disease assumption. Our focus is on case-control studies of disease incidence ('incident case-control studies'); we will not consider the situation of case-control studies of prevalent disease, which are published much less frequently.

  19. Investigation of Power Factor Controller Applications.

    DTIC Science & Technology

    1984-07-01

    16 V’. Auburn Report 16 Pacific Gas and Electric Study 25 San Diego Gas and Electric Study 34 Northern Natural Gas Study 42 6...application. San Diego Gas and Electric Study SDG&E’s testing was primarily to determine the effect the NASA PFC has on power consumption and power...Magdaluyo, and J. D. Huey, Three Phase Power Factor Controller Test (Internal Correspondence)(San Diego Gas and Electric Com- • .’-," pany, December 1981

  20. [Information conception of the control at aging].

    PubMed

    Ban'kov, V I; Miakotnykh, V S; Talankina, N Z; Lespukh, N I; Borovkova, T A

    2004-01-01

    The exchange of energy between organism and environment perhaps may be to describe with help "entropia"--notion of thermodynamics. Point of view information technologies authors suggest to use "factor of controls", which work with help principle of reverse biological connection. This principle may be to use for control aging, when complicated modulated electromagnetic (information) field has regulationing negative entropic component. There are three principles of information control. All principles have on the basis of utilization by quantitative exponents of functional asymmetry.

  1. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission under development by the Office of Space Science at NASA Headquarters. ITMO is examining the potential of Nuclear Electric Propulsion (NEP) technology to efficiently deliver scientific payloads to three Jovian moons: Callisto, Ganymede, and Europa. A critical element of the NEP vehicle is the reactor power system, consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD). The emphasis of this paper is on the non-nuclear elements of the reactor power system.

  2. Hydraulically powered dissimilar teleoperated system controller design

    SciTech Connect

    Jansen, J.F.; Kress, R.L.

    1996-04-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented.

  3. Standardizing power monitoring and control at exascale

    DOE PAGES

    Grant, Ryan E.; Levenhagen, Michael; Olivier, Stephen L.; ...

    2016-10-20

    Power API-the result of collaboration among national laboratories, universities, and major vendors-provides a range of standardized power management functions, from application-level control and measurement to facility-level accounting, including real-time and historical statistics gathering. Here, support is already available for Intel and AMD CPUs and standalone measurement devices.

  4. School Managerial Control: Validating a Social concept.

    ERIC Educational Resources Information Center

    Bogotch, Ira E.; And Others

    1995-01-01

    School managerial control is derived from perceptions of behavioral interactions between teachers and administrators along two dimensions: regular patterns of rules; and discretionary behaviors reflecting the quality of managerial performance. Analyzes interactive effects of these dimensions across four control processes within curriculum and…

  5. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  6. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  7. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  8. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  9. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  10. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power

  11. Optimal control concepts in design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Belegundu, Ashok D.

    1987-01-01

    A close link is established between open loop optimal control theory and optimal design by noting certain similarities in the gradient calculations. The resulting benefits include a unified approach, together with physical insights in design sensitivity analysis, and an efficient approach for simultaneous optimal control and design. Both matrix displacement and matrix force methods are considered, and results are presented for dynamic systems, structures, and elasticity problems.

  12. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  13. High-voltage dc power processing thermal control and packaging techniques

    NASA Technical Reports Server (NTRS)

    Chapter, J. J.; Perreault, W. T.

    1979-01-01

    The power processor operates in several modes, delivering up to 100 amperes of regulated electrical power, operating at input voltages to 375 volts with outputs controlled by an integral microprocessor. Several alternative packaging concepts are discussed and evaluated. High-voltage design applications, power stage interconnection and EMI considerations are also discussed. Preliminary thermal analyses were performed and the results presented for each conceptual approach with parametric study results given for the selected concept.

  14. Satellite Power Systems (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1978-01-01

    A coplanar satellite conceptual approach was defined. This effort included several trade studies related to satellite design and also construction approaches for this satellite. A transportation system, consistent with this concept, was also studied, including an electric orbit transfer vehicle and a parallel-burn heavy lift launch vehicle. Work on a solid state microwave concept continued and several alternative approaches were evaluated. Computer determination of an optimized transistor and circuit design was also continued. Experiment/verification planning resulted in the development of a total solar array and microwave technology development plan, as well as definition of near-term research to evaluate key technology issues.

  15. Assessment of energy storage concepts for use in sprint power

    NASA Astrophysics Data System (ADS)

    Olszewski, M.; Morris, D. G.

    Estimated sprint power levels required for space defense weapon systems are very high, with projections in the multimegawatt power range. However, these high power levels are required in a pulsed (sprint) mode where the power demand is at the high levels for short time periods. Energy can be stored in thermal storage media at the heat source and/or sink. For storage at the source, the primary power source is used to charge or heat up the thermal store. Results show that regenerable electrical storage system value is greatest for pulse durations of 500 s or less but that mass savings are still realized for generation times one and a half time as long. Flywheel energy storage shows the most benefit among near term technologies. Thus, incorporating a near term flywheel in the power supply decreases nuclear Rankine cycle system mass by 16 percent for a generation time of 500 s. Similar findings resulted from using thermal storage in the heat rejection system; namely, mass reductions of the order of 30 percent. Advances in storage component performance will result in increased value of storage to the overall power system.

  16. Reactive power management and voltage control in deregulated power markets

    NASA Astrophysics Data System (ADS)

    Spangler, Robert G.

    The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to

  17. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  18. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  19. Mars power system concept definition study. Volume 2: Appendices

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1994-12-01

    This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.

  20. Mars power system concept definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.

  1. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    SciTech Connect

    Not Available

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  2. Pollution control applications of pulsed power technology

    SciTech Connect

    Penetrante, B.M.

    1993-08-16

    Much of the activity and growth in the field of pulsed power technology has been spawned by government-sponsored research for military applications. During the last two decades significant advances have been made in pulsed power modulators and accelerators. Pollution control systems for large industrial applications could benefit a great deal by exploring the results of this research and development. In this paper I will present the history of how pulsed power technology got involved in pollution control applications. Emphasis will be placed on the application of pulsed power to pollution control in utility and industrial coal-fired power plants. The use of pulsed techniques for improving the efficiency of electrostatic precipitators will first be discussed; then the parallel developments in electron beam and pulsed corona processing for flue gas treatment will be presented. Pulsed power techniques are essential as supporting technologies for these advanced pollution control methods. To illustrate the large scale of these applications, I will discuss the power requirements of these methods.

  3. Rate-Controlling Step: A Necessary or Useful Concept?

    ERIC Educational Resources Information Center

    Laidler, Keith J.

    1988-01-01

    Defines the rate-controlling step in contrast to the terms rate determining and rate limiting. Discusses the usefulness of this concept in describing kinetic isotope effects, consecutive reactions, chain reactions, and enzyme-catalyzed reactions. (CW)

  4. Rate-Controlling Step: A Necessary or Useful Concept?

    ERIC Educational Resources Information Center

    Laidler, Keith J.

    1988-01-01

    Defines the rate-controlling step in contrast to the terms rate determining and rate limiting. Discusses the usefulness of this concept in describing kinetic isotope effects, consecutive reactions, chain reactions, and enzyme-catalyzed reactions. (CW)

  5. Project Design Concept for Monitoring and Control System

    SciTech Connect

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  6. Cooling Concepts for High Power Density Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Biela, Juergen; Kolar, Johann W.

    In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.

  7. Scalable Power-Component Models for Concept Testing

    DTIC Science & Technology

    2011-08-17

    transient response analysis and parametric identification methods,‖ Proc. 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA: IEEE, 2010, pp. 1131-1138.

  8. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  9. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected

  10. Advanced distribution, switching, and conversion technology for fluids/combustion facility electric power control

    NASA Astrophysics Data System (ADS)

    Poljak, Mark D.; Soltis, James V.; Fox, David A.

    1997-01-01

    The Electrical Power Control Unit (EPCU) under development for use in the Fluids/Combustion Facility (FCF) on International Space Station (ISS) is the precursor of modular power distribution and conversion concepts for future high power and small spacecraft applications. The EPCU is built from modular, current limiting Flexible Remote Power Controllers (FRPCs) and paralleled power converters packaged into a common orbital replacement unit. Multiple EPCUs are combined at the next higher level of integration to form the three-rack FCF Electrical Power System (EPS). This modular building block approach allows for the quick development of expandable power systems tailored to customer needs.

  11. Temperature-controlled fluidic device A concept

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.

    1970-01-01

    Symmetrical fluidic device directly converts electrical signals to mechanical signals in the form of a fluid-flow parameter. This device eliminates or reduces effects of all undesirable parameters on the departure angle, leaving it a function of the controlled wall and jet temperatures.

  12. Advanced Concepts for Controlled Combustion in Engines

    DTIC Science & Technology

    1991-12-15

    Oppenheim, A. K., Beltramo , J., Faris, D. W., Maxson, J. A., Hom, K., and Stewart, H. E., "Combustion by Pulsed Jet Plumes-Key to Controlled Combustion...Stewart Design Engineer K. Hom Electronics Technician J. Beltramo Graduate Student, Research Assistant D. W. Faris Graduate Student, Research

  13. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  14. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  15. Spacecraft power system controller based on neural network

    NASA Astrophysics Data System (ADS)

    El-madany, Hanaa T.; Fahmy, Faten H.; El-Rahman, Ninet M. A.; Dorrah, Hassen T.

    2011-09-01

    Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This work presents the spacecraft orbit determination, dimensioning of the renewable power system, and mathematical modeling of spacecraft power system which are required for simulating the system. The complete system is simulated using MATLAB-SIMULINK. The NN controller outperform PID in the extreme range of non-linearity. Well trained neural controller can operate at different conditions of load current at different orbital periods without any tuning such in case of PID controller. So an artificial neural network (ANN) based model has been developed for the optimum operation of spacecraft power system. An ANN is trained using a back propagation with Levenberg-Marquardt algorithm. The best validation performance is obtained for mean square error is equal to 9.9962×10 -11 at epoch 637. The regression between the network output and the corresponding target is equal to 100% which means a high accuracy. NNC architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the spacecraft power system in low earth orbit (LEO). Therefore, this technique is going to be a very useful tool for the interested designers in space field.

  16. Control Concepts in Educational Planning. Bulletin No. 5.

    ERIC Educational Resources Information Center

    Francis, N. D.

    The educational system is characterized by a vector matrix differential equation, and it is shown that the concepts of modern control theory such as observability, controllability, and optimal control can give deeper insight into the behavior of the educational system. The identification of the system dynamics and the definition of a realistic…

  17. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  18. Satellite power system concept development and evaluation program. Volume 2: System defintion

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  19. Advanced concepts in accelerator timing control

    SciTech Connect

    Frankel, R.; Salwen, C.

    1988-01-01

    The control system for the Booster accelerator presently under construction at BNL includes a timing section with serial high speed coded data distribution, computer based encoders for both real time and field driven clocks and a method of easily tracking the performance and reliability of these timing streams. We have developed a simple method for the generation of timing which operates to produce pulses which may be repeated as desired with minimal latency.

  20. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  1. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  2. Application of break preclusion concept in German nuclear power plants

    SciTech Connect

    Roos, E.; Maier, V.; Nagel, G.

    1997-04-01

    The break preclusion concept is based on {open_quotes}KTA rules{close_quotes}, {open_quotes}RSK guidelines{close_quotes} and {open_quotes}Rahmenspeziflkation Basissicherheit{close_quotes}. These fundamental rules containing for example requirements on material, design, calculation, manufacturing and testing procedures are explained and the technical realisation is shown by means of examples. The proof of the quality of these piping systems can be executed by means of fracture mechanics calculations by showing that in every case the leakage monitoring system already detect cracks which are clearly smaller than the critical crack. Thus the leak before break behavior and the break preclusion concept is implicitly affirmed. In order to further diminish conservativities in the fracture mechanics procedures, specific research projects are executed which are explained in this contribution.

