DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Boris Zeide
2004-01-01
Estimation of stand density is based on a relationship between number of trees and their average diameter in fully stocked stands. Popular measures of density (Reinekeâs stand density index and basal area) assume that number of trees decreases as a power function of diameter. Actually, number of trees drops faster than predicted by the power function because the number...
Lagrue, Clément; Poulin, Robert; Cohen, Joel E.
2015-01-01
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor’s law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution. PMID:25550506
Lagrue, Clément; Poulin, Robert; Cohen, Joel E
2015-02-10
How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.
Statistics of primordial density perturbations from discrete seed masses
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Bertschinger, Edmund
1991-01-01
The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.
Computing the Power-Density Spectrum for an Engineering Model
NASA Technical Reports Server (NTRS)
Dunn, H. J.
1982-01-01
Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.
On the probability distribution function of the mass surface density of molecular clouds. I
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-05-01
The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.
2018-05-01
As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.
Encircling the dark: constraining dark energy via cosmic density in spheres
NASA Astrophysics Data System (ADS)
Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.
2016-08-01
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe
2016-08-01
In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.
Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Seasholtz, Richard; Panda, Jayanta
1999-01-01
A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.
Thermal Hotspots in CPU Die and It's Future Architecture
NASA Astrophysics Data System (ADS)
Wang, Jian; Hu, Fu-Yuan
Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.
Photo-detachment of negative ions in Ar-CO2 dc discharge employing Langmuir probe
NASA Astrophysics Data System (ADS)
Rodríguez, Jannet; Yousif, Farook Bashir; Fuentes, Beatriz E.; Vázquez, Federico; Rivera, Marco; López-Patiño, J.; Figueroa, Aldo; Martínez, Horacio
2018-05-01
The electronegativity of the A r - C O 2 gas mixture was investigated, and the total relative negative oxygen ion density O2- + O- in the bulk of a dc discharge has been determined employing Langmuir probe assisted laser photo-detachment. The relative electron density and absolute temperature were obtained for the mixture at discharge powers between 200 and 3000 mW and pressures between 0.2 and 0.6 mbar, employing the collisional radiative model for several Ar gas mixtures. The absolute metastable number density for 1s3 and 1s5 levels was measured, and both showed an increasing trend as a function of pressure and power. The absolute number density of the 1s5 level was found to be higher than that of the 1s3 level. Electronegativity was found to decrease as a function of power and as a function of the increasing Ar percentage in the gas mixture.
Density dependence of the nuclear energy-density functional
NASA Astrophysics Data System (ADS)
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The coefficients display naturalness. Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov
We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less
Nonlinear GARCH model and 1 / f noise
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
NASA Astrophysics Data System (ADS)
Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.
2014-11-01
We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halligan, Matthew
Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Understanding redshift space distortions in density-weighted peculiar velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: teppei.oku@gmail.com, E-mail: dns@astro.princeton.edu
2016-07-01
Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is themore » change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ∼ 30 h {sup -1} Mpc for dark matter particles at the redshifts of z =0.0, 0.5, and 1.0.« less
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
Quantum power functional theory for many-body dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthias, E-mail: Matthias.Schmidt@uni-bayreuth.de
2015-11-07
We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
Density matrix embedding in an antisymmetrized geminal power bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy, E-mail: tvan@mit.edu
2015-07-14
Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlationmore » energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.« less
Out-of-core Evaluations of Uranium Nitride-fueled Converters
NASA Technical Reports Server (NTRS)
Shimada, K.
1972-01-01
Two uranium nitride fueled converters were tested parametrically for their initial characterization and are currently being life-tested out of core. Test method being employed for the parametric and the diagnostic measurements during the life tests, and test results are presented. One converter with a rhenium emitter had an initial output power density of 6.9 W/ sq cm at the black body emitter temperature of 1900 K. The power density remained unchanged for the first 1000 hr of life test but degraded nearly 50% percent during the following 1000 hr. Electrode work function measurements indicated that the uranium fuel was diffusing out of the emitter clad of 0.635 mm. The other converter with a tungsten emitter had an initial output power density of 2.2 W/ sq cm at 1900 K with a power density of 3.9 W/sq cm at 4300 h. The power density suddenly degraded within 20 hr to practically zero output at 4735 hr.
Spectroscopic imaging of metal halide high-intensity discharge lamps
NASA Astrophysics Data System (ADS)
Bonvallet, Geoffrey A.
The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.
Primordial black holes and uncertainties in the choice of the window function
NASA Astrophysics Data System (ADS)
Ando, Kenta; Inomata, Keisuke; Kawasaki, Masahiro
2018-05-01
Primordial black holes (PBHs) can be produced by the perturbations that exit the horizon during the inflationary phase. While inflation models predict the power spectrum of the perturbations in Fourier space, the PBH abundance depends on the probability distribution function of density perturbations in real space. To estimate the PBH abundance in a given inflation model, we must relate the power spectrum in Fourier space to the probability density function in real space by coarse graining the perturbations with a window function. However, there are uncertainties on what window function should be used, which could change the relation between the PBH abundance and the power spectrum. This is particularly important in considering PBHs with mass 30 M⊙, which account for the LIGO events because the required power spectrum is severely constrained by the observations. In this paper, we investigate how large an influence the uncertainties on the choice of a window function has over the power spectrum required for LIGO PBHs. As a result, it is found that the uncertainties significantly affect the prediction for the stochastic gravitational waves induced by the second-order effect of the perturbations. In particular, the pulsar timing array constraints on the produced gravitational waves could disappear for the real-space top-hat window function.
NASA Astrophysics Data System (ADS)
Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team
2016-10-01
The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at
Nonstationary envelope process and first excursion probability.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
Statistics of some atmospheric turbulence records relevant to aircraft response calculations
NASA Technical Reports Server (NTRS)
Mark, W. D.; Fischer, R. W.
1981-01-01
Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.
NASA Astrophysics Data System (ADS)
Theodorsen, A.; E Garcia, O.; Rypdal, M.
2017-05-01
Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
Rufibach, Kaspar; Burger, Hans Ulrich; Abt, Markus
2016-09-01
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u-shape very similar, but not equal, to a β-distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
Thermal and active fluctuations of a compressible bilayer vesicle
NASA Astrophysics Data System (ADS)
Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki
2018-05-01
We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
NASA Astrophysics Data System (ADS)
Łatas, Waldemar
2018-01-01
The problem of vibrations of the beam with the attached system of translational and rotational dynamic mass dampers subjected to random excitations with peaked power spectral densities, is presented in the hereby paper. The Euler-Bernoulli beam model is applied, while for solving the equation of motion the Galerkin method and the Laplace time transform are used. The obtained transfer functions allow to determine power spectral densities of the beam deflection and other dependent variables. Numerical examples present simple optimization problems of mass dampers parameters for local and global objective functions.
Investigation of thermoelectricity in KScSn half-Heusler compound
NASA Astrophysics Data System (ADS)
Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.
2018-05-01
The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.
Yura, Harold T; Hanson, Steen G
2012-04-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G
2016-05-14
Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.
NASA Astrophysics Data System (ADS)
Frenje, J.; Li, C. K.; Séguin, F.; Zylstra, A.; Rinderknecht, H.; Petrasso, R.; Delettrez, J.; Glebov, V.; Sangster, T.
2013-10-01
We report on the first quantitative measurements of charged-particle stopping in Inertial-Confinement-Fusion (ICF) plasmas at various conditions. In these experiments, four charged fusion products from the DD and D3He reactions in D3He gas-filled filled implosions were used to determine the stopping power of ICF plasmas at electron temperatures (Te) , ion temperatures (Ti) , and areal densities (ρR) in the range of 0.6-4.0 keV, 3-14 keV and 2-10 mg/cm2, respectively. The resulting data, in the form of measured energy downshift of the charged fusion products, clearly indicate that the stopping-power function depends strongly on Te. It was also observed that the stopping-power function change in characteristics for higher-density implosions in which ions and electrons equilibrate faster, resulting in higher Te relative to Ti and higher ρR s. These results will be modelled by Landau-Spitzer theory and contrasted to different stopping-power models. This work was partially supported by the US DOE, NLUF, LLE, and GA.
Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.
2006-10-01
A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.
NASA Astrophysics Data System (ADS)
Yilmaz, Gamze
This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
Wilson, Lorna R M; Hopcraft, Keith I
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
NASA Astrophysics Data System (ADS)
Wilson, Lorna R. M.; Hopcraft, Keith I.
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
NASA Astrophysics Data System (ADS)
Kjellander, Roland; Forsberg, Björn
2005-06-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.
Velocity Gradient Power Functional for Brownian Dynamics.
de Las Heras, Daniel; Schmidt, Matthias
2018-01-12
We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.
Velocity Gradient Power Functional for Brownian Dynamics
NASA Astrophysics Data System (ADS)
de las Heras, Daniel; Schmidt, Matthias
2018-01-01
We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.
Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Wang, Ying; Han, Baozhong
2018-01-01
The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π–π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C–H or C–C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables. PMID:29515821
Song, Shuwei; Zhao, Hong; Zheng, Xiaonan; Zhang, Hui; Liu, Yang; Wang, Ying; Han, Baozhong
2018-02-01
The role of a series of functionalized graphene additives in power cable insulation in suppressing the growth of electrical treeing and preventing the degradation of the polymer matrix has been investigated by density functional theory calculations. Bader charge analysis indicates that pristine, doped or defect graphene could effectively capture hot electrons to block their attack on cross-linked polyethylene (XLPE) because of the π-π conjugated unsaturated structures. Further exploration of the electronic properties in the interfacial region between the additives and XLPE shows that N-doped single-vacancy graphene, graphene oxide and B-, N-, Si- or P-doped graphene oxide have relatively strong physical interaction with XLPE to restrict its mobility and rather weak chemical activity to prevent the cleavage of the C-H or C-C bond, suggesting that they are all potential candidates as effective additives. The understanding of the features of functionalized graphene additives in trapping electrons and interfacial interaction will assist in the screening of promising additives as voltage stabilizers in power cables.
Discharge Characterization of 40 cm-Microwave ECR Ion Source and Neutralizer
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.; Britton, Melissa
2003-01-01
Discharge characteristics of a 40 cm, 2.45 GHz Electron Cyclotron Resonance (ECR) ion thruster discharge chamber and neutralizer were acquired. Thruster bulk discharge plasma characteristics were assessed using a single Langmuir probe. Total extractable ion current was measured as a function of input microwave power and flow rate. Additionally, radial ion current density profiles at the thruster.s exit plane were characterized using five equally spaced Faraday probes. Distinct low and high density operating modes were observed as discharge input power was varied from 0 to 200 W. In the high mode, extractable ion currents as high as 0.82 A were measured. Neutralizer emission current was characterized as a function of flow rate and microwave power. Neutralizer extraction currents as high as 0.6 A were measured.
An evaluation of random analysis methods for the determination of panel damping
NASA Technical Reports Server (NTRS)
Bhat, W. V.; Wilby, J. F.
1972-01-01
An analysis is made of steady-state and non-steady-state methods for the measurement of panel damping. Particular emphasis is placed on the use of random process techniques in conjunction with digital data reduction methods. The steady-state methods considered use the response power spectral density, response autocorrelation, excitation-response crosspower spectral density, or single-sided Fourier transform (SSFT) of the response autocorrelation function. Non-steady-state methods are associated mainly with the use of rapid frequency sweep excitation. Problems associated with the practical application of each method are evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and two methods, the power spectral density and the single-sided Fourier transform methods, are selected as being the most suitable. These two methods are demonstrated experimentally, and it is shown that the power spectral density method is satisfactory under most conditions, provided that appropriate corrections are applied to account for filter bandwidth and background noise errors. Thus, the response power spectral density method is recommended for the measurement of the damping of panels exposed to a moving airflow.
Measurements of surface-pressure fluctuations on the XB-70 airplane at local Mach numbers up to 2.45
NASA Technical Reports Server (NTRS)
Lewis, T. L.; Dods, J. B., Jr.; Hanly, R. D.
1973-01-01
Measurements of surface-pressure fluctuations were made at two locations on the XB-70 airplane for nine flight-test conditions encompassing a local Mach number range from 0.35 to 2.45. These measurements are presented in the form of estimated power spectral densities, coherence functions, and narrow-band-convection velocities. The estimated power spectral densities compared favorably with wind-tunnel data obtained by other experimenters. The coherence function and convection velocity data supported conclusions by other experimenters that low-frequency surface-pressure fluctuations consist of small-scale turbulence components with low convection velocity.
NASA Astrophysics Data System (ADS)
Chakraborty, Ahana; Sensarma, Rajdeep
2018-03-01
The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.
Covariant density functional theory: predictive power and first attempts of a microscopic derivation
NASA Astrophysics Data System (ADS)
Ring, Peter
2018-05-01
We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan
2014-03-26
Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.
Functionally graded biomimetic energy absorption concept development for transportation systems.
DOT National Transportation Integrated Search
2014-02-01
Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...
Wind farm density and harvested power in very large wind farms: A low-order model
NASA Astrophysics Data System (ADS)
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
NASA Astrophysics Data System (ADS)
Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.
2014-10-01
In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.
Bora, Anindita; Mohan, Kiranjyoti; Doley, Simanta; Dolui, Swapan Kumar
2018-03-07
Flexible energy storage devices are in great demand since the advent of flexible electronics. Until now, flexible supercapacitors based on graphene analogues usually have had low operating potential windows. To this end, two dissimilar electrode materials with complementary potential ranges are employed to obtain an optimum cell voltage of 1.8 V. A low-temperature organic sol-gel method is used to prepare two different types of functionalized reduced graphene oxide aerogels (rGOA) where Ag nanorod functionalized rGOA acts as a negative electrode while polyaniline nanotube functionalized rGOA acts as a positive electrode. Both materials comprehensively exploit their unique properties to produce a device that has high energy and power densities. An assembled all-solid-state asymmetric supercapacitor gives a high energy density of 52.85 W h kg -1 and power density of 31.5 kW kg -1 with excellent cycling and temperature stability. The device also performs extraordinarily well under different bending conditions, suggesting its potential to meet the requirements for flexible electronics.
Extended operating range of the 30-cm ion thruster with simplified power processor requirements
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1981-01-01
A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.
Possible Mechanism of Infrared Radiation Reception: The Role of the Temperature Factor
NASA Astrophysics Data System (ADS)
Yachnev, I. L.; Penniyaynen, V. A.; Podzorova, S. A.; Rogachevskii, I. V.; Krylov, B. V.
2018-02-01
The role of the temperature factor in the mechanism of reception of the CO2 laser low-power infrared (IR) radiation (λ = 10.6 μm) by a sensory neuron membrane has been studied. Organotypic embryonic tissue culture has been used to measure and estimate the temperature of a sensory ganglia monolayer exposed to radiation at different energy densities. The effects of tissue exposure to low-power IR radiation have been investigated. It has been found that inhibition of tissue growth by radiation of low energy density (10-14-10-10 J/cm2) is replaced by tissue growth (10-7-10-4 J/cm2), and again followed by inhibition in the range of 0.1-6 J/cm2. A statistically significant specific reaction to nonthermal radiation has been detected at the radiation power density of 3 × 10-10 J/cm2, which is due to activation of the Na+,K+-ATPase transducer function. The mechanisms of interaction of IR radiation with embryonic nerve tissue have been considered. Low-power IR radiation with the wavelength of 10.6 μm has been demonstrated to specifically activate a novel signal transducer function of the sodium pump, which controls the reception of nonthermal IR radiation in the energy density range of 10-14 to 10-10 J/cm2.
Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.
Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia
2016-06-09
Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.
NASA Technical Reports Server (NTRS)
Snyder, A.; Lauver, M. R.; Patch, R. W.
1976-01-01
Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.
Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids.
Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C
2016-08-18
Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material-dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ρ(γ). However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density range.
One-electron reduced density matrices of strongly correlated harmonium atoms.
Cioslowski, Jerzy
2015-03-21
Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.
NASA Technical Reports Server (NTRS)
Britt, E. J.
1978-01-01
The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.
NASA Astrophysics Data System (ADS)
Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian
2016-12-01
In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-10-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung
2017-07-10
Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu
2016-06-20
The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less
NASA Astrophysics Data System (ADS)
Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju
2016-01-01
The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie
2017-05-01
For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
Cost and performance model for redox flow batteries
NASA Astrophysics Data System (ADS)
Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2014-02-01
A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.
Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi
2017-09-26
With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm -3 and energy densities of 0.12 mWh cm -2 and 8 mWh cm -3 (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm -2 and 2.2 W cm -3 (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Baggu, Murali
This paper evaluated the impact of smart inverter Volt-VAR function on voltage reduction energy saving and power quality in electric power distribution systems. A methodology to implement the voltage reduction optimization was developed by controlling the substation LTC and capacitor banks, and having smart inverters participate through their autonomous Volt-VAR control. In addition, a power quality scoring methodology was proposed and utilized to quantify the effect on power distribution system power quality. All of these methodologies were applied to a utility distribution system model to evaluate the voltage reduction energy saving and power quality under various PV penetrations and smartmore » inverter densities.« less
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2017-10-01
We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.
NASA Astrophysics Data System (ADS)
Vlah, Zvonimir; Seljak, Uroš; McDonald, Patrick; Okumura, Teppei; Baldauf, Tobias
2012-11-01
We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order corrections which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of μ, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of μ and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion. This is similar to the situation in real space, but predicting power spectrum in redshift space is more difficult because of the explicit influence of small scale dispersion type effects in RSD, which extend to very large scales.
Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie
2018-05-01
The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.
Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.
Phillips, Jordan J; Peralta, Juan E
2014-08-07
To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.
NASA Astrophysics Data System (ADS)
Ahmed Darwish, Zeki; Sopian, K.; Kazem, Hussein A.; Alghoul, M. A.; Alawadhi, Hussain
2017-11-01
This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.
A self-powered glucose biosensing system.
Slaughter, Gymama; Kulkarni, Tanmay
2016-04-15
A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose. Copyright © 2015 Elsevier B.V. All rights reserved.
Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model
NASA Astrophysics Data System (ADS)
Das, Subir K.
2017-01-01
Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Chen, Wen
2018-04-01
The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.
Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed
2011-07-08
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
Correction to the Beer-Lambert-Bouguer law for optical absorption.
Abitan, Haim; Bohr, Henrik; Buchhave, Preben
2008-10-10
The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America
A density spike on astrophysical scales from an N-field waterfall transition
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.
2015-09-01
Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.
ERP Energy and Cognitive Activity Correlates
NASA Astrophysics Data System (ADS)
Schillaci, Michael Jay; Vendemia, Jennifer M. C.
2014-03-01
We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.
