Establishment of the International Power Institute. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julius E. Coles
The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.
Real time test bed development for power system operation, control and cyber security
NASA Astrophysics Data System (ADS)
Reddi, Ram Mohan
The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.
Boundary Work and Power in the Controversy over Therapeutic Touch in Finnish Nursing Science
ERIC Educational Resources Information Center
Vuolanto, Pia
2015-01-01
The boundary work approach has been established as one of the main ways to study controversies in science. However, it has been proposed that it does not meet the power dynamics of the scientific field sufficiently. This article concentrates on the intertwining of boundary work and power. It combines the boundary work approach developed by Thomas…
Development of Electric Power Units Driven by Waste Heat
NASA Astrophysics Data System (ADS)
Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi
For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Demonstrating the Viability and Affordability of Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Vandyke, Melissa K.
2006-01-01
A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.
Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2017-07-01
Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function.
Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio
2017-01-01
Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function. PMID:28723790
Status of development of the power plants on the base of MCFC in TFNC-VNIIEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novitski, E.Z.; Savkin, G.G.
1996-04-01
VNIIF started work on Molten Carbonate Fuel cells and power plants in 1991. Some results of VNIIF work in the direction of Autonomous Power Engineering are presented. Topics include molten carbonate fuel cell components, separator plates, manufacturing and testing, design, and goals.
Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks
NASA Technical Reports Server (NTRS)
Dogan, Numan S.
2003-01-01
The objective of this work is to design and develop Low-Power RF SOI-CMOS Technology for Distributed Sensor Networks. We briefly report on the accomplishments in this work. We also list the impact of this work on graduate student research training/involvement.
DOT National Transportation Integrated Search
1977-04-01
Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...
Study on power grid characteristics in summer based on Linear regression analysis
NASA Astrophysics Data System (ADS)
Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi
2018-05-01
The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.
ERIC Educational Resources Information Center
Gold, Anne
The management style of a school leader deeply influences the ethos of a school. To explicate the workings of power in such leaders, an analysis of education management styles is presented here. The paper works from the premise that effective and productive management styles are empowering. The text acknowledges how difficult it is to frame a…
The Power of Instructions: Proactive Configuration of Stimulus-Response Translation
ERIC Educational Resources Information Center
Meiran, Nachshon; Pereg, Maayan; Kessler, Yoav; Cole, Michael W.; Braver, Todd S.
2015-01-01
Humans are characterized by an especially highly developed ability to use instructions to prepare toward upcoming events; yet, it is unclear just how powerful instructions can be. Although prior work provides evidence that instructions can be sufficiently powerful to proactively program working memory to execute stimulus-response (S-R)…
Skid steer fuel cell powered unmanned ground vehicle (Burro)
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.
2008-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated. Hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We have previously presented research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We now present research work on the integration of a fuel cell onto a larger skid steer platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
Fuel-cell powered unmanned ground vehicle
NASA Astrophysics Data System (ADS)
Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.
2007-04-01
The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.
Bridging worlds/charting new courses
NASA Astrophysics Data System (ADS)
This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.
Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation.
Li, Suling; Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Wang, Bo; Hu, Bin; Zhou, Jun
2015-07-15
Harvesting ambient mechanical energy from human body motion has attracted great research interest. In this work, a power shirt based on triboelectrification and the electrostatic induction effect between fluorinated ethylene propylene (FEP) and external objects is demonstrated. This power shirt can effectively convert the ambient mechanical energy into electric power, and the working mechanism is systematically discussed. A maximum short-circuit current density of ∼0.37 μA/cm2 and a maximum peak power density of ∼4.65 μW/cm2 were achieved. Simultaneously, 11 blue LEDs were lit by sliding the sleeve and power shirt, indicating the potential application of the power shirt in clothes ornamentation and risk warning. This study develops an efficient path for harvesting human body energy and promoting the development of wearable electronics and smart garments.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.
Power accounting of plasma discharges in the linear device Proto-MPEX
NASA Astrophysics Data System (ADS)
Showers, M.; Piotrowicz, P. A.; Beers, C. J.; Biewer, T. M.; Caneses, J.; Canik, J.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Lumsdaine, A.; Kafle, N.; Owen, L. W.; Rapp, J.; Ray, H.
2018-06-01
Plasma material interaction (PMI) studies are crucial to the successful development of future fusion reactors. Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a prototype design for the MPEX, a steady-state linear device being developed to study PMI. The primary purpose of Proto-MPEX is developing the plasma heating source concepts for MPEX. A power accounting study of Proto-MPEX works to identify machine operating parameters that could improve its performance, thereby increasing its PMI research capabilities, potentially impacting the MPEX design concept. To build a comprehensive power balance, an analysis of the helicon region has been performed implementing a diagnostic suite and software modeling to identify mechanisms and locations of heat loss from the main plasma. Of the 106.3 kW of input power, up to 90.5% of the power has been accounted for in the helicon region. When the analysis was extended to encompass the device to its end plates, 49.2% of the input power was accounted for and verified diagnostically. Areas requiring further diagnostic analysis are identified. The required improvements will be implemented in future work. The data acquisition and analysis processes will be streamlined to form a working model for future power balance studies of Proto-MPEX. ).
Point-Focusing Solar-Power Distributed Receivers
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1985-01-01
Two-volume annual report describes development work aimed at achieving large-scale production of modular, point-focusing distributed receivers (PFDR's) for solar-powered generation of electricity or thermal power for industrial use.
Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
Ames Lab 101: Reinventing the Power Cable
Russell, Alan
2018-01-16
Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear
Code of Federal Regulations, 2010 CFR
2010-04-01
... work; (iv) Unusual concrete deterioration or cracking, including development of new cracks or the... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS General Provisions § 12.3 Definitions. (a) General rule. For purposes of this part, terms defined in section 3 of the...
18 CFR 12.32 - General inspection requirement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS Inspection by Independent Consultant § 12.32 General inspection requirement. In accordance with the procedures in § 12.35, the project works of each development to which this subpart applies...
2007 Joint Service Power Expo: Power and Energy Independence for Warfighters
2007-04-26
Technology benefits and cost LiFePO4 Development LiFePO4 Development ● SAFT initiated work on LiFePO4 under a developmental program with Army...life and improvement ● SAFT is continuing the LiFePO4 work under US Army MANTECH effort. Very High Power cells with the LiFePO4 cathode have been...supplier of LiFePO4 – Phostech/Sud-Chemie. Cell VL10Fe VL12V Cathode LiFePO4 NCA Nominal Voltage (V) 3.3 3.6 Nominal Capacity at C rate (Ah) 10 12 V = f
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Larry Chick
2003-05-20
The objective of Phase I under this project is to develop a 5 kW SOFC power system for a range of fuels and applications. During Phase I, the following will be accomplished: 1. Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A). 2. Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate catalytic partial oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. Thismore » topical report covers work performed by Delphi Automotive Systems from January through June 2002 under DOE Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: 1. System Design and Integration 2. SOFC Stack Development 3. Reformer Development The next anticipated Technical Progress Report will be submitted January 30, 2003 and will include tasks contained within the cooperative agreement including development work on the Demonstration System A, if available.« less
Small Cold Temperature Instrument Packages
NASA Astrophysics Data System (ADS)
Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.
We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.
ERIC Educational Resources Information Center
Goldman, Ellen F.
2008-01-01
The ability to think strategically is an increasingly important requirement for managers at all organizational levels. HRD (human resource development) professionals have attempted to help develop this ability through work experiences. However, research identifying which work experiences are most beneficial is limited. As a result, HRD efforts may…
ERIC Educational Resources Information Center
Arani, Mohammad Reza Sarkar; Alagamandan, Jafar; Tourani, Heidar
2004-01-01
The work-based learning model of human resource development has captured a great deal of attention and has gained increasing importance in higher education in recent years. Work-based learning is a powerful phenomenon that attempts to help policy-makers, managers and curriculum developers improve the quality of the decision and organizational…
Advanced, High Power, Next Scale, Wave Energy Conversion Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Dufera, Hiz; Montagna, Deb
2012-10-29
The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressedmore » cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.« less
Progress update of NASA's free-piston Stirling space power converter technology project
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald
1992-01-01
A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.
Development and Testing of Space Fission Technology at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Pearson, J. Boise; Houts, Michael
2008-01-01
The Early Flight Fission Test Facility (EFF-TF) at NASA-Marshall Space Flight Center (MSFC) provides a capability to perform hardware-directed activities to support multiple inspace nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations allowing for realistic thermal-hydraulic evaluations of systems. The EFF-TF is currently performing non-nuclear testing of hardware to support a technology development effort related to an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled reactor design, which builds on US and Russian space reactor technology as well as extensive US and international terrestrial liquid metal reactor experience. An important aspect of the current hardware development effort is the information and insight that can be gained from experiments performed in a relevant environment using realistic materials. This testing can often deliver valuable data and insights with a confidence that is not otherwise available or attainable. While the project is currently focused on potential fission surface power for the lunar surface, many of the present advances, testing capabilities, and lessons learned can be applied to the future development of a low-cost in-space fission power system. The potential development of such systems would be useful in fulfilling the power requirements for certain electric propulsion systems (magnetoplasmadynamic thruster, high-power Hall and ion thrusters). In addition, inspace fission power could be applied towards meeting spacecraft and propulsion needs on missions further from the Sun, where the usefulness of solar power is diminished. The affordable nature of the fission surface power system that NASA may decide to develop in the future might make derived systems generally attractive for powering spacecraft and propulsion systems in space. This presentation will discuss work on space nuclear systems that has been performed at MSFC's EFF-TF over the past 10 years. Emphasis will be place on both ongoing work related to FSP and historical work related to in-space systems potentially useful for powering electric propulsion systems.
Photovoltaic power systems workshop
NASA Technical Reports Server (NTRS)
Killian, H. J.; Given, R. W.
1978-01-01
Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.
Development of high-power dye laser chain
NASA Astrophysics Data System (ADS)
Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo
2000-01-01
Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.
Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1476.
1977-11-21
bring its hegemony to prevail, conquer de- cisive power positions and thereby forge and further develop its alliance with the other working classes...force of the workers class. The founding of the SED was a decisive victory by Marxism-Leninism against opportunism, which made the hegemony of the...material basis was laid for working class hegemony . It had become necessary in 1948 and 1949 to consolidate and further develop the new power organs
International Nursing: How Much Power Do Nurse Managers Have?
Trus, Marija; Martinkenas, Arvydas; Suominen, Tarja
This study was conducted to explore issues of nurse managers' power and empowerment. Data were collected from nurse managers by way of a questionnaire consisting of background factors, work-related questions, and power-related questions at the unit and organization levels. The degree of empowerment was evaluated using 2 established instruments (CWEQ-II and Work Empowerment Questionnaire). The overall level of managers' personal power within their own units was relatively high. Nurse managers' perception of their power at an organizational level was found to be at a moderate level. Several factors related to an individual's professional background were correlated to power issues, both at the unit and organizational levels. Structural and psychological empowerment correlated with the overall level of power at a unit level and the overall level of power at an organizational level. Nurse managers self-reported their own general power at a unit level as high, which offers them possibilities to lead the development of nursing care in their units. Organizations may benefit more from nurse managers' leadership by more fully integrating them in the development processes of the entire organization.
Methodolgy For Evaluation Of Technology Impacts In Space Electric Power Systems
NASA Technical Reports Server (NTRS)
Holda, Julie
2004-01-01
The Analysis and Management branch of the Power and Propulsion Office at NASA Glenn Research Center is responsible for performing complex analyses of the space power and In-Space propulsion products developed by GRC. This work quantifies the benefits of the advanced technologies to support on-going advocacy efforts. The Power and Propulsion Office is committed to understanding how the advancement in space technologies could benefit future NASA missions. They support many diverse projects and missions throughout NASA as well as industry and academia. The area of work that we are concentrating on is space technology investment strategies. Our goal is to develop a Monte-Carlo based tool to investigate technology impacts in space electric power systems. The framework is being developed at this stage, which will be used to set up a computer simulation of a space electric power system (EPS). The outcome is expected to be a probabilistic assessment of critical technologies and potential development issues. We are developing methods for integrating existing spreadsheet-based tools into the simulation tool. Also, work is being done on defining interface protocols to enable rapid integration of future tools. Monte Carlo-based simulation programs for statistical modeling of the EPS Model. I decided to learn and evaluate Palisade's @Risk and Risk Optimizer software, and utilize it's capabilities for the Electric Power System (EPS) model. I also looked at similar software packages (JMP, SPSS, Crystal Ball, VenSim, Analytica) available from other suppliers and evaluated them. The second task was to develop the framework for the tool, in which we had to define technology characteristics using weighing factors and probability distributions. Also we had to define the simulation space and add hard and soft constraints to the model. The third task is to incorporate (preliminary) cost factors into the model. A final task is developing a cross-platform solution of this framework.
Mars power system concept definition study. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Littman, Franklin D.
1994-01-01
This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Hamley, John A.; Haag, Thomas W.; Sarmiento, Charles J.; Curran, Francis M.
1991-01-01
During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load.
Development of SWITCH-Hawaii model: loads and renewable resources.
DOT National Transportation Integrated Search
2016-08-01
This report summarizes work done to configure the SWITCH power system model using data for the Oahu power system. SWITCH is a planning model designed to choose optimal infrastructure investments for power systems over a multi-decade period. Investmen...
Manned remote work station development article, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
The mission requirements for the manned remote work station (MRWS) flight article and the manned remote work station open cherry picker development test article is defined. Considerations are given for the near, mid, and far term use of the MRWS with emphasis on its ultimate application: constructing the Solar Power Satellite.
Computational tool for simulation of power and refrigeration cycles
NASA Astrophysics Data System (ADS)
Córdoba Tuta, E.; Reyes Orozco, M.
2016-07-01
Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.
Teamwork on Assessments Creates Powerful Professional Development
ERIC Educational Resources Information Center
McTighe, Jay; Emberger, Marcella
2006-01-01
Teacher collaboration is a powerful form of professional learning. One focus for collaborative efforts is designing assessments. When teachers design assessments, give each other feedback through peer reviews, evaluate student work, and plan together for improvement, they are engaged in highly effective professional development. Assessments have…
Automated Work Package: Conceptual Design and Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek
The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on the frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.« less
Microwave Driven Actuators Power Allocation and Distribution
NASA Technical Reports Server (NTRS)
Forbes, Timothy; Song, Kyo D.
2000-01-01
Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.
Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy
Hu, Bing; Bu, Xianbiao; Ma, Weibin
2014-01-01
To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735
Development of high frequency low weight power magnetics for aerospace power systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1984-01-01
A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
Auction development for the price-based electric power industry
NASA Astrophysics Data System (ADS)
Dekrajangpetch, Somgiat
The restructuring of the electric power industry is to move away from the cost-based monopolistic environment of the past to the priced-based competitive environment. As the electric power industry is restructuring in many places, there are still many problems that need to be solved. The work in this dissertation contributes to solve some of the electric power auction problems. The majority of this work is aimed to help develop good markets. A LaGrangian relaxation (LR) Centralized Daily Commitment Auction (CDCA) has been implemented. It has been shown that the solution might not be optimal nor fair to some generation companies (GENCOs) when identical or similar generating units participate in a LR CDCA based auction. Supporting information for bidding strategies on how to change unit data to enhance the chances of bid acceptance has been developed. The majority of this work is based on Single Period Commodity Auction (SPCA). Alternative structures for the SPCA are outlined. Whether the optimal solution is degenerated is investigated. Good pricing criteria are summarized and the pricing method following good pricing criteria is developed. Electricity is generally considered as a homogeneous product. When availability level is used as additional characteristic to distinct electricity, electricity can be considered a heterogeneous product. The procedure to trade electricity as a heterogeneous product is developed. The SPCA is formulated as a linear program. The basic IPLP algorithm has been extended so that sensitivity analysis can be performed as in the simplex method. Sensitivity analysis is used to determine market reach. Additionally, sensitivity analysis is used in combination with the investigation of historical auction results to provide raw data for power system expansion. Market power is a critical issue in electric power deregulation. Firms with market power have an advantage over other competitor firms in terms of market reach. Various approaches to determine market power and market reach are to be investigated. How firms can acquire additional customers or additional transactions, given the auction results, is to be investigated. Additionally, how firms can utilize their market power to enhance their chances of success is to be investigated.
Series II AMTEC cell development issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, R.K.; Rasmussen, J.R.; Giglio, J.C.
1998-07-01
The Series II alkali metal thermal to electric converter (AMTEC) cell, developed over the last two year, represents a significant engineering advance in AMTEC technology, and major step toward spacecraft power systems. The PX-5 cell design was developed as an early prototype in stainless steel alloys. This design will evolve into the PX-6 engineering cell and finally into the EPX-1 to be used in the Advanced Radioisotope Power System (ARPS) program. The EPX-1 cell will be all-refractory metal. Late work on the PX-5 and early work on the PX-6 will be described.
Development of a 670 GHz Extended Interaction Klystron Power Amplifier
2011-03-01
Klystron Power Amplifier 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...avelengths,” /40/EIK%20Tec W%20Wavelen oyski, R. Dobbs, act, High Power ction Klystron ,” Conf., Montere opments to the M or Modeling Cod 2005). ic...Research Projects Agency or the Department of Defense. Development of a 670 GHz Extended Interaction Klystron Power Amplifier David Chernin Science
Procedural considerations for CPV outdoor power ratings per IEC 62670
NASA Astrophysics Data System (ADS)
Muller, Matthew; Kurtz, Sarah; Rodriguez, Jose
2013-09-01
The IEC Working Group 7 (WG7) is in the process of developing a draft procedure for an outdoor concentrating photovoltaic (CPV) module power rating at Concentrator Standard Operating Conditions (CSOC). WG7 recently achieved some consensus that using component reference cells to monitor/limit spectral variation is the preferred path for the outdoor power rating. To build on this consensus, the community must quantify these spectral limits and select a procedure for calculating and reporting a power rating. This work focuses on statistically comparing several procedures the community is considering in context with monitoring/limiting spectral variation.
NASA Technical Reports Server (NTRS)
1988-01-01
Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.
[Development of a High Power Green Laser Therapeutic Equipment for Hyperplasia of Prostate].
Liang, Jie; Kang, Hongxiang; Shen, Benjian; Zhao, Lusheng; Wu, Xinshe; Chen, Peng; Chang, Aihong; Guo Hua; Guo, Jiayu
2015-09-01
The basic theory of high power green laser equipment for prostate hyperplasia therapy and the components of the system developed are introduced. Considering the requirements of the clinical therapy, the working process of the high power green laser apparatus are designed and the laser with stable output at 120 W is achieved. The controlling hardware and application software are developed, and the safety step is designed. The high power green laser apparatus manufactured with characteristics of stable output, multifunctional and friendly interface provides a choices of prostate hyperplasia therapy for using nationalization instrument.
Passive Sun seeker/tracker and a thermally activated power module
NASA Technical Reports Server (NTRS)
Siebert, C. J.; Morris, F. A.
1984-01-01
Development and testing of two mechanisms using a shape memory alloy metal (NITINOL) as the power source are described. The two mechanisms developed are a passive Sun Seeker/Tracker and a generic type power module. These mechanisms use NITINOL wire initially strained in pure torsion which provides the greatest mechanical work capacity upon recovery, as compared to other deformation modes (i.e., tension, helical springs, and bending).
The mechanics of sprint running
Cavagna, Giovanni A.; Komarek, L.; Mazzoleni, Stefania
1971-01-01
1. The effect of the velocity of shortening on the power developed by the muscles in sprint running was studied by measuring the mechanical work done to accelerate the body forward from the start to about 34 km/hr. 2. The work was measured at each step from the data obtained by means of a platform sensitive to the force impressed by the foot. 3. Almost the totality of the positive work done during the first second from the start is found as an increase of the kinetic energy of the body. However, as the speed of the run rises, air resistance and particularly the deceleration of the body forward, taking place at each step, rapidly increase, limiting the speed of the run. 4. The average power developed by the muscles during the push at each step increases with the velocity of running reaching 3-4 h.p. at the maximal speed attained. 5. At low speed the contractile component of the muscles seems to be mainly responsible for the power output, whereas at high speed (25-34 km/hr) an appreciable fraction of the power appears to be sustained by the mechanical energy stored in the `series elastic elements' during stretching the contracted muscles (negative work) and released immediately after in the positive work phase. ImagesFig. 1 PMID:5098087
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.
2018-07-01
Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.
NASA Technical Reports Server (NTRS)
1982-01-01
Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.
Roadmap for Testing and Validation of Electric Vehicle Communication Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan
Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work bymore » the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less
MHD conversion of solar energy. [space electric power system
NASA Technical Reports Server (NTRS)
Lau, C. V.; Decher, R.
1978-01-01
Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.