  3. Robust control technique for nuclear power plants

    SciTech Connect

    Murphy, G.V.; Bailey, J.M.

    1989-03-01

    This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.

  4. A New Approach to Nuclear Power The Multi-Module Reactor (MMR) Concept

    SciTech Connect

    Vernon, Milton E.

    2002-07-01

    While fuel cost for nuclear power is incredibly low relative to fossil fuel, the capital investment needed to build today's nuclear power plant is substantial. Utilities are reluctant to build new nuclear power plants because of the long construction time and the associated uncertainty of investment recovery. This paper introduces a new modular reactor concept, the Multi-Module Reactor (MMR), that reduces both the construction cost and time in an attempt to renew commercial interest in nuclear power. (authors)

  5. Satellite mirror systems for providing terrestrial power - System concept

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of providing terrestrial power with a space system of minimum mass and complexity. The key impact that such a system, providing continuous and slightly concentrated insolation, makes on the economic viability of solar farming is demonstrated. New developments in solar sailing are incorporated to reduce mirror mass and transportation cost. The system is compatible with incremental implementation and continual expansion to produce the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation.

  6. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  7. Chaotic dynamics of controlled electric power systems

    NASA Astrophysics Data System (ADS)

    Kozlov, V. N.; Trosko, I. U.

    2016-12-01

    The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.

  8. Turbine engine power optimization control system

    SciTech Connect

    Moore, M.S.

    1984-09-04

    Pushbutton controls are provided for the power management of a turbine powered aircraft; and these pushbuttons may be mounted on the aircraft pilot's control handwheel. The turbine engine has a maximum rated permissible rotational speed which initially increases with increasing air temperature and with increasing altitude or reduced pressure; and has an absolute maximum limitation, with this maximum permissible rotational speed decreasing at increasing temperatures starting at about 10 or 15 degrees below zero, centigrade; and these limitations are reduced when supplemental equipment such as de-icing equipment is turned on. In accordance with the present invention, a series of ''maps'', or rotational speed control characteristics reflecting the factors mentioned above, are provided, and the pushbutton controls select among these characteristics, with the ''take-off'' power button permitting the highest maximum speeds, etc. In addition, automatic timing to reduce the maximum power levels, such as ''Take-Off'' power or ''Performance Climb'' power, is provided, to avoid over-stressing the turbine engines. The system may include additional arrangements for limiting the maximum allowable rotational speed of the turbine engine to a speed below that indicated by any of the ''maps'', when certain pushbuttons such as the ''Approach'' pushbutton is actuated.

  9. All Adjunct Galilean Satellite Orbiter Concept Using a Small Nuclear Power Source

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Alkalai, Leon; Collins, David H.; Moore, William V.

    2005-02-01

    An adjunct spacecraft concept known as the Galilean Satellite Orbiter (GSO) could gather and return significant science data using a payload consisting of plasma science and other instruments in orbit around each of three Galilean satellites using many advanced technology elements. The key to the viability of this concept is the existence of a small Radioisotope Power System (RPS) (single GPHS) and a mother spacecraft that could deliver the GSO to its final orbit and act as a relay communications path back to the Earth. Thus, the GSO would be dependant at Jupiter on the proposed Jupiter Icy Moons Orbiter (JIMO) or similar spacecraft for orbit insertion, propulsion to its target, and communications while at its target. Because of this highly capable supporting vehicle, the energy requirements for daily operations of GSO could be easily met with a small RPS system, which is now being studied by NASA and DOE, joined with a secondary battery system. The science payload would consist of a plasma instrument set (magnetometer, plasma spectrometer, plasma wave detector, and high energy particle detector), a wide angle camera, and a Doppler extractor for gravity field measurements. A small RPS now under study that would have a cylindrical shape and reject its internal heat through an end of the cylinder could enable this concept. This topology lends itself to a unique configuration concept for the GSO spacecraft using a long cylinder as the heat rejection (radiator) system for the RPS. This long cylinder has another application - it creates a long thin configuration that would enable gravity gradient attitude control of the spacecraft. This architecture would place the instruments at one end of the spacecraft and the RPS at the other allowing the maximum separation between them. Another technology element used in this design would be the Low Cost Adjunct Microspacecraft (LCAM), originally intended as a free-flying Earth orbiting inspector spacecraft. The LCAM is configured

  10. Satellite Power System (SPS) concept development and evaluation program plan, July 1977 - August 1980

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An overview of the program to evaluate the solar satellite power system concept is presented. Environmental, health, and safety factors are examined along with economic, international, and institutional issues.

  11. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1992-01-01

    A two phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot ratings showed little difference between the programmed flap and the geared flap control concepts, although differences between the two control concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts, and presents the results of both the first and second phases of the piloted simulation study.

  12. Attitude control of large solar power satellites

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.

    1978-01-01

    Satellite power systems are a promising future source of electrical energy. However, the very large size solar power satellites (relative to contemporary spacecraft) requires investigation of the resulting attitude control problems and of appropriate control techniques. The principal effects of the large size are a great increase in sensitivity to gravity-gradient torques and a great reduction in structural bending frequencies with the attendant likelihood of undesirable control system interaction. A wide variety of control techniques are investigated to define approaches that minimize implementation penalties. These techniques include space-constructed momentum wheels, gravity-gradient stabilization, quasi-inertial free-drift modes, and various reaction control thruster types, some of which reduce the implementation penalties to a few percent of the spacecraft mass. The control system/structural dynamic interaction problem is found to have a tractable solution. Some of the results can be applied to other large space structure spacecraft.

  13. Power Load Margin Concept: Key Components of Adulthood.

    ERIC Educational Resources Information Center

    Weiman, Elaine R.

    In March 1959, Howard McClusky introduced his Power Load Margin (PLM) theory and proposed that it be used for studying the adult years and for developing and building realistic educational programs for adults. His formula, which states that the key components of adulthood are load (the demands made upon the individual by self and society) and…

  14. Organization of bulk power markets: A concept paper

    SciTech Connect

    Kahn, E.; Stoft, S.

    1995-12-01

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attention on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.

  15. Maculate Conceptions: Power, Process, and Creativity in Participatory Research

    ERIC Educational Resources Information Center

    Lyon, Alexandra; Bell, Michael; Croll, Nora Swan; Jackson, Randall; Gratton, Claudio

    2010-01-01

    Justifiably concerned about power dynamics between researchers and participants in participatory research, much of the literature proposes guidelines for including participant voices at every step of the research process. We find these guidelines insufficient for dealing with constraints set up by the social organizational structures in which…

  16. Power Load Margin Concept: Key Components of Adulthood.

    ERIC Educational Resources Information Center

    Weiman, Elaine R.

    In March 1959, Howard McClusky introduced his Power Load Margin (PLM) theory and proposed that it be used for studying the adult years and for developing and building realistic educational programs for adults. His formula, which states that the key components of adulthood are load (the demands made upon the individual by self and society) and…

  17. Solar Power Satellite Concept Evaluation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was developed to determine the technical feasiblity of a satellite solar power station. The space construction, maintenance, and transport systems are discussed. Environmental factors, in addition to manufacturing, natural resources, and energy were considered. Cost estimates and alternative systems are outlined.

  18. Wide power range microwave feedback controller

    NASA Technical Reports Server (NTRS)

    Titus, L. E. (Inventor)

    1978-01-01

    A substantially constant power level is derived over a predetermined frequency band, in each of a plurality of relatively widely spaced power ranges, from a microwave load having a predetermined amplitude versus frequency response, such as an antenna. A microwave source of substantially constant amplitude drives a forward path connected between the source and the load. A feedback path responsive to the microwave power level in the forward path derives a control voltage for the PIN attenuator. The equalizer attenuator drives a linear, crystal amplitude detector. Attenuating means included in the forward and feedback paths are selectively connected in circuit to maintain the power level of the microwave input to the amplitude detector substantially constant, even though different power ranges are supplied to the load by the forward path.

  19. Analysis of Control Power in Controlled Remote State Preparation Schemes

    NASA Astrophysics Data System (ADS)

    Li, Xihan; Ghose, Shohini

    2017-03-01

    We quantify and analyze the controller's power in controlled remote state preparation schemes. Our analysis provides a lower bound on the control power required for controlled remote preparation of arbitrary D-dimensional states. We evaluate several existing controlled remote state preparation protocols and show that some proposed non-maximally entangled channels are not suitable for perfect controlled remote preparation of arbitrary quantum states from the controller's point of view. We find that for remotely preparing D-dimensional states, the entropy of each controller should be no less than log2 D bits. Our new criteria are not only useful for evaluating controlled remote state preparation schemes but can also be used for other controlled quantum communication schemes.

  20. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  1. Satellite Power System (SPS) concept definition study (exhibit C)

    NASA Technical Reports Server (NTRS)

    Haley, G. M.

    1979-01-01

    The major outputs of the study are the constructability studies which resulted in the definition of the concepts for satellite, rectenna, and satellite construction base construction. Transportation analyses resulted in definition of heavy-lift launch vehicle, electric orbit transfer vehicle, personnel orbit transfer vehicle, and intra-orbit transfer vehicle as well as overall operations related to transportation systems. The experiment/verification program definition resulted in the definition of elements for the Ground-Based Experimental Research and Key Technology plans. These studies also resulted in conceptual approaches for early space technology verification. The cost analysis defined the overall program and cost data for all program elements and phases.

  2. Power Control System for the AGIILE Satellite

    NASA Astrophysics Data System (ADS)

    Ebale, G.; Lamantia, A.; La Bella, M.

    2005-05-01

    This paper describes the operation and design of the AGILE (Astrorivelatore Gamma a Immagini Leggero) power control system PEB (Power Electronic Box); the satellite is based on the MITA bus (Minisatellite Italiano a Tecnologia Avanzata). The main design drivers are: • Efficiency of the system due to size limitation of the solar array and battery • Mass • Redundancy management. The unit provides an unregulated bus of 22.5÷35VDC and manages an average power to the loads of about 210W, with peak values up to 350W.

  3. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  4. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  5. Assessment of solar options for small power systems applications. Volume 4: Comparative ranking of concepts

    NASA Astrophysics Data System (ADS)

    Currie, J. W.; Jannol, M.

    1980-07-01

    Ranking methodology selection and refinement are described. A questionnaire was developed and its importance weights and preference functions were determined. The concept scores and rankings were analyzed for sensitivity and general accuracy. The principal solar thermal conversion concepts that were ranked were those that have the potential for achieving commercial success as small electric power systems in the 1 to 10 MWe range.

  6. Enabling autonomous control for space reactor power systems

    SciTech Connect

    Wood, R. T.

    2006-07-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  7. Power control electronics for cryogenic instrumentation

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

  8. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  9. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  10. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  11. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  12. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  13. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  14. United States Control Module Guidance, Navigation, and Control Subsystem Design Concept

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Bartlow, B. E.

    1997-01-01

    Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.

  15. Piloted simulation study of two tilt-wing flap control concepts, phase 2

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.

    1994-01-01

    A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.

  16. The Conception of the Control System of Radial Cam Grinder

    NASA Astrophysics Data System (ADS)

    Jirásko, P.; Crhák, V.; Bureš, P.

    VÚTS, a.s., has developed a single-purpose machine for grinding radial cams. The control system is built on Yaskawa's components with MP2310 controller. The paper deals with an entirely new concept of the control system of this single-purpose machine built in variants on the program area of controlled continuous movements and on the PLC program. Furthermore, the specific features of the system and the options of its other variants and industrial applications are declared.

  17. Application of reliability concepts to the Nepal power system

    SciTech Connect

    Billinton, R.; Pandey, M.; Aboreshaid, S.; Fotuhi-Firuzabad, M.

    1995-12-31

    In many of the less industrialized countries throughout the world, reliability is incorporated in power system planning and operation using traditional deterministic techniques. This is the case with the Nepal Power System (NPS), where developed expansion plans have been based on non-probabilistic criteria. This paper illustrates the application of probabilistic methods to reliability evaluation of the NPS. Evaluations at both the generation and composite generation and transmission system levels have been performed. The overall system and nine major load centers have been assessed. These load points carry in total more than 54% of the system load. An assessment of an expansion plan proposed by the Nepal Electricity Authority (NEA) has been performed. The results indicate the reliability implications associated with the system and the proposed expansion plan, and show that quantitative reliability evaluation of the NPS is both possible and practical.