Ab initio approach to the ion stopping power at the plasma-solid interface
NASA Astrophysics Data System (ADS)
Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten
2016-10-01
The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.
A novel carbon electrode material for highly improved EDLC performance.
Fang, Baizeng; Binder, Leo
2006-04-20
Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.
Galaxy power-spectrum responses and redshift-space super-sample effect
NASA Astrophysics Data System (ADS)
Li, Yin; Schmittfull, Marcel; Seljak, Uroš
2018-02-01
As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.
Flight, orientation, and homing abilities of honeybees following exposure to 2.45-GHz CW microwaves.
Gary, N E; Westerdahl, B B
1981-01-01
Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.
Low Temperature Performance of High Power Density DC/DC Converter Modules
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric
2001-01-01
In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.
Electric energy production by particle thermionic-thermoelectric power generators
NASA Technical Reports Server (NTRS)
Oettinger, P. E.
1980-01-01
Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.
Diversifying biological fuel cell designs by use of nanoporous filters.
Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R
2007-02-15
The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.
Xu, Zhanwei; Li, Zhi; Holt, Chris M B; Tan, Xuehai; Wang, Huanlei; Amirkhiz, Babak Shalchi; Stephenson, Tyler; Mitlin, David
2012-10-18
We employed a microwave synthesis process of cobalt phthalocyanine molecules templated by acid-functionalized multiwalled carbon nanotubes to create three-dimensional sponge-like graphene nanoarchitectures suited for ionic liquid-based electrochemical capacitor electrodes that operate at very high scan rates. The sequential "bottom-up" molecular synthesis and subsequent carbonization process took less than 20 min to complete. The 3D nanoarchitectures are able to deliver an energy density of 7.1 W·h kg(-1) even at an extra high power density of 48 000 W kg(-1). In addition, the ionic liquid supercapacitor based on this material works very well at room temperature due to its fully opened structures, which is ideal for the high-power energy application requiring more tolerance to temperature variation. Moreover, the structures are stable in both ionic liquids and 1 M H2SO4, retaining 90 and 98% capacitance after 10 000 cycles, respectively.
Optimization of intermittent microwave–convective drying using response surface methodology
Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid
2015-01-01
In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706
Bispectrum supersample covariance
NASA Astrophysics Data System (ADS)
Chan, Kwan Chuen; Moradinezhad Dizgah, Azadeh; Noreña, Jorge
2018-02-01
Modes with wavelengths larger than the survey window can have significant impact on the covariance within the survey window. The supersample covariance has been recognized as an important source of covariance for the power spectrum on small scales, and it can potentially be important for the bispectrum covariance as well. In this paper, using the response function formalism, we model the supersample covariance contributions to the bispectrum covariance and the cross-covariance between the power spectrum and the bispectrum. The supersample covariances due to the long-wavelength density and tidal perturbations are investigated, and the tidal contribution is a few orders of magnitude smaller than the density one because in configuration space the bispectrum estimator involves angular averaging and the tidal response function is anisotropic. The impact of the super-survey modes is quantified using numerical measurements with periodic box and sub-box setups. For the matter bispectrum, the ratio between the supersample covariance correction and the small-scale covariance—which can be computed using a periodic box—is roughly an order of magnitude smaller than that for the matter power spectrum. This is because for the bispectrum, the small-scale non-Gaussian covariance is significantly larger than that for the power spectrum. For the cross-covariance, the supersample covariance is as important as for the power spectrum covariance. The supersample covariance prediction with the halo model response function is in good agreement with numerical results.
Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun
2017-10-01
As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.
Modal density function and number of propagating modes in ducts
NASA Technical Reports Server (NTRS)
Rice, E. J.
1976-01-01
The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.
The three-point function as a probe of models for large-scale structure
NASA Astrophysics Data System (ADS)
Frieman, Joshua A.; Gaztanaga, Enrique
1994-04-01
We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Electron dynamics inside a vacuum tube diode through linear differential equations
NASA Astrophysics Data System (ADS)
González, Gabriel; Orozco, Fco. Javier González; Orozco
2014-04-01
In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Smallwood, David O.
1997-01-01
The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less
Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong
2018-04-10
X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Computer enhancement of radiographs
NASA Technical Reports Server (NTRS)
Dekaney, A.; Keane, J.; Desautels, J.
1973-01-01
Examination of three relevant noise processes and the image degradation associated with Marshall Space Flight Center's (MSFC) X-ray/scanning system was conducted for application to computer enhancement of radiographs using MSFC's digital filtering techniques. Graininess of type M, R single coat and R double coat X-ray films was quantified as a function of density level using root-mean-square (RMS) granularity. Quantum mottle (including film grain) was quantified as a function of the above film types, exposure level, specimen material and thickness, and film density using RMS granularity and power spectral density (PSD). For various neutral-density levels the scanning device used in digital conversion of radiographs was examined for noise characteristics which were quantified by RMS granularity and PSD. Image degradation of the entire pre-enhancement system (MG-150 X-ray device; film; and optronics scanner) was measured using edge targets to generate modulation transfer functions (MTF). The four parameters were examined as a function of scanning aperture sizes of approximately 12.5 25 and 50 microns.
Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin
2013-09-01
Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rhyne, R. H.; Murrow, H. N.; Sidwell, K.
1976-01-01
Use of power spectral design techniques for supersonic transports requires accurate definition of atmospheric turbulence in the long wavelength region below the knee of the power spectral density function curve. Examples are given of data obtained from a current turbulence flight sampling program. These samples are categorized as (1) convective, (2) wind shear, (3) rotor, and (4) mountain-wave turbulence. Time histories, altitudes, root-mean-square values, statistical degrees of freedom, power spectra, and integral scale values are shown and discussed.
Imaging of isotropic and anisotropic conductivities from power densities in three dimensions
NASA Astrophysics Data System (ADS)
Monard, François; Rim, Donsub
2018-07-01
We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.
Scintillation statistics measured in an earth-space-earth retroreflector link
NASA Technical Reports Server (NTRS)
Bufton, J. L.
1977-01-01
Scintillation was measured in a vertical path from a ground-based laser transmitter to the Geos 3 satellite and back to a ground-based receiver telescope and, the experimental results were compared with analytical results presented in a companion paper (Bufton, 1977). The normalized variance, the probability density function and the power spectral density of scintillation were all measured. Moments of the satellite scintillation data in terms of normalized variance were lower than expected. The power spectrum analysis suggests that there were scintillation components at frequencies higher than the 250 Hz bandwidth available in the experiment.
Statistics of cosmic density profiles from perturbation theory
NASA Astrophysics Data System (ADS)
Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine
2014-11-01
The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.
A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.
Gao, Ping; Chen, Zhi; Zhao-Karger, Zhirong; Mueller, Jonathan E; Jung, Christoph; Klyatskaya, Svetlana; Diemant, Thomas; Fuhr, Olaf; Jacob, Timo; Behm, R Jürgen; Ruben, Mario; Fichtner, Maximilian
2017-08-21
The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg -1 at a specific power density of 29 kW kg -1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg -1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional thermal and charge mapping of power thyristors
NASA Technical Reports Server (NTRS)
Hu, S. P.; Rabinovici, B. M.
1975-01-01
The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.
Development of Jet Noise Power Spectral Laws Using SHJAR Data
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.
On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21
NASA Technical Reports Server (NTRS)
Aalfs, David D.
1995-01-01
For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.
Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.
2014-01-01
Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030
Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T
2014-11-01
Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.
NASA Astrophysics Data System (ADS)
Moslehi Milani, N.; Mohadesi, V.; Asgari, A.
2015-07-01
The effects of temperature dependent radiative and nonradiative recombination (Shockley-Read-Hall, spontaneous radiative, and Auger coefficients) on the spectral and power characteristics of a blue multiple quantum well (MQW) superluminescent light emitting diode (SLD or SLED) have been studied. The study is based on the rate equations model, where three rate equations corresponding to MQW active region, separate confinement heterostructure (SCH) layer, and spectral density of optical power are solved self-consistently with no k-selection energy dependent gain and quasi-Fermi level functions at steady state. We have taken into account the temperature effects on Shockley-Read-Hall (SRH), spontaneous radiative, and Auger recombination in the rate equations and have investigated the effects of temperature rising from 300 K to 375 K at a fixed current density. We examine this procedure for a moderate current density and interpret the spectral radiation power and light output power diagrams. The investigation reveals that the main loss due to temperature is related to Auger coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V
2015-07-31
We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.
1980-01-01
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.
Mathematical estimation of melt depth in conduction mode of laser spot remelting process
NASA Astrophysics Data System (ADS)
Hadi, Iraj
2012-12-01
A one-dimensional mathematical model based on the front tracking method was developed to predict the melt depth as a function of internal and external parameters of laser spot remelting process in conduction mode. Power density, pulse duration, and thermophysical properties of material including thermal diffusivity, melting point, latent heat, and absorption coefficient have been taken into account in the model of this article. By comparing the theoretical results and experimental welding data of commercial pure nickel and titanium plates, the validity of the developed model was examined. Comparison shows a reasonably good agreement between the theory and experiment. For the sake of simplicity, a graphical technique was presented to obtain the melt depth of various materials at any arbitrary amount of power density and pulse duration. In the graphical technique, two dimensionless constants including the Stefan number (Ste) and an introduced constant named laser power factor (LPF) are used. Indeed, all of the internal and external parameters have been gathered in LPF. The effect of power density and pulse duration on the variation of melt depth for different materials such as aluminum, copper, and stainless steel were investigated. Additionally, appropriate expressions were extracted to describe the minimum power density and time to reach melting point in terms of process parameters. A simple expression is also extracted to estimate the thickness of mushy zone for alloys.
Architecture engineering of supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Li, Gong; Xue, Dongfeng
2016-02-01
The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2013-10-01
A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.
Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan
2014-10-22
A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Teppei; Seljak, Uroš; McDonald, Patrick
Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. Wemore » present these terms and investigate their contribution to the total as a function of wavevector k. For μ{sup 2} the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc{sup −1}, 10% at k ∼ 0.05hMpc{sup −1} at z = 0, while for k > 0.15hMpc{sup −1} they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ{sup 4} term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc{sup −1}. For μ{sup 6} and μ{sup 8} we find it has very little power for k < 0.15hMpc{sup −1}, shooting up by 2–3 orders of magnitude between k < 0.15hMpc{sup −1} and k < 0.4hMpc{sup −1}. We also compare the expansion to the full 2-d P{sup ss}(k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P{sup ss}(k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ < 0.15hMpc{sup −1} at 6-th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into FoG kernels, which extend the convergence up to a factor of 2 in scale. We find that the FoG kernels are approximately Lorentzian with velocity dispersions around 600 km/s at z = 0.« less
Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun
2016-01-01
α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm−2. At 1.0 V of cell voltage, a current density of 324 mA cm−2 is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm−2, and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte. PMID:27646032
Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun
2016-09-20
α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.
Underscreening in ionic liquids: a first principles analysis.
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-07
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these 'primitive' and 'semi-primitive' models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length [Formula: see text], which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where [Formula: see text] increases with density beyond a critical density at which the Debye length [Formula: see text] becomes comparable to the ion diameter. In this high density regime the ratio [Formula: see text] increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
Underscreening in ionic liquids: a first principles analysis
NASA Astrophysics Data System (ADS)
Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre
2018-02-01
An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these ‘primitive’ and ‘semi-primitive’ models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length λS , which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where λS increases with density beyond a critical density at which the Debye length λD becomes comparable to the ion diameter. In this high density regime the ratio λ_S/λD increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
The emergence of different tail exponents in the distributions of firm size variables
NASA Astrophysics Data System (ADS)
Ishikawa, Atushi; Fujimoto, Shouji; Watanabe, Tsutomu; Mizuno, Takayuki
2013-05-01
We discuss a mechanism through which inversion symmetry (i.e., invariance of a joint probability density function under the exchange of variables) and Gibrat’s law generate power-law distributions with different tail exponents. Using a dataset of firm size variables, that is, tangible fixed assets K, the number of workers L, and sales Y, we confirm that these variables have power-law tails with different exponents, and that inversion symmetry and Gibrat’s law hold. Based on these findings, we argue that there exists a plane in the three dimensional space (logK,logL,logY), with respect to which the joint probability density function for the three variables is invariant under the exchange of variables. We provide empirical evidence suggesting that this plane fits the data well, and argue that the plane can be interpreted as the Cobb-Douglas production function, which has been extensively used in various areas of economics since it was first introduced almost a century ago.
NASA Astrophysics Data System (ADS)
Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.
2015-04-01
The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC
NASA Astrophysics Data System (ADS)
Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.
2014-07-01
Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.
Generating log-normal mock catalog of galaxies in redshift space
NASA Astrophysics Data System (ADS)
Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro
2017-10-01
We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.
Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, L.W.; Carreras, B.A.; Maingi, R.
1998-11-01
To assess the effect of edge neutrals on the low-to-high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.
The three-point function as a probe of models for large-scale structure
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gaztanaga, Enrique
1993-01-01
The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlah, Zvonimir; Seljak, Uroš; Baldauf, Tobias
We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order correctionsmore » which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of μ, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of μ and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion. This is similar to the situation in real space, but predicting power spectrum in redshift space is more difficult because of the explicit influence of small scale dispersion type effects in RSD, which extend to very large scales.« less
Redshift space clustering of galaxies and cold dark matter model
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
Interdependence of different symmetry energy elements
NASA Astrophysics Data System (ADS)
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.
2017-08-01
Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.
Back in the saddle: large-deviation statistics of the cosmic log-density field
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.
2016-08-01
We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.
NASA Astrophysics Data System (ADS)
Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team
2018-02-01
This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
Control of plasma stored energy for burn control using DIII-D in-vessel coils
Hawryluk, Richard J.; Eidietis, Nicholas W.; Grierson, Brian A.; ...
2015-04-09
A new approach has been experimentally demonstrated to control the stored energy by applying a non-axisymmetric magnetic field using the DIII-D in-vessel coils to modify the energy confinement time. In future burning plasma experiments as well as magnetic fusion energy power plants, various concepts have been proposed to control the fusion power. The fusion power in a power plant operating at high gain can be related to the plasma stored energy and hence, is a strong function of the energy confinement time. Thus, an actuator that modifies the confinement time can be used to adjust the fusion power. In relativelymore » low collisionality DIII-D discharges, the application of nonaxisymmetric magnetic fields results in a decrease in confinement time and density pumpout. Furthermore, gas puffing was used to compensate the density pumpout in the pedestal while control of the stored energy was demonstrated by the application of non-axisymmetric fields.« less
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
Simulation of electric vehicles with hybrid power systems
NASA Astrophysics Data System (ADS)
Burke, A. F.; Cole, G. H.
Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.
Lithium thionyl chloride high rate discharge
NASA Technical Reports Server (NTRS)
Klinedinst, K. A.
1980-01-01
Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.
Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo
2018-01-01
Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.
Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, James H.; Cox, Philip; Harrington, William J
2013-09-03
ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focusedmore » on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the DOE 2013 Technical Goals, the operation time was increased from 10 hours to 14.3 hours. Under these conditions, the DP4 closely approached or surpassed the technical targets; for example, the DP4 achieved 468 Whr/l versus the goal of 500 Whr/l. Thus, UNF has successfully met the project goals. A fully-operational, 20-watt DMFC power supply was developed based on the UNF passive water recovery MEA. The power supply meets the project performance goals and advances portable power technology towards the commercialization targets set by the DOE.« less
Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Giuliani, J. L.; Wolford, M. F.
2008-07-01
The Ar-Xe infrared laser has been investigated in several series of experiments carried out on the Naval Research Laboratory's Electra generator. Our primary goals were to optimize the efficiency of the laser (within Electra's capabilities) and to gain understanding of the main physical processes underlying the laser's output as a function of controllable parameters such as Xe fraction, power deposition, and gas pressure. We find that the intrinsic efficiency maximizes at {approx}3% at a total pressure of 2.5 atm, Xe fraction of 1%, and electron beam power deposition density of 50-100 kW cm{sup -3}. We deployed an interferometer to measuremore » the electron density during lasing; the ionization fractions of 10{sup -5}-10{sup -4} that it detected well exceed previous theoretical estimates. Some trends in the data as a function of beam power and xenon fraction are not fully understood. The as-yet incomplete picture of Ar-Xe laser physics is likely traceable in large part to significant uncertainties still present in many important rates influencing the atomic and molecular kinetics.« less
NASA Astrophysics Data System (ADS)
Du, Qing; An, Jingkun; Li, Junhui; Zhou, Lean; Li, Nan; Wang, Xin
2017-03-01
The bacterial anode material is important to the performance of microbial fuel cells (MFCs) because its characteristics affect the biofilm formation and extracellular electron transfer. Here we find that a superhydrophilic semiconductor, polydopamine (PDA), is an effective modification material for the anode to accelerate startup and improve power density. When the activated carbon anode is added with 50% (wt.) PDA, the startup time is 14% shorter than the control (from 88 h to 76 h), with a 31% increase in maximum power density from 613 ± 9 to 803 ± 6 mW m-2, and the Columbic efficiency increases from 19% to 48%. These can be primarily attributed to the abundant functional groups (such as amino group, and catechol functions) introduced by PDA that improve hydrophilicity and extracellular electron transfer. PDA also increases proportions of Proteobacteria and Firmicutes families, indicating that PDA has a selective effect on anode microbial community. Our findings provide a new approach to accelerate anode biofilm formation and enhance MFC power output by modification of biocompatible PDA.
The structure and statistics of interstellar turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
ERIC Educational Resources Information Center
Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.
2011-01-01
We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…
Bivariate sub-Gaussian model for stock index returns
NASA Astrophysics Data System (ADS)
Jabłońska-Sabuka, Matylda; Teuerle, Marek; Wyłomańska, Agnieszka
2017-11-01
Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others.
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
NASA Astrophysics Data System (ADS)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.
2017-05-01
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...
2017-05-11
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
NASA Astrophysics Data System (ADS)
Mardirossian, Narbe; Head-Gordon, Martin
2018-06-01
A meta-generalized gradient approximation, range-separated double hybrid (DH) density functional with VV10 non-local correlation is presented. The final 14-parameter functional form is determined by screening trillions of candidate fits through a combination of best subset selection, forward stepwise selection, and random sample consensus (RANSAC) outlier detection. The MGCDB84 database of 4986 data points is employed in this work, containing a training set of 870 data points, a validation set of 2964 data points, and a test set of 1152 data points. Following an xDH approach, orbitals from the ωB97M-V density functional are used to compute the second-order perturbation theory correction. The resulting functional, ωB97M(2), is benchmarked against a variety of leading double hybrid density functionals, including B2PLYP-D3(BJ), B2GPPLYP-D3(BJ), ωB97X-2(TQZ), XYG3, PTPSS-D3(0), XYGJ-OS, DSD-PBEP86-D3(BJ), and DSD-PBEPBE-D3(BJ). Encouragingly, the overall performance of ωB97M(2) on nearly 5000 data points clearly surpasses that of all of the tested density functionals. As a Rung 5 density functional, ωB97M(2) completes our family of combinatorially optimized functionals, complementing B97M-V on Rung 3, and ωB97X-V and ωB97M-V on Rung 4. The results suggest that ωB97M(2) has the potential to serve as a powerful predictive tool for accurate and efficient electronic structure calculations of main-group chemistry.