Navy MANTECH 2008 Project Book
2008-01-01
work center. The project team kept statistics on the actual operations in that work center and assessed the fidelity of those operations with...base, a power- ful analytic and predictive capability, and a database of validated industry best practices. The BMPCOE- developed Collaborative Work ...Today, the EMPF operates as a national electronics manufacturing COE focused on the development , application and
NASA Astrophysics Data System (ADS)
Niu, Jie; Li, Jinliang; Zou, Dehua; Yang, Qi; Li, Xu; Yan, Yu; Li, Tang
2017-05-01
Non-blackout working of agricultural power supply network is significant to shorten the outage time, decrease the outage loss, and improve the supply reliability and safety. It is impossible to hang the wire rope first and then suspend the cable because of the poor bearing ability of the pole in agricultural power supply network. A kind of new cable arrangement way, its matching tools and the flexible cable that can bear the tension by itself are needed to be put forward and developed. It is necessary to calculate the electric field intensity of the flexible cable to verify that the electric field intensity meets the insulation demand. In this new design, the fiber layer is added into the flexible cable and its maximum tension force is measured to reach to 4000 N. Based on the features of live working in the agricultural power supply network, the new layout way of the cable is proposed; the matching tools and the new flexible cable that can bear the tension by itself are developed as well in this paper. All of the research achievements can give references for the live working of the agricultural power supply network.
Analytical modeling of helium turbomachinery using FORTRAN 77
NASA Astrophysics Data System (ADS)
Balaji, Purushotham
Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.
Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence
NASA Astrophysics Data System (ADS)
Montag, Peter; Egedal, Jan; Lichko, Emily; Wetherton, Blake
2017-10-01
Previous work has shown that Fermi acceleration can be an effective heating mechanism during magnetic island coalescence, where electrons may undergo repeated reflections as the magnetic field lines contract. This energization has the potential to account for the power-law distributions of particle energy inferred from observations of solar flares. Here, we develop a generalized framework for the analysis of Fermi acceleration that can incorporate the effects of compressibility and non-uniformity along field lines, which have commonly been neglected in previous treatments of the problem. Applying this framework to the simplified case of the uniform flux tube allows us to find both the power-law scaling of the distribution function and the rate at which the power-law behavior develops. We find that a guide magnetic field of order unity effectively suppresses the development of power-law distributions. The work was supported by NASA Grant No. NNX14AC68G, NSF GEM Grant No. 1405166, NSF Award 1404166, and NASA Award NNX15AJ73G.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
NASA Technical Reports Server (NTRS)
1979-01-01
A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.
Combined Heat and Power (CHP) Partnership
The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.
Potential of laser for SPS power transmission
NASA Technical Reports Server (NTRS)
Bain, C. N.
1978-01-01
Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.
Thermal Management and Reliability of Automotive Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E
Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey
2018-02-01
The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, H. P.; Basso, T. S.; Kroposki, B.
The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on themore » interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.« less
Component technology for stirling power converters
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.
1991-01-01
NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honrubia-Escribano, A.; Jimenez-Buendia, F.; Molina-Garcia, A.
This paper presents the current status of simplified wind turbine models used for power system stability analysis. This work is based on the ongoing work being developed in IEC 61400-27. This international standard, for which a technical committee was convened in October 2009, is focused on defining generic (also known as simplified) simulation models for both wind turbines and wind power plants. The results of the paper provide an improved understanding of the usability of generic models to conduct power system simulations.
Troubleshooting of signal power supply system for Shanghai metro line 7
NASA Astrophysics Data System (ADS)
Lu, Kaixia; Xiao, Jie
2018-03-01
With the rapid development of Urban Rail Transit Signal Technology, the demand of signal power supply system for signal equipment is higher and higher. The signal intelligent power supply panel is the main component of the urban rail traffic signal power supply system. Whether the intelligent power supply panel working or not is directly related to traffic safety. The maintenance of intelligent signal power supply panel is particularly important. Line 7 of Shanghai Metro adopts PMZG Signal Intelligent Power Supply Panel, which is produced by Beijing Jinyujiaxin Polytron Technologies Inc. Maintenance of power supply system mainly includes routine maintenance and troubleshooting. This article will make clear the routine maintenance contents of PMZG Signal Intelligent Power Supply Panel, and put forward the common fault information and troubleshooting methods of PMZG Signal Intelligent Power Supply Panel. In accordance with the steps of fault handling, the faults can be eliminated in the shortest possible time, and PMZG Signal Intelligent Power Supply Panel can be quickly restored to normal working state.
Multicultural Group Work: A Force for Developing and Healing
ERIC Educational Resources Information Center
Anderson, Donald
2007-01-01
Multicultural group work represents a powerful tool for helping and healing in the context of human diversity. This article summarizes multicultural group work, including task, psychoeducational, counseling, and psychotherapy groups, and describes a group work model for multicultural assessment, diagnosis, and treatment planning. Group work…
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-06-09
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustionmore » engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE's) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers, businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects. This fact sheet outlines the primary federal incentives for developing and investing in wind power, resources for funding wind power, and opportunities to partner with DOE and other federal agencies on efforts to move the U.S. wind industry forward.
Brownfields City of Houston Solar Project: Solar Power Analysis and Design Specifications
This document details the scope of work elements completed in support of this project, as well as recommendations for next steps towards solar project development and power purchase agreement negotiation and finalization.
NASA Astrophysics Data System (ADS)
Giltner, L. John
1994-02-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
NASA Technical Reports Server (NTRS)
Giltner, L. John
1994-01-01
The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.
ERIC Educational Resources Information Center
Schnittka, Christine
2017-01-01
Many students (and adults) do not understand a basic tenet of energy literacy: how electricity is produced. They do not know how coal or other fossil fuels are used to make electricity, nor do they understand how nuclear power, hydroelectric power, and wind power work. The author developed a series of lessons to help students understand how…
Artificial intelligence and space power systems automation
NASA Technical Reports Server (NTRS)
Weeks, David J.
1987-01-01
Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.
Purchasing power of civil servant health workers in Mozambique.
Ferrinho, Fátima; Amaral, Marta; Russo, Giuliano; Ferrinho, Paulo
2012-01-01
Health workers' purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. This was done through a simple and easy-to-apply methodology to estimate salaries' capitalization rate, by means of the accumulated inflation rate, after taking wage revisions into account. All the career categories in the Ministry of Health and affiliated public sector institutions were considered. Health workers' purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. These results seem to contradict a commonly held assumption that health sector pay has deteriorated over the years, and with substantial damage for the poorest. Further studies appear to be needed to design a more accurate methodology to better understand the evolution and impact of public sector health workers' remunerations across the years.
ERIC Educational Resources Information Center
Shields, Tracy Jill; Melville, Wayne
2015-01-01
This paper describes an ethnographic case study of eleven First Nations adult learners in a Northern Ontario community attempting to earn secondary school equivalency through the General Education Development (GED) program. The paper maintains a focus on the power differentials at work in both the learners' prior educational endeavours and their…
Power Conservation through Energy Efficient Routing in Wireless Sensor Networks.
Kandris, Dionisis; Tsioumas, Panagiotis; Tzes, Anthony; Nikolakopoulos, George; Vergados, Dimitrios D
2009-01-01
The power awareness issue is the primary concern within the domain of Wireless Sensor Networks (WSNs). Most power dissipation ocurrs during communication, thus routing protocols in WSNs mainly aim at power conservation. Moreover, a routing protocol should be scalable, so that its effectiveness does not degrade as the network size increases. In response to these issues, this work describes the development of an efficient routing protocol, named SHPER (Scaling Hierarchical Power Efficient Routing).
US effort on HTS power transformers
NASA Astrophysics Data System (ADS)
Mehta, S.
2011-11-01
Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification, Dielectric system design approach, Dewar development for containing phase assemblies, cryo-cooling system design approach, etc. will be described. Finally; overall program schedule, critical milestone events, test plans and progress to date will be reported.
NASA Technical Reports Server (NTRS)
1976-01-01
Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.
Multi-Megawatt Gas Turbine Power Systems for Lunar Colonies
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2006-01-01
A concept for development of second generation 10 MWe prototype lunar power plant utilizing a gas cooled fission reactor supplying heated helium working fluid to two parallel 5 MWe closed cycle gas turbines is presented. Such a power system is expected to supply the energy needs for an initial lunar colony with a crew of up to 50 persons engaged in mining and manufacturing activities. System performance and mass details were generated by an author developed code (BRMAPS). The proposed pilot power plant can be a model for future plants of the same capacity that could be tied to an evolutionary lunar power grid.
GLOBE and the Earth SySTEM Model in Teacher Preparation
NASA Astrophysics Data System (ADS)
Jabot, M.; Moore, J.; Dorofy, P.
2017-12-01
This presentation will share the growing body of work linking ArcMap and GLOBE and the Earth SySTEM approach in the development of preservice teachers. Our work is linking the power of ArcMap with the vast database of GLOBE in a unique way that links the power of geospatial technologies in shaping the planning for and delivery of science instruction in the P-5 classroom.
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels
NASA Astrophysics Data System (ADS)
Takali, S.; Fabry, F.; Rohani, V.; Cauneau, F.; Fulcheri, L.
2014-11-01
Most thermal power plants need an auxiliary power source to (i) heat-up the boiler during start up phases before reaching autonomy power and (ii) sustain combustion at low load. This supplementary power is commonly provided with high LHV fossil fuel burners which increases operational expenses and disables the use of anti-pollutant filters. A Promising alternative is under development and consists in high temperature plasma assisted AC electro-burners. In this paper, the development of a new 100 kW three phase plasma torch with graphite electrodes is detailed. This plasma torch is working at atmospheric pressure with air as plasma gas and has three-phase power supply and working at 680 Hz. The nominal air flow rate is 60 Nm3.h-1 and the outlet gas temperature is above 2 500 K. At the beginning, graphite electrodes erosion by oxidizing medium was studied and controlling parameters were identified through parametric set of experiments and tuned for optimal electrodes life time. Then, a new 3-phase plasma torch design was modelled and simulated on ANSYS platform. The characteristics of the plasma flow and its interaction with the environing elements of the torch are detailed hereafter.
Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Trase, Larry M.; Soeder, James F.
2014-01-01
This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
From Machiavelli to Ms: differences in male-female power styles.
Van Wagner, K; Swanson, C
1979-01-01
While the concept of power has always been a concern to students of political science and public administration, it has been examined only peripherally in the last few years. Recent work by McClelland has indicated that power may be a very important variable in explaining managerial behavior and organizational effectiveness. Starting with a definition of power provided by McClelland, this paper develops a conceptual framework for analyzing power-related behavior in an organizational setting. The framework is then applied to a problem area of particular interest to the authors--the question of whether or not women managers can be expected to behave differently than their male counterparts because of possible differences in their orientations toward power. We conclude that differences in power needs will not impede the effectiveness of female managers, but women may be at a disadvantage in the work environment due to possible differences in the way they express these needs.
Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2005-01-01
NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).
Thermophotovoltaic space power system, phase 3
NASA Technical Reports Server (NTRS)
Horne, W. E.; Lancaster, C.
1987-01-01
Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.
Small instrument to volcanic seismic signals
NASA Astrophysics Data System (ADS)
Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni
2014-05-01
Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the time, except GPS (it works the 1.4% of time) and the RF communications (it works the 20% of time), it has been able to obtain experimental consumption data of prototype developed. That is the reason why the final power supply of system with one channel active is of 110,5mW when using the communication module. If it calculates the power supply without communication, this consumes about 71mW. The new system needs to work at 3.3V, and the calculations have made in base of that. In contrast, the previous system needs 12V, and does not use RF communications. In order to compare those two versions, is used the power supply as reference, up to 696mW in this previous system. Finally it can be concluded that the implemented electronic design has up to three channels to acquire seismic data, it has the ability to transmit these data by radio frequency to a base station, and power consumption is lower than the initial prototype. The experimental results allow providing an operating time of a year, with weight of 4,84 Kg if the equipment used li-ion batteries.
Student Voice as a Contested Practice: Power and Participation in Two Student Voice Projects
ERIC Educational Resources Information Center
Robinson, Carol; Taylor, Carol
2013-01-01
This article applies theoretical understandings of power relations within student voice work to two empirical examples of school-based student voice projects. The article builds on and refines theoretical understandings of power and participation developed in previous articles written by the authors. The first article argued that at the heart of…
Photovoltaic Test and Demonstration Project. [for solar cell power systems
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.
1976-01-01
The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Cezar, Gustavo V.
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliablemore » and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.« less
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.
2014-06-01
In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.
Changing computing paradigms towards power efficiency
Klavík, Pavel; Malossi, A. Cristiano I.; Bekas, Costas; Curioni, Alessandro
2014-01-01
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. PMID:24842033
Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.
2013-07-01
This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.
NASA Technical Reports Server (NTRS)
Schmit, Ryan
2010-01-01
To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
The Power of Time: Teachers' Working Day--Negotiating Autonomy and Control
ERIC Educational Resources Information Center
Steen-Olsen, Tove; Eikseth, Astrid Grude
2010-01-01
This article focuses on teachers' repeated complaints of lack of time. The theme is explored within data material collected in a research and development project in a Norwegian primary school (2006-09), including observations from development work together with a teacher team, and interviews with their principal, a representative of the teacher…
Creating Fugitive Knowledge through Disorienting Dilemmas: The Issue of Bottom Identity Development
ERIC Educational Resources Information Center
McGill, Craig M.; Collins, Joshua C.
2015-01-01
Despite sexuality being a powerful source of emotional and physical experiences and learning, it remains underexplored as an area of interest and investigation in adult education and human resource development (HRD). Most work on sexuality in adult education and HRD has focused on learning, work experiences, discrimination, acceptance, and health…
Extended performance electric propulsion power processor design study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.
1977-01-01
Several power processor design concepts were evaluated and compared. Emphasis was placed on a 30cm ion thruster power processor with a beam supply rating of 2.2kW to 10kW. Extensions in power processor performance were defined and were designed in sufficient detail to determine efficiency, component weight, part count, reliability and thermal control. Preliminary electrical design, mechanical design, and thermal analysis were performed on a 6kW power transformer for the beam supply. Bi-Mod mechanical, structural, and thermal control configurations were evaluated for the power processor, and preliminary estimates of mechanical weight were determined. A program development plan was formulated that outlines the work breakdown structure for the development, qualification and fabrication of the power processor flight hardware.
Purchasing power of civil servant health workers in Mozambique
Ferrinho, Fátima; Amaral, Marta; Russo, Giuliano; Ferrinho, Paulo
2012-01-01
Background Health workers’ purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. Methods This was done through a simple and easy-to-apply methodology to estimate salaries’ capitalization rate, by means of the accumulated inflation rate, after taking wage revisions into account. All the career categories in the Ministry of Health and affiliated public sector institutions were considered. Results Health workers’ purchasing power is an important consideration in the development of strategies for health workforce development. This work explores the purchasing power variation of Mozambican public sector health workers, between 1999 and 2007. In general, the calculated purchasing power increased for most careers under study, and the highest percentage increase was observed for the lowest remuneration careers, contributing in this way for a relative reduction in the difference between the higher and the lower salaries. Conclusion These results seem to contradict a commonly held assumption that health sector pay has deteriorated over the years, and with substantial damage for the poorest. Further studies appear to be needed to design a more accurate methodology to better understand the evolution and impact of public sector health workers’ remunerations across the years. PMID:22368757
Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan
Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recentmore » work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less
Power Networking for Community College Teachers.
ERIC Educational Resources Information Center
Torbert, Brison
1990-01-01
Outlines self-enrichment activities for faculty, administrators, and students that can improve working conditions and promotion opportunities, e.g., getting a personal business card, developing a contacts list, examining the institution, conducting research on classroom and business trends, joining "power organizations," and making a master…
Electrical Power Working Group report
NASA Technical Reports Server (NTRS)
Vanommering, Gerrit; Myers, Ira T.
1986-01-01
The status of and need for power technologies for Spacecraft 2000 were assessed and development programs required to establish an achievable and competitive technology base for spacecraft of the 21st century were identified. The results are summarized, including the recommendations and the underlying rationale.
Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques
2015-05-01
This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method wasmore » adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.« less
The photovoltaic pilot projects of the European Community
NASA Astrophysics Data System (ADS)
Schnell, W.
The Commission of the European Communities has started in 1980 a programme for the design and construction of a series of photovoltaic pilot projects in the range of 30-300 kWp. Virtually all important industries and other development organisations in Europe working on photovoltaic cells and systems are involved in this programme. The different technologies which are being developed concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of an island, villages, recreation centres, water desalination and disinfection, powering of radio transmitters, emergency power plants, dairy farm, training school, cooling, water pumping, powering of a solar heated swimming pool and last but not least, hydrogen production.
Advanced Integrated Traction System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Smith; Charles Gough
2011-08-31
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotivemore » platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
2013-08-01
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, S.
Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.
Exercise of the SSM/PMAD Breadboard. [Space Station Module/Power Management And Distribution
NASA Technical Reports Server (NTRS)
Walls, Bryan
1989-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard is a test facility designed for advanced development of space power automation. Originally designed for 20-kHz power, the system is being converted to work with direct current (dc). Power levels are on a par with those expected for a Space Station module. Some of the strengths and weaknesses of the SSM/PMAD system in design and function are examined, and the future directions foreseen for the system are outlined.
Technologies for Lunar Surface Power Systems Power Beaming and Transfer
NASA Astrophysics Data System (ADS)
Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank
2008-01-01
Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam steering for microwave power transmission (the ability to accurately track a moving receiver) has been demonstrated at Texas A&M. It is proposed that the next step in development of this concept is a modest scale up from 25 elements to 435 followed by a further scale up using such 435 element arrays as subarrays for a still larger retrodirective system. Ultimately, transmit antenna sizes on the order of 100 meters are envisioned permitting transfer levels on the order of 30 kW to aerial vehicles up to 20 km.
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
Recent European Developments in Helicopters
NASA Technical Reports Server (NTRS)
1921-01-01
Descriptions are given of two captured helicopters, one driven by electric power, the other by a gasoline engine. An account is given of flight tests of the gasoline powered vehicle. After 15 successful flight tests, the gasoline powered vehicle crashed due to the insufficient thrust. Also discussed here are the applications of helicopters for military observations, for meteorological work, and for carrying radio antennas.
Application Note: Power Grid Modeling With Xyce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sholander, Peter E.
This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.
Electric service reliability cost/worth assessment in a developing country
NASA Astrophysics Data System (ADS)
Pandey, Mohan Kumar
Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.
China’s Emerging Capabilities in Energy Technology Innovation and Development
2015-01-22
management of tempo, scaling, and cost reduction. For particularly complex energy technology systems, such as civilian nuclear power plants , the...technology systems, such as civilian nuclear power plants , the greatest challenges often involve not so much new technology development (a...are far more complex phenomena unfolding than simply technology transfer, duplication, and mimicry . Our work has opened up a series of new
Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Williams, Paul
This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less
Energy Conversion Advanced Heat Transport Loop and Power Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, C. H.
2006-08-01
The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must bemore » researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va« less
Utilization of Renewable Energy to Meet New National Challenges in Energy and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momoh, James A.
The project aims to design a microgrid system to promote utilization of renewable energy resources such as wind and solar to address the national challenges in energy and climate change. Different optimization techniques and simulation software are used to study the performance of the renewable energy system under study. A series of research works performed under the grant Department of Energy (DOE) is presented. This grant opportunity affords Howard faculty, students, graduates, undergraduates, K-12, postdocs and visiting scholars to benefit state of the art research work. The research work has led to improve or advance understanding of new hardware technologies,more » software development and engineering optimization methods necessary and sufficient for handling probabilistic models and real-time computation and functions necessary for development of microgrid system. Consistent with State of Project Objective Howard University has partitioned the task into the following integrated activities: 1. Stochastic Model for RER and Load • Development of modeling Renewable Energy Resources (RER) and load which is used to perform distribution power flow study which leads to publication in refereed journals and conferences. The work was also published at the IEEE conference. 2. Stochastic optimization for voltage/Var • The development of voltage VAr optimization based on a review of existing knowledge in optimization led to the use of stochastic program and evolution of programming optimization method for V/VAr optimization. Papers were presented at the North America Power Systems Conference and the IEEE PES general meeting. 3. Modeling RER and Storage • Extending the concept of optimization method an RER with storage, such as the development of microgrid V/VAr and storage is performed. Several papers were published at the North America Power Systems Conference and the IEEE PES general meeting. 4. Power Game • Development of power game experiment using Labvolt to allow for hands on understanding of design and development of microgrid functions is performed. Publication were done by students at the end of their summer program. 5. Designing Microgrid Testbed • Example microgrid test bed is developed. In addition, function of the test bed are developed. The papers were presented at the North America Power Systems Conference and the IEEE general meeting. 6. Outreach Program • From the outreach program, topics from the project have been included in the revision of courses at Howard University, new book called Energy Processing and Smartgrid has being developed. • Hosted masters students from University of Denver to complete their projects with us. • Hosted high school students for early exposure for careers in STEM • Representations made in IEEE conferences to share the lessons learned in the use of micro grid to expose students to STEM education and research.« less
Millimeter wavelength rectenna development
NASA Technical Reports Server (NTRS)
Gallagher, James; Gouker, Mark
1989-01-01
Rectennas were studied with the intent of converting the Earth's (black body) radiation into dc power for satellites in earth orbit. Power densities; metal-oxide-metal diodes; antenna design configurations; fluid patterns; substrate mounted antennas; and directions for future work are outlined. This presentation is represented by viewgraphs only.
NASA Astrophysics Data System (ADS)
Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.
2015-12-01
One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.
Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie
2014-02-02
The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as wellmore » as considering the path forward for smaller community scale projects.« less
NASA Astrophysics Data System (ADS)
Baranov, M. S.; Khramov, V. N.; Chebanenko, R. A.