  18. Novel Propulsion and Power Concepts for 21st Century Aviation

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2003-01-01

    The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA s vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and NO(x)). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines. And the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions.

  19. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  20. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1994-01-01

    A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.

  1. Study of Thermal Control Systems for orbiting power systems

    NASA Astrophysics Data System (ADS)

    Howell, H. R.

    1981-02-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  2. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  3. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  4. A Control Systems Concept Inventory Test Design and Assessment

    ERIC Educational Resources Information Center

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  5. A Control Systems Concept Inventory Test Design and Assessment

    ERIC Educational Resources Information Center

    Bristow, M.; Erkorkmaz, K.; Huissoon, J. P.; Jeon, Soo; Owen, W. S.; Waslander, S. L.; Stubley, G. D.

    2012-01-01

    Any meaningful initiative to improve the teaching and learning in introductory control systems courses needs a clear test of student conceptual understanding to determine the effectiveness of proposed methods and activities. The authors propose a control systems concept inventory. Development of the inventory was collaborative and iterative. The…

  6. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    SciTech Connect

    Kazakevich, G.; Johnson, R.; Neubauer, M.; Lebedev, V.; Schappert, W.; Yakovlev, V.

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  7. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    The Department of Energy (DOE) is currently conducting an evaluation of approaches to provide energy to meet demands in the post-2000 time period. The Satellite Power System (SPS) is a candidate for producing significant quantities of base-load power using solar energy as the source. The SPS concept is illustrated for a solar photovoltaic concept. A satellite, located at geosynchronous orbit, converts solar energy to dc electrical energy using large solar arrays. This study is a continuing effort to provide system definition data to aid in the evaluation of the SPS concept.

  8. Nuclear power station main control room habitability

    SciTech Connect

    Paschal, W.B.; Knous, W.S. )

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews.

  9. Development of the job concept of a nuclear power plant operator

    SciTech Connect

    Alpeev, A.S.; Bukrinskii, A.M.

    1994-05-01

    An important conclusion drawn in the aftermath of the 1979 accident at Three Mile Island 2 in the USA, in particular, in discussions, held in Stockholm in 1980 at the International Conference on Safety Problems, of the causes of this accident, was that the plant-operator concept employed at the time in western countries had to be changed. The concept presupposed that the operator`s actions must be strictly limited by instructions which supposedly encompass all possible situations associated with the accidents. The principal problem facing the operator in this concept is to identify the situation in which the appropriate instruction can be selected for immediate execution. An error in identifying the situation could influence decisively the evolution of further events in the power block of the nuclear plant, and this is precisely what happened at Three Mile Island 2. For this reason, operator training was based mainly on identifying the initial events, which corresponded to a definite sequence of the further developments owing to the technical scheme and laws of thermophysical processes. Such operator training is based on an event tree which gives a graphical representation of the probable consequences of the development of events in an accident with a given initial event. It is believed that approximately 20 initial events (tree roots) form the basic collection of events, each of which has three to seven branches, i.e., an accident can evolve in several possible directions. Every branch point on each tree is identified by a definite collection of technological parameters, according to which the operator must be able to identify the situation. Under the present concept, when the situation is identified correctly, the search for the required control instruction and its execution is a secondary process.

  10. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  11. Satellite Power Systems (SPS) Concept Definition Study (Exhibit D). Solid-State Amplifier Investigation

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Data resulting from a continuing effort to provide system/subsystem definition data to aid in the evaluation of the SPS program concept is presented. The specific data described relate to the proposed use of solid state devices as microwave power amplifiers in the satellite microwave power transmission subsystem.

  12. Solid state sandwich concept: Designs, considerations and issues. [solar power satellite transmission

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    Progress in analysis and design of solid state approaches to the solar power satellite microwave power transmission system is reviewed with special emphasis on the Sandwich concept and the issues of maintenance of low junction temperatures for amplifiers to assure acceptable lifetime. Ten specific issues or considerations are discussed and their resolution or status is presented.

  13. Sex-Role, Self-Concept and Power in Intimate Relationships.

    ERIC Educational Resources Information Center

    Falbo, Toni; Peplau, Letitia Anne

    Research with a two-dimensional model of power strategies used in intimate relationships has found that men are more likely to report using direct bilateral strategies, while women are more likely to report using indirect, unilateral strategies. The relationships among sex-role, self-concept, and the power strategies used in intimate relationships…

  14. Solar power satellite. Concept evaluation. Activities report. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Comparative data are presented among various design approaches to thermal engine and photovoltaic SPS (Solar Power System) concepts, to provide criteria for selecting the most promising systems for more detailed definition. The major areas of the SPS system to be examined include solar cells, microwave power transmission, transportation, structure, rectenna, energy payback, resources, and environmental issues.

  15. Application of powered-lift concepts for improved cruise efficiency of long-range aircraft

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Fournier, P. G.

    1976-01-01

    Results of studies conducted to explore the use of powered lift concepts for improved low speed performance of long range subsonic and supersonic cruise vehicles are summarized. It is indicated that powered lift can provide significant improvements in low speed performance, as well as substantial increases in cruise efficiency and range for both subsonic and supersonic cruise configurations.

  16. Reference Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect

    Hugo, Jacques Victor; Farris, Ronald Keith

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  17. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  18. High-flux solar absorber concept for central receiver power plants

    NASA Astrophysics Data System (ADS)

    Pomeroy, B. D.; Roberts, J. M.; Narayanan, T. V.

    1981-02-01

    For cylindrical receivers with a capacity of about 400 MW/t, an aim-at-the belt focusing strategy can produce average fluxes the order of 0.5 MW/sq m with peaks as high as 2 MW/sq m. An absorber concept is described which uses liquid sodium coolant and a three-header configuration to efficiently capture this solar power. The mechanical design of this absorber is discussed and thermal performance estimates are presented showing the solar-capture efficiency over a range of solar intensities. The sodium-flow characteristics and some potential flow-control problems are also described. A thermal-stress analysis is presented which shows that a limiting factor on the flux capability may be tube-wall creep/fatigue failure and not the heat-transfer capability of sodium.

  19. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration.

  20. An Open-Control Concept for a Holonic Multiagent System

    NASA Astrophysics Data System (ADS)

    Adam, Emmanuel; Berger, Thierry; Sallez, Yves; Trentesaux, Damien

    MAS are particularly adapted to deal with distributed and dynamic environment. The management of business workflow, or data flow, flexible manufacturing systems is typically a good application field for them. This kind of application requires centralization of the data control and flexibility to face with changes on the network. In the context of FMS, where products and resources entities can be seen as active, this paper presents the open-control concept and gives an example of its instantiation with holonic scheme. The open-control concept proposed in this paper exhibits the classic explicit control, as well as an innovative type of control called implicit control that allows system entities to be influenced via an Optimization Mechanism (OM). We illustrate our proposition by an implementation on a flexible assembly cell in our university.

  1. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGES

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  2. Magnetic Amplifier-Based Power-Flow Controller

    SciTech Connect

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can be regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.

  3. Satellite Power Study (SPS) concept definition study (Exhibit D). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Efforts concentrated on updating of the Rockwell reference concept, definition of new system options, studies of special emphasis topics, further definition of the transportation system, and further program definition. The Rockwell reference satellite concept has a gallium arsenide (GaAs) solar cell array having flat concentrators with an effective concentration ratio of 1.83at end of life. Alternatives to this concept includes solid state power amplifiers or magnetrons for dc/RF conversion and multibandgap solar cells for solar to dc energy conversion. Two solid state concepts were studied. It was determined that the magnetron approach was the lowest mass and cost system.

  4. Satellite Power Systems (SPS) concept definition study. Volume 2: SPS system requirements

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS (satellite power systems) concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The study established several candidate concepts which were presented to provide a basis for the selection of one or two approaches that would be given a more comprehensive examination. The two selected concepts were expanded and constitute the selected system point designs. The identified system/subsystem requirements was emphasized and information on the selected point design was provided.

  5. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  6. Power control algorithms in wireless communications

    NASA Astrophysics Data System (ADS)

    Rohwer, Judd A.; Abdallah, Chaouki T.; El-Osery, Aly

    2002-06-01

    This paper presents a comprehensive review of the published algorithms on power control for cellular systems. The majority of the research is focused on Code Division Multiple Access (CDMA) systems, although a small fraction of the reviewed literature pertains to Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA).

  7. Power-Factor Controllers: How Safe?

    NASA Technical Reports Server (NTRS)

    Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.

    1985-01-01

    Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.

  8. Power-Factor Controllers: How Safe?

    NASA Technical Reports Server (NTRS)

    Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.

    1985-01-01

    Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.

  9. Power, Control and Status in Physical Education.

    ERIC Educational Resources Information Center

    Thomson, Ian

    2003-01-01

    For most of the 20th century, Scottish teacher education in physical education, sport, and recreation were divided by gender and philosophy and provided by two specialist colleges. Analysis of the government's 1986 decision to merge the colleges focuses on the shift in power and control from the self-contained world of physical education to…

  10. Design concepts of high power bipolar rechargeable lithium battery

    NASA Technical Reports Server (NTRS)

    Shen, David H.; Halpert, Gerald

    1993-01-01

    The present study shows that current bipolar Li/TiS2 batteries using a 0.38 mm thick TiS2 bipolar plate can yield moderate specific power and also high specific energy battery. The computer design studies project that a 100 V, 10 A h bipolar Li/TiS2 battery can achieve 150 W h/kg, 210 W h/l, and 150 W/kg. The unoptimized experimental bipolar Li/TiS2 batteries (3 cells, 90 mA h) exhibited 47 W h/kg, 90 W h/l, and 140 W/kg. Preliminary results on the cycleability of the bipolar batteries are demonstrated. The results also show that enhanced rate capability can be achieved by using pulse discharge and longer rest period between pulses.

  11. Autonomous-Control Concept For Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark H.; Bayard, David S.

    1990-01-01

    Integrated payload articulation and identification system (IPAIDS) is conceptual system to control aiming of instruments aboard spacecraft of proposed Earth Observation System (EOS). Principal features of concept include advanced control strategies intended to assure robustness of performance over wide range of uncertainties in characteristics of spacecraft and instrument system. Intended originally for application to spacecraft system, has potential utility on Earth for automatic control of autonomous (robotic) vehicles or of remote sensing systems.

  12. MODIS information, data and control system (MIDACS) operations concepts

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.

  13. Controls concepts for next generation reuseable rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.; Musgrave, Jefferey L.; Ray, Asok

    1995-01-01

    Three primary issues will drive the design and control used in next generation reuseable rocket engines. In addition to steady-state and dynamic performance, the requirements for increased durability, reliability and operability (with faults) will dictate which new controls and design technologies and features will be brought to bear. An array of concepts which have been brought forward will be tested against the measures of cost and benefit as reflected in the above 'ilities'. This paper examines some of the new concepts and looks for metrics to judge their value.

  14. Controls concepts for next generation reuseable rocket engines

    NASA Astrophysics Data System (ADS)

    Lorenzo, Carl F.; Merrill, Walter C.; Musgrave, Jefferey L.; Ray, Asok

    1995-04-01

    Three primary issues will drive the design and control used in next generation reuseable rocket engines. In addition to steady-state and dynamic performance, the requirements for increased durability, reliability and operability (with faults) will dictate which new controls and design technologies and features will be brought to bear. An array of concepts which have been brought forward will be tested against the measures of cost and benefit as reflected in the above 'ilities'. This paper examines some of the new concepts and looks for metrics to judge their value.