Calculation of phonon dispersion relation using new correlation functional
NASA Astrophysics Data System (ADS)
Jitropas, Ukrit; Hsu, Chung-Hao
2017-06-01
To extend the use of Local Density Approximation (LDA), a new analytical correlation functional is introduced. Correlation energy is an essential ingredient within density functional theory and used to determine ground state energy and other properties including phonon dispersion relation. Except for high and low density limit, the general expression of correlation energy is unknown. The approximation approach is therefore required. The accuracy of the modelling system depends on the quality of correlation energy approximation. Typical correlation functionals used in LDA such as Vosko-Wilk-Nusair (VWN) and Perdew-Wang (PW) were obtained from parameterizing the near-exact quantum Monte Carlo data of Ceperley and Alder. These functionals are presented in complex form and inconvenient to implement. Alternatively, the latest published formula of Chachiyo correlation functional provides a comparable result for those much more complicated functionals. In addition, it provides more predictive power based on the first principle approach, not fitting functionals. Nevertheless, the performance of Chachiyo formula for calculating phonon dispersion relation (a key to the thermal properties of materials) has not been tested yet. Here, the implementation of new correlation functional to calculate phonon dispersion relation is initiated. The accuracy and its validity will be explored.
In search of the Hohenberg-Kohn theorem
NASA Astrophysics Data System (ADS)
Lammert, Paul E.
2018-04-01
The Hohenberg-Kohn theorem, a cornerstone of electronic density functional theory, concerns uniqueness of external potentials yielding given ground densities of an N -body system. The problem is rigorously explored in a universe of three-dimensional Kato-class potentials, with emphasis on trade-offs between conditions on the density and conditions on the potential sufficient to ensure uniqueness. Sufficient conditions range from none on potentials coupled with everywhere strict positivity of the density to none on the density coupled with something a little weaker than local 3 N /2 -power integrability of the potential on a connected full-measure set. A second theme is localizability, that is, the possibility of uniqueness over subsets of R3 under less stringent conditions.
Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd
2016-07-15
Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Electromagnetic Compatibility Testing Studies
NASA Technical Reports Server (NTRS)
Trost, Thomas F.; Mitra, Atindra K.
1996-01-01
This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Generation of intermittent gravitocapillary waves via parametric forcing
NASA Astrophysics Data System (ADS)
Castillo, Gustavo; Falcón, Claudio
2018-04-01
We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.
Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J
2018-05-01
Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Scattering mechanisms in shallow undoped Si/SiGe quantum wells
Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; ...
2015-10-07
We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ n α, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantummore » wells buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.« less
ATF neutral beam injection: optimization of beam alignment and aperturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.N.; Fowler, R.H.; Rome, J.A.
1985-12-01
The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less
Generating log-normal mock catalog of galaxies in redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Aniket; Makiya, Ryu; Saito, Shun
We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less
NASA Astrophysics Data System (ADS)
Tang, Jiayu; Kayo, Issha; Takada, Masahiro
2011-09-01
We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power spectrum amplitudes more significantly at larger k, at lower redshifts and for more massive haloes. We find that adding the non-linearity correction term to the simulation Pδθ(k) can fairly well reproduce the reconstructed Pδθ(k) for haloes up to k≃ 0.2 h Mpc-1.
NASA Astrophysics Data System (ADS)
Kurutz, U.; Friedl, R.; Fantz, U.
2017-07-01
Caesium (Cs) is applied in high power negative hydrogen ion sources to reduce a converter surface’s work function and thus enabling an efficient negative ion surface formation. Inherent drawbacks with the usage of this reactive alkali metal motivate the search for Cs-free alternative materials for neutral beam injection systems in fusion research. In view of a future DEMOnstration power plant, a suitable material should provide a high negative ion formation efficiency and comply with the RAMI issues of the system: reliability, availability, maintainability, inspectability. Promising candidates, like low work function materials (molybdenum doped with lanthanum (MoLa) and LaB6), as well as different non-doped and boron-doped diamond samples were investigated in this context at identical and ion source relevant parameters at the laboratory experiment HOMER. Negative ion densities were measured above the samples by means of laser photodetachment and compared with two reference cases: pure negative ion volume formation with negative ion densities of about 1× {10}15 {{{m}}}-3 and the effect of H- surface production using an in situ caesiated stainless steel sample which yields 2.5 times higher densities. Compared to pure volume production, none of the diamond samples did exhibit a measurable increase in H- densities, while showing clear indications of plasma-induced erosion. In contrast, both MoLa and LaB6 produced systematically higher densities (MoLa: ×1.60 LaB6: ×1.43). The difference to caesiation can be attributed to the higher work functions of MoLa and LaB6 which are expected to be about 3 eV for both compared to 2.1 eV of a caesiated surface.
Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Klein, J.-O.; Chappert, C.
2014-01-20
High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.
The Surface Density Distribution in the Solar Nebula
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2004-01-01
The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.
Origins of 1/f noise in nanostructure inclusion polymorphous silicon films
2011-01-01
In this article, we report that the origins of 1/f noise in pm-Si:H film resistors are inhomogeneity and defective structure. The results obtained are consistent with Hooge's formula, where the noise parameter, αH, is independent of doping ratio. The 1/f noise power spectral density and noise parameter αH are proportional to the squared value of temperature coefficient of resistance (TCR). The resistivity and TCR of pm-Si:H film resistor were obtained through linear current-voltage measurement. The 1/f noise, measured by a custom-built noise spectroscopy system, shows that the power spectral density is a function of both doping ratio and temperature. PMID:21711802
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
Periodic subsystem density-functional theory
NASA Astrophysics Data System (ADS)
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-01
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory.
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Periodic subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dualmore » approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.« less
Barium-Dispenser Thermionic Cathode
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Green, M.; Feinleib, M.
1989-01-01
Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.
Silicon based nano-architectures for high power lithium-ion battery anodes
NASA Astrophysics Data System (ADS)
Krishnan, Rahul
Lithium-ion batteries have now become an inseparable part of modern day society as the power source for several portable electronics like cell phones, digital cameras and laptops. Their high energy density compared with other electrochemical battery systems has been their most attractive feature. This has lead to a great interest in developing lithium-ion batteries for hybrid and all-electric vehicles. Eventually such vehicles will help drastically reduce the carbon footprint making the environment cleaner and healthier. In spite of their high energy density, Li-ion batteries are known to have poor power densities. This forms a major limitation in their deployment as a power source on vehicles. Electric vehicles need power sources that can provide both high energy and power densities. This requires the development of anode, cathode and electrolyte materials that would transform the capabilities of existing Li-ion batteries. Among anode materials silicon has received great attention because of its very large theoretical capacity of ˜4200 mAh/g based on the alloy Li22Si5. It should be noted that storage of charge in the anode occurs through the alloying of Li with the host anode material. However, the large specific capacity of silicon also results in a ˜400% volume expansion which could lead to pulverization and delamination reducing the cycle life of the electrode. These failure processes are exacerbated at high rates making it extremely difficult to use silicon for high-power Li-ion battery anodes. The major research thrust supporting this Ph.D. thesis involved exploring silicon based nano-architectures that would provide high energy and power densities over a long cycle life. The key technique used to design different nano-architectures was DC Magnetron sputtering with oblique angle deposition. The main development of this research was a functionally strain graded Carbon-Aluminum-Silicon nanoscoop architecture for high-power Li-ion battery anodes. This consisted of Carbon nanorods with an intermediate Aluminum layer finally capped by a nanoscoop of Silicon. The strain gradation arises from the fact that each of these materials has differential volumetric expansions due to different extents of Li uptake. Such a strain gradation from Carbon towards Silicon would provide for a less abrupt transition across the material interfaces thereby reducing interfacial mismatch and improving the tolerance to delamination at very high rates. This nano-architecture provided average capacities of ˜412 mAh/g with a power output of ˜100 kW/kg electrode continuously over 100 cycles. Even when the power output was as high as ˜250 kW/kgelectrode, the average capacity over 100 cycles is still ˜90 mAh/g. Furthermore, scanning electron microscopy and X-ray photoelectron spectroscopy investigations revealed that the functionally strain graded nanostructures were being partially lithiated in the bulk even at high rates. The fact that charge storage was not merely a surface phenomenon supported the high energy densities obtained at high charge/discharge rates. In an attempt to improve the mass loading density of Silicon based nano-architectures, a nano-compliant layer (NCL) supported thin film architecture was also explored. This consisted of an array of oblique nanorods (the nano-compliant layer) sandwiched between the substrate and the thin film. The NCL layer was used to improve the stress tolerance of the thin film thereby allowing the use of bulk thin films as opposed to nanostructures. This would directly improve the mass loading density. Silicon films with Carbon NCLs and Carbon films with Silicon NCLs were both deposited and tested. It was found that Li+ diffusivity is higher in carbon than in silicon by at least two orders of magnitude. This was calculated from cyclic voltammetry tests using the Randles-Sevcik equation. This difference in Li+ diffusivity within the two materials was found to be the C-rate limiting factor for a given nano-architecture design.
Gainer, Christian F; Utzinger, Urs; Romanowski, Marek
2012-07-01
The use of upconverting lanthanide nanoparticles in fast-scanning microscopy is hindered by a long luminescence decay time, which greatly blurs images acquired in a nondescanned mode. We demonstrate herein an image processing method based on Richardson-Lucy deconvolution that mitigates the detrimental effects of their luminescence lifetime. This technique generates images with lateral resolution on par with the system's performance, ∼1.2 μm, while maintaining an axial resolution of 5 μm or better at a scan rate comparable with traditional two-photon microscopy. Remarkably, this can be accomplished with near infrared excitation power densities of 850 W/cm(2), several orders of magnitude below those used in two-photon imaging with molecular fluorophores. By way of illustration, we introduce the use of lipids to coat and functionalize these nanoparticles, rendering them water dispersible and readily conjugated to biologically relevant ligands, in this case epidermal growth factor receptor antibody. This deconvolution technique combined with the functionalized nanoparticles will enable three-dimensional functional tissue imaging at exceptionally low excitation power densities.
A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.
2009-01-01
A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
NASA Astrophysics Data System (ADS)
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.
Projected quasiparticle theory for molecular electronic structure
NASA Astrophysics Data System (ADS)
Scuseria, Gustavo E.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Samanta, Kousik; Ellis, Jason K.
2011-09-01
We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations and apply them to the molecular electronic structure problem. All symmetries (particle number, spin, spatial, and complex conjugation) are deliberately broken and restored in a self-consistent variation-after-projection approach. We show that the resulting method yields a comprehensive black-box treatment of static correlations with effective one-electron (mean-field) computational cost. The ensuing wave function is of multireference character and permeates the entire Hilbert space of the problem. The energy expression is different from regular HFB theory but remains a functional of an independent quasiparticle density matrix. All reduced density matrices are expressible as an integration of transition density matrices over a gauge grid. We present several proof-of-principle examples demonstrating the compelling power of projected quasiparticle theory for quantum chemistry.
An extension of the Lighthill theory of jet noise to encompass refraction and shielding
NASA Technical Reports Server (NTRS)
Ribner, Herbert S.
1995-01-01
A formalism for jet noise prediction is derived that includes the refractive 'cone of silence' and other effects; outside the cone it approximates the simple Lighthill format. A key step is deferral of the simplifying assumption of uniform density in the dominant 'source' term. The result is conversion to a convected wave equation retaining the basic Lighthill source term. The main effect is to amend the Lighthill solution to allow for refraction by mean flow gradients, achieved via a frequency-dependent directional factor. A general formula for power spectral density emitted from unit volume is developed as the Lighthill-based value multiplied by a squared 'normalized' Green's function (the directional factor), referred to a stationary point source. The convective motion of the sources, with its powerful amplifying effect, also directional, is already accounted for in the Lighthill format: wave convection and source convection are decoupled. The normalized Green's function appears to be near unity outside the refraction dominated 'cone of silence', this validates our long term practice of using Lighthill-based approaches outside the cone, with extension inside via the Green's function. The function is obtained either experimentally (injected 'point' source) or numerically (computational aeroacoustics). Approximation by unity seems adequate except near the cone and except when there are shrouding jets: in that case the difference from unity quantifies the shielding effect. Further extension yields dipole and monopole source terms (cf. Morfey, Mani, and others) when the mean flow possesses density gradients (e.g., hot jets).
Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells
NASA Astrophysics Data System (ADS)
Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro
2016-02-01
In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.
Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.
Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei
2017-11-15
Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.
Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi
2016-09-21
Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.
NASA Technical Reports Server (NTRS)
Wu, Andy
1995-01-01
Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.
NASA Astrophysics Data System (ADS)
Yang, Zehui; Fujigaya, Tsuyohiko; Nakashima, Naotoshi
2015-12-01
The fabrication of homogeneous ionomer distribution in fuel cell catalyst layers is necessary and important to improve the platinum utilization as well as the power density. Here, we focus on the effect of poly[2,2‧-(2,6-pyridine)-5,5‧-bibenzimidazole] (PyPBI) wrapped on multi-walled carbon nanotubes (MWNTs) for anchoring Nafion ionomer to the electrocatalyst, in which PyPBI functions as the binding sites for platinum nanoparticles (Pt-NPs) used as a catalyst. Based on the result using a control composite without having PyPBI, a strong interaction of the Nafion onto the PyPBI layer is recognized. Importantly, we find that the membrane-electrode assembly (MEA) shows a much higher maximum power density than that of the MEA without PyPBI. A homogeneous coating of Nafion on the electrocatalyst using the PyPBI forms a long-range network of the ionomer, leading to an improved Pt-NP utilization efficiency as well as an enhanced power density of the MEA.
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less
A conceptual DFT study of the molecular properties of glycating carbonyl compounds.
Frau, Juan; Glossman-Mitnik, Daniel
2017-01-01
Several glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties. In particular, the chemical reactivity descriptors that arise from conceptual density functional theory and chemical reactivity theory have been calculated through a [Formula: see text]SCF protocol. The validity of the KID (Koopmans' in DFT) procedure has been checked by comparing the reactivity descriptors obtained from the values of the HOMO and LUMO with those calculated through vertical energy values. The reactivity sites have been determined by means of the calculation of the Fukui function indices, the condensed dual descriptor [Formula: see text] and the electrophilic and nucleophilic Parr functions. The glycating power of the studied compounds have been compared with the same property for simple carbohydrates.Graphical abstractSeveral glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties, the chemical reactivity descriptors and the validity of the KID (Koopmans' in DFT) procedure.
Theoretical and experimental investigation into high current hollow cathode arc attachment
NASA Astrophysics Data System (ADS)
Downey, Ryan T.
This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.
Wang, Guanghui; Ho, Ho-Pui; Chen, Qiulan; Yang, Alice Kar-Lai; Kwok, Ho-Chin; Wu, Shu-Yuen; Kong, Siu-Kai; Kwan, Yiu-Wa; Zhang, Xuping
2013-09-21
In this paper, we present a lab-in-a-droplet bioassay strategy for a centrifugal microfluidics or lab-on-a-disc (LOAD) platform with three important advancements including density difference pumping, power to disc and bidirectional flow control. First, with the water based bioassay droplets trapped in a micro-channel filled with mineral oil, centrifugal force due to the density difference between the water and oil phases actuates droplet movement while the oil based medium remains stationary. Second, electricity is coupled to the rotating disc through a split-core transformer, thus enabling on-chip real-time heating in selected areas as desired and wireless programmable functionality. Third, an inertial mechanical structure is proposed to achieve bidirectional flow control within the spinning disc. The droplets can move back and forth between two heaters upon changing the rotational speed. Our platform is an essential and versatile solution for bioassays such as those involving DNA amplification, where localized temperature cycling is required. Finally, without the loss of generality, we demonstrate the functionality of our platform by performing real-time polymerase chain reaction (RT-PCR) in a linear microchannel made with PTFE (Teflon) micro-tubing.
Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y
2001-07-01
The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir
2014-07-01
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.
Jones, Stephanie G.; Riedner, Brady A.; Smith, Richard F.; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J.; Benca, Ruth M.
2014-01-01
Study Objectives: Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Design: Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Setting: Sleep laboratory. Patients or Participants: Nine subjects with AHI > 10 and nine matched controls. Interventions: N/A. Measurements and Results: Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. Conclusion: This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process. Citation: Jones SG; Riedner BA; Smith RF; Ferrarelli F; Tononi G; Davidson RJ; Benca RM. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. SLEEP 2014;37(2):399-407. PMID:24497668
Development of SiC Large Tapered Crystal Growth
NASA Technical Reports Server (NTRS)
Neudeck, Phil
2010-01-01
Majority of very large potential benefits of wide band gap semiconductor power electronics have NOT been realized due in large part to high cost and high defect density of commercial wafers. Despite 20 years of development, present SiC wafer growth approach is yet to deliver majority of SiC's inherent performance and cost benefits to power systems. Commercial SiC power devices are significantly de-rated in order to function reliably due to the adverse effects of SiC crystal dislocation defects (thousands per sq cm) in the SiC wafer.
Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas
2005-01-01
The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.
Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage †
Barber, Peter; Balasubramanian, Shiva; Anguchamy, Yogesh; Gong, Shushan; Wibowo, Arief; Gao, Hongsheng; Ploehn, Harry J.; zur Loye, Hans-Conrad
2009-01-01
This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials.
Power spectrum of dark matter substructure in strong gravitational lenses
NASA Astrophysics Data System (ADS)
Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2018-01-01
Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...
NASA Astrophysics Data System (ADS)
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
Molecular simulation of disjoining-pressure isotherms for free liquid , Lennard-Jones thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Divesh; Newman, John; Radke, C.J.