2016-04-01
The method of measurement of the power (lux-ampere) characteristic of photodetectors for work with the continuous laser sources of light which radiation has the linear polarization is developed and realized. The way offered in this work is approved on the basis of the FD-24K widespread photo diode. The received results quite correspond to passport data of this kind of photodetectors. Methods of statistical processing of results are applied.
The Use of Technology in Group-Work: A Situational Analysis of Students' Reflective Writing
ERIC Educational Resources Information Center
McKinney, Pamela; Sen, Barbara
2016-01-01
Group work is a powerful constructivist pedagogy for facilitating students' personal and professional development, but it can be difficult for students to work together in an academic context. The assessed reflective writings of undergraduate students studying Information Management are used as data in this exploration of the group work situation…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Lonnie J; Richardson, Bradley S; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of thesemore » two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.« less
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar
2016-02-01
The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.
Schweitzer, Wolf; Thali, Michael J; Egger, David
2018-01-03
Prosthetic arm research predominantly focuses on "bionic" but not body-powered arms. However, any research orientation along user needs requires sufficiently precise workplace specifications and sufficiently hard testing. Forensic medicine is a demanding environment, also physically, also for non-disabled people, on several dimensions (e.g., distances, weights, size, temperature, time). As unilateral below elbow amputee user, the first author is in a unique position to provide direct comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body-powered arm which contains a number of new developments initiated or developed by the user: (1) quick lock steel wrist unit; (2) cable mount modification; (3) cast shape modeled shoulder anchor; (4) suspension with a soft double layer liner (Ohio Willowwood) and tube gauze (Molnlycke) combination. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) contains magnetic electrodes (Liberating Technologies). An on the job usage of five years was supplemented with dedicated and focused intensive two-week use tests at work for both systems. The side-by-side comparison showed that the customized body-powered arm provides reliable, comfortable, effective, powerful as well as subtle service with minimal maintenance; most notably, grip reliability, grip force regulation, grip performance, center of balance, component wear down, sweat/temperature independence and skin state are good whereas the iLimb system exhibited a number of relevant serious constraints. Research and development of functional prostheses may want to focus on body-powered technology as it already performs on manually demanding and heavy jobs whereas eliminating myoelectric technology's constraints seems out of reach. Relevant testing could be developed to help expediting this. This is relevant as Swiss disability insurance specifically supports prostheses that enable actual work integration. Myoelectric and cosmetic arm improvement may benefit from a less forgiving focus on perfecting anthropomorphic appearance.
It's not about energy--it's about power!
Blanton, Teri
2014-01-01
Teri Blanton is a former chairperson and current fellow at Kentuckians for the Commonwealth, a statewide organization that works "for a new balance of power and a just society aimed at changing unfair political, economic, and social systems." In March 2014 she was a keynote speaker addressing the annual conference of the Toxics Action Center in Boston, Massachusetts. We are publishing her speech, presented to the many environmental activists from community- and labor-based organizations that work on state and regional concerns. Ms. Blanton energized the conference with her message of persistent organizing to attain justice against the threats posed to our communities, health, and environment by powerful forces who exploit our lives and labor for their profit and power. She calls upon us to build the power to make the transition to more sustainable and democratic human development.
Changing computing paradigms towards power efficiency.
Klavík, Pavel; Malossi, A Cristiano I; Bekas, Costas; Curioni, Alessandro
2014-06-28
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Work and power analysis of the golf swing.
Nesbit, Steven M; Serrano, Monika
2005-12-01
A work and power (energy) analysis of the golf swing is presented as a method for evaluating the mechanics of the golf swing. Two computer models were used to estimate the energy production, transfers, and conversions within the body and the golf club by employing standard methods of mechanics to calculate work of forces and torques, kinetic energies, strain energies, and power during the golf swing. A detailed model of the golf club determined the energy transfers and conversions within the club during the downswing. A full-body computer model of the golfer determined the internal work produced at the body joints during the downswing. Four diverse amateur subjects were analyzed and compared using these two models. The energy approach yielded new information on swing mechanics, determined the force and torque components that accelerated the club, illustrated which segments of the body produced work, determined the timing of internal work generation, measured swing efficiencies, calculated shaft energy storage and release, and proved that forces and range of motion were equally important in developing club head velocity. A more comprehensive description of the downswing emerged from information derived from an energy based analysis. Key PointsFull-Body Model of the golf swing.Energy analysis of the golf swing.Work of the body joints dDuring the golf swing.Comparisons of subject work and power characteristics.
Work and Power Analysis of the Golf Swing
Nesbit, Steven M.; Serrano, Monika
2005-01-01
A work and power (energy) analysis of the golf swing is presented as a method for evaluating the mechanics of the golf swing. Two computer models were used to estimate the energy production, transfers, and conversions within the body and the golf club by employing standard methods of mechanics to calculate work of forces and torques, kinetic energies, strain energies, and power during the golf swing. A detailed model of the golf club determined the energy transfers and conversions within the club during the downswing. A full-body computer model of the golfer determined the internal work produced at the body joints during the downswing. Four diverse amateur subjects were analyzed and compared using these two models. The energy approach yielded new information on swing mechanics, determined the force and torque components that accelerated the club, illustrated which segments of the body produced work, determined the timing of internal work generation, measured swing efficiencies, calculated shaft energy storage and release, and proved that forces and range of motion were equally important in developing club head velocity. A more comprehensive description of the downswing emerged from information derived from an energy based analysis. Key Points Full-Body Model of the golf swing. Energy analysis of the golf swing. Work of the body joints dDuring the golf swing. Comparisons of subject work and power characteristics. PMID:24627666
Mamansari, D U; Salokhe, V M
1995-06-01
Agriculture plays an important role in developing countries which are mainly located in tropical regions. Agriculture is an industry with tremendous opportunities for the application of ergonomics principles. Working conditions are extremely difficult due to severe environmental conditions, long working hours, strenuous work and the use of mobile equipment. The ignorance of the majority of ergonomics principles in the design of agricultural equipment make the conditions more difficult. Thailand is one of the important suppliers of agricultural products in the world. Mechanization has expanded tremendously during the last 10 years and the number of agricultural machinery has rapidly increased. This paper looks at ergonomics principles which must be considered in the design and development of agricultural machines and equipment used in Thailand. It was identified that the common farming system in Thailand is rice-based cultivation, mostly in swampy conditions with heavy clay soil. It was also found that the most energy-consuming task in agriculture was primary cultivation. The most widely used machine is a power tiller which is suitable for the farm sizes available and can be operated easily. Most of the power tillers and other equipment were found to be locally made, with less than 5% imported. Unfortunately, there was no standardization in power tiller manufacturing which led to increasing farmers' strain. There is still a need to collect more ergonomics data of Thai farmers such as anthropometry, strength and physical work capacity for the design and development of agricultural machines and equipment used in Thailand. Different ergonomic consideration for the design and development of agricultural machinery have been suggested.
Gas cooled fuel cell systems technology development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1986-01-01
The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.
Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.
2008-01-01
NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.
High-power UV-LED degradation: Continuous and cycled working condition influence
NASA Astrophysics Data System (ADS)
Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.
2015-09-01
High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.
Solar cell power for field instrumentation at White Sands Missile range. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, J.W. Jr..; Reckart, D.H. Jr; Milway, W.B.
1978-01-01
The initial phase of an Instrumentation Development Project to explore and document what solar power can do for remote field instrumentation systems is described. The work scope consisted of selection, design, construction, test, and delivery of a solar cell power system for White Sands Missile Range. A Drone Formation Control System Interrogator was selected; a power supply was built and installed in the San Andres Mountain Range at WSMR in late August 1977.
ERIC Educational Resources Information Center
Raven, Bertram H.
The history and background of the analysis of the basis of power is examined, beginning with its origins in the works of Kurt Lewin and his followers at the Research Center for Group dynamics. The original French and Raven (1959) bases of power model posited six bases of power: reward, coercion, legitimate, expert, referent, and informational (or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin
This report summarizes the work performed as part of a FY17 CSSE L2 milestone to in- vestigate the power usage behavior of ASC workloads running on the ATS-1 Trinity plat- form. Techniques were developed to instrument application code regions of interest using the Power API together with the Kokkos profiling interface and Caliper annotation library. Experiments were performed to understand the power usage behavior of mini-applications and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights Landing compute nodes. A taxonomy of power measurement approaches was identified and presented, providing a guide for application developers to follow. Controlledmore » scaling study experiments were performed on up to 2048 nodes of Trinity along with smaller scale ex- periments on Trinity testbed systems. Additionally, power and energy system monitoring information from Trinity was collected and archived for post analysis of "in-the-wild" work- loads. Results were analyzed to assess the sensitivity of the workloads to ATS-1 compute node type (Haswell vs. Knights Landing), CPU frequency control, node-level power capping control, OpenMP configuration, Knights Landing on-package memory configuration, and algorithm/solver configuration. Overall, this milestone lays groundwork for addressing the long-term goal of determining how to best use and operate future ASC platforms to achieve the greatest benefit subject to a constrained power budget.« less
How Do We Tell the Workers? The Socioeconomic Foundations of Work and Vocational Education.
ERIC Educational Resources Information Center
Kincheloe, Joe L.
This book examines the socioeconomic foundations of work and vocational education (VE), and is divided into the following 6 parts and 18 chapters: (1) nature of work (a sense of purpose; modernism and the evolution of the technocratic mind; power and the development of the modernist economy; good work, bad work, and the debate over ethical labor);…
Power and trust in organizational relations: an empirical study in Turkish public hospitals.
Bozaykut, Tuba; Gurbuz, F Gulruh
2015-01-01
Given the salience of the interplay between trust and power relations in organizational settings, this paper examines the perceptions of social power and its effects on trust in supervisors within the context of public hospitals. Following the theoretical background from which the study model is developed, the recent situation of hospitals within Turkish healthcare system is discussed to further elucidate the working conditions of physicians. Sample data were collected employing a structured questionnaire that was distributed to physicians working at seven different public hospitals. The statistical analyses indicate that perceptions of supervisors' social power affect subordinates' trust in supervisors. Although coercive power is found to have the greatest impact on trust in supervisors, the influence of the power base is weak. In addition, the results show that perceptions of social power differ between genders. However, the results do not support any of the hypotheses regarding the relations between trust in supervisors and the examined demographic variables. Copyright © 2014 John Wiley & Sons, Ltd.
Modular shipbuilding and its relevance to construction of nuclear power plants. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seubert, T.W.
1988-05-01
The modern techniques of modular shipbuilding based on the Product Work Breakdown Structure as developed at the Ishikawajima-Harima Heavy Industries Co., Ltd. of Japan are examined and compared to conventional shipbuilding methods. The application of the Product Work Breakdown Structure in the building of the U.S. Navy's DDG-51 class ship at Bath Iron Works is described and compared to Japanese shipbuilding practices. Implementation of the Product Work Breakdown Structure at Avondale Shipyards, Incorporated is discussed and compared to Bath Iron Works shipbuilding practices. A proposed generic implementation of the Product Work Breakdown Structure to the modular construction of nuclear powermore » plants is described. Specific conclusions for the application of Product Work Breakdown Structure to the construction of a light water reactor nuclear power plant are discussed.« less
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-05-15
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.
Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai
2013-01-01
The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625
NASA Astrophysics Data System (ADS)
Smith, Wilford; Nunez, Patrick
2005-05-01
This paper describes the work being performed under the RDECOM Power and Energy (P&E) program (formerly the Combat Hybrid Power System (CHPS) program) developing hybrid power system models and integrating them into larger simulations, such as OneSAF, that can be used to find duty cycles to feed designers of hybrid power systems. This paper also describes efforts underway to link the TARDEC P&E System Integration Lab (SIL) in San Jose CA to the TARDEC Ground Vehicle Simulation Lab (GVSL) in Warren, MI. This linkage is being performed to provide a methodology for generating detailed driver profiles for use in the development of vignettes and mission profiles for system design excursions.
Power-plant modernization program in Latvia. Desk Study Report No. 1. Export trade information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-08-01
The Government of Latvia has requested the U.S. Trade and Development Program's (TDP's) assistance in financing the cost of a feasibility study to develop a modernization program for its thermal power stations aimed at improving their performance and efficiency. The consultant will work with engineers and managers of Latvenergo, Latvia's power utility, to review the performance of the country's two thermal power stations and carry out a detailed study for the rehabilitation and modernization of the TEC-2 thermal power station in Riga. The overall goal of the program will be to maximize the output capacity of the country's two powermore » stations through the implementation of economically efficient rehabilitation projects.« less
2009-09-30
NRL Code 8221) is the Lead Thermal Engineer for heater and blanket design for the mission. WORK COMPLETED The program developed a briefing...development of such science-enabling technology is critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power...critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power or cost of traditional star trackers but
Structural Mechanics and Dynamics Branch
NASA Technical Reports Server (NTRS)
Stefko, George
2003-01-01
The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.
ERIC Educational Resources Information Center
Magimairaj, Beula M.; Montgomery, James W.
2012-01-01
Purpose: This study investigated the role of processing complexity of verbal working memory tasks in predicting spoken sentence comprehension in typically developing children. Of interest was whether simple and more complex working memory tasks have similar or different power in predicting sentence comprehension. Method: Sixty-five children (6- to…
Inside the Spiral of Dysfunction: The Personal Consequences of Working for a Dysfunctional Leader
ERIC Educational Resources Information Center
Shuck, Brad; Rose, Kevin; Bergman, Matt
2015-01-01
Dysfunctional leaders suffocate others with coercive power and ego, are unpredictable, and often lack self-awareness about their dysfunction. Dysfunctional leaders are incredibly difficult to work with and can cause a series of cascading personal consequences for employees who work with them. This Perspectives in Human Resource Development essay…
Developing Governmentality: Conduct [to the third power] and Education Policy
ERIC Educational Resources Information Center
Gillies, Donald
2008-01-01
This article examines education policy and the policy process in the light of two key concepts. The first is the concept of "governmentality" from the work of Michel Foucault (1991). The second is the concept of "political spectacle" from the work of Murray Edelman (1985, 1988). Taking note, further, of recent work by…
ERIC Educational Resources Information Center
McLagan, Patricia L.
1999-01-01
The following trends facing the world of work have implications for human resource development: (1) the nature of work is changing, (2) the pace of change is accelerating, (3) the Web is a structural model of team rather than pyramid organization, (4) the bargaining power of the work force is rising, and (5) value exchanges are direct. (JOW)
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
NREL, Abengoa Making Concentrating Solar Power System Manufacturing More
Cost Effective | Energy Systems Integration Facility | NREL Abengoa NREL, Abengoa Making Concentrating Solar Power System Manufacturing More Cost Effective Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Cost and programmatic aspects of a recommended satellite power system are documented. Computer generated summaries are presented, and the detailed computer runs structured in a Work Breakdown Structure are given. The six configurations developed during the study period are summarized.
Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch.
Quan, Ting; Wang, Xue; Wang, Zhong Lin; Yang, Ya
2015-12-22
We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer's wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer's wrist, where the best approach is to charge a 100 μF capacitor in 39 s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch.
Hospital nurses' lived experience of power.
Fackler, Carol A; Chambers, Angelina N; Bourbonniere, Meg
2015-05-01
The purpose of this study was to explore hospital nurses' lived experience of power. A hermeneutic phenomenological approach informed by Merleau-Ponty's philosophy of the phenomenology of perception was used to further an understanding of nurses' embodiment of power. Fourteen hospital clinical nurses employed in intensive care units and on medical floors in two major medical centers in the northeastern United States participated in 1-hr semistructured interviews about their lived experience of power. A hermeneutic analytic approach and reflexive (cultural) bracketing produced three relational themes of power: (a) knowing my patients and speaking up for them; (b) working to build relationships that benefit patients; and (c) identifying my powerful self. Hospital clinical nurses develop a sense of power. Nurses believe power develops through acquisition of knowledge, experience, and self-confidence; this process is enhanced by exposure to good mentors. Nurses use their power to build relationships and advocate for patients. They consciously use power to improve patient care. Nurses' voices need to be heard and acknowledged. To do this in the clinical setting and beyond, hospital nurses must invite themselves or find ways to be invited into the authoritative discourse of hospital organizations. Nurses use their power to advocate for positive outcomes for patients and families. The satisfaction that comes from these positive relationships may improve nurses' perceptions of their work environment. Nurses' understanding and use of sociopolitical knowing needs further study, so that nurses may understand how to participate in current and future debates and decisions about our changing healthcare delivery systems and services. © 2015 Sigma Theta Tau International.
Wind Powering America FY07 Activities Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-02-01
The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140more » members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.« less
Electrical System Technology Working Group (WG) Report
NASA Technical Reports Server (NTRS)
Silverman, S.; Ford, F. E.
1984-01-01
The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.
High power density dc/dc converter: Component selection and design
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1989-01-01
Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginn, J.W.
1995-11-01
The photovoltaic systems test facility at Sandia National Laboratories is evaluating the performance of large hybrid power-processing centers (PPC`s). The primary customer for this work has been the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense. One of the goals of SERDP is to develop power-processing hardware to be used in photovoltaic-hybrid power systems at remote military installations. Power for these installations is presently provided by engine-generators. Currently, hardware for twelve such sites is in various stages of procurement. The subject of this talk is testing of the PPC for the first SERDP system, a 300-kWmore » unit for Superior Valley, a US Navy site at China Lake, California.« less
Advanced Electrical Materials and Components Development: An Update
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
2005-01-01
The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
A New Image Processing and GIS Package
NASA Technical Reports Server (NTRS)
Rickman, D.; Luvall, J. C.; Cheng, T.
1998-01-01
The image processing and GIS package ELAS was developed during the 1980's by NASA. It proved to be a popular, influential and powerful in the manipulation of digital imagery. Before the advent of PC's it was used by hundreds of institutions, mostly schools. It is the unquestioned, direct progenitor or two commercial GIS remote sensing packages, ERDAS and MapX and influenced others, such as PCI. Its power was demonstrated by its use for work far beyond its original purpose, having worked several different types of medical imagery, photomicrographs of rock, images of turtle flippers and numerous other esoteric imagery. Although development largely stopped in the early 1990's the package still offers as much or more power and flexibility than any other roughly comparable package, public or commercial. It is a huge body or code, representing more than a decade of work by full time, professional programmers. The current versions all have several deficiencies compared to current software standards and usage, notably its strictly command line interface. In order to support their research needs the authors are in the process of fundamentally changing ELAS, and in the process greatly increasing its power, utility, and ease of use. The new software is called ELAS II. This paper discusses the design of ELAS II.
Velloso, Isabela; Ceci, Christine; Alves, Marilia
2013-09-01
In this paper, we make explicit the changing configurations of power relations that currently characterize the Brazilian Emergency Care System (SAMU) team in Belo Horizonte, Brazil. The SAMU is a recent innovation in Brazilian healthcare service delivery. A qualitative case study methodology was used to explore SAMU's current organizational arrangements, specifically the power relations that have developed and that demonstrate internal team struggles over space and defense of particular occupational interests. The argument advanced in this paper is that these professionals are developing their work in conditions of exposure, that is, they are always being observed by someone, and that such observational exposure provides the conditions whereby everyday emergency care practices are enacted such that practice is shaped by, as well as shapes, particular, yet recognizable power relationships. Data were collected through the observation of the SAMU's work processes and through semi-structured interviews. Research materials were analyzed using discourse analysis. In the emergency care process of work, visibility is actually embedded in the disciplinary context and can thus be analyzed as a technique applied to produce disciplined individuals through the simple mechanisms elaborated by Foucault such as hierarchical surveillance, normalizing judgment, and the examination. © 2012 John Wiley & Sons Ltd.
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D
2008-02-08
We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
Initial comparison of single cylinder Stirling engine computer model predictions with test results
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.; Thieme, L. G.; Miao, D.
1979-01-01
A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.
Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking
NASA Astrophysics Data System (ADS)
Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling
2016-11-01
Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.
Enhanced absorption cycle computer model
NASA Astrophysics Data System (ADS)
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.
Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems
NASA Astrophysics Data System (ADS)
Gallo, Bruno M.; El-Genk, Mohamed S.
2008-01-01
This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.
SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Sean Kelly; Subhasish Mukerjee
2003-12-08
The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
de Jong, Simon B
2014-01-01
Recent studies have indicated that it is important to investigate the interaction between task interdependence and task autonomy because this interaction can affect team effectiveness. However, only a limited number of studies have been conducted and those studies focused solely on the team level of analysis. Moreover, there has also been a dearth of theoretical development. Therefore, this study develops and tests an alternative theoretical perspective in an attempt to understand if, and if so why, this interaction is important at the individual level of analysis. Based on interdependence theory and power-dependence theory, we expected that highly task-interdependent individuals who reported high task autonomy would be more powerful and better performers. In contrast, we expected that similarly high task-interdependent individuals who reported less task autonomy would be less powerful and would be weaker performers. These expectations were supported by multi-level and bootstrapping analyses performed on a multi-source dataset (self-, peer-, manager-ratings) comprised of 182 employees drawn from 37 teams. More specifically, the interaction between task interdependence and task autonomy was γ =.128, p <.05 for power and γ =.166, p <.05 for individual performance. The 95% bootstrap interval ranged from .0038 to .0686.
Autonomous Spacecraft Communication Interface for Load Planning
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; May, Ryan D.; Morris, Paul H.