  15. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  16. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  17. Integrated Power and Attitude Control Systems for Space Station

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  18. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  19. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Satellite Power Systems (SPS) Concept Definition Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The evolution of a total satellite power is described as well as major subsystem alternatives. Trade study results are given for satellite concepts, ground receiving antennas, satellite construction sites, and transportation. Point design definition, end-to-end analysis, and programmatics are covered. The GaAlAs photovoltaic concept is recommended as the current preliminary baseline satellite concept with silicon photovoltaic and Rankine cycle solar-thermal concepts as viable alternatives. Geosynchronous orbit is preferred for the construction of the satellite. A horizontal takeoff and landing air breathing rocket HLLV concept is preferred for earth-to-LEO transportation, with vertical takeoff options as viable alternatives. An argon electric orbit transfer vehicle is preferred for cargo transport from LEO and GEO orbit, and a chemical LH2/L02, two-stage orbit transfer vehicle is recommended for crew transport. A stripline rectenna array is the current preferred concept.

  1. A wirelessly-powered homecage with animal behavior analysis and closed-loop power control.

    PubMed

    Yaoyao Jia; Zheyuan Wang; Canales, Daniel; Tinkler, Morgan; Chia-Chun Hsu; Madsen, Teresa E; Mirbozorgi, S Abdollah; Rainnie, Donald; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.

  2. Operation of the unified power flow controller (UPFC) under practical constraints

    SciTech Connect

    Schauder, C.D.; Gyugyi, L.; Lund, M.R.; Hamai, D.M.; Rietman, T.R.; Torgerson, D.R.; Edris, A.

    1998-04-01

    The UPFC is the most versatile and complex power electronic equipment that has emerged for the control and optimization of power flow in electrical power transmission systems. It offers major potential advantages for the static and dynamic operation of transmission lines, but it brings with it major design challenges, both in the power electronics and from the perspective of the power system. As the UPFC transitions from concept to full-scale power system implementation, the control and protection of this sophisticated equipment are of primary concern. This paper describes the basic control, sequencing and protection philosophies that govern the operation of the UPFC, subject to the practical constraints encountered in an actual high power installation. The operation of the UPFC is illustrated with representative results from a TNA study, undertaken jointly by the Electric Power Research Institute (EPRI), Western Area Power Administration (WAPA) and Westinghouse Science and Technology Center (STC).

  3. Power management and control for space systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Myers, I. T.; Terdan, F. F.; Stevens, N. J.

    1978-01-01

    Power management and control technology for the large, high-power spacecraft of the 1980's is discussed. Systems weight optimization that indicate a need for higher bus voltages are shown. Environmental interactions that are practical limits for the maximum potential on exposed surfaces are shown. A dual-voltage system is proposed that would provide the weight savings of a high-voltage distribution system and take into account the potential environmental interactions. The technology development of new components and circuits is also discussed.

  4. Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    DOE PAGES

    Miller, John M.; Onar, Omer C.; Chinthavali, Madhu

    2014-12-22

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less

  5. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  6. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  7. Advanced concepts for electromagnetic launcher power supplies incorporating magnetic flux compression

    SciTech Connect

    Driga, M.D. . Dept. of Electrical and Computer Engineering); Fair, H.D. )

    1991-01-01

    Electromagnetic coil launchers offer the potential for extremely high efficiency, flexible, noncontracting, hypervelocity electromagnetic accelerators. Unfortunately, their implementation and development has been severely limited by the lack of compact power supplies capable of providing the required high energy and high powers. Integrating novel magnetic flux compression features into multistage rotating machines provides the flexible means for generating tailored, high-energy, high-power electromagnetic pulses required to efficiently drive these promising coil launchers. This paper presents advanced concepts of high energy power supplies for coil launchers. These concepts are designed to produce high inductive compression ratios and large current and magnetic field multiplication ratios in the range of megamperes of current and gigawatts of active power. As a consequence of the flexibility of multiwinding rotating generators, such designs provide an extensive range of output pulse shaping in single or multiple pulses, enabling optimum operation of the coil launcher.

  8. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  9. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  10. Concepts and Methods in Multi-Person Coordination and Control.

    DTIC Science & Technology

    1981-10-01

    concepts to microeconomics and social choice theory. Ba~ar (1981e) and Tolwinski (1980) have discussed pos- sible extensions to multi-agent cases when...34 in: E. 0. Roxin, P. T. Liu, R. L. Sternberg, eds., Differential Games and Control Theory II, Marcel Dekker, New York, pp. 1-46. [113] Pindyck , R. S

  11. A ground based phase control system for the solar power satellite. Executive summary, volume 1, phase 3

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    The Solar Power Satellite (SPS) concept and the reference phase control system investigated in earlier efforts are reviewed. A summary overview of the analysis and selection of the pilot signal and power transponder design is presented along with the SOLARSIM program development and the simulated SPS phase control performance. Evaluations of the ground based phase control system as an alternate phase control concept are summarized.

  12. Adaptive robust controller based on integral sliding mode concept

    NASA Astrophysics Data System (ADS)

    Taleb, M.; Plestan, F.

    2016-09-01

    This paper proposes, for a class of uncertain nonlinear systems, an adaptive controller based on adaptive second-order sliding mode control and integral sliding mode control concepts. The adaptation strategy solves the problem of gain tuning and has the advantage of chattering reduction. Moreover, limited information about perturbation and uncertainties has to be known. The control is composed of two parts: an adaptive one whose objective is to reject the perturbation and system uncertainties, whereas the second one is chosen such as the nominal part of the system is stabilised in zero. To illustrate the effectiveness of the proposed approach, an application on an academic example is shown with simulation results.

  13. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  14. Overview of Small and Large-Scale Space Solar Power Concepts

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  15. Satellite power systems (SPS) concept definition study. Volume 7: SPS program plan and economic analysis, appendixes

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Three appendixes in support of Volume 7 are contained in this document. The three appendixes are: (1) Satellite Power System Work Breakdown Structure Dictionary; (2) SPS cost Estimating Relationships; and (3) Financial and Operational Concept. Other volumes of the final report that provide additional detail are: Executive Summary; SPS Systems Requirements; SPS Concept Evolution; SPS Point Design Definition; Transportation and Operations Analysis; and SPS Technology Requirements and Verification.

  16. Two blowing concepts for roll and lateral control of aircraft

    NASA Technical Reports Server (NTRS)

    Tavella, D. A.; Wood, N. J.; Lee, C. S.; Roberts, L.

    1986-01-01

    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction.

  17. Solid state power controller fuse development program

    NASA Astrophysics Data System (ADS)

    Spauhorst, V. R.; Curtis, W. H.; Kalra, V.

    1983-10-01

    The purpose of this development program is to design a family of fail-safe fuses (2-30A, 28VDC, 115/230V-400 Hz) for applications in aircraft electrical systems solid state power controllers (SSPCs). The SSPC functions as a circuit interrupter and a load controller, and when operating properly should protect the aircraft wiring between itself and the load. However, if the SSPC fails to open during a short or overload condition, excessive current can flow, resulting in serious damage to aircraft wiring. The purpose of the SSPC fuse is to prevent wire damage in this double fault condition.

  18. The 2kW Mini-BRU Electrical Controls Concept and Transient Performance

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2006-01-01

    The proposed Jupiter Icy Moon Orbiter, JIMO, mission selected a Brayton power conversion system as its electrical power generator. Although the JIMO mission power conversion system was expected to produce in the order of 100 kW, an available 2 kW Brayton system was used to develop control system strategies for the JIMO mission. This report describes the shunt loading voltage/speed regulation control concept developed for the 2 kW system, and the transient performance of controls. The 2 kW alternator is a permanent magnet alternator as proposed for the JIMO mission, and operates at a similar speed and internal impedance, allowing it to be used as an accurate model for performance of the larger system. The JIMO mission was cancelled in September 2005.

  19. Computer memory power control for the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1983-01-01

    The developmental history, major design drives, and final topology of the computer memory power system on the Galileo spacecraft are described. A unique method of generating memory backup power directly from the fault current drawn during a spacecraft power overload or fault condition allows this system to provide continuous memory power. This concept provides a unique solution to the problem of volatile memory loss without the use of a battery of other large energy storage elements usually associated with uninterrupted power supply designs.

  20. Computer memory power control for the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1983-01-01

    The developmental history, major design drives, and final topology of the computer memory power system on the Galileo spacecraft are described. A unique method of generating memory backup power directly from the fault current drawn during a spacecraft power overload or fault condition allows this system to provide continuous memory power. This concept provides a unique solution to the problem of volatile memory loss without the use of a battery of other large energy storage elements usually associated with uninterrupted power supply designs.

  1. Lithium-thionyl chloride battery design concepts for maximized power applications

    NASA Astrophysics Data System (ADS)

    Kane, P.; Marincic, N.

    The need for primary batteries configured to deliver maximized power has been asserted by many different procuring activities. Battery Engineering Inc. has developed some specific design concepts and mastered some specialized techniques utilized in the production of this type of power source. The batteries have been successfully bench tested during the course of virtually all of these programs, with ultimate success coming in the form of two successful test launches under the USAF Plasma Effects Decoy Program. This paper briefly discusses some of these design concepts and the rationale behind them.

  2. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 2, part 1: System engineering

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 2, Part 1, of a seven volume report is presented. Part 1 encompasses Satellite Power Systems (SPS) systems engineering aspects and is divided into three sections. The first section presents descriptions of the various candidate concepts considered and conclusions and recommendations for a preferred concept. The second section presents a summary of results of the various trade studies and analysis conducted during the course of the study. The third section describes the Photovoltaic Satellite Based Satellite Power System (SPS) Point Design as it was defined through studies performed during the period January 1977 through March 1979.

  3. «Smart Grid» Concept As A Modern Technology For The Power Industry Development

    NASA Astrophysics Data System (ADS)

    Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.

    2017-01-01

    The article discusses the main problems of the power industry and energy supply to the distribution networks. One of the suggested solutions for these problems is the use of intelligent energy networks on the basis of digital reality simulation, in particular, the concept of «SMART GRID». The article presents the basic points of the concept and the peculiarities of its application at the enterprises. It was demonstrated that the use of this technology eliminates power shortage, reduces the energy intensity and improves the energy efficiency throughout the operation of an enterprise as a whole.

  4. Power control for hot gas engines

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F. (Inventor)

    1980-01-01

    A hot gas engine in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two level gears to provide a phase angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  5. Control voltage and power fluctuations when connecting wind farms

    SciTech Connect

    Berinde, Ioan Bălan, Horia Oros, Teodora Susana

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  6. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  7. Nurses’ Perceptions of the Concept of Power in Nursing: A Qualitative Research

    PubMed Central

    Sepasi, Rana Rezai; Borhani, Fariba; Rafiei, Hossein

    2016-01-01

    Introduction Power is a complex and extensive concept in nursing, which has a decisive impact on the accomplishment of duties, satisfaction and achievement of professional goals. Explaining the concept of power in nursing from the perspective of nurses and accessing its various dimensions may result in a better understanding of this issue. Aim This study was aimed to explore the concept of power in nursing, using the views and experiences of Iranian nurses. Materials and Methods This study was a qualitative research which used a content analysis approach. Participants were selected from among nurses active in clinical, management, and educational practices using the purposive sampling method. Data were collected using a semi-structured individual interview. The results were obtained by analysing the data using an inductive approach and the constant comparison method. Results The participants of this study regarded the power of nursing as a positive concept and the issue of power in nursing consisted of three classes, the genesis with the subclasses of “being purposeful”, “being under the shadow of the profession nature”, “being dependent on the source”, strengthening with the subclasses of “being emotional and introverted”, “being formed in the context of professional communication”, “fluidity and flowing”, and the evolution with the subclasses “based on human values”, and “being a tool for professional excellence”. Conclusion The concept of power in nursing can be considered a purposeful issue based on the nurses’ viewpoint which flourishes in the context of human, moral and caring nature of the nursing profession. According to its dependence on the nature of profession and on the basis of professional communication, Power of nursing grows with a fluidlike flowing structure, linked with human values, reaches maturity and results in outcomes such as improving the quality of care and professional excellence. PMID:28208886

  8. Program assessment report, statement of findings. Satellite power systems concept development and evaluation program

    SciTech Connect

    1980-11-01

    What is known, uncertain, and unknown about the Solar Power Satellite (SPS) concept is stated. The important technical, environmental, and cost goal questions that must be answered prior to making a commitment to the SPS concept are discussed. Although significant technological, environmental and economic questions remain to be answered, the preliminary investigations undertaken in the CDEP do provide a basis for a policy decision on further commitment. Also, areas of research and experimentation required to acquire the knowledge by which a series of informed, time-phased decisions may be made concerning the possibility of the SPS concept playing a major role in the United States' energy future are suggested.