2001-10-01
We present canonical-ensemble molecular-dynamics simulations of disjoining-pressure isotherms in Lennard-Jones free liquid films. Thermodynamics demands that the disjoining pressure is determined uniquely as a function of the chemical potential purely from the phase diagram of the fluid. Our results from molecular dynamics validate this argument. The inverse-sixth-power distance term in the Lennard-Jones intermolecular potential represents van der Waals dispersion forces. Hence, we compare our results with classical Hamaker theory that is based on dispersion forces but assumes a slab geometry for the density profile and completely neglects fluid structure and entropy. We find that the Hamaker constant obtained from ourmore » simulations is about an order of magnitude larger than that from classical theory. To investigate the origin of this discrepancy, we calculate the disjoining-pressure isotherm using a density-functional theory relaxing the inherent assumptions in the Hamaker theory and imparting to the fluid an approximate structure. For disjoining pressure as a function of chemical potential, the results of density-functional theory and molecular dynamics are very close. Even for disjoining-pressure isotherms, and the subsequently calculated Hamaker constant, results of the density-functional theory are closer to the molecular-dynamics simulations by about a factor of 4 compared to Hamaker theory. [References: 44]« less
A complex-lamellar description of boundary layer transition
NASA Astrophysics Data System (ADS)
Kolla, Maureen Louise
Flow transition is important, in both practical and phenomenological terms. However, there is currently no method for identifying the spatial locations associated with transition, such as the start and end of intermittency. The concept of flow stability and experimental correlations have been used, however, flow stability only identifies the location where disturbances begin to grow in the laminar flow and experimental correlations can only give approximations as measuring the start and end of intermittency is difficult. Therefore, the focus of this work is to construct a method to identify the start and end of intermittency, for a natural boundary layer transition and a separated flow transition. We obtain these locations by deriving a complex-lamellar description of the velocity field that exists between a fully laminar and fully turbulent boundary condition. Mathematically, this complex-lamellar decomposition, which is constructed from the classical Darwin-Lighthill-Hawthorne drift function and the transport of enstrophy, describes the flow that exists between the fully laminar Pohlhausen equations and Prandtl's fully turbulent one seventh power law. We approximate the difference in enstrophy density between the boundary conditions using a power series. The slope of the power series is scaled by using the shape of the universal intermittency distribution within the intermittency region. We solve the complex-lamellar decomposition of the velocity field along with the slope of the difference in enstrophy density function to determine the location of the laminar and turbulent boundary conditions. Then from the difference in enstrophy density function we calculate the start and end of intermittency. We perform this calculation on a natural boundary layer transition over a flat plate for zero pressure gradient flow and for separated shear flow over a separation bubble. We compare these results to existing experimental results and verify the accuracy of our transition model.
Characterization of atomic oxygen from an ECR plasma source
NASA Astrophysics Data System (ADS)
Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.
2002-11-01
A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.
NASA Astrophysics Data System (ADS)
Chen, Lin; Abbey, Craig K.; Boone, John M.
2013-03-01
Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p < 0.001 in all cases. The value of β was also found to be associated with patient age and breast diameter, parameters both related to breast density. In all associations between other parameters, lower values of β were associated with increased breast cancer detection performance. Specifically, lower values of β were associated with lower breast density, higher detectability index, higher sensitivity, and lower fractal dimension values. While causality was not and probably cannot be demonstrated, the strong, statistically significant association between the β metric and the other more widely used parameters suggest that β may be considered as a surrogate measure for breast cancer detection performance. These findings are specific to breast parenchymal patterns and mass lesions only.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.
Effect of inelastic electron-atom collisions on the Balmer decrement
NASA Technical Reports Server (NTRS)
Adams, W. M.; Petrosian, V.
1974-01-01
Calculation of the Balmer decrement in radiatively ionized hydrogen gas as a function of temperature and density, taking into account the effect of electron-atom collisions. It is found that once the electron density exceeds 10 to the 10th power per cu cm significant deviations from the normal radiative recombination decrement begin to occur. Implications of these results for the physical conditions in the line-emitting region of the Seyfert galaxy NGC 4151 are discussed briefly.
A wide-field survey of satellite galaxies around the spiral galaxy M106
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, M.; Hwang, N.; Lee, M. G.; Chun, M.-Y.; Ann, H. B.
2011-04-01
We present a wide-field survey of satellite galaxies in M106 (NGC 4258) covering a ?× 2° field around M106 using Canada-France-Hawaii Telescope/MegaCam. We find 16 satellite galaxy candidates of M106. Eight of these galaxies are found to be dwarf galaxies that are much smaller and fainter than the remaining galaxies. Three of these galaxies are new findings. Surface brightness profiles of 15 out of 16 satellite galaxies can be represented well by an exponential disc profile with varying scalelength. We derive the surface number density distribution of these satellite galaxies. The central number density profile (d < 100 kpc) is well fitted by a power law with a power index of -2.1 ± 0.5, similar to the expected power index of isothermal distribution. The luminosity function of these satellites is represented well by the Schechter function with a faint-end slope of -1.19+0.03-0.06. Integrated photometric properties (total luminosity, total colour and disc scalelength) and the spatial distribution of these satellite galaxies are found to be roughly similar to those of the Milky Way and M31.
Nelson, Charles; Avramov-Zamurovic, Svetlana; Korotkova, Olga; Malek-Madani, Reza; Sova, Raymond; Davidson, Frederic
2013-11-01
Irradiance fluctuations of an infrared laser beam from a shore-to-ship data link ranging from 5.1 to 17.8 km are compared to lognormal (LN), gamma-gamma (GG) with aperture averaging, and gamma-Laguerre (GL) distributions. From our data analysis, the LN and GG probability density function (PDF) models were generally in good agreement in near-weak to moderate fluctuations. This was also true in moderate to strong fluctuations when the spatial coherence radius was smaller than the detector aperture size, with the exception of the 2.54 cm power-in-bucket (PIB) where the LN PDF model fit best. For moderate to strong fluctuations, the GG PDF model tended to outperform the LN PDF model when the spatial coherence radius was greater than the detector aperture size. Additionally, the GL PDF model had the best or next to best overall fit in all cases with the exception of the 2.54 cm PIB where the scintillation index was highest. The GL PDF model also appears to be robust for off-of-beam center laser beam applications.
Small scale clustering of late forming dark matter
NASA Astrophysics Data System (ADS)
Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.
2015-09-01
We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.
Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem
2017-09-01
The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.
Fault Detection of Rotating Machinery using the Spectral Distribution Function
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1997-01-01
The spectral distribution function is introduced to characterize the process leading to faults in rotating machinery. It is shown to be a more robust indicator than conventional power spectral density estimates, but requires only slightly more computational effort. The method is illustrated with examples from seeded gearbox transmission faults and an analytical model of a defective bearing. Procedures are suggested for implementation in realistic environments.
Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve.
Buchaim, Daniela Vieira; Andreo, Jesus Carlos; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Rodrigues, Antonio de Castro; Macedo, Mariana de Cássia; Rosa Junior, Geraldo Marco; Shinohara, Andre Luis; Santos German, Iris Jasmin; Pomini, Karina Torres; Buchaim, Rogerio Leone
2017-08-01
Evaluate the efficacy of low-level laser therapy (LLLT) on qualitative, quantitative, and functional aspects in the facial nerve regeneration process. Forty-two male Wistar rats were used, randomly divided into a control group (CG; n = 10), in which the facial nerve without lesion was collected, and four experimental groups: (1) suture experimental group (SEG) and (2) fibrin experimental group (FEG), consisting of 16 animals in which the buccal branch of the facial nerve was sectioned on both sides of the face; an end-to-end epineural suture was performed on the right side, and a fibrin sealant was used on the left side for coaptation of the stumps; and (3) laser suture experimental group (LSEG) and (4) laser fibrin experimental group (LFEG), consisting of 16 animals that underwent the same surgical procedures as SEG and FEG with the addition of laser application at three different points along the surgical site (pulsed laser of 830 nm wavelength, optical output power of 30 mW, power density of 0.2586 W/cm 2 , energy density of 6.2 J/cm 2 , beam area of 0.116 cm 2 , exposure time of 24 sec per point, total energy per session of 2.16 J, and cumulative dose of 34.56 J). The animals were submitted to functional analysis (subjective observation of whisker movement) and the data obtained were compared using Fisher's exact test. Euthanasia was performed at 5 and 10 weeks postoperative. The total number and density of regenerated axons were analyzed using the unpaired t-test (p < 0.05). Laser therapy resulted in a significant increase in the number and density of regenerated axons. The LSEG and LFEG presented better scores in functional analysis in comparison with the SEG and FEG. LLLT enhanced axonal regeneration and accelerated functional recovery of the whiskers, and both repair techniques allowed the growth of axons.
Residual Defect Density in Random Disks Deposits.
Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C
2015-08-03
We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.
Electrochemical Performance of Glucose/Oxygen Biofuel Cells Based on Carbon Nanostructures.
Koo, Min-Hye; Das, Gautam; Yoon, Hyon Hee
2016-03-01
The electrochemical performance of glucose/oxygen biofuel cells based on carbon nanostructures was investigated in the present study. Different types of carbon nanomaterials, including multi-walled carbon nanotubes (MWCNT), functionalized MWCNT (f-MWCNT), carbon nanofibers (CNF), and functionalized CNF (f-CNF) were examined for electrode fabrications. The anode for glucose/oxygen biofuel cells were prepared by sequential coating of carbon nanomaterials, charge transfer complex (CTC), glucose oxidase (GOx) and nafion membrane. The anode was then integrated with a bilirubin oxidase-immobilized cathode for the biofuel cell test. It was found that the electrochemical performance of the enzyme electrodes was remarkably enhanced by the amalgamation of carbon nanomaterials with the CTC. The biofuel cell with anode comprising of f-CNF and the cathode with MWCNT exhibited the best electrochemical performance with a maximum power density of 210 μW/cm2 at a cell voltage of 0.44 V for 20 mM glucose concentration, which is comparable with the best power density value reported earlier.
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.
1975-01-01
An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.
Power Spectral Density Specification and Analysis of Large Optical Surfaces
NASA Technical Reports Server (NTRS)
Sidick, Erkin
2009-01-01
The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
NASA Astrophysics Data System (ADS)
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.
2014-03-15
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less
Performance limitations of a white light extrinsic Fabry-Perot interferometric displacement sensor
NASA Astrophysics Data System (ADS)
Moro, Erik A.; Todd, Michael D.; Puckett, Anthony D.
2012-06-01
Non-contacting interferometric fiber optic sensors offer a minimally invasive, high-accuracy means of measuring a structure's kinematic response to loading. The performance of interferometric sensors is often dictated by the technique employed for demodulating the kinematic measurand of interest from phase in the observed optical signal. In this paper a white-light extrinsic Fabry-Perot interferometer is implemented, offering robust displacement sensing performance. Displacement data is extracted from an estimate of the power spectral density, calculated from the interferometer's received optical power measured as a function of optical transmission frequency, and the sensor's performance is dictated by the details surrounding the implementation of this power spectral density estimation. One advantage of this particular type of interferometric sensor is that many of its control parameters (e.g., frequency range, frequency sampling density, sampling rate, etc.) may be chosen to so that the sensor satisfies application-specific performance needs in metrics such as bandwidth, axial displacement range, displacement resolution, and accuracy. A suite of user-controlled input values is investigated for estimating the spectrum of power versus wavelength data, and the relationships between performance metrics and input parameters are described in an effort to characterize the sensor's operational performance limitations. This work has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 12-01512).
Effect of graphite target power density on tribological properties of graphite-like carbon films
NASA Astrophysics Data System (ADS)
Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao
2018-05-01
In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.
Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.
Gutiérrez, David; Ramírez-Moreno, Mauricio A
2016-04-01
We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.
Critical quench dynamics in confined systems.
Collura, Mario; Karevski, Dragi
2010-05-21
We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... option of obtaining several cabinet sizes and power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density...-location customer may obtain more power by choosing a combination of lower power density cabinets. However...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... cabinet sizes and power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density cabinet. Each cabinet... obtain more power by choosing a combination of lower power density cabinets. However, the Exchange is...
47 CFR 90.1215 - Power limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to peak power spectral density of 21 d... conducted output power and the peak power spectral density should be reduced by the amount in decibels that...
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Nishimichi, Takahiro; Li, Baojiu; Higuchi, Yuichi
2017-04-01
We investigate the information content of various cosmic shear statistics on the theory of gravity. Focusing on the Hu-Sawicki-type f(R) model, we perform a set of ray-tracing simulations and measure the convergence bispectrum, peak counts and Minkowski functionals. We first show that while the convergence power spectrum does have sensitivity to the current value of extra scalar degree of freedom |fR0|, it is largely compensated by a change in the present density amplitude parameter σ8 and the matter density parameter Ωm0. With accurate covariance matrices obtained from 1000 lensing simulations, we then examine the constraining power of the three additional statistics. We find that these probes are indeed helpful to break the parameter degeneracy, which cannot be resolved from the power spectrum alone. We show that especially the peak counts and Minkowski functionals have the potential to rigorously (marginally) detect the signature of modified gravity with the parameter |fR0| as small as 10-5 (10-6) if we can properly model them on small (˜1 arcmin) scale in a future survey with a sky coverage of 1500 deg2. We also show that the signal level is similar among the additional three statistics and all of them provide complementary information to the power spectrum. These findings indicate the importance of combining multiple probes beyond the standard power spectrum analysis to detect possible modifications to general relativity.
Research on Influencing Factors and Generalized Power of Synthetic Artificial Seismic Wave
NASA Astrophysics Data System (ADS)
Jiang, Yanpei
2018-05-01
Start your abstract here… In this paper, according to the trigonometric series method, the author adopts different envelope functions and the acceleration design spectrum in Seismic Code For Urban Bridge Design to simulate the seismic acceleration time history which meets the engineering accuracy requirements by modifying and iterating the initial wave. Spectral analysis is carried out to find out the the distribution law of the changing frequencies of the energy of seismic time history and to determine the main factors that affect the acceleration amplitude spectrum and energy spectrum density. The generalized power formula of seismic time history is derived from the discrete energy integral formula and the author studied the changing characteristics of generalized power of the seismic time history under different envelop functions. Examples are analyzed to illustrate that generalized power can measure the seismic performance of bridges.
Self-powered enzyme micropumps
NASA Astrophysics Data System (ADS)
Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman
2014-05-01
Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.
Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing
NASA Astrophysics Data System (ADS)
Singh, Aman K.; Yadava, R. D. S.
2018-05-01
The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.
47 CFR 25.208 - Power flux density limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMUNICATIONS Technical Standards § 25.208 Power flux density limits. (a) In the band 3650-4200 MHz, the power flux density at the Earth's surface produced by emissions from a space station for all conditions and... and 10.7-11.7 GHz for NGSO FSS space stations, the power flux-density at the Earth's surface produced...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de; Lenske, H.
During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capturemore » reaction rates of astrophysical importance. A comparison to available experimental data is discussed.« less
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Ordering dynamics of self-propelled particles in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Das, Rakesh; Mishra, Shradha; Puri, Sanjay
2018-02-01
Ordering dynamics of self-propelled particles in an inhomogeneous medium in two dimensions is studied. We write coarse-grained hydrodynamic equations of motion for density and polarisation fields in the presence of an external random disorder field, which is quenched in time. The strength of inhomogeneity is tuned from zero disorder (clean system) to large disorder. In the clean system, the polarisation field grows algebraically as LP ∼ t0.5 . The density field does not show clean power-law growth; however, it follows Lρ ∼ t0.8 approximately. In the inhomogeneous system, we find a disorder-dependent growth. For both the density and the polarisation, growth slows down with increasing strength of disorder. The polarisation shows a disorder-dependent power-law growth LP(t,Δ) ∼ t1/\\bar zP(Δ) for intermediate times. At late times, there is a crossover to logarithmic growth LP(t,Δ) ∼ (\\ln t)1/\\varphi , where φ is a disorder-independent exponent. Two-point correlation functions for the polarisation show dynamical scaling, but the density does not.
Spatial-temporal characteristics of lightning flash size in a supercell storm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng
2017-11-01
The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.
The virialization density of peaks with general density profiles under spherical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2013-12-01
We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less
Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings
NASA Technical Reports Server (NTRS)
Johnson, Wesley Louis
2010-01-01
Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project
A marked correlation function for constraining modified gravity models
NASA Astrophysics Data System (ADS)
White, Martin
2016-11-01
Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.
Measurement of operator workload in an information processing task
NASA Technical Reports Server (NTRS)
Jenney, L. L.; Older, H. J.; Cameron, B. J.
1972-01-01
This was an experimental study to develop an improved methodology for measuring workload in an information processing task and to assess the effects of shift length and communication density (rate of information flow) on the ability to process and classify verbal messages. Each of twelve subjects was exposed to combinations of three shift lengths and two communication densities in a counterbalanced, repeated measurements experimental design. Results indicated no systematic variation in task performance measures or in other dependent measures as a function of shift length or communication density. This is attributed to the absence of a secondary loading task, an insufficiently taxing work schedule, and the lack of psychological stress. Subjective magnitude estimates of workload showed fatigue (and to a lesser degree, tension) to be a power function of shift length. Estimates of task difficulty and fatigue were initially lower but increased more sharply over time under low density than under high density conditions. An interpretation of findings and recommedations for furture research are included. This research has major implications to human workload problems in information processing of air traffic control verbal data.
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture
NASA Astrophysics Data System (ADS)
Hazra, Milan K.; Bagchi, Biman
2018-03-01
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm-1) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture.
Hazra, Milan K; Bagchi, Biman
2018-03-21
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm -1 ) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S
2016-01-01
Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P < .001), with no changes in control and PP. Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardirossian, Narbe; Head-Gordon, Martin
2013-12-18
A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less
Chen, Jian; Yuan, Shenfang; Qiu, Lei; Wang, Hui; Yang, Weibo
2018-01-01
Accurate on-line prognosis of fatigue crack propagation is of great meaning for prognostics and health management (PHM) technologies to ensure structural integrity, which is a challenging task because of uncertainties which arise from sources such as intrinsic material properties, loading, and environmental factors. The particle filter algorithm has been proved to be a powerful tool to deal with prognostic problems those are affected by uncertainties. However, most studies adopted the basic particle filter algorithm, which uses the transition probability density function as the importance density and may suffer from serious particle degeneracy problem. This paper proposes an on-line fatigue crack propagation prognosis method based on a novel Gaussian weight-mixture proposal particle filter and the active guided wave based on-line crack monitoring. Based on the on-line crack measurement, the mixture of the measurement probability density function and the transition probability density function is proposed to be the importance density. In addition, an on-line dynamic update procedure is proposed to adjust the parameter of the state equation. The proposed method is verified on the fatigue test of attachment lugs which are a kind of important joint components in aircraft structures. Copyright © 2017 Elsevier B.V. All rights reserved.
Density Functional Methods for Shock Physics and High Energy Density Science
NASA Astrophysics Data System (ADS)
Desjarlais, Michael
2017-06-01
Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation
NASA Astrophysics Data System (ADS)
Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.