2014-01-01
Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.
NASA Astrophysics Data System (ADS)
Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.
2012-12-01
The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.
NASA Astrophysics Data System (ADS)
Orans, Ren
1990-10-01
Existing procedures used to develop marginal costs for electric utilities were not designed for applications in an increasingly competitive market for electric power. The utility's value of receiving power, or the costs of selling power, however, depend on the exact location of the buyer or seller, the magnitude of the power and the period of time over which the power is used. Yet no electric utility in the United States has disaggregate marginal costs that reflect differences in costs due to the time, size or location of the load associated with their power or energy transactions. The existing marginal costing methods used by electric utilities were developed in response to the Public Utilities Regulatory Policy Act (PURPA) in 1978. The "ratemaking standards" (Title 1) established by PURPA were primarily concerned with the appropriate segmentation of total revenues to various classes-of-service, designing time-of-use rating periods, and the promotion of efficient long-term resource planning. By design, the methods were very simple and inexpensive to implement. Now, more than a decade later, the costing issues facing electric utilities are becoming increasingly complex, and the benefits of developing more specific marginal costs will outweigh the costs of developing this information in many cases. This research develops a framework for estimating total marginal costs that vary by the size, timing, and the location of changes in loads within an electric distribution system. To complement the existing work at the Electric Power Research Institute (EPRI) and Pacific Gas and Electric Company (PGandE) on estimating disaggregate generation and transmission capacity costs, this dissertation focuses on the estimation of distribution capacity costs. While the costing procedure is suitable for the estimation of total (generation, transmission and distribution) marginal costs, the empirical work focuses on the geographic disaggregation of marginal costs related to electric utility distribution investment. The study makes use of data from an actual distribution planning area, located within PGandE's service territory, to demonstrate the important characteristics of this new costing approach. The most significant result of this empirical work is that geographic differences in the cost of capacity in distribution systems can be as much as four times larger than the current system average utility estimates. Furthermore, lumpy capital investment patterns can lead to significant cost differences over time.
Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugerwa, Michael
2015-11-18
Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).
Jennifer.Vanrij@nrel.gov | 303-384-7180 Jennifer's expertise is in developing computational modeling methods for collaboratively developing numerical modeling methods to simulate the hydrodynamic, structural dynamic, power -elastic interactions. Her other diverse work experiences include developing numerical modeling methods for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, J.A.
1989-09-01
This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power onmore » spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.« less
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
The Power of Organizational Readiness to Boost Success with the 2008 EPAS in Social Work Education
ERIC Educational Resources Information Center
Burney Nissen, Laura
2014-01-01
Social work education is engaged in a significant evolutionary phase of its development, spearheaded by the Council on Social Work Education and the 2008 Educational Policy and Accreditation Standards (EPAS). This article suggests that an organizational change--anchored focus is a little discussed but ultimately important set of theories and…
Work and Risk: Perceptions of Nuclear-Power Personnel. a Study in Grounded Theory.
NASA Astrophysics Data System (ADS)
Fields, Claire Dewitt
1992-01-01
The utility industry has devoted time and money to assure personnel within nuclear power plants are informed about occupational risks. Radiation-protection training programs are designed to present information to employees about occupational radiation and protective procedures. Work -related concerns are known to create stress, affect the morale of the workforce, influence collective bargaining, and increase compensation claims. This study was designed to determine perceptions of risk among employees of nuclear power plants and identify variables that influence these perceptions. Four power plants were included in the study, one in Canada and three in the United States. Data were generated through participant observations and interviews of 350 participants during a period of 3 weeks at each plant. Data were gathered and analyzed following procedures advanced by Grounded Theory, a naturalistic methodology used in this study. Training content, information, and communication materials were additional sources of data. Findings indicated employees believed health and safety risks existed within the work environment. Perceptions of risk were influenced by training quality, the work environment, nuclear myths and images of the general public, and fears of family members. Among the three groups of workers, administration personnel, security personnel, and radiation workers, the latter identified a larger number of risks. Workers perceived radiation risks, shift work, and steam pipe ruptures as high-level concerns. Experiencing stress, making mistakes, and fear of sabotage were concerns shared among all employee groups at various levels of concern. Strategies developed by employees were used to control risk. Strategies included teamwork, humor, monitoring, avoidance, reframing, and activism. When risks were perceived as uncontrollable, the employee left the plant. A coping strategy of transferring concerns about radiological risks to nonradiological risks were uncovered in the data. Implications and recommendations include (a) the development of interactive training sessions concerning perceptions and facts of radiological exposures, (b) informational training for nonradiological employees, and (c) educational material development for family members and friends of employees.
ERIC Educational Resources Information Center
Hargreaves, Andrew; Fullan, Michael
2013-01-01
This article explores the powerful idea of capital and articulates its importance for professional work, professional capacity, and professional effectiveness. Systems that invest in professional capital recognize that education spending is an investment in developing human capital from early childhood to adulthood, leading to rewards of economic…
"You've Got the Power": Documentary Film as a Tool of Environmental Adult Education
ERIC Educational Resources Information Center
Clover, Darlene E.
2011-01-01
Educators call for more creative means to combat the moribund narratives of contemporary environmentalism. Using visual methodology and environmental adult education theory, this article discusses how a documentary film titled "You've Got the Power" works to pose questions about complex environmental issues and develop critical thinking…
Confucius Institutes and China's Soft Power: Practices and Paradoxes
ERIC Educational Resources Information Center
Lo, Joe Tin-yau; Pan, Suyan
2016-01-01
Since China's implementation of the Confucius Institute (CI) project in 2004, most academic works have been written on its objectives, nature, features, development, problems and challenges, especially in terms of soft power projection. Though some of them could unravel the tensions and paradoxes in the CI project, there is a paucity of in-depth…
Resisting Anorexia/Bulimia: Foucauldian Perspectives in Narrative Therapy
ERIC Educational Resources Information Center
Lock, Andrew; Epston, David; Maisel, Richard; de Faria, Natasha
2005-01-01
Foucault's analysis of unseen power as it operates in discourses that construct "practices of discipline" and "technologies of the self" has been a central conceptual resource in the development of narrative therapy. Narrative therapists take the view that ?unseen aspects of power work to construct both how a person understands their situation,…
Mission analysis of solar powered aircraft
NASA Technical Reports Server (NTRS)
Hall, D. W.; Watson, D. A.; Tuttle, R. P.; Hall, S. A.
1985-01-01
The effect of a real mission scenario on a solar powered airplane configuration which had been developed in previous work were assessed. The mission used was surveillance of crop conditions over a route from Phoenix to Tucson to Tombstone, Arizona. Appendices are attached which address the applicability of existing platforms and payloads to do this mission.
"Powerful Knowledge" and the L2 Chinese Curriculum in Victoria
ERIC Educational Resources Information Center
Prescott, Claudia
2015-01-01
The idea of "powerful knowledge" has been developed by Young (2008; 2010; 2012; 2013), who argues for a subject-based curriculum. This notion has created widespread debate within the fields of sociology of knowledge and the sociology of the curriculum. Young's work takes a social realist perspective to describing the academic disciplines…
30 CFR 57.12017 - Work on power circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall prevent the power circuits from being energized without the knowledge of the individuals working... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work...
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
Poile, Christopher
2017-09-01
Research on power suggests asymmetric task dependence (sending work resources to a coworker and receiving little in return) should create a power imbalance and promote selfishness. In contrast, work design theory suggests asymmetry can lead to felt responsibility, but this link has not been tested and its theory remains underdeveloped. Drawing on self-determination theory (SDT), this article argues that work design characteristics can encourage the SDT internalization process-the transformation of external reasons for behavior into internal reasons. Two experiments demonstrate asymmetry encourages felt responsibility for the dependent's task, which helps explain the amount of help provided to the dependent. The author proposes felt responsibility indicates the extent to which an external task has been internalized as a self-directed motivation. This article clarifies how task dependence is different from power and develops an important and understudied aspect of SDT: how work design characteristics are transformed into internalized motivations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The NASA space power technology program
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1992-01-01
NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Proceedings of Small Power Systems Solar Electric Workshop. Volume 2: Invited papers
NASA Technical Reports Server (NTRS)
Ferber, R. (Editor)
1978-01-01
The focus of this work shop was to present the committment to the development of solar thermal power plants for a variety of applications including utility applications. Workshop activities included panel discussions, formal presentations, small group interactive discussions, question and answer periods, and informal gatherings. Discussion on topics include: (1) solar power technology options; (2) solar thermal power programs currently underway at the DOE, JPL, Electric Power Research Institute (EPRI), and Solar Energy Research Institute (SERI); (3) power options competing with solar; (4) institutional issues; (5) environmental and siting issues; (6) financial issues; (7) energy storage; (8) site requirements for experimental solar installations, and (9) utility planning.
Smith, Chris Llewellyn; Cowley, Steve
2010-01-01
The promise, status and challenges of developing fusion power are outlined. The key physics and engineering principles are described and recent progress quantified. As the successful demonstration of 16 MW of fusion in 1997 in the Joint European Torus showed, fusion works. The central issue is therefore to make it work reliably and economically on the scale of a power station. We argue that to meet this challenge in 30 years we must follow the aggressive programme known as the ‘Fast Track to Fusion’. This programme is described in some detail. PMID:20123748
Ergonomics principles to design clothing work for electrical workers in Colombia.
Castillo, Juan; Cubillos, A
2012-01-01
The recent development of the Colombian legislation, have been identified the need to develop protective clothing to work according to specifications from the work done and in compliance with international standards. These involve the development and design of new strategies and measures for work clothing design. In this study we analyzes the activities of the workers in the electrical sector, the method analyzes the risks activity data in various activities, that activities include power generation plants, local facilities, industrial facilities and maintenance of urban and rural networks. The analyses method is focused on ergonomic approach, risk analysis is done, we evaluate the role of security expert and we use a design algorithm developed for this purpose. The result of this study is the identification of constraints and variables that contribute to the development of a model of analysis that leads to the development the work protective clothes.
Satellite Power System (SPS) FY 79 program summary
NASA Technical Reports Server (NTRS)
1980-01-01
The Satellite Power System (SPS) program a joint effort to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept is discussed. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. This Program Summary not only covers FY 1979 but includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.
NASA Astrophysics Data System (ADS)
Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari
2017-06-01
Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.
Solar power plant performance evaluation: simulation and experimental validation
NASA Astrophysics Data System (ADS)
Natsheh, E. M.; Albarbar, A.
2012-05-01
In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.
Design of a portable powered seat lift
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce
1993-01-01
People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.
Putting Bourdieu to work for class analysis: reflections on some recent contributions.
Flemmen, Magne
2013-06-01
Recent developments in class analysis, particularly associated with so-called 'cultural class analysis'; have seen the works of Pierre Bourdieu take centre stage. Apart from the general influence of 'habitus' and 'cultural capital', some scholars have tried to reconstruct class analysis with concepts drawn from Bourdieu. This involves a theoretical reorientation, away from the conventional concerns of class analysis with property and market relations, towards an emphasis on the multiple forms of capital. Despite the significant potential of these developments, such a reorientation dismisses or neglects the relations of power and domination founded in the economic institutions of capitalism as a crucial element of what class is. Through a critique of some recent attempts by British authors to develop a 'Bourdieusian' class theory, the paper reasserts the centrality of the relations of power and domination that used to be the domain of class analysis. The paper suggests some elements central to a reworked class analysis that benefits from the power of Bourdieu's ideas while retaining a perspective on the fundamentals of class relations in capitalism. © London School of Economics and Political Science 2013.
Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao
2016-12-01
A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.
Power production by Olympic weightlifters.
Garhammer, J
1980-01-01
A new procedure was developed for calculating power production during Olympic lifting movements and comparisons were made with a method previously used. The power output of seven superior lifters was determined during selected phases of the snatch, clean, and jerk, from films taken at the 1975 U.S. National Championships. The values obtained depended on the following variables: vertical change in the bar's mechanical energy from the beginning of a force exertion phase until maximum vertical bar velocity was achieved; work done by the athlete in producing horizontal bar movement; and work done in raising the body's center of gravity. Results showed the expected increase in power with increased bodyweight for a given movement. Values for the jerk drive ranged from 2140 watts in the 56 kg class to 4786 watts for a 110 kg lifter. Heavier lifters exceeded published maximal estimates for human power output during brief exertions. More significant was the high degree of consistency in the rate of work done by any given lifter in movements which were very similar with respect to joint action, but competitively had very different objectives. The procedure should prove useful in detecting problems in lifting movements that result in power outputs which are low relative to those measured for biomechanically equivalent exertions.
Ross, Stephanie A; Ryan, David S; Dominguez, Sebastian; Nigam, Nilima; Wakeling, James M
2018-05-03
Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibres are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modelling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.
Development of Live-working Robot for Power Transmission Lines
NASA Astrophysics Data System (ADS)
Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui
2017-07-01
Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less
A Compendium of Brazed Microstructures For Fission Power Systems Applications
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Bowman, Cheryl L.
2012-01-01
NASA has been supporting design studies and technology development for fission-based power systems that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. This investigation is part of the development of several braze joints crucial for the heat exchanger transfer path from a hot-side heat exchanger to a Stirling engine heat acceptor. Dissimilar metal joints are required to impart both mechanical strength and thermal path integrity for a heater head of interest. Preliminary design work for the heat exchanger involved joints between low carbon stainless steel to Inconel 718, where the 316L stainless steel would contain flowing liquid metal NaK while Inconel 718, a stronger alloy, would be used as structural reinforcement. This paper addressed the long-term microstructural stability of various braze alloys used to join 316L stainless steel heater head to the high conductivity oxygen-free copper acceptor to ensure the endurance of the critical metallic components of this sophisticated heat exchanger. The bonding of the 316L stainless steel heater head material to a copper heat acceptor is required to increase the heat-transfer surface area in contact with flowing He, which is the Stirling engine working fluid.
NASA Astrophysics Data System (ADS)
Grube, R.; Tursky, W.; Gerzovskovits, S.; Schierz, W.
1982-12-01
An asymmetrical gate assisted turn-off thyristor and two types of rectifier diodes were developed. These devices are suitable for self-commutated convertors working at frequencies between 15 and 30 kHz for direct connection to 380 V and 500 V lines and for power outputs up to 20 kVA. Such convertors allow economic and easily controllable power supplies to be realized for applications such as welding, inductive heating, ultrasonic generators, and radar modulators.
NASA Fuel Tank Wireless Power and Signal Study
NASA Technical Reports Server (NTRS)
Merrill, Garrick
2015-01-01
Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, W.; Dybel, M.; West, R.
This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less
Real options and asset valuation in competitive energy markets
NASA Astrophysics Data System (ADS)
Oduntan, Adekunle Richard
The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.
NASA Astrophysics Data System (ADS)
Seymour, C. M.
1992-01-01
A project, jointly funded by VSEL and CJB Developments Limited, is aimed at the development of complete power generation systems based on PEM fuel cell technology. Potential markets for such systems are seen as being very broadly based, ranging from military land and marine systems through to commercial on-site power generation and transport. From the outset the project was applications driven, the intent being to identify market requirements, in terms of system specifications and to use these to produce development targets. The two companies have based their work on the Ballard PEM stack and have focused their efforts on the development of supporting systems. This benefits all three companies as it allows Ballard to obtain applications information on which to base future research and VSEL/CJBD are able to capitalise on the advanced development of the Ballard stack. Current work is focused on the production of a 20 kW, methanol fuelled, power generation system demonstrator, although work is also in hand to address a wider range of fuels including natural gas. The demonstrator, when complete, will be used to indicate the potential benefits of such systems and to act as a design aid for the applications phase of the project. Preliminary work on this next phase is already in hand, with studies to assess both systems and fuel cell stack design requirements for specific applications and to generate concept designs. Work to date has concentrated on the development of a methanol reformer, suitable for integration into a fuel cell system and on extensive testing and evaluation of the Ballard fuel cell stacks. This testing has covered a wide range of operating parameters, including different fuel and oxidant combinations. The effect of contaminants on the performance and life of the fuel cells is also under evaluation. PEM fuel cells still require a great deal of further development if they are to gain widespread commercial acceptance. A recent study conducted by VSEL in conjunction with the UK Department of Energy has addressed the fuel cell cost and performance requirements in order to both focus future research and to aid understanding of the time-scale to reach full commercialisation.
Estimation of average annual streamflows and power potentials for Alaska and Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdin, Kristine L.
2004-05-01
This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less
Power Quality and Reliability Project
NASA Technical Reports Server (NTRS)
Attia, John O.
2001-01-01
One area where universities and industry can link is in the area of power systems reliability and quality - key concepts in the commercial, industrial and public sector engineering environments. Prairie View A&M University (PVAMU) has established a collaborative relationship with the University of'Texas at Arlington (UTA), NASA/Johnson Space Center (JSC), and EP&C Engineering and Technology Group (EP&C) a small disadvantage business that specializes in power quality and engineering services. The primary goal of this collaboration is to facilitate the development and implementation of a Strategic Integrated power/Systems Reliability and Curriculum Enhancement Program. The objectives of first phase of this work are: (a) to develop a course in power quality and reliability, (b) to use the campus of Prairie View A&M University as a laboratory for the study of systems reliability and quality issues, (c) to provide students with NASA/EPC shadowing and Internship experience. In this work, a course, titled "Reliability Analysis of Electrical Facilities" was developed and taught for two semesters. About thirty seven has benefited directly from this course. A laboratory accompanying the course was also developed. Four facilities at Prairie View A&M University were surveyed. Some tests that were performed are (i) earth-ground testing, (ii) voltage, amperage and harmonics of various panels in the buildings, (iii) checking the wire sizes to see if they were the right size for the load that they were carrying, (iv) vibration tests to test the status of the engines or chillers and water pumps, (v) infrared testing to the test arcing or misfiring of electrical or mechanical systems.
The Express-Lane Edit: Making Editing Useful for Young Adolescents
ERIC Educational Resources Information Center
Anderson, Jeff
2008-01-01
Editing is a powerful tool for writers, but are our methods of teaching it really demonstrating that power for young adolescents? The author, frustrated with students' inability to edit, blames his own approach and, beginning with a grocery store epiphany, works to develop a more effective system. Elements of his successful approach include time…
DOT National Transportation Integrated Search
1977-04-01
Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...
McGowan, C.P.; Neptune, R.R.; Herzog, W.
2009-01-01
History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error < 1.5 N) and force depression in the simulated leg extension exercise being similar in magnitude to experimental values (6.0% vs 6.5%, respectively). To examine the influence of force depression on locomotor performance, simulations of maximum power pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585
ERIC Educational Resources Information Center
Peters, Dane L.
2012-01-01
Unquestionably, Maria Montessori's insights into child development were both innate and learned, derived from her many years of working with children. Her work, practices, philosophy, and passion have staying power that, so far, spans a century and are a testament to her dedication and abilities. In this article, the author explains why he sees…
Community-Based Participatory Study Abroad: A Proposed Model for Social Work Education
ERIC Educational Resources Information Center
Fisher, Colleen M.; Grettenberger, Susan E.
2015-01-01
Study abroad experiences offer important benefits for social work students and faculty, including global awareness, practice skill development, and enhanced multicultural competence. Short-term study abroad programs are most feasible but typically lack depth of engagement with host communities and may perpetuate existing systems of power and…
Computerized power supply analysis: State equation generation and terminal models
NASA Technical Reports Server (NTRS)
Garrett, S. J.
1978-01-01
To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.
FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less
Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitry V. Paramonov, Lead Collaborator
2001-07-31
The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on themore » feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.« less
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
The Utility of EEG Band Power Analysis in the Study of Infancy and Early Childhood
Saby, Joni N.; Marshall, Peter J.
2012-01-01
Research employing electroencephalographic (EEG) techniques with infants and young children has flourished in recent years due to increased interest in understanding the neural processes involved in early social and cognitive development. This review focuses on the functional characteristics of the alpha, theta, and gamma frequency bands in the developing EEG. Examples of how analyses of EEG band power have been applied to specific lines of developmental research are also discussed. These examples include recent work on the infant mu rhythm and action processing, frontal alpha asymmetry and approach-withdrawal tendencies, and EEG power measures in the study of early psychosocial adversity. PMID:22545661
NASA Technical Reports Server (NTRS)
Rieker, Lorra L.; Haraburda, Francis M.
1989-01-01
Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.
Handheld detector using NIR for bottled liquid explosives
NASA Astrophysics Data System (ADS)
Itozaki, Hideo; Sato-Akaba, Hideo
2014-10-01
A handheld bottle checker for detection of liquid explosives is developed using near infrared technology. In order to make it compact, a LED light was used as a light source and a novel circuit board was developed for the device control instead of using a PC. This enables low power consumption and this handheld detector can be powered by a Li-ion battery without an AC power supply. This checker works well to analyze liquids, even using limited bandwidth of NIR by the LED. It is expected that it can be applied not only to airport security but also to wider applications because of its compactness and portability.
Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.
Mancier, Valérie; Leclercq, Didier
2008-09-01
A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements.
Power Inversion in a Tapped Delay-Line Array.
1975-03-01
and identify by block number) This report discusses recent studies on adaptive arrays for theNavy ITACS system. The report considers the power inversion...this report we discuss recent studies on adaptive arrays for the Navy ITACS system. The goal of this research is to develop an adaptive antenna system...here is a continuation of earlier research on power inversion by Compton, Lee, and Schwegman [1,2,3,4]. This work differs from previous studies in that
Bio-power, Agamben, and emerging nursing knowledge.