  9. Satellite Power System: Concept development and evaluation program. Volume 7: Space transportation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    During the several phases of the satellite power system (SPS) concept definition study, various transportation system elements were synthesized and evaluated on the basis of their potential to satisfy overall SPS transportation requirements and their sensitivities, interfaces, and impact on the SPS. Additional analyses and investigations were conducted to further define transportation system concepts that will be needed for the developmental and operational phases of an SPS program. To accomplish these objectives, transportation systems such as the shuttle and its derivatives were identified; new heavy-lift launch vehicle (HLLV) concepts, cargo and personnel orbital transfer vehicles (COTV and POTV), and intra-orbit transfer vehicle (IOTV) concepts were evaluated; and, to a limited degree, the program implications of their operations and costs were assessed. The results of these analyses were integrated into other elements of the overall SPS concept definition studies.

  10. Near-to-eye display concepts for air traffic controllers

    NASA Astrophysics Data System (ADS)

    Ruffner, John W.; Fulbrook, Jim E.; Foglia, Marc

    2004-09-01

    Tower controllers are responsible for maintaining safe separation between airborne aircraft in the airport traffic control area, and separation between aircraft, equipment, and personnel on the airport surface. The objective of this project was to develop and demonstrate an out-the-window, augmented viewing system concept for Air Force air traffic control tower personnel to reduce look-down time within the tower and to optimize visual airfield operations, particularly during limited visibility conditions. We characterized controller tasks where a near-to-eye display greatly aids performance and identified form factor variables that influence user acceptability of hardware configurations. We developed an "out-the-window concept of operation" and analyzed the hardware requirements and feasibility of three near-to-eye viewing systems: two head-mounted monocular displays (HMMD) and a held-to-head binocular display (HHBD). When fully developed, these display prototypes should enhance tower controller situation awareness, and reduce such distractions as having to frequently attend to and respond to head-down (console) display information. There are potential users of this display concept in all branches of the military services, and in the commercial sector. There is also potential utility for surface surveillance operations in support of homeland security, law enforcement personnel, rescue workers, firefighters, and special operations forces in non-aviation applications.

  11. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  12. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    SciTech Connect

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  13. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  14. Low power, scalable multichannel high voltage controller

    DOEpatents

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  15. Using Simulation Speeds to Differentiate Controller Interface Concepts

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Pope, Alan

    2008-01-01

    This study investigated two concepts: (1) whether speeding a human-in-the-loop simulation (or the subject's "world") scales time stress in such a way as to cause primary task performance to reveal workload differences between experimental conditions and (2) whether using natural hand motions to control the attitude of an aircraft makes controlling the aircraft easier and more intuitive. This was accomplished by having pilots and non-pilots make altitude and heading changes using three different control inceptors at three simulation speeds. Results indicate that simulation speed does affect workload and controllability. The bank and pitch angle error was affected by simulation speed but not by a simulation speed by controller type interaction; this may have been due to the relatively easy flying task. Results also indicate that pilots could control the bank and pitch angle of an aircraft about equally as well with the glove as with the sidestick. Non-pilots approached the pilots ability to control the bank and pitch angle of an aircraft using the positional glove - where the hand angle is directly proportional to the commanded aircraft angle. Therefore, (1) changing the simulation speed lends itself to objectively indexing a subject s workload and may also aid in differentiating among interface concepts based upon performance if the task being studied is sufficiently challenging and (2) using natural body movements to mimic the movement of an airplane for attitude control is feasible.

  16. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  17. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  18. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  19. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  20. An integrated power/attitude control system /IPACS/ for space vehicle application

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Keckler, C. R.

    1973-01-01

    An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.

  1. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  2. Trend of Control Technique of Power Electronic Equipments for Power System

    NASA Astrophysics Data System (ADS)

    Kimura, Noriyuki; Nakajima, Tatsuhito; Gibo, Naoki

    This paper aims to introduce recent topics about the control technique of power electronic equipments for power system. the control technique is explained from the view points of the power system control, the local system control and the converter control. The installation of STATCOM in Japan and UPFC in Korea are mentioned as the examples.

  3. CFD evaluation of an advanced thrust vector control concept

    NASA Technical Reports Server (NTRS)

    Tiarn, Weihnurng; Cavalleri, Robert

    1990-01-01

    A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.

  4. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  5. Distributed solid state programmable thermostat/power controller

    NASA Technical Reports Server (NTRS)

    Alexander, Jane C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2008-01-01

    A self-contained power controller having a power driver switch, programmable controller, communication port, and environmental parameter measuring device coupled to a controllable device. The self-contained power controller needs only a single voltage source to power discrete devices, analog devices, and the controlled device. The programmable controller has a run mode which, when selected, upon the occurrence of a trigger event changes the state of a power driver switch and wherein the power driver switch is maintained by the programmable controller at the same state until the occurrence of a second event.

  6. Satellite control of electric power distribution

    NASA Technical Reports Server (NTRS)

    Bergen, L.

    1981-01-01

    An L-band frequencies satellite link providing the medium for direct control of electrical loads at individual customer sites from remote central locations is described. All loads supplied under interruptible-service contracts are likely condidates for such control, and they can be cycled or switched off to reduce system loads. For every kW of load eliminated or deferred to off-peak hours, the power company reduces its need for additional generating capacity. In addition, the satellite could switch meter registers so that their readings automatically reflected the time of consumption. The system would perform load-shedding operations during emergencies, disconnecting large blocks of load according to predetermined priorities. Among the distribution operations conducted by the satellite in real time would be: load reconfiguration, voltage regulation, fault isolation, and capacitor and feeder load control.

  7. Field emission electric propulsion power conditioning unit design concept, volume 1

    NASA Astrophysics Data System (ADS)

    Gasparini, A.; Devambez, F.; Valentian, D.

    The requirements for auxiliary and primary propulsion systems were investigated in order to define the requirements for the field emission electric propulsion power conditioning unit (PCU). Emphasis was placed on simplifying the PCU design and improving weight. The PCU consists of a central power and control module (CPCM) connected to several thruster dedicated power supply modules (TDPDM). The connections between the CPCM and the TDPDM the command and control philosophy, and the power components and power circuits are considered. The use of high inverter frequencies and optical fiber data transmission to aleviate high voltage insulation problems are addressed.

  8. FPGA for Power Control of MSL Avionics

    NASA Technical Reports Server (NTRS)

    Wang, Duo; Burke, Gary R.

    2011-01-01

    A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.

  9. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  10. Further Characterization of an Active Clearance Control Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2007-01-01

    A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.

  11. Research into language concepts for the mission control center

    NASA Technical Reports Server (NTRS)

    Dellenback, Steven W.; Barton, Timothy J.; Ratner, Jeremiah M.

    1990-01-01

    A final report is given on research into language concepts for the Mission Control Center (MCC). The Specification Driven Language research is described. The state of the image processing field and how image processing techniques could be applied toward automating the generation of the language known as COmputation Development Environment (CODE or Comp Builder) are discussed. Also described is the development of a flight certified compiler for Comps.

  12. Organizational Systems Theory and Command and Control Concepts

    DTIC Science & Technology

    2013-03-01

    controlled assembly line is instead carefully crafted by artist-mechanics who loosely follow schedules and procedures to create a one-of-a-kind machine...history illustrates how some armies planned and executed operations to the smallest detail (Detailed Command) while other armies allowed commanders...Mission Command. Studying C2 concepts in history illustrates how some armies planned and executed operations to the smallest detail (Detailed

  13. Space solar power. Description of concept, results of preliminary studies, requirements for evaluation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The nation is actively pursuing alternate sources of energy because of the problems or concerns related to obtaining required energy for the future from oil, gas, nuclear, and coal sources. Solar energy is an obvious candidate for consideration. Its use in the past has been limited by the relative cost of collecting and converting solar energy into electrical power. The increasing costs of other energy sources will make solar energy more attractive. During recent years a new concept for the collection of solar energy has been developed. This concept involves the location of solar power stations in space. The concept, results of preliminary studies, and requirements for space evaluation of such a project are discussed.

  14. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    PubMed

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand.

  15. Unified power flow controller: Modeling, stability analysis, control strategy and control system design

    NASA Astrophysics Data System (ADS)

    Sreenivasachar, Kannan

    2001-07-01

    Unified power flow controller (UPFC) has been the most versatile Flexible AC Transmission System (FACTS) device due to its ability to control real and reactive power flow on transmission lines while controlling the voltage of the bus to which it is connected. UPFC being a multi-variable power system controller it is necessary to analyze its effect on power system operation. To study the performance of the UPFC in damping power oscillations using PSCAD-EMTDC software, a de-coupled control system has been designed for the shunt inverter to control the UPFC bus voltage and the DC link capacitor voltage. The series inverter of a UPFC controls the real power flow in the transmission line. One problem associated with using a high gain PI controller (used to achieve fast control of transmission line real power flow) for the series inverter of a UPFC to control the real power flow in a transmission line is the presence of low damping. This problem is solved in this research by using a fuzzy controller. A method to model a fuzzy controller in PSCAD-EMTDC software has also been described. Further, in order to facilitate proper operation between the series and the shunt inverter control system, a new real power coordination controller has been developed and its performance was evaluated. The other problem concerning the operation of a UPFC is with respect to transmission line reactive power flow control. Step changes to transmission line reactive power references have significant impact on the UPFC bus voltage. To reduce the adverse effect of step changes in transmission line reactive power references on the UPFC bus voltage, a new reactive power coordination controller has been designed. Transient response studies have been conducted using PSCAD-EMTDC software to show the improvement in power oscillation damping with UPFC. These simulations include the real and reactive power coordination controllers. Finally, a new control strategy has been proposed for UPFC. In this

  16. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  17. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  18. [Current concepts of polytrauma management: from ATLS to "damage control"].

    PubMed

    Stahel, P F; Heyde, C E; Wyrwich, W; Ertel, W

    2005-09-01

    In recent years, the implementation of standardized protocols for polytrauma management has led to a significant improvement in trauma care as well as to a decrease in post-traumatic morbidity and mortality. As such, the "Advanced Trauma Life Support" (ATLS) protocol of the American College of Surgeons for the acute management of severely injured patients has been established as a gold standard in most European countries since the 1990s. Continuative concepts to the ATLS program include the "Definitive Surgical Trauma Care" (DSTC) algorithm and the concept of "damage control" surgery for polytraumatized patients with immediate life-threatening injuries. These phase-oriented therapeutic strategies appraise the injured patient of the whole extent of the sustained injuries and are in sharp contrast to previous modalities of "early total care" which advocate immediate definitive surgical intervention. The approach of "damage control" surgery takes into account the influence of systemic post-traumatic inflammatory and metabolic reactions of the organism and is aimed at reducing both the primary and the secondary, delayed, mortality in severely injured patients. The present paper provides an overview of the current state of management algorithms for polytrauma patients, with a focus on the standard concepts of ATLS and "damage control".

  19. Power and control in gay strip clubs.

    PubMed

    DeMarco, Joseph R G

    2007-01-01

    The gay strip club is a place in which more than displays of male beauty take place. The mix of customers, performers, liquor, and nudity results in fascinating dynamics. Of interest in this article are the power relationships and issues of control played out both among and between strippers and customers. Based on extensive participant observation conducted in eight cities and numerous bars/clubs and including more than 150 in-depth interviews, this article concerns just one aspect of the world of male strippers who perform for men.