2013-07-01
CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... determined by the density function of the system. For example, in the case of a project area shaped as a... designated by or under State law to exercise the powers granted to a Governor. Grant means a right-of-way... plant life. Operator means the individual, corporation, or association having control or management of...
NASA Astrophysics Data System (ADS)
Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi
2013-09-01
Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.
The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys
NASA Astrophysics Data System (ADS)
Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.
2016-05-01
The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A80
Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.
Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank
2014-02-01
Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P
2017-02-07
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.
2017-01-01
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329
Increasing power-law range in avalanche amplitude and energy distributions
NASA Astrophysics Data System (ADS)
Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard
2018-02-01
Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.
Increasing power-law range in avalanche amplitude and energy distributions.
Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard
2018-02-01
Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan
This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less
Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan
2014-06-22
This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s -1, and turbulence intensity of 15% at a reference mean current of 2 m s -1. Flood and ebb flow directionsmore » are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less
Rapid modelling of the redshift-space power spectrum multipoles for a masked density field
NASA Astrophysics Data System (ADS)
Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.
2017-01-01
In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.
Rationally designed polyimides for high-energy density capacitor applications.
Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A
2014-07-09
Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.
Measurement of carrier transport and recombination parameter in heavily doped silicon
NASA Technical Reports Server (NTRS)
Swanson, Richard M.
1986-01-01
The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.
Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
2004-01-01
Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors, etc. is not included.
Collisionless dissociation and isotopic enrichment of SF6 using high-powered CO2 laser radiation
NASA Technical Reports Server (NTRS)
Gower, M. C.; Billman, K. W.
1977-01-01
Dissociation of S-32F6 and the resultant isotopic enrichment of S-34F6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A
2013-09-01
Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.
O Electromagnetic Power Waves and Power Density Components.
NASA Astrophysics Data System (ADS)
Petzold, Donald Wayne
1980-12-01
On January 10, 1884 Lord Rayleigh presented a paper entitled "On the Transfer of Energy in the Electromagnetic Field" to the Royal Society of London. This paper had been authored by the late Fellow of Trinity College, Cambridge, Professor J. H. Poynting and in it he claimed that there was a general law for the transfer of electromagnetic energy. He argued that associated with each point in space is a quantity, that has since been called the Poynting vector, that is a measure of the rate of energy flow per unit area. His analysis was concerned with the integration of this power density vector at all points over an enclosing surface of a specific volume. The interpretation of this Poynting vector as a true measure of the local power density was viewed with great skepticism unless the vector was integrated over a closed surface, as the development of the concept required. However, within the last decade or so Shadowitz indicates that a number of prominent authors have argued that the criticism of the interpretation of Poynting's vector as a local power density vector is unjustified. The present paper is not concerned with these arguments but instead is concerned with a decomposition of Poynting's power density vector into two and only two components: one vector which has the same direction as Poynting's vector and which is called the forward power density vector, and another vector, directed opposite to the Poynting vector and called the reverse power density vector. These new local forward and reverse power density vectors will be shown to be dependent upon forward and reverse power wave vectors and these vectors in turn will be related to newly defined forward and reverse components of the electric and magnetic fields. The sum of these forward and reverse power density vectors, which is simply the original Poynting vector, is associated with the total electromagnetic energy traveling past the local point. Another vector which is the difference between the forward and reverse power density vectors and which will be shown to be associated with the total electric and magnetic field energy densities existing at a local point will also be introduced. These local forward and reverse power density vectors may be integrated over a surface to determine the forward and reverse powers and from these results problems related to maximum power transfer or efficiency of electromagnetic energy transmission in space may be studied in a manner similar to that presently being done with transmission lines, wave guides, and more recently with two port multiport lumped parameter systems. These new forward and reverse power density vectors at a point in space are analogous to the forward and revoltages or currents and power waves as used with the transmission line, waveguide, or port. These power wave vectors in space are a generalization of the power waves as developed by Penfield, Youla, and Kurokawa and used with the scattering parameters associated with transmission lines, waveguides and ports.
Comparison of SOM point densities based on different criteria.
Kohonen, T
1999-11-15
Point densities of model (codebook) vectors in self-organizing maps (SOMs) are evaluated in this article. For a few one-dimensional SOMs with finite grid lengths and a given probability density function of the input, the numerically exact point densities have been computed. The point density derived from the SOM algorithm turned out to be different from that minimizing the SOM distortion measure, showing that the model vectors produced by the basic SOM algorithm in general do not exactly coincide with the optimum of the distortion measure. A new computing technique based on the calculus of variations has been introduced. It was applied to the computation of point densities derived from the distortion measure for both the classical vector quantization and the SOM with general but equal dimensionality of the input vectors and the grid, respectively. The power laws in the continuum limit obtained in these cases were found to be identical.
Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M
2014-02-01
Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.
Thermionic converter output as a function of collector temperature
NASA Technical Reports Server (NTRS)
Stark, G.; Saunders, M.; Lieb, D.
1980-01-01
Surprisingly few data are available on the variation of thermionic converter output with collector temperature. In this study the output power density has been measured as a function of collector temperature (at a fixed emitter temperature of 1650 K) for six converters with different electrode combinations. Collector temperatures ranged from 750 to 1100 K. For collector temperatures below 900 K, converters built with sublimed molybdenum oxide collectors gave the best performance.
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.
Kim, Jung Rae; Jung, Sok Hee; Regan, John M; Logan, Bruce E
2007-09-01
Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.
Effective of diode laser on teeth enamel in the teeth whitening treatment
NASA Astrophysics Data System (ADS)
Klunboot, U.; Arayathanitkul, K.; Chitaree, R.; Emarat, N.
2011-12-01
This research purpose is to investigate the changing of teeth color and to study the surface of teeth after treatment by laser diode at different power densities for tooth whitening treatment. In the experiment, human-extracted teeth samples were divided into 7 groups of 6 teeth each. After that laser diode was irradiated to teeth, which were coated by 38% concentration of hydrogen peroxide, during for 20, 30 and 60 seconds at power densities of 10.9 and 52.1 W/cm2. The results of teeth color change were described by the CIEL*a*b* systems and the damage of teeth surface were investigated by scanning electron microscopy (SEM). The results showed that the power density of the laser diode could affect the whiteness of teeth. The high power density caused more luminous teeth than the low power density did, but on the other hand the high power density also caused damage to the teeth surface. Therefore, the laser diode at the low power densities has high efficiency for tooth whitening treatment and it has a potential for other clinical applications.
Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie
2017-06-01
Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.
Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/
NASA Technical Reports Server (NTRS)
Singh, N.; Raitt, W. J.; Yasuhara, F.
1982-01-01
Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.
Laser induced photo-detachment of O2 in DC discharge
NASA Astrophysics Data System (ADS)
J, R. LEGORRETA; J, L. PATIÑO; F, B. YOUSIF
2018-07-01
Determination of the negative ion number density of {{{O}}}{{2}}- and {{{O}}}- in a DC discharge of oxygen plasma was made employing Langmuir probe in conjunction with eclipse laser photo-detachment technique. The temporal evolution of the extra electrons resulting from the photo-detachment of {{{O}}}{{2}}- and {{{O}}}- were used to evaluate the negative ion number density. The ratio of {{{O}}}{{2}}- number density to {{{O}}}- varied from 0.03 to 0.22. Number density of both {{{O}}}{{2}}- and {{{O}}}- increased with increasing power and decreased as the pressure was increased. Electron number density was evaluated from the electron energy distribution function (EEDF) using the I–V recorded characteristic curves. Electron temperature between 2 and 2.7 eV were obtained. Influence of the {{{O}}}{{2}}({a}{{1}}{{{Δ }}}{{g}}) metastable state is discussed.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Nguyen, Tanya T.; Ashrafi, Ashkan; Thomas, Jennifer D.; Riley, Edward P.; Simmons, Roger W.
2013-01-01
To extend our current understanding of the teratogenic effects of prenatal alcohol exposure on the control of isometric force, the present study investigated the signal characteristics of power spectral density functions resulting from sustained control of isometric force by children with and without heavy prenatal exposure to alcohol. It was predicted that the functions associated with the force signals would be fundamentally different for the two groups. Twenty-five children aged between 7 and 17 years with heavy prenatal alcohol exposure and 21 non-alcohol exposed control children attempted to duplicate a visually represented target force by pressing on a load cell. The level of target force (5 and 20% of maximum voluntary contraction) and the time interval between visual feedback (20ms, 320ms and 740ms) were manipulated. A multivariate spectral estimation method with sinusoidal windows was applied to individual isometric force-time signals. Analysis of the resulting power spectral density functions revealed that the alcohol-exposed children had a lower mean frequency, less spectral variability, greater peak power and a lower frequency at which peak power occurred. Furthermore, mean frequency and spectral variability produced by the alcohol-exposed group remained constant across target load and visual feedback interval, suggesting that these children were limited to making long-time scale corrections to the force signal. In contrast, the control group produced decreased mean frequency and spectral variability as target force and the interval between visual feedback increased, indicating that when feedback was frequently presented these children used the information to make short-time scale adjustments to the ongoing force signal. Knowledge of these differences could facilitate the design of motor rehabilitation exercises that specifically target isometric force control deficits in alcohol-exposed children. PMID:23238099
Galaxy redshift surveys with sparse sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro
2013-12-01
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should bemore » chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.« less
Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices
NASA Astrophysics Data System (ADS)
Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Cho, Hyun U.; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Lepró, Xavier; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong
2013-06-01
Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 μm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm-3) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s-1 and ~20 V s-1 for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.
NASA Astrophysics Data System (ADS)
Bochkarev, S. V.
2014-02-01
A new method is proposed and elaborated for investigating complex or real trigonometric series with various spectra. It is based on new multiplicative inequalities which give a lower bound for the integral norm of the de la Vallée-Poussin means and are themselves based on results establishing corresponding analogues of the Littlewood-Paley theorem in the BMO, Hardy, and Lorentz spaces. For spectra with power-like density a description of the class of absolute values of coefficients such that the corresponding complex or real trigonometric series are Fourier series is found which depends on the arithmetic characteristics of the spectrum and is sharp in limiting cases. Furthermore, for the quadratic spectrum some results of Hardy and Littlewood on elliptic theta functions are generalized and refined. For the quadratic spectrum and power-like spectra with non-integer exponents new lower bounds are found for the integral norms of exponential sums. Bibliography: 41 titles.
Traditional Tracking with Kalman Filter on Parallel Architectures
NASA Astrophysics Data System (ADS)
Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2015-05-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.
Zipf's law from scale-free geometry.
Lin, Henry W; Loeb, Abraham
2016-03-01
The spatial distribution of people exhibits clustering across a wide range of scales, from household (∼10(-2) km) to continental (∼10(4) km) scales. Empirical data indicate simple power-law scalings for the size distribution of cities (known as Zipf's law) and the population density fluctuations as a function of scale. Using techniques from random field theory and statistical physics, we show that these power laws are fundamentally a consequence of the scale-free spatial clustering of human populations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our theory by empirically measuring the power spectrum of population density fluctuations and show that the logarithmic slope α=2.04 ± 0.09, in excellent agreement with our theoretical prediction α=2. The model enables the analytic computation of many new predictions by importing the mathematical formalism of random fields.
Tofu wastewater treatment by sediment microbial fuel cells
NASA Astrophysics Data System (ADS)
Rinaldi, W.; Abubakar; Rahmi, R. F.; Silmina
2018-03-01
This research aimed to measure power density generated by sediment microbial fuel cells (SMFCs) by varying anode position and wastewater concentration. Anode position was varied at 2 cm and 4 cm under the surface of sediment, while wastewater concentration varied into 25%, 50%, 75% and 100%. The electrodes employed was stainless steel mesh, while the organic subtrate source was taken from wastewater of soybean washing and boiling process. The sediment was taken from the Lamnyong River around the outlet of tofu industry wastewater. SMFCs was run until the power density was relatively small. The produced electricity represented in power density. The results of this research showed that power density was decreased over time. Generated power density by varying 2 cm and 4 cm position of anode under the sediment surface was not significantly different, while the lowest wastewater concentration, 25%, gave the highest power density.
Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence
NASA Astrophysics Data System (ADS)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.
VASIMR VX-200 thruster throttling optimization from 30 to 200 kW
NASA Astrophysics Data System (ADS)
Squire, Jared; Olsen, Chris; Chang-Diaz, Franklin; Longmier, Benjamin; Ballenger, Maxwell; Carter, Mark; Glover, Tim; McCaskill, Greg
2012-10-01
The VASIMR^ VX-200 experimental plasma thruster incorporates a 40 kW helicon plasma source with a 180 kW Ion Cyclotron Heating (ICH) acceleration stage integrated in a superconducting magnet. Argon propellant mass flow is injected up to 140 mg/s. Rapid plasma start up (< 100 ms) and high pumping speed (> 10^5 liters/s) in a 150 m^3 vacuum chamber achieve performance measurements with the charge exchange mean-free-path greater than 1 m in the background neutral gas (pressure < 10-5 Torr). The thruster efficiency at 200 kW total power is 72 ± 9%, the ratio of effective jet power to input RF power, with an Isp = 4900 ± 300 seconds (flow velocity of 49 km/s), and an ion flux of 1.7 ± 0.1 x 10^21/s. The thrust increases steadily with power to 5.8 ± 0.4 N until the power is maximized and there is no indication of saturation. The plasma density near the device exit exceeds 10^18 m-3 with a power density over 5 MW/m^2. An extensive study of thruster performance, efficiency and thrust-to-power ratio, as a function of Ar propellant flow rate and ICH-to-helicon RF power ratio has been carried out over a total power range of 30 to 200 kW. Optimized throttling set points are determined. The experimental configuration and results of this study are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less
Liu, Yihang; Zhang, Wei; Zhu, Yujie; Luo, Yanting; Xu, Yunhua; Brown, Adam; Culver, James N; Lundgren, Cynthia A; Xu, Kang; Wang, Yuan; Wang, Chunsheng
2013-01-09
This work enables an elegant bottom-up solution to engineer 3D microbattery arrays as integral power sources for microelectronics. Thus, multilayers of functional materials were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors, so that optimum power and energy densities accompanied with excellent cycle-life could be achieved on a minimum footprint. The resultant microbattery based on self-aligned LiFePO(4) nanoforests of shell-core-shell structure, with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, delivers excellent energy density and stable cycling stability only rivaled by the best Li-ion batteries of conventional configurations, while providing rate performance per foot-print and on-site manufacturability unavailable from the latter. This approach could open a new avenue for microelectromechanical systems (MEMS) applications, which would significantly benefit from the concept that electrochemically active components be directly engineered and fabricated as an integral part of the integrated circuit (IC).
NASA Astrophysics Data System (ADS)
Bulgac, Aurel; Jin, Shi; Magierski, Piotr; Roche, Kenneth; Schunck, Nicolas; Stetcu, Ionel
2017-11-01
Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of fission dynamics in classically allowed regions of the collective potential energy surface, almost eighty years after its discovery in 1939 by Hahn and Strassmann [1]. The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT) [2-5] to superfluid fermion systems [6]. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Thus the conditions have been created to renounce phenomenological models and incomplete microscopic treatments with uncontrollable approximations and/or assumptions in the description of the complex dynamics of fission. Even though the available nuclear energy density functionals (NEDFs) are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments.
Active C4 Electrodes for Local Field Potential Recording Applications
Wang, Lu; Freedman, David; Sahin, Mesut; Ünlü, M. Selim; Knepper, Ronald
2016-01-01
Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 μm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 μVrms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 μW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented. PMID:26861324
[Intelligent watch system for health monitoring based on Bluetooth low energy technology].
Wang, Ji; Guo, Hailiang; Ren, Xiaoli
2017-08-01
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
NASA Astrophysics Data System (ADS)
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
NASA Astrophysics Data System (ADS)
Schmidt, Jonathan; Chen, Liming; Botti, Silvana; Marques, Miguel A. L.
2018-06-01
We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be ˜10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.
Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, L.W.; Carreras, B.A.; Maingi, R.
1997-09-01
To assess the effect of edge neutrals on the low to high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect, This parameter cannot be uniquely identified. For instance, it may be the radial decay length of the neutral profile or the charge exchange damping rate at about r/a {approx} 0.95. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.
Update on Development of SiC Multi-Chip Power Modules
NASA Technical Reports Server (NTRS)
Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto
2008-01-01
Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.
Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang
2018-06-01
In this study, the nitrogen oxide (NO x ) emission factors and total NO x emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro-Asian routes were calculated using both the probability density function of engine power levels and the NO x emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NO x emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NO x emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NO x emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO 2 ) emissions were increased by 1.76% because of slow steaming, the NO x emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NO x Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NO x emissions of international shipping inventory. The usage of operating power probability density function of diesel engines as the weighting factor and the NO x emission function obtained from test bed for calculating NO x emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NO x emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
On the apparent power law in CDM halo pseudo-phase space density profiles
NASA Astrophysics Data System (ADS)
Nadler, Ethan O.; Oh, S. Peng; Ji, Suoqing
2017-09-01
We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log-log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.
High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets
NASA Astrophysics Data System (ADS)
Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming
2017-10-01
A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
On the mass function of stars growing in a flocculent medium
NASA Astrophysics Data System (ADS)
Maschberger, Th.
2013-12-01
Stars form in regions of very inhomogeneous densities and may have chaotic orbital motions. This leads to a time variation of the accretion rate, which will spread the masses over some mass range. We investigate the mass distribution functions that arise from fluctuating accretion rates in non-linear accretion, ṁ ∝ mα. The distribution functions evolve in time and develop a power-law tail attached to a lognormal body, like in numerical simulations of star formation. Small fluctuations may be modelled by a Gaussian and develop a power-law tail ∝ m-α at the high-mass side for α > 1 and at the low-mass side for α < 1. Large fluctuations require that their distribution is strictly positive, for example, lognormal. For positive fluctuations the mass distribution function develops the power-law tail always at the high-mass hand side, independent of α larger or smaller than unity. Furthermore, we discuss Bondi-Hoyle accretion in a supersonically turbulent medium, the range of parameters for which non-linear stochastic growth could shape the stellar initial mass function, as well as the effects of a distribution of initial masses and growth times.
Coarse graining the distribution function of cold dark matter - II
NASA Astrophysics Data System (ADS)
Henriksen, R. N.
2004-12-01
We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the system by the infall of dwarf galaxies, galactic nuclei or black holes (e.g. Nakano & Makino), all of which would restart pure dynamical relaxation.
Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.
Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E
2016-04-26
Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality.
Packing microstructure and local density variations of experimental and computational pebble beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.