Georges, Jane M
2008-01-01
This philosophical article posits that an emerging theme in contemporary nursing epistemology is bio-power and proposes the use of philosopher Giorgio Agamben's perspectives as a useful approach for the future investigation of bio-power in nursing knowledge. Building upon Meleis' characterization of diversity as the most recent "milestone" of contemporary theoretical development of the nursing discipline, selected recent texts from the nursing literature are analyzed, and implications for future nursing knowledge in the context of Agamben's work are explored.
Cerenkov Maser and Cerenkov Laser Devices.
1982-12-01
The principle goal of the work was the development of high power Cerenkov sources in the lower mm wavelength range. It was demonstrated that a...it is • Subject catecory name: approximately one kw. At the present-time the-beam i-s High Power icr ave collected on a mirror set at a 450 angle to...differences in the boundary-scat- This process shows potential as a tunable source of fared phonon conductivity are predicted along the prim- highs power
Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.
Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin
2016-04-20
A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Yang, Zhengbao; Zu, Jean
2015-04-01
Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.
OpenStructure: a flexible software framework for computational structural biology.
Biasini, Marco; Mariani, Valerio; Haas, Jürgen; Scheuber, Stefan; Schenk, Andreas D; Schwede, Torsten; Philippsen, Ansgar
2010-10-15
Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure consists primarily of a set of libraries written in C++ with a cleanly designed application programmer interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the requirements for high efficiency and ease of use. Powerful selection queries and the notion of entity views to represent these selections greatly facilitate the development and implementation of algorithms on structural data. The modular integration of computational core methods with powerful visualization tools makes OpenStructure an ideal working and development environment. Several applications, such as the latest versions of IPLT and QMean, have been implemented based on OpenStructure-demonstrating its value for the development of next-generation structural biology algorithms. Source code licensed under the GNU lesser general public license and binaries for MacOS X, Linux and Windows are available for download at http://www.openstructure.org. torsten.schwede@unibas.ch Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.
The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.
The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less
A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming
NASA Astrophysics Data System (ADS)
Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai
2018-03-01
With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.
5-kWe Free-piston Stirling Engine Convertor
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.
2008-01-01
The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and transient response to temperature and load variations. Future activities may include testing at NASA GRC.
Novel Heat Controller for Thermogenerators Working on Uncontrolled Stoves
NASA Astrophysics Data System (ADS)
Juanicó, Luis E.; Rinalde, Fabián; Taglialavore, Eduardo; Molina, Marcelo
2013-07-01
This paper describes the development of a thermogenerator designed for uncontrolled firewood household stoves. It was built on BiTe thermoelectric (TE) modules, and it uses a water pot as a cooling device that also serves as a hot water source. An original heat controller was developed; it has low thermal resistance ( R) during low-power operation, but its R can be continuously increased according to the stove temperature so that the TE never overheats while its power generation is optimized.
Space Solar Power Technical Interchange Meeting 2: SSP TIM 2
NASA Technical Reports Server (NTRS)
Sanders, Jim; Hawk, Clark W.
1998-01-01
The 2nd Space Solar Power Technical Interchange Meeting (SSP TIM 2) was conducted September 21st through 24th with the first part consisting of a Plenary session. The summary results of this Plenary session are contained in part one of this report. The attendees were then organized into Working Breakout Sessions and Integrated Product Team (IPT) Sessions for the purpose of conducting in-depth discussions in specific topic areas and developing a consensus as to appropriate study plans and actions to be taken. The Second part covers the Plenary Summary Session, which contains the summary results of the Working Breakout Sessions and IPT Sessions. The appendix contains the list of attendees. The ob'jective was to provide an update for the study teams and develop plans for subsequent study activities. This SSP TIM 2 was initiated and the results reported electronically over the Internet. The International Space Station (ISS) could provide the following opportunities for conducting research and technology (R&T) which are applicable to SSP: (1) Automation and Robotics, (2) Advanced Power Generation, (3) Advanced Power Management & Distribution (PMAD), (4) Communications Systems and Networks, (5) Energy Storage, (6) In Space Propulsion (ISP), (7) Structural Dynamics and Control, and Assembly and (8) Wireless Power Transmission.
An underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, V.E.
1988-05-17
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.
Underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, Viktor E.
1989-01-01
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.
Advances in space power research and technology at the National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.; Ambrus, J. H.
1981-01-01
Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H2 battery and O2-H2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted.
Human resource development for nuclear generation - from the perspective of a utility company
NASA Astrophysics Data System (ADS)
Kahar, Wan Shakirah Wan Abdul; Mostafa, Nor Azlan; Salim, Mohd Faiz
2017-01-01
Malaysia is currently in the planning phase of its nuclear power program, with the first unit targeted to be operational in 2030. Training of nuclear power plant (NPP) staffs are usually long and rigorous due to the complexity and safety aspects of nuclear power. As the sole electricity utility in the country, it is therefore essential that Tenaga Nasional Berhad (TNB) prepares early in developing its human resource and nuclear expertise as a potential NPP owner-operator. A utility also has to be prudent in managing its work force efficiently and effectively, while ensuring that adequate preparations are being made to acquire the necessary nuclear knowledge with sufficient training lead time. There are several approaches to training that can be taken by a utility company with no experience in nuclear power. These include conducting feasibility studies and benchmarking exercises, preparing long term human resource development, increasing the exposure on nuclear power technology to both the top management and general staff, and employing the assistance of relevant agencies locally and abroad. This paper discusses the activities done and steps taken by TNB in its human resource development for Malaysia's nuclear power program.
Improvement on upper limb body-powered prostheses (1921-2016): A systematic review.
Hashim, Nur Afiqah; Abd Razak, Nasrul Anuar; Abu Osman, Noor Azuan; Gholizadeh, Hossein
2018-01-01
Body-powered prostheses are known for their advantages of cost, reliability, training period, maintenance, and proprioceptive feedback. This study primarily aims to analyze the work related to the improvement of upper limb body-powered prostheses prior to 2016. A systematic review conducted via the search of the Web of Science electronic database, Google Scholar, and Google Patents identified 155 papers from 1921 to 2016. Sackett's initial rules of evidence were used to determine the levels of evidence, and only papers categorized in the design and development category and patents were analyzed. A total of 40 papers in the sixth level of "Design and Development" of an upper limb body-powered prosthesis were found. Approximately 81% were categorized under mechanical alteration. Most papers were patent-type documents (48%), with the Journal of Rehabilitation Research and Development publishing most of the articles related to the design and development of body-powered prostheses. Papers in the scope of the study were published once every 3 years in almost a century, proving that only a few studies were conducted to improve body-powered arms compared with myoelectric technology. Further research should be carried out mainly in areas that have received less attention.
NASA Astrophysics Data System (ADS)
Alabdulkarem, Abdullah
Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.
Mission Applicability Assessment of Integrated Power Components and Systems
NASA Technical Reports Server (NTRS)
Raffaelle, R. P.; Hepp, A. F.; Landis, G. A.; Hoffman, D. J.
2002-01-01
The need for smaller lightweight autonomous power systems has recently increased with the increasing focus on micro- and nanosatellites. Small area high-efficiency thin film batteries and solar cells are an attractive choice for such applications. The NASA Glenn Research Center, Johns Hopkins Applied Physics Laboratory, Lithium Power Technologies, MicroSat Systems, and others, have been working on the development of autonomous monolithic packages combining these elements or what are called integrated power supplies (IPS). These supplies can be combined with individual satellite components and are capable of providing continuous power even under intermittent illumination associated with a spinning or Earth orbiting satellite. This paper discusses the space mission applicability, benefits, and current development efforts associated with integrated power supply components and systems. The characteristics and several mission concepts for an IPS that combines thin-film photovoltaic power generation with thin-film lithium ion energy storage are described. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be for small "nanosatellites" or in specialized applications serving as a decentralized or as a distributed power source or uninterruptible power supply.
Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence
NASA Astrophysics Data System (ADS)
Montag, P.; Egedal, J.; Lichko, E.; Wetherton, B.
2017-06-01
Previous work has shown that Fermi acceleration can be an effective heating mechanism during magnetic island coalescence, where electrons may undergo repeated reflections as the magnetic field lines contract. This energization has the potential to account for the power-law distributions of particle energy inferred from observations of solar flares. Here, we develop a generalized framework for the analysis of Fermi acceleration that can incorporate the effects of compressibility and non-uniformity along field lines, which have commonly been neglected in previous treatments of the problem. Applying this framework to the simplified case of the uniform flux tube allows us to find both the power-law scaling of the distribution function and the rate at which the power-law behavior develops. We find that a guide magnetic field of order unity effectively suppresses the development of power-law distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan
The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling andmore » testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.« less
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry
2014-01-01
The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
Electronics for Piezoelectric Smart Structures
NASA Technical Reports Server (NTRS)
Warkentin, D. J.; Tani, J.
1997-01-01
This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.
Comparison of power curve monitoring methods
NASA Astrophysics Data System (ADS)
Cambron, Philippe; Masson, Christian; Tahan, Antoine; Torres, David; Pelletier, Francis
2017-11-01
Performance monitoring is an important aspect of operating wind farms. This can be done through the power curve monitoring (PCM) of wind turbines (WT). In the past years, important work has been conducted on PCM. Various methodologies have been proposed, each one with interesting results. However, it is difficult to compare these methods because they have been developed using their respective data sets. The objective of this actual work is to compare some of the proposed PCM methods using common data sets. The metric used to compare the PCM methods is the time needed to detect a change in the power curve. Two power curve models will be covered to establish the effect the model type has on the monitoring outcomes. Each model was tested with two control charts. Other methodologies and metrics proposed in the literature for power curve monitoring such as areas under the power curve and the use of statistical copulas have also been covered. Results demonstrate that model-based PCM methods are more reliable at the detecting a performance change than other methodologies and that the effectiveness of the control chart depends on the types of shift observed.
Research and development of neodymium phosphate laser glass for high power laser application
NASA Astrophysics Data System (ADS)
Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao
2017-01-01
Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.
Research and development of neodymium phosphate laser glass for high power laser application
NASA Astrophysics Data System (ADS)
Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao
2016-12-01
Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.
Solar Electric Power System Analyses for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Kohout, Lisa L.
1999-01-01
The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.
Evaluating the Response of Polyvinyl Toluene Scintillators used in Portal Detectors
2008-03-01
For the example shell script , the working directory is located at d:\\g4work. The Java development kit (jdk) is located at c:/ Java /jdk1.7.0. “JAIDA...Interval . . . . . . . . . . . . . . . . . . . . . . 64 SLAC Stanford Linear Accelerator . . . . . . . . . . . . . . . . . 84 jdk Java development...Em0, Em13, Em14 Stopping power, particle range ... Em0, Em1, Em5, Em11, Em12 Final state : energy spectra, angular distributions Em14 Energy loss
Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators
NASA Technical Reports Server (NTRS)
Deo, Naresh C.
1990-01-01
A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.
Development/Modernization of an Advanced Non-Light Water Reactor Probabilistic Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneke, Dennis W.; Robinson, James
In 2015, GE Hitachi Nuclear Energy (GEH) teamed with Argonne National Laboratory (Argonne) to perform Research and Development (R&D) of next-generation Probabilistic Risk Assessment (PRA) methodologies for the modernization of an advanced non-Light Water Reactor (non-LWR) PRA. This effort built upon a PRA developed in the early 1990s for GEH’s Power Reactor Inherently Safe Module (PRISM) Sodium Fast Reactor (SFR). The work had four main tasks: internal events development modeling the risk from the reactor for hazards occurring at-power internal to the plant; an all hazards scoping review to analyze the risk at a high level from external hazards suchmore » as earthquakes and high winds; an all modes scoping review to understand the risk at a high level from operating modes other than at-power; and risk insights to integrate the results from each of the three phases above. To achieve these objectives, GEH and Argonne used and adapted proven PRA methodologies and techniques to build a modern non-LWR all hazards/all modes PRA. The teams also advanced non-LWR PRA methodologies, which is an important outcome from this work. This report summarizes the project outcomes in two major phases. The first phase presents the methodologies developed for non-LWR PRAs. The methodologies are grouped by scope, from Internal Events At-Power (IEAP) to hazards analysis to modes analysis. The second phase presents details of the PRISM PRA model which was developed as a validation of the non-LWR methodologies. The PRISM PRA was performed in detail for IEAP, and at a broader level for hazards and modes. In addition to contributing methodologies, this project developed risk insights applicable to non-LWR PRA, including focus-areas for future R&D, and conclusions about the PRISM design.« less
[Offshore substation workers' exposure to harmful factors - Actions minimizing risk of hazards].
Piotrowski, Paweł Janusz; Robak, Sylwester; Polewaczyk, Mateusz Maksymilian; Raczkowski, Robert
2016-01-01
The current development of electric power industry in Poland, especially in the field of renewable energy sources, including wind power, brings about the need to introduce legislation on new work environment. The development of occupational safety and health (OSH) regulations that must be met by new workplaces, such as offshore substations becomes necessary in view of the construction of modern offshore wind power plants - offshore wind farms. Staying on offshore substation is associated with an increased exposure to harmful health factors: physical, chemical, biological and psychophysical. The main sources of health risks on offshore substations are: temperature, electromagnetic field, noise from operating wind turbines, direct and alternating current, chemicals, Legionella bacteria and social isolation of people. The aim of this article is to draw attention to the problem of offshore substation workers' exposure to harmful factors and to present methods of preventing and reducing the risk-related adverse health effects. In this paper, there are identified and described risks occurring on offshore substations (fire, explosion, lightning, accidents at work). Some examples of the means and the methods for reducing the negative impact of exposure on the human health are presented and discussed. The article also highlights the need to develop appropriate laws and health and safety regulations concerning the new working environment at the offshore substations. The review of researches and international standards shows that some of them can be introduced into the Polish labor market. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASAs current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
Real-time fetal ECG system design using embedded microprocessors
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Muddu, Harikrishna; Schinhaerl, Sebastian; Kumm, Martin; Zipf, Peter
2016-05-01
The emphasis of this project lies in the development and evaluation of new robust and high fidelity fetal electrocardiogram (FECG) systems to determine the fetal heart rate (FHR). Recently several powerful algorithms have been suggested to improve the FECG fidelity. Until now it is unknown if these algorithms allow a real-time processing, can be used in mobile systems (low power), and which algorithm produces the best error rate for a given system configuration. In this work we have developed high performance, low power microprocessor-based biomedical systems that allow a fair comparison of proposed, state-of-the-art FECG algorithms. We will evaluate different soft-core microprocessors and compare these solutions to other commercial off-the-shelf (COTS) hardcore solutions in terms of price, size, power, and speed.
Development of a PLC modem for data transmission over a PWM power supply
NASA Astrophysics Data System (ADS)
Batard, Christophe; Ginot, Nicolas; Mannah, Marc Anthony; Millet, Christophe; Poitiers, Frédéric
2014-04-01
In variable-speed electrical drive and online conditioning monitoring, a feedback loop is required in order to transmit the sensor information from the motor to the controller close to the inverter. Additional cabling is used for signalling. This extra cabling has a significant cost and data transmission may not be reliable. Thus, the use of power line communication (PLC) technology to transmit data in motor drive application is quite interesting. The use of a PLC modem dedicated to the home network in a three-phase inverter-fed motor power cable does not work. Therefore, specific coupling interfaces are developed to transmit data through a pulse-width modulated power supply. Laboratory tests have shown that the couplers are operating properly. They ensure reliable data transmission in a motor drive application.
High-Power Microwave Transmission and Mode Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Ronald J.
2015-08-14
This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less
The IAEA stopping power database, following the trends in stopping power of ions in matter
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Dimitriou, P.
2017-10-01
The aim of this work is to present an overview of the state of art of the energy loss of ions in matter, based on the new developments in the stopping power database of the International Atomic Energy Agency (IAEA). This exhaustive collection of experimental data, graphs, programs and comparisons, is the legacy of Helmut Paul, who made it accessible to the global scientific community, and has been extensively employed in theoretical and experimental research during the last 25 years. The field of stopping power in matter is evolving, with new trends in materials of interest, including oxides, nitrides, polymers, and biological targets. Our goal is to identify areas of interest and emerging data needs to meet the requirements of a continuously developing user community.
30 CFR 57.12017 - Work on power circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Work on power circuits. 57.12017 Section 57... Surface and Underground § 57.12017 Work on power circuits. Power circuits shall be deenergized before work... the individuals who are to do the work. Switches shall be locked out or other measures taken which...
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Poston, David I.
2011-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.
Efficient designs for powering microscale devices with nanoscale biomolecular motors.
Lin, Chih-Ting; Kao, Ming-Tse; Kurabayashi, Katsuo; Meyhöfer, Edgar
2006-02-01
Current MEMS and microfluidic designs require external power sources and actuators, which principally limit such technology. To overcome these limitations, we have developed a number of microfluidic systems into which we can seamlessly integrate a biomolecular motor, kinesin, that transports microtubules by extracting chemical energy from its aqueous working environment. Here we establish that our microfabricated structures, the self-assembly of the bio-derived transducer, and guided, unidirectional transport of microtubules are ideally suited to create engineered arrays for efficiently powering nano- and microscale devices.
Leading Through Civilian Power: The First Quadrennial Diplomacy and Development Review
2010-01-01
military power as equal pillars of U.S. for- eign policy. She called for an integrated “ smart power” approach to solving global problems—a concept that is...ing the latest tools and technologies, as well as the innovators and entrepreneurs behind them, and integrating them into our diplomacy and...and planning that will allow us to work smarter to advance our nation’s interests and values. i. buiLding a 21St cEntury workforcE Smart power
NASA Technical Reports Server (NTRS)
1979-01-01
Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht H. Mayer
Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricitymore » costs to consumers and lowest emissions.« less
ERIC Educational Resources Information Center
Utah State Board of Higher Education, Salt Lake City.
For Utah residents to remain in the forefront or even stay competitive economically, the state's work force must acquire the knowledge and skills that match or exceed those of their most technically advanced competitors. A powerful engine for economic growth is a high-quality system of vocational-technical education. The majority of Utah public…
Fuel Cell-Powered Go-Kart: Project Mimics Real-World Product Development
ERIC Educational Resources Information Center
Fuller, Amanda
2010-01-01
Five years ago, Leon Strecker's technology education class at Darien High School came up with the idea of building a fuel cell-powered go-kart. In previous years, the class had worked on other creations, such as electric cars that competed in a state-sponsored race and a full-size hovercraft. But students had not taken on anything anywhere near…
ERIC Educational Resources Information Center
Torres, Dalia
2012-01-01
The purpose of this deconstructive case study was to conduct a Foucauldian power/knowledge analysis constructed from the perceptions of three teachers at an intermediate school in South Texas regarding the role of the teacher evaluation process and its influence on instructional practices. Using Foucault's (1977a) work on power/knowledge, of…
Studying quick coupler efficiency in working attachment system of single-bucket power shovel
NASA Astrophysics Data System (ADS)
Duganova, E. V.; Zagorodniy, N. A.; Solodovnikov, D. N.; Korneyev, A. S.
2018-03-01
A prototype of a quick-disconnect connector (quick coupler) with an unloaded retention mechanism was developed from the analysis of typical quick couplers used as intermediate elements for power shovels of different manufacturers. A method is presented, allowing building a simulation model of the quick coupler prototype as an alternative to physical modeling for further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.; Drasco, M.
The purpose of the CRADA was to develop new microwave codes for analyzing both slow-,vave structures and beam-wave interactions of traveling wave tube amplifiers (TWTA), the microwave power source for satellite and radar communication systems. The scope of work also included testing and improving power modules through measurements and simulation.
High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study
ERIC Educational Resources Information Center
Muduli, Ashutosh
2015-01-01
Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…
Fashioning the Subject: The Rhetorical Accomplishment of Assessment Tasks
ERIC Educational Resources Information Center
Nicoll, Katherine
2007-01-01
This paper explores the potential of a poststructuralist and rhetorical analysis in appreciating more fully the discursive work of assessment tasks as mechanisms of power/knowledge within discourses of professional development. It is argued that such analysis may reveal detail in the way in which assessments work as material elements within a body…
The Privilege of Place: Domestic and Work Locations of Characters in Children's Book.
ERIC Educational Resources Information Center
Tognoli, Jerome; And Others
1994-01-01
Images of males and females at home and at work in interior and exterior settings were studied in children's picture books published prior to and after 1980. Results are discussed with implications for children's development of career aspirations, self-esteem, and the interactive aspects of gender, power, and environment. (LZ)
18 CFR 367.1070 - Account 107, Construction work in progress.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT UNIFORM SYSTEM OF ACCOUNTS FOR CENTRALIZED SERVICE... NATURAL GAS ACT Balance Sheet Chart of Accounts § 367.1070 Account 107, Construction work in progress. (a... research, development, and demonstration projects for construction of facilities are to be included in a...
Technology development for lunar base water recycling
NASA Technical Reports Server (NTRS)
Schultz, John R.; Sauer, Richard L.
1992-01-01
This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC
NASA Astrophysics Data System (ADS)
Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry
2008-01-01
As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.