  20. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  1. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    NASA Technical Reports Server (NTRS)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  2. Program Assessment Report Statement of Findings: Satellite Power Systems Concept Development and Evaluation Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report states what is known, uncertain, and unknown about the Solar Power Satellite (SPS) concept - collecting solar energy in space and delivering the energy to Earth for the production of baseload electricity. This report discusses the important technical, environmental, and cost goal questions that must be answered prior to making a commitment to the SPS concept. Although significant technological, environmental and economic questions remain to be answered, the preliminary investigations undertaken in the Concept Development and Evaluation Program do provide a basis for a policy decision on further commitment. This report also suggests areas of research and experimentation required to acquire the knowledge by which a series of informed, time-phased decisions may be made concerning the possibility of the SPS concept playing a major role in the United States' energy future.

  3. Program Assessment Report Statement of Findings: Satellite Power Systems Concept Development and Evaluation Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report states what is known, uncertain, and unknown about the Solar Power Satellite (SPS) concept - collecting solar energy in space and delivering the energy to Earth for the production of baseload electricity. This report discusses the important technical, environmental, and cost goal questions that must be answered prior to making a commitment to the SPS concept. Although significant technological, environmental and economic questions remain to be answered, the preliminary investigations undertaken in the Concept Development and Evaluation Program do provide a basis for a policy decision on further commitment. This report also suggests areas of research and experimentation required to acquire the knowledge by which a series of informed, time-phased decisions may be made concerning the possibility of the SPS concept playing a major role in the United States' energy future.

  4. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect

    Speer, J.H. Jr.

    1981-01-01

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  5. A Turbine-powered UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  6. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  7. Microcomputer control of a residential photovoltaic power conditioning system

    SciTech Connect

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  8. Microcomputer control of a residential photovoltaic power conditioning system

    SciTech Connect

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  9. Using a Research Simulator for Validating Control Room Modernization Concepts

    SciTech Connect

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  10. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  11. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2009-05-07

    This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

  12. Simple power supply for power load controlled isoelectric focusing.

    PubMed

    Duša, Filip; Slais, Karel

    2014-04-01

    The power supply for IEF based on features of the Cockcroft-Walton voltage multiplier (CW VM) is described in this work. The article describes a design of the IEF power supply, its electric characteristics, and testing by IEF analysis. A circuit diagram of the power supply included two opposite charged branches (each consisting of four voltage doublers). The designed CW VM was powered by 230 V/50 Hz alternate current and it generated up to 5 kV and 90 mW at the output. Voltage and current characteristics of the power supply were measured by known load resistances in the range from 10 kΩ to 1 GΩ, which is a common resistance range for IEF strip geometry. Further, the power supply was tested by a separation of a model mixture of colored pI markers using a 175 × 3 × 0.5 mm focusing bed. Automatically limited power load enabled analysis of samples without previous optimization of the focusing voltage or electric current time courses according to sample composition. Moreover, the developed power supply did not produce any intrinsic heat and was easy to set up with cheap and commonly available parts.

  13. Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.

  14. [The concepts of bonding and the relation with tuberculosis control].

    PubMed

    Gomes, Anna Luiza Castro; de Sá, Lenilde Duarte

    2009-06-01

    This study analyzed the concepts of bonding that guide the practice of Family Health Program (FHP) teams in terms of tuberculosis (TB) control measures in the public health setting, in the city of Bayeux, Paraiba, Brazil. Using a qualitative approach, the study involved 37 health care professionals. Data collection took place using the focal group technique, in April 2007. Data analysis was performed based on discourse analysis. It was observed that FHP team concepts about attachment were in agreement with the studied theoretical concepts, with evidences of trust, commitment, intimacy, and responsibility in the team/patient relationship. The following aspects strengthen the bond: the time that FHP teams work in the community; the number of home visits and consultations and the involvement with TB control. Bond weaknesses: insufficient intersectorial measures, the patient's socioeconomic situation, and family abandonment. It is emphasized that there is a need for changes that would strengthen the relationship between the FHP team/patient. This way there would be a concrete care founded on the integrality of health care service routine.

  15. Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr. (Inventor)

    1974-01-01

    A microwave, wireless, power transmission system is described in which the transmitted power level is adjusted to correspond with power required at a remote receiving station. Deviations in power load produce an antenna impedance mismatch causing variations in energy reflected by the power receiving antenna employed by the receiving station. The variations in reflected energy are sensed by a receiving antenna at the transmitting station and used to control the output power of a power transmitter.

  16. The Abacus/Reflector and Integrated Symmetrical Concentrator: Concepts for Space Solar Power Collection and Transmission

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don

    2000-01-01

    New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.

  17. The Abacus/Reflector and Integrated Symmetrical Concentrator: Concepts for Space Solar Power Collection and Transmission

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don

    2000-01-01

    New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.

  18. Power control for hot gas engines

    SciTech Connect

    Frosch, R.A.; Macglashan, W.F.

    1980-10-21

    A hot gas engine is described in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential-type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two bevel gears to provide a phase-angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  19. Auxiliary power controls on the Nelson River HVDC scheme

    SciTech Connect

    Chand, J. )

    1992-02-01

    This paper describes the auxiliary power controls on the Nelson River HVDC scheme. It shows how the fast control feature of the HVDC link can be utilized to enhance the operation of an integrated ac/dc power system.

  20. A hybrid electromechanical solid state switch for ac power control

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  1. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  2. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  3. The evolution of the break preclusion concept for nuclear power plants in Germany

    SciTech Connect

    Schulz, H.

    1997-04-01

    In the updating of the Guidelines for PWR`s of the {open_quotes}Reaktor-Sicherheitskommission{close_quotes} (RSK) in 1981 the requirements on the design have been changed with respect to the postulated leaks and breaks in the primary pressure boundary. The major change was a revision in the requirements for pipe whip protection. As a logical consequence of the {open_quotes}concept of basic safety{close_quotes} a guillotine type break or any other break type resulting in a large opening is not postulated any longer for the calculation of reaction and jet forces. As an upper limit for a leak an area of 0, 1 A (A = open cross section of the pipe) is postulated. This decision was based on a general assessment of the present PWR system design in Germany. Since then a number of piping systems have been requalified in the older nuclear power plants to comply with the break preclusion concept. Also a number of extensions of the concept have been developed to cover also leak-assumptions for branch pipes. Furthermore due considerations have been given to other aspects which could contribute to a leak development in the primary circuit, like vessel penetrations, manhole covers, flanges, etc. Now the break preclusion concept originally applied to the main piping has been developed into an integrated concept for the whole pressure boundary within the containment and will be applied also in the periodic safety review of present nuclear power plants.

  4. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts

    NASA Astrophysics Data System (ADS)

    Blumberga, Andra; Timma, Lelde; Blumberga, Dagnija

    2015-12-01

    When the renewable energy is used, the challenge is match the supply of intermittent energy with the demand for energy therefore the energy storage solutions should be used. This paper is dedicated to hydrogen accumulation from wind sources. The case study investigates the conceptual system that uses intermitted renewable energy resources to produce hydrogen (power-to-gas concept) and fuel (power-to-liquid concept). For this specific case study hydrogen is produced from surplus electricity generated by wind power plant trough electrolysis process and fuel is obtained by upgrading biogas to biomethane using hydrogen. System dynamic model is created for this conceptual system. The developed system dynamics model has been used to simulate 2 different scenarios. The results show that in both scenarios the point at which the all electricity needs of Latvia are covered is obtained. Moreover, the methodology of system dynamics used in this paper is white-box model that allows to apply the developed model to other case studies and/or to modify model based on the newest data. The developed model can be used for both scientific research and policy makers to better understand the dynamic relation within the system and the response of system to changes in both internal and external factors.

  5. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  6. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Goettsche, A.; Niebur, D.; Friend, H.; Johnston, A.

    1991-01-01

    The first section of the report describes the AbNET system, a hardware and software communications system designed for distribution automation (it can also find application in substation monitoring and control). The topology of the power system fixes the topology of the communications network, which can therefore be expected to include a larger number of branch points, tap points, and interconnections. These features make this communications network unlike any other. The network operating software has to solve the problem of communicating to all the nodes of a very complex network in as reliable a way as possible even if the network is damaged, and it has to do so with minimum transmission delays and at minimum cost. The design of the operating protocols is described within the framework of the seven-layer Open System Interconnection hierarchy of the International Standards Organization. Section 2 of the report describes the development and testing of a high voltage sensor based on an electro-optic polymer. The theory of operation is reviewed. Bulk fabrication of the polymer is discussed, as well as results of testing of the electro-optic coefficient of the material. Fabrication of a complete prototype sensor suitable for use in the range 1-20 kV is described. The electro-optic polymer is shown to be an important material for fiber optic sensing applications. Appendix A is theoretical support for this work. The third section of the report presents the application of an artificial neural network, Kohonen's self-organizing feature map, for the classification of power system states. This classifier maps vectors of an N-dimensional space to a 2-dimensional neural net in a nonlinear way preserving the topological order of the input vectors. These mappings are studied using a nonlinear power system model.

  7. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  8. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  9. (Nuclear power plant control and instrumentation technology)

    SciTech Connect

    White, J.D.

    1990-10-10

    While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

  10. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  11. [Psychic power and energy. Relation of self-experience and concept formation in Freudian theory].

    PubMed

    Schott, H G

    1983-01-01

    The concept of psychic energy is very important for the development of Sigmund Freud's theory. It is linked with the problem of psychic power. Both terms--"energy" (Energie) and "power" (Kraft)--are studied within the context of Freud's scientific work. There is a fundamental relation of introspection in practice and scientific description in theory. This relation is reconstructed in three ways: analysis of "psychic work" (psychische Arbeit) as an implication of the self-analysis in Freud's "Interpretation of Dreams"; analysis of the psychological techniques of psychotherapy Freud used; and analysis of the metapsychological theory with its concept of "psychich apparatus" (psychischer Apparat). This interpretation stresses the close relationship of Freud's personal experience as a therapist and self-analyst and his scientific theory with its neurophysiological and psychological terminology.

  12. A robust decentralized load frequency controller for interconnected power systems.

    PubMed

    Dong, Lili; Zhang, Yao; Gao, Zhiqiang

    2012-05-01

    A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.

  13. The solar power satellite concept - The past decade and the next decade

    NASA Technical Reports Server (NTRS)

    Kraft, C. C., Jr.

    1979-01-01

    Results of studies on the solar power satellite concept, currently under evaluation by NASA and the Department of Energy, are summarized. The basic advantages provided by the concept are the near-continuous access to sunlight and the freedom from atmospheric effects and cloud cover. The systems definition studies have considered photovoltaic and thermal energy conversion systems and found both to be technically feasible, with the photovoltaic approach being currently preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles have been defined for the transportation of construction materials, with the Shuttle expected to provide low-cost transportation to and from space. A reference system has been outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.

  14. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    This viewgraph presentation reviews study into exploration of Titan. Including a possible Titan Rover that would use the advanced radioisotope power system (RPS). The goal of the study is to demonstrate a simple, credible and affordable rover mission concept for Titan in-situ exploration, enabled by an Advanced RPS. The presentation reviews the possible launch vehicle, and trajectory options; desired instrumentation that would be aboard the rover; and considerations for the design of the rover.

  15. Assessment of solar options for small power systems applications. Volume III. Analysis of concepts

    SciTech Connect

    Laity, W.W.; Aase, D.T.; Apley, W.J.; Bird, S.P.; Drost, M.K.; Garrett-Price, B.A.; Williams, T.A.