2012-07-01
In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less
Fabrication of boron sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1995-01-01
A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.
NASA Astrophysics Data System (ADS)
Chandler, Damon M.; Field, David J.
2007-04-01
Natural scenes, like most all natural data sets, show considerable redundancy. Although many forms of redundancy have been investigated (e.g., pixel distributions, power spectra, contour relationships, etc.), estimates of the true entropy of natural scenes have been largely considered intractable. We describe a technique for estimating the entropy and relative dimensionality of image patches based on a function we call the proximity distribution (a nearest-neighbor technique). The advantage of this function over simple statistics such as the power spectrum is that the proximity distribution is dependent on all forms of redundancy. We demonstrate that this function can be used to estimate the entropy (redundancy) of 3×3 patches of known entropy as well as 8×8 patches of Gaussian white noise, natural scenes, and noise with the same power spectrum as natural scenes. The techniques are based on assumptions regarding the intrinsic dimensionality of the data, and although the estimates depend on an extrapolation model for images larger than 3×3, we argue that this approach provides the best current estimates of the entropy and compressibility of natural-scene patches and that it provides insights into the efficiency of any coding strategy that aims to reduce redundancy. We show that the sample of 8×8 patches of natural scenes used in this study has less than half the entropy of 8×8 white noise and less than 60% of the entropy of noise with the same power spectrum. In addition, given a finite number of samples (<220) drawn randomly from the space of 8×8 patches, the subspace of 8×8 natural-scene patches shows a dimensionality that depends on the sampling density and that for low densities is significantly lower dimensional than the space of 8×8 patches of white noise and noise with the same power spectrum.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
2017-06-01
Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Image correlation and sampling study
NASA Technical Reports Server (NTRS)
Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.
1972-01-01
The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.
Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study
Castelnovo, Anna; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Boly, Melanie; Benca, Ruth M.
2016-01-01
Study Objectives: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Methods: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Results: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1–4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Conclusions: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. Citation: Castelnovo A, Riedner BA, Smith RF, Tononi G, Boly M, Benca RM. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. SLEEP 2016;39(10):1815–1825. PMID:27568805
A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP.
Russo, Johnny; Litz, Marc; Ray, William; Smith, Brenda; Moyers, Richard
2017-12-01
Energy dense power sources are critical to the development of compact, remote sensors for terrestrial and space applications. Nuclear batteries using β - -emitting radioisotopes possess energy densities 1000 times greater than chemical batteries. Their power generation is a function of β - flux saturation point relative to the planar (2D) configuration, β - range, and semiconductor converter. An approach to increase power density in a beta-photovoltaic (β-PV) nuclear battery is described. By using volumetric (3D) configuration, the radioisotope, nickel-63 ( 63 Ni) in a chloride solution was integrated in a phosphor film (ZnS:Cu,Al) where the β - energy is converted into optical energy. The optical energy was converted to electrical energy via an indium gallium phosphate (InGaP) photovoltaic (PV) cell, which was optimized for low light illumination and closely matched to radioluminescence (RL) spectrum. With 15mCi of 63 Ni activity, the 3D configuration energy values surpassed 2D configuration results. The highest total power conversion efficiency (η t ) of 3D configuration was 0.289% at 200µm compared 0.0638% for 2D configuration at 50µm. The highest electrical power and η t for the 3D configuration were 3.35 nW e /cm 2 at an activity of 30mCi and 0.289% at an activity of 15mCi, respectively. By using 3D configuration, the interaction space between the radioisotope source and scintillation material increased, allowing for significant electrical energy output, relative to the 2D configuration. These initial results represent a first step to increase nuclear battery power density from microwatts to milliwatts per 1000cm 3 with the implementation of higher energy β - sources. Published by Elsevier Ltd.
Characterization of zero-bias microwave diode power detectors at cryogenic temperature.
Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico
2016-08-01
We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature.
NASA Astrophysics Data System (ADS)
Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas
2016-09-01
A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.
Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li
2011-09-01
Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.
Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling-yu; University of Chinese Academy of Sciences, Beijing 100049; Zhao, Xiao-ying
A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contributionmore » to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases.« less
Damped and sub-damped Lyman-α absorbers in z > 4 QSOs
NASA Astrophysics Data System (ADS)
Guimarães, R.; Petitjean, P.; de Carvalho, R. R.; Djorgovski, S. G.; Noterdaeme, P.; Castro, S.; Poppe, P. C. Da R.; Aghaee, A.
2009-12-01
We present the results of a survey of damped (DLA, log~N(H i)>20.3) and sub-damped Lyman-α systems (19.5
Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized
NASA Technical Reports Server (NTRS)
1996-01-01
The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality, and 4-A turn-on and 150-V rectification. The high operating current was achieved despite severe device size limitations imposed by present-day SiC wafer defect densities. Further substantial increases in device performance can be expected when SiC wafer defect densities decrease as SiC wafer production technology matures.
NASA Astrophysics Data System (ADS)
Kapińska, A. D.; Uttley, P.; Kaiser, C. R.
2012-08-01
Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large-scale structure. We explore the intrinsic and extrinsic properties of the population of Fanaroff-Riley type II (FR II) objects, i.e. their kinetic luminosities, lifetimes and the central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux-limited radio catalogues of the Third Cambridge Revised Revised Catalogue (3CRR) and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The new Monte Carlo method we present here allows us to (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, as has not been done before, we allow the source physical properties (kinetic luminosities, lifetimes and central densities) to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1 + z)3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FR IIs with those determined from radiative luminosities of active galactic nuclei of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FR IIs at low redshifts, or a transition to a kinetically dominated, radiatively inefficient FR II population.
High power density yeast catalyzed microbial fuel cells
NASA Astrophysics Data System (ADS)
Ganguli, Rahul
Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.
Study of CdTe/CdS solar cell at low power density for low-illumination applications
NASA Astrophysics Data System (ADS)
Devi, Nisha; Aziz, Anver; Datta, Shouvik
2016-05-01
In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
Hayakawa, Daichi; Nishiyama, Yoshiharu; Mazeau, Karim; Ueda, Kazuyoshi
2017-09-08
Crystal models of cellulose Iβ and II, which contain various hydrogen bonding (HB) networks, were analyzed using density functional theory and Car-Parrinello molecular dynamics (CPMD) simulations. From the CPMD trajectories, the power spectra of the velocity correlation functions of hydroxyl groups involved in hydrogen bonds were calculated. For the Iβ allomorph, HB network A, which is dominant according to the neutron diffraction data, was stable, and the power spectrum represented the essential features of the experimental IR spectra. In contrast, network B, which is a minor structure, was unstable because its hydroxymethyl groups reoriented during the CPMD simulation, yielding a different crystal structure to that determined by experiments. For the II allomorph, a HB network A is proposed based on diffraction data, whereas molecular modeling identifies an alternative network B. Our simulations showed that the interaction energies of the cellulose II (B) model are slightly more favorable than model II(A). However, the evaluation of the free energy should be waited for the accurate determination from the energy point of view. For the IR calculation, cellulose II (B) model reproduces the spectra better than model II (A). Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake
Google is encouraging development of advanced photovoltaic inverters with high power density by holding a public competition and offering a prize for the best performing high power developed. NREL will perform the performance and validation for all inverters entered into the competition and provide results to Google.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3
NASA Astrophysics Data System (ADS)
Mignan, Arnaud
2018-03-01
The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.
Wireless sensor node for surface seawater density measurements.
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.
Wireless Sensor Node for Surface Seawater Density Measurements
Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto
2012-01-01
An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986
NASA Technical Reports Server (NTRS)
Roth, J. R.
1976-01-01
Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.
Plasma density limits for hole boring by intense laser pulses.
Iwata, Natsumi; Kojima, Sadaoki; Sentoku, Yasuhiko; Hata, Masayasu; Mima, Kunioki
2018-02-12
High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length.
NASA Astrophysics Data System (ADS)
Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.
2015-03-01
Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79
NASA Astrophysics Data System (ADS)
Mahant, A. K.; Rao, P. S.; Misra, S. C.
1994-07-01
In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
The interaction of mercury with halogenated graphene
NASA Astrophysics Data System (ADS)
Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer
2011-03-01
The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).
Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)
2000-01-01
Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v
On the probability distribution function of the mass surface density of molecular clouds. II.
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-11-01
The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The corresponding asymptote of the PDF of cylinders for the large q-1 is approximately given by Pcyl(Σ) ∝ Σ-4/3(1 - (Σ/Σ(0))2/3)-1/2. The distribution of overpressures q-1 produces a power-law asymptote at high mass surface densities given by
Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric
Phillips, Jonathan
2016-01-01
The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Anomalous symmetry breaking in classical two-dimensional diffusion of coherent atoms
NASA Astrophysics Data System (ADS)
Pugatch, Rami; Bhattacharyya, Dipankar; Amir, Ariel; Sagi, Yoav; Davidson, Nir
2014-03-01
The electromagnetically induced transparency (EIT) spectrum of atoms diffusing in and out of a narrow beam is measured and shown to manifest the two-dimensional δ-function anomaly in a classical setting. In the limit of small-area beams, the EIT line shape is independent of power, and equal to the renormalized local density of states of a free particle Hamiltonian. The measured spectra for different powers and beam sizes collapses to a single universal curve with a characteristic logarithmic Van Hove singularity close to resonance.
Power dependence of reflectivity of metallic films.
Yeh, Y C; Stafsudd, O M
1976-01-01
The reflectivity of vacuum-deposited gold films on quartz glass substrates was studied as a function of 10.6-microm radiation power density. A simple linear model of the temperature dependence of the absorptivity of the gold film is developed. This temperature dependence is coupled with a three-dimensional heat flow analysis and fits the experimental data well. The absorptivity alpha is written as alpha(0)(1 + betaT) and the values of alpha(0) and beta are determined, respectively, as (0.88 +/- 0.01) x 10(-2) and 12 x 10(-4)/ degrees C.
QCDNUM: Fast QCD evolution and convolution
NASA Astrophysics Data System (ADS)
Botje, M.
2011-02-01
The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline coefficients by solving (coupled) triangular matrix equations with a forward substitution algorithm. Fast computation of convolution integrals as weighted sums of spline coefficients, with weights derived from user-given convolution kernels. Restrictions: Accuracy and speed are determined by the density of the evolution grid. Running time: Less than 10 ms on a 2 GHz Intel Core 2 Duo processor to evolve the gluon density and 12 quark densities at next-to-next-to-leading order over a large kinematic range.
The density structure and star formation rate of non-isothermal polytropic turbulence
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Banerjee, Supratik
2015-04-01
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.
High Performance and Economic Supercapacitors for Energy Storage Based on Carbon Nanomaterials
NASA Astrophysics Data System (ADS)
Samuilov, Vladimir; Farshid, Behzad; Frenkel, Alexander; Sensor CAT at Stony Brook Team
2015-03-01
We designed and manufactured very inexpensive prototypes of supercapacitors for energy storage based on carbon nanomaterials comprised of: reduced graphene oxide (RGOs) and carbon nanotubes (CNTs) as electrodes filled with polymer gel electrolytes. The electrochemical properties of supercapacitors made using these materials were compared and analyzed. A significant tradeoff between the energy density and the power density was determined; RGO electrodes demonstrated the highest energy density, while composite RGO/CNT electrodes showed the highest power density. The thickness of the RGO electrode was varied to determine its effect on the power density of the supercapacitor and results showed that with decreasing electrode thickness power density would increase. The specific capacitances of over 600 F/g were observed.
Wang, Xingzhao; Yang, Bin; Liu, Jingquan; Zhu, Yanbo; Yang, Chunsheng; He, Qing
2016-01-01
This paper studied and realized a flexible nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT thin composite membrane, which worked under triboelectric and piezoelectric hybrid mechanisms. The P(VDF-TrFE) nanofibers as a piezoelectric functional layer and a triboelectric friction layer are formed by electrospinning process. In order to improve the performance of triboelectric nanogenerator, the multiwall carbon nanotubes (MWCNT) is doped into PDMS patterned films as the other flexible friction layer to increase the initial capacitance. The flexible nanogenerator is fabricated by low cost MEMS processes. Its output performance is characterized in detail and structural optimization is performed. The device’s output peak-peak voltage, power and power density under triboelectric mechanism are 25 V, 98.56 μW and 1.98 mW/cm3 under the pressure force of 5 N, respectively. The output peak-peak voltage, power and power density under piezoelectric working principle are 2.5 V, 9.74 μW, and 0.689 mW/cm3 under the same condition, respectively. We believe that the proposed flexible, biocompatible, lightweight, low cost nanogenerator will supply effective power energy sustainably for wearable devices in practical applications. PMID:27805065
A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source
NASA Astrophysics Data System (ADS)
Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.
2003-09-01
Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Linear response to long wavelength fluctuations using curvature simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldauf, Tobias; Zaldarriaga, Matias; Seljak, Uroš
2016-09-01
We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the responsemore » of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.« less
NASA Astrophysics Data System (ADS)
Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep
2015-12-01
The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w = 230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.
Lundahl, Jonas; Deacon, Steve; Maurice, Damien; Staner, Luc
2012-08-01
There is significant interest in the functional significance and the therapeutic value of slow-wave sleep (SWS)-enhancing drugs. A prerequisite for studies of the functional differences is characterization of the electroencephalography (EEG) spectra following treatment in relevant patients. We evaluate for the first time gaboxadol and zolpidem treatments in insomniac patients using power spectra analysis. We carried out two randomized, double-blind, crossover studies. Study 1, 38 patients received gaboxadol 10 mg and 20 mg and zolpidem 10 mg; study 2, 23 patients received gaboxadol 5 mg and 15 mg. Treatments were administered during two nights and compared with placebo. Gaboxadol 10, 15 and 20 mg enhanced slow-wave activity (SWA) and theta power. In 1 Hz bins gaboxadol 10 and 20 mg enhanced power up to 9 Hz. In study 2, 15 mg gaboxadol showed a similar effect pattern. Zolpidem suppressed theta and alpha power, and increased sigma power, with no effect on SWA. In the 1 Hz bins zolpidem suppressed power between 5-10 Hz. Gaboxadol dose-dependently increased SWA and theta power in insomniac patients. In contrast, zolpidem did not affect SWA, reduced theta and alpha activity and enhanced sigma power. EEG spectral power differences may be consequences of the different mechanisms of action for zolpidem and the SWS-enhancing agent, gaboxadol.
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M
2006-04-15
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... power densities. The co-located customer may obtain a half cabinet, a low density cabinet, a medium density cabinet, a medium-high density cabinet and a high density cabinet.\\3\\ Each cabinet may vary in... by choosing a combination of lower power density cabinets. However, the Exchange is providing a...
Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells
NASA Astrophysics Data System (ADS)
Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata
2016-06-01
Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.
Shin, Sung-Ho; Bae, Young Eun; Moon, Hyun Kyung; Kim, Jungkil; Choi, Suk-Ho; Kim, Yongho; Yoon, Hyo Jae; Lee, Min Hyung; Nah, Junghyo
2017-06-27
Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.
Energy storage options for space power
NASA Astrophysics Data System (ADS)
Hoffman, H. W.; Martin, J. F.; Olszewski, M.
Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels are assessed; the results obtained suggest that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 kJ/kg to 2000 kJ/kg at temperatures to 1675 K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (about 500 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.
HP2 survey. III. The California Molecular Cloud: A sleeping giant revisited
NASA Astrophysics Data System (ADS)
Lada, Charles J.; Lewis, John A.; Lombardi, Marco; Alves, João
2017-10-01
We present new high resolution and dynamic range dust column density and temperature maps of the California Molecular Cloud derived from a combination of Planck and Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. We used these data to determine the ratio of the 2.2 μm extinction coefficient to the 850 μm opacity and found the value to be close to that found in similar studies of the Orion B and Perseus clouds but higher than that characterizing the Orion A cloud, indicating that variations in the fundamental optical properties of dust may exist between local clouds. We show that over a wide range of extinction, the column density probability distribution function (pdf) of the cloud can be well described by a simple power law (I.e., PDFN ∝ AK -n) with an index (n = 4.0 ± 0.1) that represents a steeper decline with AK than found (n ≈ 3) in similar studies of the Orion and Perseus clouds. Using only the protostellar population of the cloud and our extinction maps we investigate the Schmidt relation, that is, the relation between the protostellar surface density, Σ∗, and extinction, AK, within the cloud. We show that Σ∗ is directly proportional to the ratio of the protostellar and cloud pdfs, I.e., PDF∗(AK)/PDFN(AK). We use the cumulative distribution of protostars to infer the functional forms for both Σ∗ and PDF∗. We find that Σ∗ is best described by two power-law functions. At extinctions AK ≲ 2.5 mag, Σ∗ ∝ AK β with β = 3.3 while at higher extinctions β = 2.5, both values steeper than those (≈2) found in other local giant molecular clouds (GMCs). We find that PDF∗ is a declining function of extinction also best described by two power-laws whose behavior mirrors that of Σ∗. Our observations suggest that variations both in the slope of the Schmidt relation and in the sizes of the protostellar populations between GMCs are largely driven by variations in the slope, n, of PDFN(AK). This confirms earlier studies suggesting that cloud structure plays a major role in setting the global star formation rates in GMCs HP2 (Herschel-Planck-2MASS) survey is a continuation of the series originally entitled "Herschel-Planck dust opacity and column density maps" (Lombardi et al. 2014, Zari et al. 2016).The reduced Herschel and Planck map and the column density and temperature maps are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A100
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
A circular dichroism and structural study of the inclusion complex artemisinin-β-cyclodextrin
NASA Astrophysics Data System (ADS)
Marconi, Giancarlo; Monti, Sandra; Manoli, Francesco; Degli Esposti, Alessandra; Mayer, Bernd
2004-01-01
The inclusion complex between the powerful antimalarial agent Artemisinin and β-cyclodextrin has been studied by means of Circular Dichroism and elucidated by Density Functional Theory calculations on the isolated molecule combined to a statistical Monte Carlo search of the most stable geometry of the complex. The results evidence a host-guest structure in full agreement with the almost unaffected functionality of the drug, which is found to experience a significant hydrophilic environment when complexed.
The journey from forensic to predictive materials science using density functional theory
Schultz, Peter A.
2017-09-12
Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.
The journey from forensic to predictive materials science using density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.