Programmatic status of NASA's CSTI high capacity power Stirling space power converter program
NASA Technical Reports Server (NTRS)
Dudenhoefer, James E.
1990-01-01
An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.
Mini-Brayton heat source assembly development
NASA Technical Reports Server (NTRS)
Wein, D.; Zimmerman, W. F.
1978-01-01
The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.
Work with Us | Water Power | NREL
the center's facilities and research and development capabilities. An aerial photo of buildings at the : Partner with us through technology partnership agreements. Participate in subcontracted water research through solicitations and requests for proposals. Use our cutting-edge research facilities to develop
Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, S.
2012-06-01
This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.
Professional Learning: Lessons for Supervision from Doctoral Examining
ERIC Educational Resources Information Center
Wisker, Gina; Kiley, Margaret
2014-01-01
Most research into research supervision practice focuses on functional, collegial or problematic power-related experiences. Work developing the supervisory role concentrates on new supervisors, and on taught development and support programmes. Most literature on academics' professional learning concentrates on learning to be a university teacher…
Thermal control of power supplies with electronic packaging techniques
NASA Technical Reports Server (NTRS)
1975-01-01
The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Overview of Intelligent Power Controller Development for the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Csank, Jeffrey
2017-01-01
Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.
Power, muscular work, and external forces in cycling.
de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J
1994-01-01
Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)
Study of radiatively sustained cesium plasmas for solar energy conversion
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Dunning, G. J.
1980-01-01
The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.
Development of an Energy Harvesting Device using Piezoceramic Materials
NASA Astrophysics Data System (ADS)
Kulkarni, Vainatey
Piezoelectric energy harvesters are increasingly being pursued for their potential to replace finite-life batteries in wireless sensor modules and for their potential to create self-powered devices. This work presents the development of a novel piezoelectric harvester that attempts to improve upon the power output limitations of current piezoelectric harvesting technology. This novel harvester uses the concept of torsion on a tube to produce shear stresses and hence uses improved piezoelectric properties of the shear mode of piezoceramics to generate higher power outputs. This concept is first presented in this work and a proof-of-concept prototype is utilized to experimentally demonstrate the validity of this novel device. After this, the behaviour of the novel harvester is explored through an investigation into three cross-section geometries of the torsion tube and varying geometries of the eccentric mass using three different comparison metrics. Through this, it is observed that configurations with higher torsional compliance and high eccentric mass inertias have the potential for the highest power output and highest harvester effectiveness. However, the mechanical damping in the system is also found to significantly impact the harvester output resulting in prototypes of the various configurations not performing as expected. As a result of this discrepancy, the factors affecting the performance of the harvester are analyzed in greater detail through the development of a mathematical model that is then used to develop a set of guidelines to direct the design of a torsion harvester for a desired application. These guidelines are then used to develop an improved torsion harvester with a demonstrated ability to produce 1.2 mW of output power at its resonant frequency to power a wireless sensor module. Finally, the use of alternative materials such as single crystals of PMN-PT in the torsion harvester is also examined. Through finite element simulations and with material properties reported in the literature, the torsion harvester used with the sensor module is found to significantly benefit with the addition of the single crystal materials and ultimately generate 300% improvements in average output power while converting 11% of the input energy into usable electrical energy.
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
Overview of space power electronic's technology under the CSTI High Capacity Power Program
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
1994-01-01
The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
2016-09-01
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
Understanding GPU Power. A Survey of Profiling, Modeling, and Simulation Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.
Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high throughput applications.Though GPUs consume large amounts of power, their use for high throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. Our work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. Moreover, as direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to powermore » use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling is discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Lastly, possible directions for future research are discussed.« less
Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari
2015-01-01
Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032
Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.
Jin, Long; Chen, Jun; Zhang, Binbin; Deng, Weili; Zhang, Lei; Zhang, Haitao; Huang, Xi; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-08-23
The rapid development of Internet of Things and the related sensor technology requires sustainable power sources for their continuous operation. Scavenging and utilizing the ambient environmental energy could be a superior solution. Here, we report a self-powered helmet for emergency, which was powered by the energy converted from ambient mechanical vibration via a hybridized nanogenerator that consists of a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). Integrating with transformers and rectifiers, the hybridized nanogenerator can deliver a power density up to 167.22 W/m(3), which was demonstrated to light up 1000 commercial light-emitting diodes (LEDs) instantaneously. By wearing the developed safety helmet, equipped with rationally designed hybridized nanogenerator, the harvested vibration energy from natural human motion is also capable of powering a wireless pedometer for real-time transmitting data reporting to a personal cell phone. Without adding much extra weight to a commercial one, the developed wearing helmet can be a superior sustainable power source for explorers, engineers, mine-workers under well, as well as and disaster-relief workers, especially in remote areas. This work not only presents a significant step toward energy harvesting from human biomechanical movement, but also greatly expands the applicability of TENGs as power sources for self-sustained electronics.
Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari
2015-01-01
Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hideharu
Do you remember an expert system? I think there are various impressions about the system. For example, some might say “It reminds me of old days”. On the other hand, some might say “It was really troublesome”. About 25 years ago, from late 1980s to the middle of 1990s, when the Showa era was about to change into the Heisei Era, artificial intelligence boomed. Research and development for an expert system which was equipped with expertise and worked as smart as expert, was advanced in various fields. Our company also picked up the system as the new system which covered weak point of conventional computer technology. We started research and development in 1984, and installed an expert system in a SCADA system, which started operating in March 1990 in the Fukuoka Integrated Control Center. In this essay, as an electric power engineer who involved in development at that time, I introduce the situation and travail story about developing an expert system which support restorative actions from the outage and overload condition of power networks.
Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine
NASA Technical Reports Server (NTRS)
Nesmith, B.
1985-01-01
The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.
Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente
2016-01-01
This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated. PMID:26927113
Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente
2016-02-26
This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated.
NASA Astrophysics Data System (ADS)
Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.
2012-06-01
According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.
30 CFR 57.12016 - Work on electrically-powered equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Electrically powered equipment shall be deenergized before mechanical work is done on such equipment. Power... without the knowledge of the individuals working on it. Suitable warning notices shall be posted at the power switch and signed by the individuals who are to do the work. Such locks or preventive devices...
Recent developments in refractive concentrators for space photovoltaic power systems
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Oneill, Mark J.
1993-01-01
Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searfass, Clifford T.; Malinowski, Owen M.; Van Velsor, Jason K.
2015-03-22
The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and targetmore » vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.« less
Deep UV autofluorescence microscopy for cell biology and tissue histology.
Jamme, Frédéric; Kascakova, Slavka; Villette, Sandrine; Allouche, Fatma; Pallu, Stéphane; Rouam, Valérie; Réfrégiers, Matthieu
2013-07-01
Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Intersectional perspective in elderly care.
Cuesta, Marta; Rämgård, Margareta
2016-01-01
Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees' well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self-confidence, in a positive way.
Intersectional perspective in elderly care
Cuesta, Marta; Rämgård, Margareta
2016-01-01
Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care) the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions) and interrelates them to processes of power (objective dimension). This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees’ well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.). The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1) Intersectionality, knowledge, and experiences of professionalism; 2) Intersectionality, knowledge, and experiences of collaboration; and 3) Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee's self-confidence, in a positive way. PMID:27167554
Testing a high-power LED based light source for hyperspectral imaging microscopy
NASA Astrophysics Data System (ADS)
Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.
Operational Results From a High Power Alternator Test Bed
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
Pulsed power molten salt battery
NASA Technical Reports Server (NTRS)
Argade, Shyam D.
1992-01-01
It was concluded that carbon cathodes with chlorine work well. Lithium alloy chlorine at 450 C, 1 atm given high power capability, high energy density, DC + pulsing yields 600 pulses, no initial peak, and can go to red heat without burn-up. Electrochemical performance at the cell and cell stack level out under demanding test regime. Engineering and full prototype development for advancing this technology is warranted.
Electrical Monitoring Devices Save on Time and Cost
NASA Technical Reports Server (NTRS)
2015-01-01
In order to protect the Solar Dynamics Observatory's instruments from blowing their fuses and being rendered unusable, Goddard Space Flight Center worked with Micropac Industries Inc., based in Garland, Texas, to develop solid-state power controllers, which can depower and then resupply power to an instrument in the event of an electric surge. The company is now selling the technology for use in industrial plants.
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, JA
2002-01-15
This report describes the tasks performed and the progress made during Phase 2 of the DOE-NERI project number 99-119 entitled Automatic Development of Highly Reliable Control Architecture for Future Nuclear Power Plants. This project is a collaboration effort between the Oak Ridge National Laboratory (ORNL), The University of Tennessee, Knoxville (UTK) and the North Carolina State University (NCSU). ORNL is the lead organization and is responsible for the coordination and integration of all work.
Report examines links among women's equality, smaller families, healthier children.
1997-06-01
This article reports on a new study by Nancy Riley about the relationship between gender equality and fertility and mortality declines in developing countries. Findings indicate that mortality and fertility has declined in countries without gender equality. Fertility and child mortality decline is related to women's educational status and employment. Riley argues that women's power to make decisions about health care, contraception, and the timing and number of children, if affected by education and paid employment, is more likely to lower mortality and fertility. Women's power may decline in countries where women's education and employment are advanced, but their role in society remains that of mothers. All developing countries showed a relationship between the amount of education and family size and child health. Fertility tends to be lowest among highly educated women. However, women's education has a stronger effect on child health and mortality. Maternal education also affects child nutritional status. Women's education offers women the option of job opportunities and new values or ideas. Women's employment may result in increased resources and status or in poverty and heavy physical labor. Societal views of women's work may reflect an increased self-worth for working women or lower status or the failure of a husband to adequately provide for family welfare. The key to the impact of women's employment is whether work becomes a way to achieve greater power for women in decision making about child welfare and family planning. Employment outside the home educates. In most countries, women who worked for cash had fewer children, but differences in fertility between working and nonworking women range from small to large. Higher income for Nigerian women means more children. Women's work also has inconsistent effects on child health.
Distribution System Reliability Analysis for Smart Grid Applications
NASA Astrophysics Data System (ADS)
Aljohani, Tawfiq Masad
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.
Formation of short high-power laser radiation pulses in excimer mediums
NASA Astrophysics Data System (ADS)
Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.
2007-06-01
Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.
NASA Astrophysics Data System (ADS)
Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali
2017-08-01
Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
NASA Astrophysics Data System (ADS)
Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.
2016-03-01
The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.
Development and Testing of a Prototype Grid-Tied Photovoltaic Power System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2009-01-01
The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.
NASA Astrophysics Data System (ADS)
Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.
2017-08-01
A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.
2012-01-01
This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.
Advances in integration of photovoltaic power and energy production in practical systems
NASA Astrophysics Data System (ADS)
Fartaria, Tomas Oliveira
This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.
Air Force Phillips Laboratory Battery Program overview
NASA Technical Reports Server (NTRS)
House, Shaun
1992-01-01
Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.
Solar Mirror Fabrication in the Technical Services Building
1966-02-21
Daniel Bernatowicz, Chief of the Advanced Power Systems Branch at the National Aeronautics and Space Administration (NASA) Lewis Research Center, examines a 20-foot section of a solar mirror being fabricated in the Jig Bore Room of the Technical Services Building. NASA Lewis was conducting a wide-ranging effort to explore methods of generating electrical power for spacecraft. One method employed a large parabolic mirror to concentrate the sun’s energy. The mirror had to remain rigid and withstand micrometeoroids, but remain light and compact enough to be easily launched. In 1963 Bernatowicz and his researchers undertook a program to design a solar mirror to work with the Brayton cycle system on a space station. The mirror in this photograph was prepared for a conference on Advanced Technology in Space Power Systems held at Lewis in late August 1966. Lewis experts discussed advances with batteries, fuel cells, isotope and thermoelectric generators, and the SNAP-8 space power system. Lewis was developing several types of solar mirrors to work with a Brayton cycle electric generating system. The mirror’s 12 sections were shaped using a unique forming process developed at Lewis, coated with an epoxy, and plated with aluminum. The mirror concentrated the Sun's rays on a heat storage receiver containing lithium fluoride. This material was heated to produce power in a turbogenerator system, while additional heat was stored for use when the unit was in the Earth's shadow.
ERIC Educational Resources Information Center
Bubar, Roe; Cespedes, Karina; Bundy-Fazioli, Kimberly
2016-01-01
In 2008 EPAS Standards on "Engaging Diversity and Difference in Practice" (2.1.4) added intersectionality (a theory developed by feminist of color) as one aspect to understand diversity, difference, and power in social work curriculum. We consider how intersectionality is omitted in graduate student learning even when class assignments…
Office Politics: Computers, Labor, and the Fight for Safety and Health.
ERIC Educational Resources Information Center
Mogensen, Vernon L.
This book explains how the use of video display terminals (VDTs) has been detrimental to women in the work force and has led to widespread health and safety problems. Chapter 1 discusses the development and scope of occupational illnesses associated with VDT work. Chapter 2 analyzes the power relationship between labor and capital in the office…
Enacting Critical Learning: Power, Politics and Emotions at Work
ERIC Educational Resources Information Center
Trehan, Kiran; Rigg, Clare
2015-01-01
This article seeks to develop the understanding of critical action learning (CAL) and to make a contribution to its theory and practice. The article begins by conceptualising critical action learning and builds on the work of Revans (1982) to stimulate fresh thinking. It provides a different calibration of his coupling of action and learning. An…
Idea Technology and Product Technology: Seeing beyond the Text to the Technology That Works
ERIC Educational Resources Information Center
Bednar, Maryanne R.
2004-01-01
Sifting through the myriad "idea" technologies (such as multiple intelligence theories or Piaget's Theory of Cognitive Development) and "product" technologies (such as PowerPoint or digital cameras) can be overwhelming, but Bednar persuades us that it's not about having the most recent technology, it's about using what works for "your" students in…
Schwarzschild, Martin (1912-97)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Astrophysicist, born in Potsdam, Germany, the son of KARL SCHWARZSCHILD, left Germany, became professor at Princeton University. Working with John von Neumann, Schwarzschild used the powers of the newly developed electronic digital computers to work on the theory of stellar structure and evolution. He uncovered phenomena in red giant stars, including how they evolve off the main sequence in the H...
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan
2017-07-01
Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)
NASA Astrophysics Data System (ADS)
Schmidt, B.; Vorholzer, M.; Dietrich, M.; Falter, J.; Schirmeisen, A.; Thummes, G.
2017-12-01
The development of 4 K two-stage pulse tube cryocoolers (PTCs) is commonly aimed at high cooling powers in order to compete with GM-cryocoolers. However, more sensitive applications still suffer from intrinsic disturbances of the cryocooler. To address this issue, the development of PTCs with small cooling powers is essential for sensitive measurements. Here we report the development of a new two-stage GM-type PTC, designed to work with a commercial Helium compressor with only 1 kW electric input power. The pressure and mass flow oscillation is generated by means of a remote rotary valve. The PTC was modeled for the operation at temperatures near 5 K with the simulation environments SAGE and REGEN. A first prototype was fabricated, operated and optimized in a test cryostat. Up to now, the PTC reaches a minimum temperature of 2.36 K and provides a cooling power of 72 mW at 4.2 K and 120 mW at 5 K. This cooling power is sufficient for small cryoelectronic devices like single photon detectors, transition-edge bolometers or low-noise Nb-SQUIDs (superconducting quantum interference devices).
Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Deangelis; Rich Depuy; Debashis Dey
2004-09-30
This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less
Philippine Wind Farm Analysis and Site Selection Analysis, 1 January 2000 - 31 December 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, K.
2001-12-01
The U.S. Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an ongoing process to quantify the Philippine wind energy potential and foster wind farm development. As part of that process, NREL retained Global Energy Concepts, LLC (GEC) to review and update the policy needs as well as develop a site-screening process applicable for the Philippines. GEC worked closely with the Philippines National Power Corporation (NPC) in completing this work. This report provides the results of the policy needs and site selection analyses conductedmore » by GEC.« less
Power system applications of fiber optic sensors
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.
1986-01-01
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.
Microwave integrated circuits for space applications
NASA Technical Reports Server (NTRS)
Leonard, Regis F.; Romanofsky, Robert R.
1991-01-01
Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.
High voltage and current, gate assisted, turn-off thyristor development
NASA Technical Reports Server (NTRS)
Nowalk, T. P.; Brewster, J. B.; Kao, Y. C.
1972-01-01
An improved high speed power switch with unique turn-off capability was developed. This gate assisted turn-off thyristor (GATT) was rated 1000 volts and 100 amperes with turn-off times of 2 microseconds. Fifty units were delivered for evaluation. In addition, test circuits designed to relate to the series inverter application were built and demonstrated. In the course of this work it was determined that the basic device design is adequate to meet the static characteristics and dynamic turn-off specification. It was further determined that the turn-on specification is critically dependent on the gate drive circuit due to the distributive nature of the cathode-gate geometry. Future work should emphasize design modifications which reduce the gate current required for fast turn-on, thereby opening the way to higher power (current) devices.
Recovery Act: Waste Energy Project at AK Steel Corporation Middletown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Jeffrey
2012-06-30
In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives bymore » demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.« less
The Micropolitics of Educational Leadership: From Control to Empowerment.
ERIC Educational Resources Information Center
Blase, Joseph; Anderson, Gary
The real world of schools is a political world of power and influence, bargaining and negotiation. Teacher development must therefore take place within the micropolitical realities of schooling. This book describes how the micropolitics of educational leadership affect the working world of teachers and develops four approaches to leadership. Part…
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
The 20 GHz spacecraft IMPATT solid state transmitter
NASA Technical Reports Server (NTRS)
Best, T.; Ngan, Y. C.
1986-01-01
The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.
A two-level structure for advanced space power system automation
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.; Chankong, Vira
1990-01-01
The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.
Artificial heart development program. Volume I. System development. Phase III summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The report documents efforts and results in the development of the power system portions of a calf implantable model of nuclear-powered artificial heart. The primary objective in developing the implantable model was to solve the packaging problems for total system implantation. The power systems portion is physically that portion of the implantable model between the Pu-238 heat sources and the blood pump ventricles. The work performed had two parallel themes. The first of these was the development of an integrated implantable model for bench and animal experiments plus design effort on a more advanced model. The second was research andmore » development on components of the system done in conjunction with the development of the implantable model and to provide technology for incorporation into advanced models plus support to implantations, at the University of Utah, of the systems blood pumping elements when driven by electric motor. The efforts and results of implantable model development are covered, mainly, in the text of the report. The research and development efforts and results are reported, primarily, in the appendices (Vol. 2).« less
Study on AC loss measurements of HTS power cable for standardizing
NASA Astrophysics Data System (ADS)
Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi
2017-09-01
High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..
A Non-condensing Thermal Compression Power Generation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B. P.; Jenks, J. J.; Abrams, W. P.
Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less
A Non-condensing Thermal Compression Power Generation System
McGrail, B. P.; Jenks, J. J.; Abrams, W. P.; ...
2017-09-12
Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less
The Development of Dispatcher Training Simulator in a Thermal Energy Generation System
NASA Astrophysics Data System (ADS)
Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.
2018-01-01
A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.
Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
1998-11-01
The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introductionmore » of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek
As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less
Steam plant startup and control in system restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, F.P. de; Westcott, J.C.
1994-02-01
The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.
Suo, Guoquan; Yu, Yanhao; Zhang, Zhiyi; Wang, Shifa; Zhao, Ping; Li, Jianye; Wang, Xudong
2016-12-21
Piezoelectric and triboelectric nanogenerators have been developed as rising energy-harvesting devices in the past few years to effectively convert mechanical energy into electricity. Here, a novel hybrid piezo/triboelectric nanogenerator based on BaTiO 3 NP/PDMS composite film was developed in a simple and low-cost way. The effects of the BTO content and polarization degree on the output performance were systematically studied. The device with 20 wt % BTO in PDMS and a 100-μm-thick film showed the highest output power. We also designed three measurement modes to record hybrid, triboelectric, and piezoelectric outputs separately with a simple structure that has only two electrodes. The hybrid output performance is higher than the tribo- and piezoelectric performances. This work will provide not only a new way to enhance the output power of nanogenerators, but also new opportunities for developing built-in power sources in self-powered electronics.
NASA Technical Reports Server (NTRS)
Wu, Gilbert; Santiago, Confesor
2017-01-01
RTCA Special Committee (SC) 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. RTCA SC-228 has established sub-working groups and one of the sub-working groups is focused on aligning modeling and simulations activities across all participating committee members. This briefing will describe NASAs modeling and simulation plans for the development of performance standards for low cost, size, weight, and power (C-SWaP) surveillance systems that detect and track non-cooperative aircraft. The briefing will also describe the simulation platform NASA intends to use to support end-to-end verification and validation for these DAA systems. Lastly, the briefing will highlight the experiment plan for our first simulation study, and provide a high-level description of our future flight test plans. This briefing does not contain any results or data.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
Update on developments at SNIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.
The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less
ICHARM: Hierarchical CMOS Circuit Extraction with Power Bus Extraction
1990-09-05
my graduate work. This work owes a great deal to Krishna Bel- khale who developed the basis for the extractor program described here. I also, would...structures. The iCHARM program was developed using PACE, an existing extractor program written by Krishna Belkhale, as its basis tl]. PACE contributed...attachments for the facet tap.views for display with Vern and Oct2ps U The user’s ,Xdefaults file has to be modified when a new technology is used. The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, J.O.
This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less
Flight directors for STOl aircraft
NASA Technical Reports Server (NTRS)
Rabin, U. H.
1983-01-01
Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.
NASA Astrophysics Data System (ADS)
Wang, Yujie; Zhang, Xu; Liu, Chang; Pan, Rui; Chen, Zonghai
2018-06-01
The power capability and maximum charge and discharge energy are key indicators for energy management systems, which can help the energy storage devices work in a suitable area and prevent them from over-charging and over-discharging. In this work, a model based power and energy assessment approach is proposed for the lithium-ion battery and supercapacitor hybrid system. The model framework of the lithium-ion battery and supercapacitor hybrid system is developed based on the equivalent circuit model, and the model parameters are identified by regression method. Explicit analyses of the power capability and maximum charge and discharge energy prediction with multiple constraints are elaborated. Subsequently, the extended Kalman filter is employed for on-board power capability and maximum charge and discharge energy prediction to overcome estimation error caused by system disturbance and sensor noise. The charge and discharge power capability, and the maximum charge and discharge energy are quantitatively assessed under both the dynamic stress test and the urban dynamometer driving schedule. The maximum charge and discharge energy prediction of the lithium-ion battery and supercapacitor hybrid system with different time scales are explored and discussed.
The domestication of Foucault: Government, critique, war.
Allen, Ansgar; Goddard, Roy
2014-12-01
Though Foucault was intrigued by the possibilities of radical social transformation, he resolutely resisted the idea that such transformation could escape the effects of power and expressed caution when it came to the question of revolution. In this article we argue that in one particularly influential line of development of Foucault's work his exemplary caution has been exaggerated in a way that weakens the political aspirations of post-Foucaldian scholarship. The site of this reduction is a complex debate over the role of normativity in Foucaldian research, where it has been claimed that Foucault's genealogical approach is unable to answer the question ' Why fight? ' The terms of this debate (on the neo-Foucaldian side) are limited by a dominant though selective interpretation of Foucault's analytics of power, where power is understood primarily in terms of government, rather than struggle. In response we suggest that if we reconfigure power-as-government to power-as-war, this adjusts the central concern. ' Why fight? ' becomes replaced by the more immediate question, ' How fight? ' Without denying the obvious benefits of cautious scholarly work, we argue that a reconfiguration of Foucault's analytics of power might help Foucaldian research to transcend the self-imposed ethic of political quietism that currently dominates the field.
High Performance Power Amplifiers Utilizing Novel Balun Design Techniques
NASA Astrophysics Data System (ADS)
Stameroff, Alexander Nicholas
In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the technique was extended to combine power from four transistors by the development of a 4-to-1 balun. A prototype PA was fabricated to prove this concept and achieves a P1dB and PAE greater than 43 dBm and 55% over the band from 8 to 12 GHz.
Millimeter-wave/infrared rectenna development at Georgia Tech
NASA Technical Reports Server (NTRS)
Gouker, Mark A.
1989-01-01
The key design issues of the Millimeter Wave/Infrared (MMW/IR) monolithic rectenna have been resolved. The work at Georgia Tech in the last year has focused on increasing the power received by the physically small MMW rectennas in order to increase the rectification efficiency. The solution to this problem is to place a focusing element on the back side of the substrate. The size of the focusing element can be adjusted to help maintain the optimum input power density not only for different power densities called for in various mission scenarios, but also for the nonuniform power density profile of a narrow EM-beam.
Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Hoffman, James
2013-01-01
This work describes the development of a high-power amplifier for use with a remote sensing SAR system. The amplifier is intended to meet the requirements for the Sweep-SAR technique for use in the proposed DESDynI SAR instrument. In order to optimize the amplifier design, active load-pull technique is employed to provide harmonic tuning to provide efficiency improvements. In addition, some of the techniques to overcome the challenges of load-pulling high power devices are presented. The design amplifier was measured to have 49 dBm of output power with 75% PAE, which is suitable to meet the proposed system requirements.
State-of-the art of dc components for secondary power distribution of Space Station Freedom
NASA Technical Reports Server (NTRS)
Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.
1991-01-01
120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.
Nanostructured Materials Development for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.
2003-01-01
There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.
High power solar array switching regulation
NASA Technical Reports Server (NTRS)
Decker, D. K.; Cassinelli, J.; Valgora, M.
1981-01-01
It is pointed out that spacecraft utilization projections for the 1980s and beyond show a trend toward extended lifetimes and larger electric power systems. The need for improved power management and energy transfer arising in connection with this trend has resulted in the conduction of a Solar Array Switching Power Management study. A description is presented of initial development work performed in the study, taking into account the characteristics for three mission classes. Attention is given to the manned LEO platform (250-kW average load), the unmanned GEO platform (50-kW average load), and an ion propulsion orbit transfer vehicle (50- to 250 kW load).
NASA Astrophysics Data System (ADS)
Petzl Lorenz, Carlos Henrique
Powering low consumption and low duty cycle devices and circuits using Ambient Microwave Energy Harvesting (AMEH) has been the subject of several investigations in recent years. The interest for this research topic has been promoted mainly by various and new applications driven mainly by the Internet of things, Building Automation and new developments in devices for the Body Area Networks. A common characteristic among several of these applications is the need for a wireless source which does not require regular maintenance, and has a small size and low weight. Batteries are often too cumbersome and require a maintenance plan to recharge or replace them, which is not always possible. A new source of energy is thus necessary. Ambient energy harvesting is proposed as an alternative source of power to these low power consumption devices and circuits. This M.A.Sc. work is developed to explore the microwave ambient energy harvesting using diode rectifier circuits. A mathematical model is first developed to explain the mechanisms that contribute to the process of recovery of microwave energy in the range of power found in the ambient microwave energy harvesting applications. An evaluation of this model is made using simulation results and then measurements results from three prototypes developed under this M.A.Sc. program. The results show an excellent agreement between the three methods. The developed model includes losses in the parasitic components of the non-linear element used for the rectification of energy as well as the impedance matching network insertion losses. Based on this model, two possible ways of improving the efficiency of ambient microwave power rectifiers at the power levels found in the AMEH are explored. In this work, it is considered that the AMEH takes place within the range of powers with a peak value of -30 dBm, however at average power levels well below this threshold. First, a cooperative hybrid circuit of ambient energy harvesting is presented where collected microwave and mechanical energies are converted in a cooperative manner through a single nonlinear component. Theory, simulations and measurements show that the total power recovered by the proposed scheme can provide up to twice the efficiency of a circuit combining the output of two independent harvesters. Then, a work demonstrating for the first time that the limitations of a Schottky diode harvester can be overcome by using backward tunnel diodes is presented. It is shown that the limitation reached by the Schottky diodes half a century ago can be overcome thanks to a higher current responsivity obtained through tunneling transport. The measured power recovery efficiency was equal to 18.2% when a -30 dBm signal at 2.4 GHz was applied to the input of the microwave energy harvesting circuit. The efficiency of conversion for a similar circuit using Schottky diodes, which is presented in the first chapter together with the mathematical model, does not exceed 11% at the same input power level and similar frequency. On the date of publication of the articles presented in this thesis, the highest published microwave power conversion efficiency was close to 5% for input power levels equal to -30 dBm and frequency close to 2 GHz. Finally, an application of microwave power transfer is presented. A rectenna operating at 94 GHz is built and measured, an energy conversion efficiency equal to 37.7% was obtained for an input power equal to 3 dBm. This rectenna is proposed as an alternative power source for microrobots, which may not use batteries due to their small size and light weight.
High-power piezo drive amplifier for large stack and PFC applications
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Gamble, Mike
2001-08-01
This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.
Developer handbook for Section 210 of PURPA for Vermont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanacore, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Vermont the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for New Hampshire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wersan, D.; O'Connell, J.
The essential element of the Public Utility Regulatory Policies Act of 1979 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in New Hampshire the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanacore, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Massachusetts the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanacore, J.; Forbes, K.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Oregon the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in New York the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Georgia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Georgia the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for the Tennessee Valley Authority
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wersan, D.; Dabuliewicz, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in the Tennessee Valley Region the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Virginia the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, C.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Montana the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for North Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitelaw, J.; Getz, T.B.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in North Carolina the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Maine
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connell, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Maine the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Arkansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Arkansas the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Colorado the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Pennsylvania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Pennsylvania the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Connecticut
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connell, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Connecticut the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obatining the information needed to stimulate further research and development.« less
Developer handbook for Section 210 of PURPA for Rhode Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, D.; Vanacore, J.
The essential element of the Public Utility Regulatory Policies Act of 1978 (PURPA) for developers is a reordering by Congress of the relationship between electric utilities and small power producers. The goal of PURPA is to encourage development of alternative sources of electricity by helping small power production become economically viable. The strategy adopted by Congress for encouraging development has two main components. First, the utility must purchase the power produced by a project meeting certain definitional requirements; and second, the utility must pay a price for the power, determined in accordance with guidelines set out in the FERC regulations.more » This handbook is designed to explain to developers in Rhode Island the requirements of PURPA, including: who may qualify for treatment as a facility that may invoke the mandates of PURPA; the impact of PURPA on the state; the role of the state utility commission and the impact of state laws on the developer. Thus, the primary goal of the handbook is to provide potential small producers with a working understanding of their status and rights vis a vis the state utility commissions and electric utilities, and to aid the potential developer in obtaining the information needed to stimulate further research and development.« less
NASA Astrophysics Data System (ADS)
Holland, Alexander F.; Pearson, Jens; Lysford, Wilson; Straub, Jeremy
2016-05-01
This paper presents work on the development of Origami-style solar panels and their adaption and efficacy for use in Earth orbit. It focuses on the enabling capability of this technology for the generation and transmission of power. The proposed approach provides increased collection (solar panel) and transmission (microwave radiation) surface area, as compared to other systems with similar mass and volume. An overview of the system is presented, including its pre-deployment configuration, the deployment process and its final configuration. Its utility for wireless power transmission mission is then considered. An economic discussion is then presented to consider how the mass and volume efficiencies provided enable the system to approach target willingness-to-pay values that were presented and considered in prior work. A key consideration regarding the use of wireless power transfer in Earth orbit is the reliability of the technology. This has several different areas of consideration. It must reliably supply power to its customers (or they would have to have local generation capabilities sufficient for their needs, defeating the benefit of this system). It must also be shown to reliably supply power only to designated locations (and not inadvertently or otherwise beam power at other locations). The effect of the system design (including the Origami structure and deployment / rigidity mechanisms) is considered to assess whether the use of this technology may impair either of these key mission/safety-critical goals. This analysis is presented and a discussion of mitigation techniques to several prospective problems is presented, before concluding with a discussion of future work.
Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
Electrical/electronics working group summary
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.
1984-01-01
The electrical/electronics, technology area was considered. It was found that there are no foreseeable circuit or component problems to hinder the implementation of the flywheel energy storage concept. The definition of the major component or technology developments required to permit a technology ready date of 1987 was addressed. Recommendations: motor/generators, suspension electronics, power transfer, power conditioning and distribution, and modeling. An introduction to the area of system engineering is also included.
Noncombatant Evacuation Operations (NEO) Decision-Making Process Effects on Efficiency
2012-02-15
the eastern coast of Japan. On 12 March, the Fukushima Daiichi nuclear power plant experienced explosions and fires within four reactors.51 Over... awareness , and understanding the mission objectives.43 The following outlines recent NEO successes and failures. First, a strategic look at the evacuation... Daiichi nuclear power plant. Over the next 30 days, the JTF and embassy worked intensely to develop a comprehensive plan overcoming many of the
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
The Kinetics of Evolution of Water Vapor Clusters in Air
1975-12-01
Academy Annapnlis, Mazylsnd 21402 D IUP 17% Work Supported by: Power Branch and Atmospheric Sciences Program, Office of Naval Research and Naval Air...to experiments in supersonic nozzles. The patient support of the Power Branch and the Atmospheric Sciences Program, Office of Naval Research over...the start by relying on the dioital compxiter from the start of development. Time- shared computer facilities were provided by the Naval Weapons Lab
Kang, Chun-Mei; Chiu, Hsiao-Ting; Hu, Yi-Chun; Chen, Hsiao-Lien; Lee, Pi-Hsia; Chang, Wen-Yin
2012-10-01
To assess the level of and the differences in managerial competencies, research capability, time management, executive power, workload and work-stress ratings among nurse administrators (NAs), and to determine the best predictors of managerial competencies for NAs. Although NAs require multifaceted managerial competencies, research related to NAs' managerial competencies is limited. A cross-sectional survey was conducted with 330 NAs from 16 acute care hospitals. Managerial competencies were determined through a self-developed questionnaire. Data were collected in 2011. All NAs gave themselves the highest rating on integrity and the lowest on both financial/budgeting and business acumen. All scores for managerial competencies, research capability, time management and executive power showed a statistically significant correlation. The stepwise regression analysis revealed that age; having received NA training; having completed a nursing project independently; and scores for research capability, executive power and workload could explain 63.2% of the total variance in managerial competencies. The present study provides recommendations for future administrative training programmes to increase NAs' managerial competency in fulfilling their management roles and functions. The findings inform leaders of hospitals where NAs need to develop additional competencies concerning the type of training NAs need to function proficiently. © 2012 Blackwell Publishing Ltd.
The AMT maglev test sled -- EML weapons technology transition to transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaaf, J.C. Jr.; Zowarka, R.C. Jr.; Davey, K.
1997-01-01
Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to themore » vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.« less
Pejtersen, Jan Hyld; Burr, Hermann; Hannerz, Harald; Fishta, Alba; Hurwitz Eller, Nanna
2015-01-01
The present review deals with the relationship between occupational psychosocial factors and the incidence of ischemic heart disease (IHD) with special regard to the statistical power of the findings. This review with 4 inclusion criteria is an update of a 2009 review of which the first 3 criteria were included in the original review: (1) STUDY: a prospective or case-control study if exposure was not self-reported (prognostic studies excluded); (2) OUTCOME: definite IHD determined externally; (3) EXPOSURE: psychosocial factors at work (excluding shift work, trauma, violence or accidents, and social capital); and (4) Statistical power: acceptable to detect a 20% increased risk in IHD. Eleven new papers met the inclusion criteria 1-3; a total of 44 papers were evaluated regarding inclusion criteria 4. Of 169 statistical analyses, only 10 analyses in 2 papers had acceptable statistical power. The results of the 2 papers pointed in the same direction, namely that only the control dimension of job strain explained the excess risk for myocardial infarction for job strain. The large number of underpowered studies and the focus on psychosocial models, such as the job strain models, make it difficult to determine to what extent psychosocial factors at work are risk factors of IHD. There is a need for considering statistical power when planning studies.
Wetlands Law Tests Government Power.
ERIC Educational Resources Information Center
McGregor, Gregor I.
1992-01-01
Discusses how working definitions of wetlands vary in different statutes and the controversy this has created. Focuses on these definition differences in relationship to federal, state and local government control of environmental protection and development decisions. (MCO)
ERIC Educational Resources Information Center
Read, Andrew F.
2013-01-01
General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
Power and confidence in professions: lessons for occupational therapy.
Clark, Florence A
2010-12-01
Powerful professions have the capacity to obtain leadership positions, advocate successfully in the policy arena, and secure the resources necessary to achieve their professional goals. Within the occupational therapy profession, cultivating power and confidence among our practitioners is essential to realize our full capacity for meeting society's occupational needs. Drawing from a historical analysis of the medical and nursing professions, this paper discusses the implications of power and disempowerment among health professions for their practitioners, clients, and public image. Theoretical perspectives on power from social psychology, politics, organizational management, and post-structuralism are introduced and their relevance to the profession of occupational therapy is examined. The paper concludes with recommendations for occupational therapy practitioners to analyze their individual sources of power and evaluate opportunities to develop confidence and secure power for their professional work--in venues both in and outside the workplace.
Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin
2017-10-01
The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m -2 under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals
NASA Astrophysics Data System (ADS)
Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.
2017-02-01
The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.
ERIC Educational Resources Information Center
Derkzen, Petra; Franklin, Alex; Bock, Bettina
2008-01-01
In Britain, and Wales particularly, inclusion and equal opportunities for all became key principles guiding the work of the many partnerships that were established at the beginning of this century. A primary objective of this paper is to develop a greater understanding of the politics and processes within "partnership" as a widely used…
ERIC Educational Resources Information Center
Craig, Shelley L.; McInroy, Lauren B.; Bogo, Marion; Thompson, Michelle
2017-01-01
Simulation-based learning (SBL) is a powerful tool for social work education, preparing students to practice in integrated health care settings. In an educational environment addressing patient health using an integrated care model, there is growing emphasis on students developing clinical competencies prior to entering clinical placements or…
Ultra high vacuum test setup for electron gun
NASA Astrophysics Data System (ADS)
Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.
2008-05-01
Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.
A high specific power solar array for low to mid-power spacecraft
NASA Technical Reports Server (NTRS)
Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.
1993-01-01
UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.
A high specific power solar array for low to mid-power spacecraft
NASA Astrophysics Data System (ADS)
Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.
1993-05-01
UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.
On the formalization of multi-scale and multi-science processes for integrative biology
Díaz-Zuccarini, Vanessa; Pichardo-Almarza, César
2011-01-01
The aim of this work is to introduce the general concept of ‘Bond Graph’ (BG) techniques applied in the context of multi-physics and multi-scale processes. BG modelling has a natural place in these developments. BGs are inherently coherent as the relationships defined between the ‘elements’ of the graph are strictly defined by causality rules and power (energy) conservation. BGs clearly show how power flows between components of the systems they represent. The ‘effort’ and ‘flow’ variables enable bidirectional information flow in the BG model. When the power level of a system is low, BGs degenerate into signal flow graphs in which information is mainly one-dimensional and power is minimal, i.e. they find a natural limitation when dealing with populations of individuals or purely kinetic models, as the concept of energy conservation in these systems is no longer relevant. The aim of this work is twofold: on the one hand, we will introduce the general concept of BG techniques applied in the context of multi-science and multi-scale models and, on the other hand, we will highlight some of the most promising features in the BG methodology by comparing with examples developed using well-established modelling techniques/software that could suggest developments or refinements to the current state-of-the-art tools, by providing a consistent framework from a structural and energetic point of view. PMID:22670211
Simulation of Attacks for Security in Wireless Sensor Network.
Diaz, Alvaro; Sanchez, Pablo
2016-11-18
The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.
Neon turbo-Brayton cycle refrigerator for HTS power machines
NASA Astrophysics Data System (ADS)
Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.
2012-06-01
We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Organic Rankine Kilowatt Isotope Power System. Final phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-15
On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight systemmore » in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.« less
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2017-04-22
signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear
Ethical Leadership Development as Care of the Self: A Foucauldian Perspective
ERIC Educational Resources Information Center
Pignatelli, Frank
2015-01-01
This essay addresses the care of the self as an important aspect in the development of educational leaders. It draws upon Michel Foucault's analysis of power and its relationship to his understanding of ethics as a practice one cultivates and takes on in the interests of leadership development. Foucault's work in these areas is timely for graduate…
Development of scale deposit inhibition technology using turbine water-cooled nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, S.; Sakanashi, H.; Suzuki, T.
1995-12-31
The scale deposition onto turbines in geothermal power stations is usually regarded as unavoidable whereas this is one of the most serious concerns which can affect the interval of periodical inspections. In common practice, scale is removed manually and mechanically during periodical inspections of power stations, but there are some cases of geothermal power stations where scale is removed from the turbines without stopping turbines by practicing the turbine washing operation. The jointly developed technology by Tohoku Electric Power Co., Ltd. and Mitsubishi Heavy Industries, Ltd. in the present work, is a technique capable preventing scale deposition and precipitation bymore » water-cooling the turbine first stage nozzle subjected to the highest deposition of scale and its effect has been confirmed through its model in the field test. This paper presents these test processes and the test results.« less
Development of a solar charged laboratory bench power supply
NASA Astrophysics Data System (ADS)
Ayara, W. A.; Omotosho, T. V.; Usikalu, M. R.; Singh, M. S. J.; Suparta, W.
2017-05-01
This product is an improvement on available DC laboratory bench power supply. It is capable of delivering low voltage Alternating Current (AC) and Direct Current (DC) to carry out basic laboratory experiment for both secondary schools and also at higher education institutions. The power supply is capable of delivering fixed DC voltages of 5V, 9V, 12V, variable voltage of between 1.25-30V and a 12V AC voltage. Also Incorporated is a USB port that allows for charging cell phones and other mobile devices, and a dedicated 12V DC output to power 5-7 Watt LED bulb to provide illumination in the laboratory for the instructor who may need to work at night in the absence of utility power.
Lu, Chin-Shan; Lai, Kee-hung; Lun, Y H Venus; Cheng, T C E
2012-11-01
Recent reports on work safety in container shipping operations highlight high frequencies of human failures. In this study, we empirically examine the effects of seafarers' perceptions of national culture on the occurrence of human failures affecting work safety in shipping operations. We develop a model adopting Hofstede's national culture construct, which comprises five dimensions, namely power distance, collectivism/individualism, uncertainty avoidance, masculinity/femininity, and Confucian dynamism. We then formulate research hypotheses from theory and test the hypotheses using survey data collected from 608 seafarers who work on global container carriers. Using a point scale for evaluating seafarers' perception of the five national culture dimensions, we find that Filipino seafarers score highest on collectivism, whereas Chinese and Taiwanese seafarers score highest on Confucian dynamism, followed by collectivism, masculinity, power distance, and uncertainty avoidance. The results also indicate that Taiwanese seafarers have a propensity for uncertainty avoidance and masculinity, whereas Filipino seafarers lean more towards power distance, masculinity, and collectivism, which are consistent with the findings of Hofstede and Bond (1988). The results suggest that there will be fewer human failures in container shipping operations when power distance is low, and collectivism and uncertainty avoidance are high. Specifically, this study finds that Confucian dynamism plays an important moderating role as it affects the strength of associations between some national culture dimensions and human failures. Finally, we discuss our findings' contribution to the development of national culture theory and their managerial implications for reducing the occurrence of human failures in shipping operations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trinchero, Elisabetta; Brunetto, Yvonne; Borgonovi, Elio
2013-09-01
This paper used Social Exchange Theory to empirically examine whether perceived organisational support, satisfaction with training and development and perception of discretionary power are antecedents of engagement for registered nurses working in Italian public and private hospitals (n = 827). According to Social Exchange Theory, effective workplace relationships support employees and encourage nurses to use training to enhance their workplace outcomes. This research used a cross-sectional design. Data were collected from registered nurses working in six Italian hospitals using a survey-based, self-report strategy. Regression analysis found that the variance of process-oriented supervision accounted for 6.9% of Italian registered nurse's perception of engagement, training and development accounted for 26.8% and discretionary power accounted for 2.1%. Workplace relationships enhance autonomy and engagement. Effective workplace relationship impacts positively on nurses' outcome. This paper confirms the relevance of training to enhance engagement of nurses. It also confirms the importance of workplace relationships in enhancing autonomy and engagement. Previous research has identified the importance of nurses' autonomy in an environment where there are shortages of nurses. This study confirms a similar situation for Italian nurses. The findings underline the relevance of investments in continuous professional development to enhance nurses' engagement in private and public health-care settings. © 2013 John Wiley & Sons Ltd.
Modeling the expenditure and reconstitution of work capacity above critical power.
Skiba, Philip Friere; Chidnok, Weerapong; Vanhatalo, Anni; Jones, Andrew M
2012-08-01
The critical power (CP) model includes two constants: the CP and the W' [P = (W' / t) + CP]. The W' is the finite work capacity available above CP. Power output above CP results in depletion of the W' complete depletion of the W' results in exhaustion. Monitoring the W' may be valuable to athletes during training and competition. Our purpose was to develop a function describing the dynamic state of the W' during intermittent exercise. After determination of V˙O(2max), CP, and W', seven subjects completed four separate exercise tests on a cycle ergometer on different days. Each protocol comprised a set of intervals: 60 s at a severe power output, followed by 30-s recovery at a lower prescribed power output. The intervals were repeated until exhaustion. These data were entered into a continuous equation predicting balance of W' remaining, assuming exponential reconstitution of the W'. The time constant was varied by an iterative process until the remaining modeled W' = 0 at the point of exhaustion. The time constants of W' recharge were negatively correlated with the difference between sub-CP recovery power and CP. The relationship was best fit by an exponential (r = 0.77). The model-predicted W' balance correlated with the temporal course of the rise in V˙O(2) (r = 0.82-0.96). The model accurately predicted exhaustion of the W' in a competitive cyclist during a road race. We have developed a function to track the dynamic state of the W' during intermittent exercise. This may have important implications for the planning and real-time monitoring of athletic performance.
1993-07-26
atmospheres of at this time. certain solar system planets. The JPL work was directed at very specific applications; however, the Studi"ss-1 7 WorkRe ported in...pressure atmospheres of certain 1-60 Hz. The spark plug power output was varied inversely solar system planets. The JPL work was directed at very with...general case of explosive dust diaper - deposited as a thin layer over the surface area of the sion. We will consider particle density variation from 4
The Power of One? Conditions Which Challenge Managerial Professional Development Practices
ERIC Educational Resources Information Center
Hardy, Ian
2014-01-01
This paper draws upon Bourdieu's concepts of habitus, capital and field to better understand and appreciate the conditions which encouraged the productive professional development (PD) practices of one very capable teacher working in a secondary school in the British Midlands. Rather than celebrating this teacher's practices and perspective as…
Overview of Fiber-Optical Sensors
NASA Technical Reports Server (NTRS)
Depaula, Ramon P.; Moore, Emery L.
1987-01-01
Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The U.S. Department of Energy’s (DOE’s) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers,businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects.
Animal Traction. Appropriate Technologies for Development. Manual M-12.
ERIC Educational Resources Information Center
Watson, Peter R.
This manual is designed for use by Peace Corps volunteers and agricultural extension personnel working in animal traction development programs. While some of the information contained in the manual is specific to the extension of animal-powered agriculture in Africa, the principles covered are generally applicable wherever the method is being used…
The Unacknowledged Value of Female Academic Labour Power for Male Research Careers
ERIC Educational Resources Information Center
Angervall, Petra; Beach, Dennis; Gustafsson, Jan
2015-01-01
Academic work in Sweden's higher education system is changing character. Distinctly different career pathways are emerging, as facilities for developing research careers and capital have become both more restricted and more dependent on external funding. These developments are in focus in the present article. Based on ethnographic research and a…
Scilab and Maxima Environment: Towards Free Software in Numerical Analysis
ERIC Educational Resources Information Center
Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro
2010-01-01
In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)
Research and Clinical Center for Child Development Annual Report, 1999-2000, No. 23.
ERIC Educational Resources Information Center
Chen, Shing-Jen, Ed.; Fujino, Yuki, Ed.
This annual report presents several articles related to the work of the Clinical Center for Child Development at Hokkaido University in Sapporo, Japan. The articles are: (1) "Intrinsic Musicality: Rhythm and Prosody in Infant-Directed Voices" (Niki Powers); (2) "Movable Cognitive Studies with a Portable, Telemetric Near-Infrared…
Soviet Political Perspectives on Power Projection.
1987-03-01
justified by the recognition on the part of many Soviet economists that the traditional Soviet development model does not work. Rapid nationalization...37 Models of Economic Development................................43 IV. ARMED STRUGGLE AND REVOLUTIONARY CHANGE...Soviets always describe revolutionary change in ~.~ the Third World as merely the product of local social and political forces, part of an inevitable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Love, Lonnie J; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary application being fluid powered robotics. The fundamental challenge was part complexity. ORNL s new additive manufacturing technologies (e-beam, laser and ultrasonic deposition) enables freeform manufacturing using conventional metal alloys with excellent mechanical properties. Themore » combination of these two technologies, miniaturized fluid power and additive manufacturing, can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost. This paper focuses on the impact additive manufacturing can have on new forms of fluid power components and systems. We begin with a description of additive manufacturing processes, highlighting the strengths and weaknesses of each technology. Next we describe fundamental results of material characterization to understand the design and mechanical limits of parts made with the e-beam process. A novel design approach is introduced that enables integration of fluid powered actuation with mechanical structure. Finally, we describe a proof-of-principle demonstration: an anthropomorphic (human-like) hydraulically powered hand with integrated power supply and actuation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeff; Rylander, Matthew; Boemer, Jens
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less
Advanced thermionic converter developments with microwave external pumping
NASA Technical Reports Server (NTRS)
Chiu, H. S.; Shaw, D. T.; Manikopulos, C. N.; Lee, C. H.
1977-01-01
This work reports ion generation in a cesium thermionic converter as part of advanced-model thermionic converter development research. A microwave with frequency in the range between 1-2 GHz is used to externally pump a thermionic converter as part of our effort in the verification of Lam's theory. It is found that the motive peak as predicted in the theory disappears whenever microwave power is used to excite the cesium plasma of the converter. The electron temperature is effectively heated by the microwave and the experimental data agrees with theory in the low-power output region.
Development and operation of the JAERI superconducting energy recovery linacs
NASA Astrophysics Data System (ADS)
Minehara, Eisuke J.
2006-02-01
The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.
Computer Simulation of an Electric Trolley Bus
DOT National Transportation Integrated Search
1979-12-01
This report describes a computer model developed at the Transportation Systems Center (TSC) to simulate power/propulsion characteristics of an urban trolley bus. The work conducted in this area is sponsored by the Urban Mass Transportation Administra...
Study on the thermal distribution and thermal management of high average power fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Yongliang; Zhao, Lei; Liang, Xiaobao; Li, Chao; Zhou, Taidou; Wang, Shiwei; Deng, Ying; Wei, Xiaofeng
2015-02-01
The thermal problems of CPS and YDF were studied. And the thermal management technologies are developed separately to the problems. Experimental results showed that the thermal management technologies worked well.
Space Nuclear Program INL's role in energizing exploration
Idaho National Laboratory
2017-12-09
Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.
Quantum fluctuation theorems and power measurements
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2015-07-01
Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc
2015-01-01
The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
Development and quality of life: a critique of Amartya Sen's Development as freedom.
Navarro, V
2000-01-01
Presented here is a critical analysis of some of the major theses of Amartya Sen, as presented in his seminal work Development As Freedom. The author suggests that Sen's work, while representing a major break with the dominant neoliberal position reproduced in most national and international development agencies, is insufficient to explain the key relationship between freedom and development. The absence of an analysis of the power relations that cause and reproduce underdevelopment through national and international political institutions leaves Sen's work wanting. The author shows how Sen's interpretation of events and the conclusions derived from them, such as an explanation of famine in Bangladesh, are insufficient--when not faulty. The author also critically analyzes the United Nations Development Program reports, which, while documenting the nature and consequences of underdevelopment, barely touch on the political context in which underdevelopment occurs.
Towards a renewal of the propeller in aeronautics
NASA Technical Reports Server (NTRS)
Berger, D.; Jacquet, P.
1985-01-01
The reasons for reconsidering the propeller for aircraft propulsion, the areas of application, and necessary developments are considered. Rising fuel costs and an increasing theoretical and experimental data base for turboprop engines have demonstrated that significant cost savings can be realized by the use of propellers. Propellers are well-suited to powering aircraft traveling at speeds up to Mach 0.65. Work is progressing on the development of a 150 seat aircraft which has a cruise speed of Mach 0.8, powered by a turboprop attached to an engine of 15,000 shp. Aeroelasticity analyses ae necessary in order to characterize the behavior of thin profile propfan blades, particularly to predict the oscillations through the entire functional range. High-power reducers must be developed, and the level of cabin noise must be controlled to less than 90 dB. Commercial applications are predicted for turboprops in specific instances.
Revisiting galactic black hole binary GX 339-4 by using 2007 – 2014 Swift XRT observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizi, Febrie Ahmad; Vierdayanti, Kiki; Putra, Mahasena
2015-09-30
This work aims to study the X-ray properties of the galactic black hole binary GX 339-4. Focus of the study is on exploration of data from Swift-XRT in exclusively photon-counting mode. We use data from 2007 up to August 2014, which contain about 40 pointing observations with level 1 data. The flux of GX 339-4 varies in a factor of 100 during this period of observations. For the purpose of this work, we also try to develop a system to conduct standard SWIFT XRT data reduction automatically, in order to greatly reduce time when working with data bulk, which producesmore » images, lightcurves as well as spectra. We also develop another system to conduct fitting of bulk spectral data with a two-component model, disk blackbody and power-law. The fitting results show that no data have a reduced chi-squared > 2. The fraction of the disk to total flux and the power-law to total flux range from 0.00389 – 0.994 and 0.00605 – 0.996, respectively. From the analysis of the disk component, we obtain the value of the innermost disk radius that does not show any large scale truncation which is in a good agreement with a previous study that used 2007 – 2011 Swift-XRT data, indicating that the systems we developed work properly.« less
Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks
NASA Astrophysics Data System (ADS)
Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.
2013-06-01
In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.
A tribute to Dr. Ron W. Waynant (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gannot, Israel; Ilev, Ilko K.; Anders, Juanita J.; Kang, Jin U.
2017-02-01
Ron, our beloved mentor, friend and colleague has passed away on May 7th, 2016. This presentation will follow his life and remarkable achievements. It will describe his work and original developments in three major fields of his interest: his early inventive work on vacuum ultraviolet laser radiation; specialty fiber-optics for laser transmission, especially high-power short-pulse broadband laser delivery of free-electron laser; and up to his latest work on Photobiomodulation. The authors will share their personal experience working with Ron - a Nobel and creative person, however, very humble.
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
Hildebrand, P
2001-12-01
The writer proposes that the interplay between the hermeneutics of psychoanalysis and literature can illuminate understanding of the transference and countertransference at large in an analytic treatment. Writing about the work with a young woman who had been persistently sexually abused as a child and who developed anorexia in her adolescence so severe that her life was endangered both by the illness and by attempts at suicide, the author finds his reading of Shakespeare's The Tempest a powerful informant to the work. Interpreting the object relations represented by Prospero and Miranda and the process of their integration into new mental structures lends the analytic work an additional level of understanding, in particular in relation to the oedipal bond between patient and analyst. When the analyst is confronted by the imminence of his own death towards the end of the analysis, his reading of Prospero's relinquishment of his magical powers and his release of his daughter into sexual maturity and independence helps the patient to replace her destructive inner objects with more reparative and benign ones as she develops a capacity for concern and mourning.
Small-scale Geothermal Power Plants Using Hot Spring Water
NASA Astrophysics Data System (ADS)
Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.
2013-12-01
The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)
Beyond motivation: job and work design for development, health, ambidexterity, and more.
Parker, Sharon K
2014-01-01
Much research shows it is possible to design motivating work, which has positive consequences for individuals and their organizations. This article reviews research that adopts this motivational perspective on work design, and it emphasizes that it is important to continue to refine motivational theories. In light of continued large numbers of poor-quality jobs, attention must also be given to influencing practice and policy to promote the effective implementation of enriched work designs. Nevertheless, current and future work-based challenges mean that designing work for motivation is necessary but insufficient. This review argues that work design can be a powerful vehicle for learning and development, for maintaining and enhancing employees' physical and mental health, and for achieving control and flexibility simultaneously (for example, in the form of ambidexterity); all these outcomes are important given the challenges in today's workplaces. The review concludes by suggesting methodological directions.
Adaptive control for solar energy based DC microgrid system development
NASA Astrophysics Data System (ADS)
Zhang, Qinhao
During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, G.
The Atomic Papers annotates over 800 books published since 1945 and approximately 300 periodical articles since 1980 on every facet of the nuclear dilemma: the development and effects of the bomb, the arms race, nuclear proliferation, and the peace movement. Work on both sides of the nuclear power controversy also receives substantial attention. All references are to English-language material, and nearly half are to work published since 1980. The concluding chapter, ''The Art of Fission,'' describes over one hundred novels and stories with nuclear themes published since 1945--and, in a few cases, before that date.
Larrain-Valenzuela, Josefina; Zamorano, Francisco; Soto-Icaza, Patricia; Carrasco, Ximena; Herrera, Claudia; Daiber, Francisca; Aboitiz, Francisco; Billeke, Pablo
2017-10-30
A dysfunction in the excitatory-inhibitory (E/I) coordination in neuronal assembly has been proposed as a possible neurobiological mechanism of Autistic Spectrum Disorder (ASD). However, the potential impact of this mechanism in cognitive performance is not fully explored. Since the main consequence of E/I dysfunction is an impairment in oscillatory activity and its underlying cognitive computations, we assessed the electroencephalographic activity of ASD and typically developing (TD) subjects during a working-memory task. We found that ASD subjects committed more errors than TD subjects. Moreover, TD subjects demonstrated a parametric modulation in the power of alpha and theta band while ASD subjects did not demonstrate significant modulations. The preceding leads to significant differences between the groups in both the alpha power placed on the occipital cortex and the theta power placed on the left premotor and the right prefrontal cortex. The impaired theta modulation correlated with autistic symptoms. The results indicated that ASD may present an alteration in the recruitment of the oscillatory activity during working-memory, and this alteration could be related to the physiopathology of the disorder.
Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Elizondo, Marcelo A.; O'Brien, James G.
This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of theirmore » flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid power flow and transient stability model, the results showed that the HVDC macrogrid relieved congestion and mitigated loop flows in AC networks, and provided up to 24% improvement in frequency responses. These are realistic studies, based on the 2025 heavy summer and EI multi-regional modeling working group (MMWG) 2026 summer peak cases. This work developed high-fidelity models and simulation algorithms to understand the dynamics of MMC. The developed models and simulation algorithms are up to 25 times faster than the existing algorithms. Models and control algorithms for high-fidelity models were designed and tested for point-to-point and multi-terminal configurations. The multi-terminal configuration was tested connecting simplified models of EI, WI, and Electric Reliability Council of Texas (ERCOT). The developed models showed up to 45% improvement in frequency response with the connection of all the three asynchronous interconnections in the United States using fast and advanced DC technologies like the multi-terminal MMC-DC system. Future work will look into developing high-fidelity models of other advanced DC technologies, combining high-fidelity models with the continental-level model, incorporating additional services. More scenarios involving large-scale HVDC and MTDC will be evaluated.« less
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
NASA Astrophysics Data System (ADS)
Fréchette, Luc G.
2007-09-01
Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration energy harvesting approaches. Technologies and approaches for micro heat engines are shared, ranging from a complete microsystem for thermal energy harvesting (Cho et al) to core bearing and microturbomachinery technologies for rotating micro heat engines (Waits et al, Nakajima et al). Electrochemical microsystems are also presented, based on methanol as fuel (Morse et al), as well as novel micro and nanofabrication approaches (Chu et al). Fuel cell microsystems with integrated hydrogen generation approaches are also investigated by Peterson et al and Varady et al, illustrating the benefits and challenges of miniaturizing complete power sources. Finally, biological micro fuel cells that leverage the principles found in nature are presented, in contrast to chemical fuel cells (Chen et al, Morishima et al). We hope that this work will inspire others to pursue innovative research and development activities in the area of power MEMS, and consequently contribute to addressing our energy challenges for the 21st century.
Feasibility study on introduction of the bio-fuel power generation in tropical regions
NASA Astrophysics Data System (ADS)
1993-03-01
Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
NASA Astrophysics Data System (ADS)
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-04-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi, J.; Tan, Y.; Zhang, W.
2011-03-28
For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it showsmore » that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.« less
Design and modeling of energy generated magneto rheological damper
NASA Astrophysics Data System (ADS)
Ahamed, Raju; Rashid, Muhammad Mahbubur; Ferdaus, Md Meftahul; Yusof, Hazlina Md.
2016-02-01
In this paper an energy generated mono tube MR damper model has been developed for vehicle suspension systems. A 3D model of energy generated MR damper is developed in Solid Works electromagnetic simulator (EMS) where it is analyzed extensively by finite element method. This dynamic simulation clearly illustrates the power generation ability of the damper. Two magnetic fields are induced inside this damper. One is in the outer coil of the power generator and another is in the piston head coils. The complete magnetic isolation between these two fields is accomplished here, which can be seen in the finite element analysis. The induced magnetic flux densities, magnetic field intensities of this damper are analyzed for characterizing the damper's power generation ability. Finally, the proposed MR damper's energy generation ability was studied experimentally.
Tuneable powerful UV laser system with UV noise eater
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Radnatarov, Daba; Khripunov, Sergey; Zarudnev, Yurii
2018-02-01
The present work for the first time presents the study of a laser system delivering into the fibre up to 250 mW of CW radiation tuneable across the 275-310-nm range with the output line width less than 5 GHz and stability of UV output power within 1%. This system can automatically set the output radiation wavelength within the range of 275-310 nm to the precision of 2 pm. UV output power stabilisation is provided by a newly proposed by the authors noise eating technology. This paper discusses details of the developed technology and the results of its application.
Two-Band Pyrometers Detect Hydrogen Fires
NASA Technical Reports Server (NTRS)
Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.
1993-01-01
Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.
Determination of the performance of the Kaplan hydraulic turbines through simplified procedure
NASA Astrophysics Data System (ADS)
Pădureanu, I.; Jurcu, M.; Campian, C. V.; Haţiegan, C.
2018-01-01
A simplified procedure has been developed, compared to the complex one recommended by IEC 60041 (i.e. index samples), for measurement of the performance of the hydraulic turbines. The simplified procedure determines the minimum and maximum powers, the efficiency at maximum power, the evolution of powers by head and flow and to determine the correct relationship between runner/impeller blade angle and guide vane opening for most efficient operation of double-regulated machines. The simplified procedure can be used for a rapid and partial estimation of the performance of hydraulic turbines for repair and maintenance work.
ERIC Educational Resources Information Center
Alvarado, Felix
2006-01-01
The countries of Central America have made great educational strides in recent years. More children are now attending school and more finish primary school; however, there is still a long way to go. We still need to ensure that the children who go to school learn effectively and can use their education to develop useful life and work skills. This…
ERIC Educational Resources Information Center
Hargreaves, Andy
This book examines the personal, moral, cultural, and political dimensions of teaching in the context of rapid and far-reaching change within teachers' work and in the world beyond it. The chapters in Part One examine the powerful forces for change in society and how those forces are exerting pressure on existing institutions. Issues such as the…
Wireless data transmission from inside electromagnetic fields.
Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio
2010-01-01
This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.
Renewable power production in a Pan-Caribbean energy grid
NASA Astrophysics Data System (ADS)
Miller, David
The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.