    1980-09-01

    A comparative analysis of solar thermal conversion concepts that are potentially suitable for development as small electric power systems (1 to 10 MWe) is given. Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces; (2) one-axis tracking (with single-curvature reflecting suraces; and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors (the Point Focus Central Receiver and the Point Focus Distributed Receiver) were analyzed with Brayton-cycle engines, and the latter of the two also was analyzed with Stirling-cycle engines. This volume describes the systems analyses performed on all the alternative configurations of the seven generic collector concepts and the results obtained. The SOLSTEP computer code used to determine each configuration's system cost and performance is briefly described. The collector and receiver performance calculations used are also presented. The capital investment and related costs that were obtained from the systems studies are presented, and the levelized energy costs are given as a function of capacity factor obtained from the systems studies. Included also are the values of the other attributes used in the concepts' final ranking. The comments, conclusions, and recommendations developed by the PNL study team during the concept characterization and systems analysis tasks of the study are presented. (WHK)

  16. Manned Space-laboratories Control Center (MSCC) operations concept

    NASA Technical Reports Server (NTRS)

    Kehr, Joachim

    1993-01-01

    The initiation of the (German-) nationally funded control center for manned spaceflight operations triggered by the invitation of President Reagan to ESA, Japan, and Canada in 1984 to join the International Space Station Freedom Program is recalled. The requirements for a Manned Space-Laboratories Control Center (MSCC) as defined at the beginning of the planning and construction process in 1987 and the resulting modifications during the various programmatic scenario changes on NASA and ESA side between 1987 and now are presented. The validity of the original requirements with respect to the current scenario, which asks for a logical evolution from the execution of the D-2 mission in January 1993 via the European Columbus Precursor flights (in particular the E-1 mission) towards Columbus Attached Laboratory (APM)-operations by the end of this century are discussed. The resulting tasks of the MSCC for the various missions, the current configuration, and the ensuing operations concept leading from a more centralized concept for D-2 towards a decentralized payload operations concept for the APM and the implications with respect to European and International interfaces are presented. The planned Columbus MSCC facility architecture and its expected modifications introduced by the ESA Ministerial Conference in Munich (Nov. 1991) and follow-on discussions are briefly addressed. The last chapter outlines the planned services to be provided by the MSCC to the decentralized User (experimenter) community. Issues like decentralized mission planning on executional level, command validation, data flow coordination, archiving services, and telescience capabilities are highlighted from a MSCC point of view.

  17. Macrofouling control in nuclear power plants

    SciTech Connect

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  18. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1992-01-01

    A long-term strategy for the integration of new control technologies for power generation and delivery is proposed: the industry would benefit from an evolutionary approach that would adapt to its needs future technologies as well as those that it has so far not heeded. The integrated operation of the entire system, including the distribution system, was proposed as a future goal. The AbNET communication protocols are reviewed, and additions that were made in 1991 are described. In the original network, traffic was controlled by polling at the master station, located at the substation, and routed by a flooding algorithm. In a revised version, the polling and flooding are modified. The question of interfacing low-energy measurement transducers or instrument transformers is considered. There is presently little or no agreement on what the output of optical current transducers (CT's) should be. Appendices deal with the calibration of current transducers; with Delta modulation, a simple means of serially encoding the output of an OCT; and with noise shaping, a method of digital signal processing that trades off the number of bits in a digital sample for a higher number of samples.

  19. High Temperature Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  20. A novel "gain chip" concept for high-power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin

    2017-05-01

    High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.

  1. Decoupled control techniques for dual flying capacitor bridge power supplies of large superconductive magnets

    SciTech Connect

    Ehsani, M.; Hozhabri, A.; Kustom, R.L.

    1986-01-01

    The dual flying capacitor (DFC) was developed in 1976 as a method of supplying efficient bilateral power to large superconductive magnets. This power supply concept uses a second superconductive coil for energy storage. Large reversible power demands of the load magnet are met by energy exchange between the storage and load coils, through the DFC bridge. This paper will show that the DFC circuit can be decomposed into two elementary single flying capacitor (SLC) circuits which can be controlled independently. The discovery of this decoupled control concept is the origin of several new control strategies which significantly improve the performance of DFC power supplies. Microcomputer controllers containing the decoupled control algorithm were tested on a DFC system simulator. The results show that time optimal load coil current and voltage control is now achievable by a robust bang-bang control technique. Furthermore, load coil current ripple and voltage spectrum can be independently controlled, while following an arbitrary reference signal. The DFC bridge, with the decoupled controllers, is a high performance power supply candidate for superconductive magnets of fusion reactors, particle accelerators and other systems.

  2. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  3. Design of power control system using SMES and SVC for fusion power plant

    NASA Astrophysics Data System (ADS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-02-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant.

  4. Soft-Starting Power-Factor Motor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  5. Soft-Starting Power-Factor Motor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  6. POwer WithOut Wire (POWOW): A SEP Concept for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; ONeill, Mark

    2000-01-01

    Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 demonstrated electric propulsion as a primary propulsion source for a spacecraft. The POwer WithOut Wires (POWOW) concept has been developed as a solar electric propelled spacecraft that would travel to Mars, for example, enter selenosynchronous orbit and then use lasers to beam power to surface installations. This concept has been developed with industrial expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The paper will present the latest version of the spacecraft, the technologies involved, possible missions and trip times to Mars and laser beaming options. The POWOW spacecraft is a general purpose solar electric propulsion system that includes technologies that are directly applicable to commercial and government spacecraft with power levels ranging from 4 kW in Low Earth Orbits (LEO) to about 1 MW. The system is modular and expandable. Learning curve costing methodologies are used to demonstrate cost effectiveness of a modular system.

  7. POwer WithOut Wire (POWOW): A SEP Concept for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; ONeill, Mark

    2000-01-01

    Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 demonstrated electric propulsion as a primary propulsion source for a spacecraft. The POwer WithOut Wires (POWOW) concept has been developed as a solar electric propelled spacecraft that would travel to Mars, for example, enter selenosynchronous orbit and then use lasers to beam power to surface installations. This concept has been developed with industrial expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The paper will present the latest version of the spacecraft, the technologies involved, possible missions and trip times to Mars and laser beaming options. The POWOW spacecraft is a general purpose solar electric propulsion system that includes technologies that are directly applicable to commercial and government spacecraft with power levels ranging from 4 kW in Low Earth Orbits (LEO) to about 1 MW. The system is modular and expandable. Learning curve costing methodologies are used to demonstrate cost effectiveness of a modular system.

  8. Integrated power and single axis attitude control system with two flywheels

    NASA Astrophysics Data System (ADS)

    Han, Bangcheng

    2012-05-01

    The existing research of the integrated power and attitude control system (IPACS) in satellites mainly focuses on the IPACS concept, which aims at solving the coupled problem between the attitude control and power tracking. In the IPACS, the configuration design of IPACS is usually not considered, and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved. In this paper, an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed. The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved. A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed, which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table. Both DC bus and a single axis attitude are the regulation goals. An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems. The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller. The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels. The proposed research provides theory basis for design of the IPACS.

  9. An AC motor drive with power factor control for low cost applications

    NASA Astrophysics Data System (ADS)

    Bellar, Maria Dias

    2000-10-01

    The front-end rectifier followed by a pulse-width modulated voltage source inverter (PWM-VSI) has been a well-established power converter configuration for many industrial drives. The increasing costs on the utility usage, due to power quality regulations, and the need to improve the VA capacity of systems, e.g. off-shore drilling rigs, have increased the interest in the development of power electronic equipment with power factor control capability. Electrical motors consume a large amount of the available electrical energy, and this energy tends to increase due to the massive emerging applications of electrical motor drives in appliances and in industrial processes. Therefore, the improvement of the power factor of these low power drive systems, usually in the range from fractional horse-power (hp) to 1 hp, is of particular interest. For these power ratings, the system configuration usually comprises a single-phase to three-phase type of converter with additional circuitry for power factor control (PFC). However, this approach has an impact on the system cost and packaging. In this work, a new concept of integrating motor and power factor controls by using a single-phase to three-phase DSP based six-switch converter topology is presented. Unlike other configurations using extra switch(es) and/or extra boost inductor, in this circuit the boost action, for input current shaping, is done by the motor leakage inductances. The power factor control and inverter operation are performed by applying two modulating signals to the SPWM control logic of the converter. In this dissertation, the converter operation and a proposed control strategy will be explained. Simulation and experimental results for a DSP based induction motor drive will be provided as proof of concept. The feasibility and potential of this configuration for ac motor drive applications will be established. The impact of this scheme on the machine operation will also be discussed.

  10. Concept of neutral gain modules for power scaling of thin-disk lasers

    NASA Astrophysics Data System (ADS)

    Mende, J.; Spindler, G.; Speiser, J.; Giesen, A.

    2009-10-01

    We present a concept for power scaling of high brightness solid state lasers, which introduces so called gain modules containing the laser active media. These modules can be inserted as relay imaging optical systems in any type of laser resonators. The gain modules are optically neutral; hence, power scaling can be provided inserting several modules. Here, we provide the basic functional units of gain modules as well as an exemplary experimental implementation in thin-disk lasers with dynamically stable resonators. On the basis of these studies, more than 1 kW output power with an averaged M 2=2.6 could be demonstrated using two disks. Experiments with four disks are in preparation.

  11. Mars Surveyor '98 Landers MVACS Robotic Arm Control System Design Concepts

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Solutions are presented to some of the problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing resources. Problems addressed include 4-DOF forward and inverse kinematics, trajectory planning to minimize potential impact damage, joint drive train protection, Lander tilt prevention, hardware fault monitoring, and collision avoidance.

  12. Flea control in cats: new concepts and the current armoury.

    PubMed

    Siak, Meng; Burrows, Mandy

    2013-01-01

    Flea allergic dermatitis is one of the most common skin diseases of cats presented for veterinary attention. It is therefore important for the practitioner to be able to design an appropriate flea management plan for their patients. There is no 'one size fits all' flea control programme for cats. Successful flea management requires an understanding of flea biology and knowledge of the mode of action of commercial flea products, of which there is a wide range available. Management of owner expectations can often present a challenge. Cat owners generally attribute a persistence of fleas after the administration of routine flea control to be a reflection of product failure. Owners may also be sceptical that fleas are responsible for the clinical signs of overgrooming in their cat and perceive a lack of response to flea adulticide treatment to be evidence of this fact. This article reviews an extensive body of published literature to update some concepts in flea control and discuss how judicious use of traditional and newer flea products can contribute to an integrated flea control strategy for cats.

  13. Improving the Accuracy of Wind Turbine Power Curve Validation by the Rotor Equivalent Wind Speed Concept

    NASA Astrophysics Data System (ADS)

    Scheurich, Frank; Enevoldsen, Peder B.; Paulsen, Henrik N.; Dickow, Kristoffer K.; Fiedel, Moritz; Loeven, Alex; Antoniou, Ioannis

    2016-09-01

    The measurement of the wind speed at hub height is part of the current IEC standard procedure for the power curve validation of wind turbines. The inherent assumption is thereby made that this measured hub height wind speed sufficiently represents the wind speed across the entire rotor area. It is very questionable, however, whether the hub height wind speed (HHWS) method is appropriate for rotor sizes of commercial state-of-the-art wind turbines. The rotor equivalent wind speed (REWS) concept, in which the wind velocities are measured at several different heights across the rotor area, is deemed to be better suited to represent the wind speed in power curve measurements and thus results in more accurate predictions of the annual energy production (AEP) of the turbine. The present paper compares the estimated AEP, based on HHWS power curves, of two different commercial wind turbines to the AEP that is based on REWS power curves. The REWS was determined by LiDAR measurements of the wind velocities at ten different heights across the rotor area. It is shown that a REWS power curve can, depending on the wind shear profile, result in higher, equal or lower AEP estimations compared to the AEP predicted by a HHWS power curve.

  14. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  15. New Close Air Support Doctrine: Getting Control of Emerging Technology and Advanced Concepts

    DTIC Science & Technology

    2002-05-31

    NEW CLOSE AIR SUPPORT DOCTRINE: GETTING CONTROL OF EMERGING TECHNOLOGY AND ADVANCED CONCEPTS A thesis presented to the Faculty of the U.S. Army...Getting Control of Emerging Technology and Advanced Concepts Approved by...should include the foregoing statement.) iii ABSTRACT NEW CLOSE AIR SUPPORT DOCTRINE: GETTING CONTROL OF EMERGING TECHNOLOGY AND ADVANCED CONCEPTS, by

  16. Moving beyond safe sex to women-controlled safe sex: a concept analysis.

    PubMed

    Alexander, Kamila A; Coleman, Christopher L; Deatrick, Janet A; Jemmott, Loretta S

    2012-08-01

    This paper is a report of a conceptual analysis of women-controlled safe sex. Women bear disproportionate burdens from sexually related health compromising outcomes. Imbalanced societal gender and power positions contribute to high morbidities. The expression, women-controlled safe sex, aims to empower women to gain control of their sexual lives. Few researchers focus on contextualized socio-cultural definitions of sexual safety among women. The sample included scientific literature from Scopus, CINAHL, PubMed, PsychINFO and Sociological Abstracts. Papers were published 2000-2010. Critical analyses of literature about women-controlled safe sex were performed in May 2011 using Rodgers' evolutionary concept analysis methods. The search focused on social and cultural influences on sexual practices aimed at increasing women's control over their sexual safety. The analysis uncovered five attributes of women-controlled safe sex: technology; access to choices; women at-risk; 'condom migration' panic; and communication. Three antecedents included: male partner influence; body awareness; and self-efficacy. Consequences were categorized as positive or negative. Nine surrogate terms included: empowerment; gender power; female-controlled sexual barrier method; microbicides; diaphragm; sexual negotiation and communication; female condom; women-initiated disease transmission prevention; and spermicides. Finally, a consensus definition was identified: a socio-culturally influenced multi-level process for initiating sexual safety by women deemed at-risk for sexually related dangers, usually sexually transmitted infections and/or HIV/AIDS. This concept analysis described current significance, uses, and applications of women-controlled safe sex in the scientific literature. The authors clarified its limited nature and conclude that additional conceptual refinement in nursing is necessary to influence women's health. © 2011 Blackwell Publishing Ltd.

  17. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    1998-09-30

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H2S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO2 ; (ii) partial oxidation of sulfided sorbent in an O2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H2S followed by direct oxidation of H2S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out.

  18. Computational optimization of a pneumatic forebody flow control concept

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Tavella, Domingo; Schiff, Lewis B.

    1991-01-01

    The effectiveness of a tangential slot blowing concept for generating lateral control forces on an aircraft forebody is analyzed using computational fluid dynamics. The flow about a fighter forebody is computed using a multiple-zone, thin-layer Navier-Stokes code. Tangential slot blowing is modeled by the use of an actuator plane. The effects of slot location and slot length on the efficiency of the system are analyzed. Results of the study indicate that placement of the slot near the nose of the aircraft greatly enhances the efficiency of the system, while the length and circumferential location of the slot are of secondary importance. Efficiency is defined by the amount of side force or yawing moment obtained per unit blowing coefficient. The effect of sideslip on the system is also analyzed. The system is able to generate incremental changes in forces and moments in flows with sideslip angles up to 10 deg comparable to those obtained at zero sideslip. These results are used to determine a baseline configuration for an experimental study of the tangential slot blowing concept.

  19. [New concepts for pressure-controlled glaucoma implants].

    PubMed

    Allemann, R; Stachs, O; Falke, K; Schmidt, W; Siewert, S; Sternberg, K; Chichkov, B; Wree, A; Schmitz, K-P; Guthoff, R F

    2013-08-01

    In industrialized countries glaucoma is one of the most common causes that leads to blindness. It is also the most common cause of irreversible blindness worldwide. In addition to local treatment of intraocular pressure and filtering glaucoma surgery, alloplastic implants are increasingly being used in glaucoma therapy. As long-term results published in the literature of commonly used implants are unsatisfactory, it seems useful to search for new concepts. In order to avoid the well-known short-term and long-term postoperative complications a pressure-controlled microstent with antiproliferative surface modifications was developed. Additionally, the functionality of such a microstent should be investigated using an animal glaucoma model. This paper describes the concept of a microstent which drains aquous humour from the anterior chamber into the suprachoroidal space. In addition, the glaucoma models described in the literature are discussed. Unfortunately, none of the methods could be reproduced permanently. First results show a correct implantation of a coated microstent with valve where the anti-proliferative effect could be demonstrated histologically. The promising results should lead to further investigations and the final goal will be the testing of the stent in the human eye.

  20. Computational optimization of a pneumatic forebody flow control concept

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Tavella, Domingo; Schiff, Lewis B.

    1991-01-01

    The effectiveness of a tangential slot blowing concept for generating lateral control forces on an aircraft forebody is analyzed using computational fluid dynamics. The flow about a fighter forebody is computed using a multiple-zone, thin-layer Navier-Stokes code. Tangential slot blowing is modeled by the use of an actuator plane. The effects of slot location and slot length on the efficiency of the system are analyzed. Results of the study indicate that placement of the slot near the nose of the aircraft greatly enhances the efficiency of the system, while the length and circumferential location of the slot are of secondary importance. Efficiency is defined by the amount of side force or yawing moment obtained per unit blowing coefficient. The effect of sideslip on the system is also analyzed. The system is able to generate incremental changes in forces and moments in flows with sideslip angles up to 10 deg comparable to those obtained at zero sideslip. These results are used to determine a baseline configuration for an experimental study of the tangential slot blowing concept.

  1. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  2. Resistojet control and power for high frequency ac buses

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.

    1987-01-01

    Resistojets are operational on many geosynchronous communication satellites which all use dc power buses. Multipropellant resistojets were selected for the Initial Operating Capability (IOC) Space Station which will supply 208 V, 20 kHz power. This paper discusses resistojet heater temperature controllers and passive power regulation methods for ac power systems. A simple passive power regulation method suitable for use with regulated sinusoidal or square wave power was designed and tested using the Space Station multipropellant resistojet. The breadboard delivered 20 kHz power to the resistojet heater. Cold start surge current limiting, a power efficiency of 95 percent, and power regulation of better than 2 percent were demonstrated with a two component, 500 W breadboard power controller having a mass of 0.6 kg.

  3. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  4. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  5. A scheme to design power controller in wireless network systems

    NASA Astrophysics Data System (ADS)

    Kong, Shulan; Zhang, Huanshui; Zhang, Zhaosheng

    2007-02-01

    In this Letter, power control problem is firstly studied at an angle of LQG measurement-feedback control problem. A stochastic uplink power control problem is considered for CDMA systems. An effective distributed algorithm is proposed based on stochastic linear quadratic optimal control theory assuming SIR measurements contain white noise. The presented scheme minimizes the sum of the power and the error of SIR. A measurement-feedback power controller is designed by constructing an optimization problem of a stochastic linear quadratic type in Krein space and solving the Kalman filter problem for the systems.

  6. Power Conditioner with Variable Switching Control for Thermoelectric Generator Systems

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Hiroshi; Maiwa, Hiroshi; Kajikawa, Takenobu

    2013-07-01

    A thermoelectric (TE) power conditioner maintaining high efficiency over a wide input power range has been developed. Variable switching frequency operation is shown to give an improvement in efficient operating range. The input range showing more than 90% conversion efficiency is expanded to more than 25% by introducing a low-power controller circuit and variable switching frequency control. The TE power conditioner showed excellent response against a change in thermoelectric generator (TEG) output and load, making it suitable for automotive applications.

  7. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  8. The Outcomes of Learning from the Social Science Foundation Course: Students' Understandings of Price Control, Power and Oligopoly.

    ERIC Educational Resources Information Center

    Taylor, Elizabeth; And Others

    Students' understandings of the concepts of price control, oligopoly, and power before, during, and after taking a social science foundation course (D101) at Great Britain's Open University were investigated. Students were asked 10 questions on key concepts taught in the course. Three of the questions are addressed: (1) Why doesn't the…

  9. The Outcomes of Learning from the Social Science Foundation Course: Students' Understandings of Price Control, Power and Oligopoly.

    ERIC Educational Resources Information Center

    Taylor, Elizabeth; And Others

    Students' understandings of the concepts of price control, oligopoly, and power before, during, and after taking a social science foundation course (D101) at Great Britain's Open University were investigated. Students were asked 10 questions on key concepts taught in the course. Three of the questions are addressed: (1) Why doesn't the…

  10. Supercritical Carbon Dioxide Power Generation System Definition: Concept Definition and Capital Cost Estimate

    SciTech Connect

    Stoddard, Larry; Galluzzo, Geoff; Andrew, Daniel; Adams, Shannon

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and 30 percent further reductions by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2 cycle

  11. Seal Investigations of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.

    2006-01-01

    In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.

  12. A Prototype Actuator Concept for Membrane Boundary Vibration Control

    NASA Technical Reports Server (NTRS)

    Solter, Micah J.

    2005-01-01

    In conjunction with the research in ultra-lightweight deployable spacecraft and membrane structures is an underlying need for shape and vibration control. For thin film membrane structures, fundamental modes of vibration for the membrane can be excited through station keeping, attitude adjustments, orbital maneuvers, or contact with space junk or micrometeorites. In order to maintain structural integrity as well as surface shape contour, which may be essential for inflatable antennas, reflective surfaces, or solar sails; vibration damping is a necessary component. This paper discusses development of an actuator attached at the membrane boundary, containing two types of piezoelectric elements, which can be used to perform active control of vibration from the boundary of a membrane. The actuator is designed to control the membrane out-of-plane displacement and in-plane tension by varying the boundary conditions. Results from an initial experimental evaluation of the concept are presented with bench tests of the actuator alone, and with the actuator connected to a large membrane.

  13. Design of decentralized multivariable excitation controllers in multimachine power systems by projective controls

    SciTech Connect

    Arnautovic, D.; Medanic, J.

    1987-12-01

    A methodology for the design of decentralized multivariable excitation and controllers in multimachine power systems is developed using projective controls. The existing methodology, is extended to permit the coordinated design of AVR and PSS controllers in power systems.

  14. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    PubMed Central

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  15. Study of thermal control systems for orbiting power systems. Materials experiment carrier thermal control system study

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1980-01-01

    Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.

  16. Security, protection, and control of power systems with large-scale wind power penetration

    NASA Astrophysics Data System (ADS)

    Acharya, Naresh

    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system

  17. Transient analysis of energy Transfer Control (ECT) and compressor bleed concepts of remote lift fan control

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.

    1973-01-01

    The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.

  18. The Pulsed Fission-Fusion (PUFF) Concept for Deep Space Exploration and Terrestrial Power Generation

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Cassibry, Jason; Schillo, Kevin

    2017-01-01

    This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.

  19. Temperature-package power correlations for open-mode geologic disposal concepts.

    SciTech Connect

    Hardin, Ernest.

    2013-02-01

    Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.

  20. The Power Control Unit for the Propulsion Engine of GOCE Program

    NASA Astrophysics Data System (ADS)

    Tato, C.; Palencia, J.; de La Cruz, F.

    2004-10-01

    The IPCU Unit is in charge of controlling and monitoring the Ion Propulsion Assembly (Proportional Xenon Flow Assembly, PXFA, and Ion Thruster Assembly, ITA) belonging the DFACS (Drag Free Attitude Control System). Being the controlling function of the Propulsion Assembly, this unit involves the driving of the power supplies powering the propulsion system as well as the SW controlling all these power supplies (commanding the thruster and PXFA functions and monitoring the relevant parameters). The IPCU architecture involves two separate main functions. First one is the controlling electronics including an ERC32 uprocessor and a Mil-Bus I/F (based on the 1553B standard). The second main function, being the most challenging one, is the power controlling and supplying function. The PCU (Power Control Unit) faces three main aspects: eleven power converters driving the IPA (Ion Propulsion Assembly), the high voltage (1200 V) grounding concept used to refer five of these power converters, and an AC Bus distributing and powering all these power converters. This architecture concept makes the IPCU a challenging Unit in two main aspects: - the high voltage (1200 V) grounding system used for some important part of the electronics inside the Unit - the achieved performances. The IPCU measured functionality for the initial breadboard test bench showed the high performances expected. For a thrust range going from 0.6 to 20 mN the achieved performances in noise, linearity (0.9 %), and maximum error (< 2 %) with respect the commanded thrust meet the expectances for this innovative and demanding unit.