Natural occupation numbers in two-electron quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Mustafa, Gulgun; Kursat, Fidanci Muzaffer; Ahmet, Tas; Alparslan, Genc Fatih; Omer, Gunes; Sertoglu, Erdem; Erkan, Sarı; Ediz, Yesilkaya; Turker, Turker; Ayhan, Kılıc
Childhood obesity is a worldwide health concern. Studies have shown autonomic dysfunction in obese children. The exact mechanism of this dysfunction is still unknown. The aim of this study was to assess the relationship between erythrocyte membrane fatty acid (EMFA) levels and cardiac autonomic function in obese children using heart rate variability (HRV). A total of 48 obese and 32 healthy children were included in this case-control study. Anthropometric and biochemical data, HRV indices, and EMFA levels in both groups were compared statistically. HRV parameters including standard deviation of normal-to-normal R-R intervals (NN), root mean square of successive differences, the number of pairs of successive NNs that differ by >50 ms (NN50), the proportion of NN50 divided by the total number of NNs, high-frequency power, and low-frequency power were lower in obese children compared to controls, implying parasympathetic impairment. Eicosapentaenoic acid and docosahexaenoic acid levels were lower in the obese group (p<0.001 and p=0.012, respectively). In correlation analysis, in the obese group, body mass index standard deviation and linoleic acid, arachidonic acid, triglycerides, and high-density lipoprotein levels showed a linear correlation with one or more HRV parameter, and age, eicosapentaenoic acid, and systolic and diastolic blood pressure correlated with mean heart rate. In linear regression analysis, age, dihomo-gamma-linolenic acid, linoleic acid, arachidonic acid, body mass index standard deviation, systolic blood pressure, triglycerides, low-density lipoprotein and high-density lipoprotein were related to HRV parameters, implying an effect on cardiac autonomic function. There is impairment of cardiac autonomic function in obese children. It appears that levels of EMFAs such as linoleic acid, arachidonic acid and dihomo-gamma-linolenic acid play a role in the regulation of cardiac autonomic function in obese children. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.
SiC Multi-Chip Power Modules as Power-System Building Blocks
NASA Technical Reports Server (NTRS)
Lostetter, Alexander; Franks, Steven
2007-01-01
The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. Several prototype DC-to-DC power-converter modules containing SiC power-switching devices were designed and built to demonstrate the feasibility of the SiC MCPM concept. In anticipation of a future need for operation at high temperature, the circuitry in the modules includes high-temperature inductors and capacitors. These modules were designed to be stacked to construct a system of four modules electrically connected in series and/or parallel. The packaging of the modules is designed to satisfy requirements for series and parallel interconnection among modules, high power density, high thermal efficiency, small size, and light weight. Each module includes four output power connectors two for serial and two for parallel output power connections among the modules. Each module also includes two signal connectors, electrically isolated from the power connectors, that afford four zones for signal interconnections among the SOI controllers. Finally, each module includes two input power connectors, through which it receives power from an in-line power bus. This design feature is included in anticipation of a custom-designed power bus incorporating sockets compatible with snap-on type connectors to enable rapid replacement of failed modules.
High density operation for reactor-relevant power exhaust
NASA Astrophysics Data System (ADS)
Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors
2015-08-01
With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
NASA Astrophysics Data System (ADS)
White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.
2017-01-01
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.
White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A
2017-01-28
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
NASA Astrophysics Data System (ADS)
Rahman, Gul; Rahman, Altaf Ur
2017-12-01
Thermoelectric properties of cubic (C) and tetragonal (T) BaTiO3 (BTO) and PbTiO3 (PTO) are investigated using density functional theory together with semiclassical Boltzmann's transport theory. Both electron and hole doped BTO and PTO are considered in 300-500 K temperature range. We observed that C-BTO has larger power factor(PF) when doped with holes, whereas n-type carrier concentration in C-PTO has larger PF. Comparing both BTO and PTO, C-PTO has larger figure of merit ZT. Tetragonal distortion reduces the Seebeck coefficient S in n-doped PTO, and the electronic structures revealed that such reduction in S is mainly caused by the increase in the optical band gaps (Γ - Γ and Γ-X).
Forecasting seeing and parameters of long-exposure images by means of ARIMA
NASA Astrophysics Data System (ADS)
Kornilov, Matwey V.
2016-02-01
Atmospheric turbulence is the one of the major limiting factors for ground-based astronomical observations. In this paper, the problem of short-term forecasting seeing is discussed. The real data that were obtained by atmospheric optical turbulence (OT) measurements above Mount Shatdzhatmaz in 2007-2013 have been analysed. Linear auto-regressive integrated moving average (ARIMA) models are used for the forecasting. A new procedure for forecasting the image characteristics of direct astronomical observations (central image intensity, full width at half maximum, radius encircling 80 % of the energy) has been proposed. Probability density functions of the forecast of these quantities are 1.5-2 times thinner than the respective unconditional probability density functions. Overall, this study found that the described technique could adequately describe temporal stochastic variations of the OT power.
He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana
2017-09-07
Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low-resistance ion exchange membranes (0.5 Ω cm(2)) at very small spacing intervals (50 μm).
Combined temperature and density series for fluid-phase properties. I. Square-well spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, J. Richard; Schultz, Andrew J.; Kofke, David A.
Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B{sub 2}(β) η + B{sub 3}(β) η{sup 2} + B{sub 4}(β) η{sup 3} + ⋯, where Z is the compressibility factor, η is the packing fraction, and the B{sub i}(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the B{sub i} coefficients can be expressed in closed form asmore » a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the B{sub i} coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.« less
NASA Astrophysics Data System (ADS)
Chen, Zhen; Wei, Zhengying; Wei, Pei; Chen, Shenggui; Lu, Bingheng; Du, Jun; Li, Junfeng; Zhang, Shuzhe
2017-12-01
In this work, a set of experiments was designed to investigate the effect of process parameters on the relative density of the AlSi10Mg parts manufactured by SLM. The influence of laser scan speed v, laser power P and hatch space H, which were considered as the dominant parameters, on the powder melting and densification behavior was also studied experimentally. In addition, the laser energy density was introduced to evaluate the combined effect of the above dominant parameters, so as to control the SLM process integrally. As a result, a high relative density (> 97%) was obtained by SLM at an optimized laser energy density of 3.5-5.5 J/mm2. Moreover, a parameter-densification map was established to visually select the optimum process parameters for the SLM-processed AlSi10Mg parts with elevated density and required mechanical properties. The results provide an important experimental guidance for obtaining AlSi10Mg components with full density and gradient functional porosity by SLM.
The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.
Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan
2016-04-13
We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.
Galaxy halo expansions: a new biorthogonal family of potential-density pairs
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis
2018-05-01
Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig; Pavanello, Michele
2012-05-21
Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations.more » In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.« less
Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.
Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti
2017-11-08
A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.
Design criteria for noncoherent Gaussian channels with MFSK signaling and coding
NASA Technical Reports Server (NTRS)
Butman, S. A.; Levitt, B. K.; Bar-David, I.; Lyon, R. F.; Klass, M. J.
1976-01-01
This paper presents data and criteria to assess and guide the design of modems for coded noncoherent communication systems subject to practical system constraints of power, bandwidth, noise spectral density, coherence time, and number of orthogonal signals M. Three basic receiver types are analyzed for the noncoherent multifrequency-shift keying (MFSK) additive white Gaussian noise channel: hard decision, unquantized (optimum), and quantized (soft decision). Channel capacity and computational cutoff rate are computed for each type and presented as functions of the predetection signal-to-noise ratio and the number of orthogonal signals. This relates the channel constraints of power, bandwidth, coherence time, and noise power to the optimum choice of signal duration and signal number.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.
1996-01-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.L.; Herren, K.; Hayden, M.
1996-03-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
Hierarchy of forward-backward stochastic Schrödinger equation
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2016-07-01
Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.
Fabrication of boron sputter targets
Makowiecki, D.M.; McKernan, M.A.
1995-02-28
A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.
SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less
The local work function: Concept and implications
NASA Astrophysics Data System (ADS)
Wandelt, K.
1997-02-01
The term 'local work function' is now widely applied. The present work discusses the common physical basis of 'photoemission of adsorbed xenon (PAX)' and 'two-photon photonemissionspectroscopy of image potential states' as local work function probes. New examples with bimetallic and defective surfaces are presented which demonstrate the capability of PAX measurements for the characterization of heterogeneous surfaces on an atomic scale. Finally, implications of the existence of short-range variations of the surface potential at surface steps are addressed. In particular, dynamical work function change measurements are a sensitive probe for the step-density at surfaces and, as such, a powerful in-situ method to monitor film growth.
Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems
NASA Astrophysics Data System (ADS)
Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.
1983-01-01
The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.
Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae
2017-12-01
Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.
Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts.
Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung
2017-03-01
This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P <0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.
Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok
2017-01-01
This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363
Development of a PEMFC Power System with Integrated Balance of Plant
NASA Technical Reports Server (NTRS)
Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.
2012-01-01
Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Universal fermionic spectral functions from string theory.
Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel
2011-12-09
We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.
Study of CdTe/CdS solar cell at low power density for low-illumination applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devi, Nisha, E-mail: nishatanwer1989@gmail.com; Aziz, Anver, E-mail: aaziz@jmi.ac.in; Datta, Shouvik
In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cellmore » at very low incident power, which gives good efficiency.« less
High current density sheet-like electron beam generator
NASA Astrophysics Data System (ADS)
Chow-Miller, Cora; Korevaar, Eric; Schuster, John
Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.
NASA Astrophysics Data System (ADS)
Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June
2018-03-01
A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.
Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.
Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri
2016-09-01
Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.
High power density dc/dc converter: Component selection and design
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1989-01-01
Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.
All 2D materials as electrodes for high power hybrid energy storage applications
NASA Astrophysics Data System (ADS)
Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.
2018-04-01
Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Emily A
2013-02-02
Kohn-Sham density functional theory (DFT) is a powerful, well-established tool for the study of condensed phase electronic structure. However, there are still a number of situations where its applicability is limited. The basic theme of our research is the development of first principles electronic structure approaches for condensed matter that goes beyond what can currently be done with standard implementations ofKohn-Sham DFT. Our efforts to this end have focused on two classes or' methods. The first addresses the well-lmown inability of DFT to handle strong, many-body electron correlation effects. Our approach is a DFT -based embedding theory, to treat localizedmore » features (e.g. impurity, adsorbate, vacancy, etc.) embedded in a periodic, metallic crystal. A description for the embedded region is provided by explicitly correlated, ab initio wave function methods. DFT, as a fo1n1ally ground state theory, does not give a good description of excited states; an additional feature of our approach is the ability to obtain excitations localized in this region. We apply our method to a first-principles study of the adsorption of a single magnetic Co ada tom on non-magnetic Cu( 111 ), a known Kondo system whose behavior is governed by strong electron correlation. The second class of methods that we are developing is an orbital-free density functional theory (OFDFT), which addresses the speed limitations ofKohn-Sham DFT. OFDFT is a powerful, O(N) scaling method for electronic structure calculations. Unlike Kohn-Sham DFT, OFDFT goes back to the original Hohenberg-Kohn idea of directly optimizing an energy functional which is an explicit functional of the density, without invoking an orbital description. This eliminates the need to manipulate orbitals, which leads to O(N{sup 3}) scaling in the Kahn-Sham approach. The speed of OFDFT allows direct electronic structure calculations on large systems on the order of thousands to tens of thousands of atoms, an expensive feat within Kohn-Sham. Due to our incomplete knowledge of the exact, universal energy density functional, this speedup comes at the cost of some accuracy with respect to Kohn-Sham methods. However, OFDFT has been shown to be remarkably accurate with respect to Kohn-Sham when used in the study of nearly-free-electron-like metals, e.g., AI, for which good density functionals have been derived. Examples of past applications of OFDFT include the prediction of properties of bulk crystals, surfaces, vacancies, vacancy clusters, nanoclusters, and dislocations, as well as OFDFT -based multiscale simulations of nanoindentation in AI and Al-Mg alloys.« less
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.
2005-01-01
Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.
Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent
2016-12-01
Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2 m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.
NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl
2005-01-01
Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.
Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.
A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less
Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation
Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...
2016-10-12
A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less
Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.
Leibovich, N; Dechant, A; Lutz, E; Barkai, E
2016-11-01
The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.
1976-01-01
An analysis of one and multidegree of freedom systems with classical damping is presented. Definition and minimization of error functions for each system are discussed. Systems with classical and nonclassical normal modes are studied, and results for first order perturbation are given. An alternative method of matching power spectral densities is provided, and numerical results are reviewed.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Probing features in the primordial perturbation spectrum with large-scale structure data
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Shafieloo, Arman; Hazra, Dhiraj Kumar; Smoot, George F.; Starobinsky, Alexei A.
2018-06-01
The form of the primordial power spectrum (PPS) of cosmological scalar (matter density) perturbations is not yet constrained satisfactorily in spite of the tremendous amount of information from the Cosmic Microwave Background (CMB) data. While a smooth power-law-like form of the PPS is consistent with the CMB data, some PPSs with small non-smooth features at large scales can also fit the CMB temperature and polarization data with similar statistical evidence. Future CMB surveys cannot help distinguish all such models due to the cosmic variance at large angular scales. In this paper, we study how well we can differentiate between such featured forms of the PPS not otherwise distinguishable using CMB data. We ran 15 N-body DESI-like simulations of these models to explore this approach. Showing that statistics such as the halo mass function and the two-point correlation function are not able to distinguish these models in a DESI-like survey, we advocate to avoid reducing the dimensionality of the problem by demonstrating that the use of a simple three-dimensional count-in-cell density field can be much more effective for the purpose of model distinction.
Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization
Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.
2014-01-01
Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
Code of Federal Regulations, 2012 CFR
2012-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
Code of Federal Regulations, 2010 CFR
2010-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
Code of Federal Regulations, 2011 CFR
2011-10-01
... following: (1) Single-entry validation equivalent power flux-density, in the space-to-Earth direction, (EPFD down) limits. (i) Provide a set of power flux-density (pfd) masks, on the surface of the Earth, for... section. (2) Single-entry validation equivalent power flux-density, in the Earth-to-space direction, EPFD...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jonathan J.; Tsao, Jeffrey Y.; Sizov, Dmitry S.
Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission,more » can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.« less
Nano-Magnets and Additive Manufacturing for Electric Motors
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2014-01-01
High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.
Yamanishi, Yoko; Sakuma, Shinya; Onda, Kazuhisa; Arai, Fumihito
2010-08-01
This paper describes a novel powerful noncontact actuation of a magnetically driven microtool (MMT), achieved by magnetization of the MMT and focusing of the magnetic field in a microfluidic chip for particle sorting. The following are the highlights of this study: (1) an MMT was successfully fabricated from a mixture of neodymium powder and polydimethylsiloxane; the MMT was magnetized such that it acted as an elastic micromagnet with a magnetic flux density that increased by about 100 times after magnetization, and (2) a pair of sharp magnetic needles was fabricated adjacent to a microchannel in a chip by electroplating, in order to focus the magnetic flux density generated by the electromagnetic coils below the biochip; these needles contribute to miniaturization of an actuation module that would enable the integration of multiple functions in the limited area of a chip. FEM analysis of the magnetic flux density around the MMT showed that the magnetic flux density in the setup with the magnetic needles was around 8 times better than that in the setup without the needles. By magnetization, the drive frequency of the MMT improved by about 10 times--from 18 Hz to 180 Hz. We successfully demonstrated the separation of copolymer beads of a particular size in a chip by image sensing.
Generalized fish life-cycle poplulation model and computer program
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, D. L.; Van Winkle, W.; Christensen, S. W.
1978-03-01
A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexuallymore » mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition.« less
Weld defect identification in friction stir welding using power spectral density
NASA Astrophysics Data System (ADS)
Das, Bipul; Pal, Sukhomay; Bag, Swarup
2018-04-01
Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L
Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electricmore » vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L
Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electricmore » vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .« less
Bio-Nanobattery Development and Characterization
NASA Technical Reports Server (NTRS)
King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.
2005-01-01
A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.
High volumetric power density, non-enzymatic, glucose fuel cells.
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.
High volumetric power density, non-enzymatic, glucose fuel cells
Oncescu, Vlad; Erickson, David
2013-01-01
The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576
NASA Astrophysics Data System (ADS)
Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping
2012-10-01
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.
NASA Astrophysics Data System (ADS)
Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.
2016-05-01
Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.
NASA Astrophysics Data System (ADS)
Marzari, Nicola
The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.
NASA Astrophysics Data System (ADS)
Kamran Sami, Syed; Siddiqui, Saqib; Tajmeel Feroze, Muhammad; Chung, Chan-Hwa
2017-11-01
To pursue high-performance energy storage devices with both high energy density and power density, one-dimensional (1D) nanostructures play a key role in the development of functional devices including energy conversion, energy storage, and environmental devices. The polyacrylonitrile (PAN) nanofibers were obtained by the versatile electrospinning method. An ultra-thin nickel-cobalt sulfide (NiCoS) layer was conformably electrodeposited on a self-standing PAN nanofibers by cyclic voltammetry to fabricate the light-weighted porous electrodes for supercapacitors. The porous web of PAN nanofibers acts as a high-surface-area scaffold with significant electrochemical performance, while the electrodeposition of metal sulfide nanosheet further enhances the specific capacitance. The fabricated NiCoS on PAN (NiCoS/PAN) nanofibers exhibits a very high capacitance of 1513 F g-1 at 5 A g-1 in 1 M potassium chloride (KCl) aqueous electrolyte with superior rate capability and excellent electrochemical stability as a hybrid electrode. The high capacitance of the NiCoS is attributed to the large surface area of the electrospun PAN nanofibers scaffold, which has offered a large number of active sites for possible redox reaction of ultra-thin NiCoS layer. Benefiting from the compositional features and electrode architectures, the hybrid electrode of NiCoS/PAN nanofibers shows greatly improved electrochemical performance with an ultra-high capacitance (1124 F g-1 at 50 A g-1). Moreover, a binder-free asymmetric supercapacitor device is also fabricated by using NiCoS/PAN nanofibers as the positive electrode and activated carbon (MSP-20) on PAN nanofibers as the negative electrode; this demonstrates high energy density of 56.904 W h kg-1 at a power density of 1.445 kW kg-1, and it still delivers the energy density of 33.3923 W h kg-1 even at higher power density of 16.5013 kW kg-1.
Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen; Liu, Yilu
2016-07-01
This paper presents a novel energy-harvesting model which takes the primary current, secondary turns, dimension, the magnitude of magnetic flux density B, and the core loss resistance into consideration systematically. The relationship among the potential maximum output power, the dimension of energy harvesting coil (EHC), the load type of EHC, and the secondary turns is predicted by theoretical analysis and further verified by experiments. A high power density harvester is also developed and tested. It is shown that the power density of this novel harvester is 0.7 mW/g at 10 A, which is more than 2 times powerful than the traditional ones. Hence, it could lighten the half weight of the harvester at the same conditions.
Dynamic kinetic energy potential for orbital-free density functional theory.
Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang
2011-04-14
A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, B; Barkley, A; Cole, Z
2014-05-01
This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and themore » system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.« less
NASA Astrophysics Data System (ADS)
Peng, Lin; Liang, Yeru; Dong, Hanwu; Hu, Hang; Zhao, Xiao; Cai, Yijing; Xiao, Yong; Liu, Yingliang; Zheng, Mingtao
2018-02-01
The synthesis and energy storage application of hierarchical porous carbons with size ranging from nano-to micrometres has attracted considerable attention all over the world. Exploring eco-friendly and reliable synthesis of hierarchical porous carbons for supercapacitors with high energy density and high power is still of ongoing challenge. In this work, we report the design and synthesis of super-hierarchical porous carbons with highly developed porosity by a stepwise removal strategy for high-rate supercapacitors. The mixed biomass wastes of coconut shell and sewage sludge are employed as raw material. The as-prepared super-hierarchical porous carbons present high surface areas (3003 m2 g-1), large pore volume (2.04 cm3 g-1), appropriate porosity, and outstanding electrochemical performance. The dependence of electrochemical performance on structural, textural, and functional properties of carbons engineered by various synthesis strategies is investigated in detail. Moreover, the as-assembled symmetrical supercapacitor exhibits high energy density of 25.4 Wh kg-1 at a power density of 225 W kg-1 and retains 20.7 Wh kg-1 even at a very high power of 9000 W kg-1. This work provides an environmentally benign strategy and new insights to efficiently regulate the porosity of hierarchical porous carbons derived from biomass wastes for energy storage applications.
Selectivity of Direct Methanol Fuel Cell Membranes.
Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo
2015-11-24
Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).
Selectivity of Direct Methanol Fuel Cell Membranes
Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo
2015-01-01
Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582
Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, M. J.; Dawson, P.; Hammersley, S.
We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar,more » and is a function, specifically, of carrier density.« less
The distribution of interstellar dust in the solar neighborhood
NASA Technical Reports Server (NTRS)
Gaustad, John E.; Van Buren, Dave
1993-01-01
We surveyed the IRAS data base at the positions of the 1808 O6-B9.5 stars in The Bright Star Catalog for extended objects with excess emission at 60 microns, indicating the presence of interstellar dust at the location of the star. Within 400 pc the filling factor of the interstellar medium, for dust clouds with a density greater than 0.5/cu cm is 14.6 + or - 2.4%. Above a density of 1.0/cu cm, the density distribution function appears to follow a power law index - 1.25. When the dust clouds are mapped onto the galactic plane, the sun appears to be located in a low-density region of the interstellar medium of width about 60 pc extending at least 500 pc in the direction of longitudes 80 deg - 260 deg, a feature we call the 'local trough'.
Patel, Malkeshkumar; Kim, Joondong
2017-12-01
In this data article, the excitonic ZnO/NiO heterojunction device (Patel et al., 2017) [1] was measured for the integrated photocurrent density and reproducibility. Photograph of the prepared devices of ZnO/NiO on the FTO/glass is presented. Integrated photocurrent density as a function of photon energy from the sunlight is presented. Quantum efficiency measurement system (McScienceK3100, Korea) compliance with International Measurement System was employed to measure ZnO/NIO devices. These data are shown for the 300-440 nm of segment of the sunlight (AM1.5G, http://rredc.nrel.gov/solar/spectra/am1.5/). Reproducibility measure of ZnO/NiO device was presented for nine devices with the estimated device performance parameters including the open circuit voltage, short circuit current density, fill factor and power conversion efficiency.
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
Measurements of uranium mass confined in high density plasmas
NASA Technical Reports Server (NTRS)
Stoeffler, R. C.
1976-01-01
An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.
Taylor's law and body size in exploited marine ecosystems.
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-12-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.
Taylor's law and body size in exploited marine ecosystems
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-01-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181
De Jager, Nathan R.; Rohweder, Jason J.
2011-01-01
Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale analyses, (2) allows for comparisons of the amount of forest habitat available to species with different habitat density and scale requirements, and (3) can be used as an index of the spatial continuity of habitat types that do not scale fractally.
A state-of-the-art compact SiC photovoltaic inverter with maximum power point tracking function
NASA Astrophysics Data System (ADS)
Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Ushijima, Kazufumi; Matsuo, Hiroshi; Murozono, Mikio
2018-01-01
We have developed a 150-W SiC-based photovoltaic (PV)-inverter with the maximum power point tracking (MPPT) function. The newly developed inverter achieved a state-of-the-art combination of the weight (0.79 kg) and the volume (790 mm3) as a 150-250 W class PV-inverter. As compared to the original version that we have previously reported, the weight and volume were decreased by 37% and 38%, respectively. This compactness originated from the optimized circuit structure and the increased density of a wiring circuit. Conversion efficiencies of the MPPT charge controller and the direct current (DC)-alternating current (AC) converter reached 96.4% and 87.6%, respectively. These efficiency values are comparable to those for the original version. We have developed a PV power generation system consisting of this inverter, a spherical Si solar cell module, and a 15-V Li-ion laminated battery. The total weight of the system was below 6 kg. The developed system exhibited stable output power characteristics, even when the weather conditions were fluctuated. These compactness, high efficiencies, and excellent stability clearly indicated the feasibility of SiC power devices even for sub-kW class PV power generation systems.
Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.
Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F
2016-01-01
Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.
High Temperature Polymers for use in Fuel Cells
NASA Technical Reports Server (NTRS)
Peplowski, Katherine M.
2004-01-01
NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Ding, B. J., E-mail: bjding@ipp.ac.cn; Li, M. H.
2014-02-15
The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of themore » density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.« less
Oh, Sang-Eun; Logan, Bruce E
2006-03-01
Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A (PEM)=3.5, 6.2, or 30.6 cm(2)). For a fixed anode and cathode surface area (A (An)=A (Cat)=22.5 cm(2)), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m(2) (A (PEM)=3.5 cm(2)), 68 mW/m(2) (A (PEM)=6.2 cm(2)), and 190 mW/m(2) (A (PEM)=30.6 cm(2)). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A (Cat)=A(PEM)=2A (An), the maximum power densities of the three different MFCs, based on the surface area of the PEM (A (PEM)=3.5, 6.2, or 30.6 cm(2)), were the same (168+/-4.53 mW/m(2)). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.
High-power-density, high-energy-density fluorinated graphene for primary lithium batteries
NASA Astrophysics Data System (ADS)
Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong
2018-03-01
Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.
Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla
2017-08-01
Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.
Extragalactic High-energy Transients: Event Rate Densities and Luminosity Functions
NASA Astrophysics Data System (ADS)
Sun, Hui; Zhang, Bing; Li, Zhuo
2015-10-01
Several types of extragalactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (GLFs; ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients and derive the local specific event rate density, which also represents its GLF. Long GRBs (LGRBs) have a large enough sample to reveal features in the GLF, which is best charaterized as a triple power law (PL). All the other transients are consistent with having a single-power-law (SPL) LF. The total event rate density depends on the minimum luminosity, and we obtain the following values in units of Gpc-3 yr-1: {0.8}-0.1+0.1 for high-luminosity LGRBs above 1050 erg s-1 {164}-65+98 for low-luminosity LGRBs above 5 × 1046 erg s-1 {1.3}-0.3+0.4, {1.2}-0.3+0.4, and {3.3}-0.8+1.0 above 1050 erg s-1 for short GRBs with three different merger delay models (Gaussian, lognormal, and PL); {1.9}-1.2+2.4× {10}4 above 1044 erg s-1 for SBOs, {4.8}-2.1+3.2× {10}2 for normal TDEs above 1044 erg s-1 and {0.03}-0.02+0.04 above 1048 erg s-1 for TDE jets as discovered by Swift. Intriguingly, the GLFs of different kinds of transients, which cover over 12 orders of magnitude, are consistent with an SPL with an index of -1.6.
2MASS wide-field extinction maps. V. Corona Australis
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2014-05-01
We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18
The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
2005-01-01
The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... label. (e) For engines requiring ULSD, create a separate label with the statement: “ULTRA LOW SULFUR... power (in kW), and power density (in kW/L) as needed to determine the emission standards for the engine family. You may specify displacement, maximum engine power, or power density as a range consistent with...
Fractional Brownian motion with a reflecting wall
NASA Astrophysics Data System (ADS)
Wada, Alexander H. O.; Vojta, Thomas
2018-02-01
Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
SHJAR Jet Noise Data and Power Spectral Laws
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.
An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery.
Burrola, Samantha; Gonzalez-Guerrero, Maria Jose; Avoundjian, Ani; Gomez, Frank A
2018-05-29
In this paper, an alkaline Nickel Oxide Hydroxide/Zinc (NiOOH/Zn) battery featuring a cellulose matrix separator between electrodes is presented. The metallic electrodes and the paper separator are inserted in a layer-by-layer (LbL) assembly that provides mechanical stability to the system resulting in a lightweight and easy-to-use device. The battery was optimized for the amount of NiOOH-ink used at the cathode (11.1 mg/cm 2 ) and thickness of the paper membrane separating the electrodes (360 μm). The battery was able to function using a small volume (75 μL) of 1.5 M potassium hydroxide (KOH) producing a maximum voltage, current density and power density of 1.35 ± 0.05 V, 10.62 ± 0.57 mA/cm², and 0.56 ± 0.01 mW/cm², respectively. The system displayed a maximum current of 23.9 mA and a maximum power of 1.26 mW. Moreover, four batteries connected in series were able to power a small flameless candle for approximately 22 minutes. This work has potential in fulfilling the demands for short-term and lightweight power supplies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays
NASA Technical Reports Server (NTRS)
Brown, W. C.
1980-01-01
The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.
Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.
He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng
2016-11-29
Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.
Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb
He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng
2016-01-01
Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743
Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction.
El Gammal, Zaynab H; Zaher, Amr M; El-Badri, Nagwa
2017-09-01
Cardiovascular disease is the leading cause of death worldwide. Although cardiac transplantation is considered the most effective therapy for end-stage cardiac diseases, it is limited by the availability of matching donors and the complications of the immune suppressive regimen used to prevent graft rejection. Application of stem cell therapy in experimental animal models was shown to reverse cardiac remodeling, attenuate cardiac fibrosis, improve heart functions, and stimulate angiogenesis. The efficacy of stem cell therapy can be amplified by low-level laser radiation. It is well established that the bio-stimulatory effect of low-level laser is influenced by the following parameters: wavelength, power density, duration, energy density, delivery time, and the type of irradiated target. In this review, we evaluate the available experimental data on treatment of myocardial infarction using low-level laser. Eligible papers were characterized as in vivo experimental studies that evaluated the use of low-level laser therapy on stem cells in order to attenuate myocardial infarction. The following descriptors were used separately and in combination: laser therapy, low-level laser, low-power laser, stem cell, and myocardial infarction. The assessed low-level laser parameters were wavelength (635-804 nm), power density (6-50 mW/cm 2 ), duration (20-150 s), energy density (0.96-1 J/cm 2 ), delivery time (20 min-3 weeks after myocardial infarction), and the type of irradiated target (bone marrow or in vitro-cultured bone marrow mesenchymal stem cells). The analysis focused on the cardioprotective effect of this form of therapy, the attenuation of scar tissue, and the enhancement of angiogenesis as primary targets. Other effects such as cell survival, cell differentiation, and homing are also included. Among the evaluated protocols using different parameters, the best outcome for treating myocardial infarction was achieved by treating the bone marrow by one dose of low-level laser with 804 nm wavelength and 1 J/cm 2 energy density within 4 h of the infarction. This approach increased stem cell survival, proliferation, and homing. It has also decreased the infarct size and cell apoptosis, leading to enhanced heart functions. These effects were stable for 6 weeks. However, more studies are still required to assess the effects of low-level laser on the genetic makeup of the cell, the nuclei, and the mitochondria of mesenchymal stromal cells (MSCs).
47 CFR 25.262 - Licensing and domestic coordination requirements for 17/24 GHz BSS space stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... degree or less from an appendix F location, and may operate at the maximum power flux density limits defined in §§ 25.208(c) and (w) of this part, without coordinating its power flux density levels with... BSS U.S. licensee or permittee that does not comply with the power flux-density limits set forth in...
Relationship between input power and power density of SMA spring
NASA Astrophysics Data System (ADS)
Park, Cheol Hoon; Ham, Sang Yong; Son, Young Su
2016-04-01
The important required characteristics of an artificial muscle for a human arm-like manipulator are high strain and high power density. From this viewpoint, an SMA (shape memory alloy) spring is a good candidate for the actuator of a robotic manipulator that utilizes an artificial muscle. In this study, the maximum power density of an SMA spring was evaluated with respect to the input power. The spring samples were fabricated from SMA wires of different diameters ranging between 0.1 and 0.3 mm. For each diameter, two types of wires with different transition temperatures were used. The relationship between the transition temperature and maximum power density was also evaluated. Each SMA spring was stretched downward by an attached weight and the temperature was increased through the application of an electric current. The displacement, velocity, and temperature of the SMA spring were measured by laser displacement sensors and a thermocouple. Based on the experimental data, it was determined that the maximum power densities of the different SMA springs ranged between 1,300 and 5,500 W/kg. This confirmed the applicability of an SMA spring to human arm-like robotic manipulators. The results of this study can be used as reference for design.
Ion heating and flows in a high power helicon source
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.
2017-06-01
We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.
Halo modelling in chameleon theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk
2014-03-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on localmore » scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.« less
On the Appearance of Thresholds in the Dynamical Model of Star Formation
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.
2018-02-01
The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.
NASA Astrophysics Data System (ADS)
Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John
2015-09-01
Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.
Yekeler, Hülya; Yekeler, Meftuni
2006-09-01
In recent years, several new chelating reagents have been synthesized and tested for their collecting power in sulfide and non-sulfide minerals flotation. Many researchers have indicated that chelating reagents have the advantage of offering better selectivity and specificity as flotation collectors. Therefore, density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level were performed to investigate the observed activities of 2-mercaptobenzothiazole, 6-methyl-2-mercaptobenzothiazole and 6-methoxy-2-mercaptobenzothiazole as the most popular flotation collectors. The molecular properties and activity relationships were determined by the HOMO localizations, the HOMO energies, Mulliken charges and the electrostatic potentials at the thioamide functional group, which is the key site in the forming efficiency of the collectors studied. It is concluded that these quantities can be used successfully for understanding the collecting abilities of 2-mercaptobenzothiazoles. The results obtained theoretically are consistent with the experimental data reported in the literature.
Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.
Derricotte, Wallace D; Evangelista, Francesco A
2015-06-14
Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.
Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.
Liu, Hong; Cheng, Shaoan; Logan, Bruce E
2005-01-15
Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.
NASA Astrophysics Data System (ADS)
Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.
2001-12-01
Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, AP; Yip, NY; Elimelech, M
2014-01-01
Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation atmore » this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.« less
Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila
2016-05-15
This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
A High Performance H2-Cl2 Fuel Cell for Space Power Applications
NASA Technical Reports Server (NTRS)
Anderson, Everett B.; Taylor, E. Jennings; Wilemski, Gerald; Gelb, Alan
1993-01-01
NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant.
Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions
Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán
2013-01-01
Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954
NASA Astrophysics Data System (ADS)
Mishra, A. K.; Catalan, Jorge; Camacho, Diana; Martinez, Miguel; Hodges, D.
2017-08-01
Solution processed organic-inorganic metal halide perovskite based solar cells are emerging as a new cost effective photovoltaic technology. In the context of increasing the power conversion efficiency (PCE) and sustainability of perovskite solar cells (PSC) devices, we comprehensively analyzed a physics-based numerical modelling for doped and un-doped PSC devices. Our analytics emphasized the role of different charge carrier layers from the view point of interfacial adhesion and its influence on charge extraction rate and charge recombination mechanism. Morphological and charge transport properties of perovskite thin film as a function of device architecture are also considered to investigate the photovoltaic properties of PSC. We observed that photocurrent is dominantly influenced by interfacial recombination process and photovoltage has functional relationship with defect density of perovskite absorption layer. A novel contour mapping method to understand the characteristics of current density-voltage (J-V) curves for each device as a function of perovskite layer thickness provide an important insight about the distribution spectrum of photovoltaic properties. Functional relationship of device efficiency and fill factor with absorption layer thickness are also discussed.
Some characteristics of the international space channel
NASA Technical Reports Server (NTRS)
Noack, T. L.; Poland, W. B., Jr.
1975-01-01
Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.
NASA Astrophysics Data System (ADS)
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Alasdair; Thomsen, Edwin; Reed, David
2016-04-20
A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less
Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Chen, Sheng; Täuber, Uwe C.
2016-04-01
We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
NASA Astrophysics Data System (ADS)
Yan, Yi; Ngo, Khai D. T.; Hou, Dongbin; Mu, Mingkai; Mei, Yunhui; Lu, Guo-Quan
2015-10-01
In an effort to find a magnetic material for making low-loss magnetic components for high-power-density converters, we investigated the magnetic core-loss characteristics of a commercial NiCuZn ferrite (LSF 50) at 5 MHz as a function of the sintering temperature of the ferrite powder. The ferrite powder was compacted into toroid cores and then sintered at 850°C, 900°C, 950°C, 1000°C, and 1050°C for 2 h. The sintered densities of the cores increased at higher sintering temperatures. The magnetic properties of the sintered cores—complex permeability and core-loss density—were measured. We found that both the real and imaginary parts of the relative permeability increased with sintering temperature. The core-loss results at 5 MHz showed that the cores sintered at 950°C and 1000°C had the lowest core-loss densities, being two to three times lower than that of a commercial NiZn ferrite (4F1) core. Microstructures of the sintered cores were examined by scanning electron microscopy; the grains grew significantly at higher sintering temperatures.
Scattering mechanisms in shallow undoped Si/SiGe quantum wells
NASA Astrophysics Data System (ADS)
Laroche, Dominique; Huang, Shih-Hsien; Nielsen, Erik; Chuang, Yen; Li, Jiun-Yun; Liu, Chih-Wen; Lu, Tzu-Ming
We report the magneto-transport and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with the shallowest 2DEG located only ~ 10 nm away from the surface. The peak mobility increases with increasing depth, suggesting that charge centers near the oxide/semiconductor interface is the main source of disorder. The power-law exponent of the mobility versus density curve, μ ~nα , is extracted as a function of the depth. At intermediate densities, the power-law dependence is characterized by α ~ 2 . 3 while at the highest achievable densities for devices with intermediate depth, an exponent α ~ 5 is observed. We propose, and show by simulations, that this increase in α is explained by a non-equilibrium model where electrons migrating to the surface smooth out the potential landscape seen by the 2DEG. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL