Science.gov

Sample records for power doppler ultrasound

  1. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  2. Ultrasound imaging for the rheumatologist. XVII. Role of colour Doppler and power Doppler.

    PubMed

    Iagnocco, A; Epis, O; Delle Sedie, A; Meenagh, G; Filippucci, E; Riente, L; Scirè, C A; Montecucco, C; Bombardieri, S; Grassi, W; Valesini, G

    2008-01-01

    The use of Doppler ultrasound in rheumatology has grown in recent years. This is partly due to the increasing number of rheumatologists who perform US in their daily clinical practise and also to the technological advances of US systems. Both colour Doppler and power Doppler are used to evaluate the degree of intra- and peri-articular soft tissue inflammation. Moreover, Doppler US has been found to be of help in the assessment of vascular pathologies such as the vasculitides. In this review we provide an update of the data regarding the use of colour Doppler and power Doppler in rheumatology.

  3. Power Doppler ultrasound appearances of neonatal ischaemic brain injury.

    PubMed

    Steventon, D M; John, P R

    1997-02-01

    Following neonatal ischaemic brain injury, irregular vessels increase in size owing to luxury perfusion. These may be demonstrated by conventional colour flow Doppler (CFD) imaging at the periphery of the infarcted area. We present a case in which power Doppler imaging (PDI) was performed in addition to CFD in a neonate with unexplained seizures and which proved more sensitive than CFD in demonstrating luxury perfusion. Ultrasound appearances were compared with those seen on cranial CT. PDI can be a useful adjunct to conventional CFD examination of the neonatal brain in cerebral infarction.

  4. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  5. The effect of foot position on Power Doppler Ultrasound grading of Achilles enthesitis.

    PubMed

    Zappia, Marcello; Cuomo, Giovanna; Martino, Maria Teresa; Reginelli, Alfonso; Brunese, Luca

    2016-06-01

    The aim of this study was to determine whether foot position could modify power Doppler grading in evaluation of the Achilles enthesis. Eighteen patients with clinical Achilles enthesitis were studied with power Doppler ultrasound (PDUS) in five different positions of the foot: active and passive dorsiflexion, neutral position, active and passive plantar flexion. The Doppler signal was graded in any position and compared with the others. The Doppler signal was higher with the foot in plantar flexion and decreased gradually, sometimes till to disappear, while increasing dorsiflexion. The Doppler signal was always less during the active keeping of the position of the joint, than during the passive. The PDUS examination of the Achilles enthesis should be performed also with the foot in passive plantar flexion, in order not to underestimate the degree of vascularization.

  6. Remote Electromagnetic Vibration of Steerable Needles for Imaging in Power Doppler Ultrasound

    PubMed Central

    Cabreros, Sarah S.; Jimenez, Nina M.; Greer, Joseph D.; Adebar, Troy K.; Okamura, Allison M.

    2015-01-01

    Robotic needle steering systems for minimally invasive medical procedures require complementary medical imaging systems to track the needles in real time. Ultrasound is a promising imaging modality because it offers relatively low-cost, real-time imaging of the needle. Previous methods applied vibration to the base of the needle using a voice coil actuator, in order to make the needle visible in power Doppler ultrasound. We propose a new method for needle tip vibration, using electromagnetic actuation of small permanent magnets placed inside the needle to improve needle tip visibility in power Doppler imaging. Robotic needle insertion experiments using artificial tissue and ex vivo porcine liver showed that the electromagnetic tip vibration method can generate a stronger Doppler response compared to the previous base vibration method, resulting in better imaging at greater needle depth in tissue. It also eliminates previous issues with vibration damping along the shaft of the needle. PMID:26413379

  7. Remote Electromagnetic Vibration of Steerable Needles for Imaging in Power Doppler Ultrasound.

    PubMed

    Cabreros, Sarah S; Jimenez, Nina M; Greer, Joseph D; Adebar, Troy K; Okamura, Allison M

    2015-05-01

    Robotic needle steering systems for minimally invasive medical procedures require complementary medical imaging systems to track the needles in real time. Ultrasound is a promising imaging modality because it offers relatively low-cost, real-time imaging of the needle. Previous methods applied vibration to the base of the needle using a voice coil actuator, in order to make the needle visible in power Doppler ultrasound. We propose a new method for needle tip vibration, using electromagnetic actuation of small permanent magnets placed inside the needle to improve needle tip visibility in power Doppler imaging. Robotic needle insertion experiments using artificial tissue and ex vivo porcine liver showed that the electromagnetic tip vibration method can generate a stronger Doppler response compared to the previous base vibration method, resulting in better imaging at greater needle depth in tissue. It also eliminates previous issues with vibration damping along the shaft of the needle.

  8. Use of power Doppler ultrasound-guided biopsies to locate regions of tumour hypoxia.

    PubMed Central

    Evans, S. M.; Laughlin, K. M.; Pugh, C. R.; Sehgal, C. M.; Saunders, H. M.

    1997-01-01

    The purpose of this study was to determine whether power Doppler ultrasound techniques could be used to direct biopsies into tumour regions with relatively low red blood cell flux, and therefore preferentially sample regions that were relatively hypoxic. Subcutaneous 9L glioma rat tumours were biopsied using power Doppler ultrasound guidance. Immunohistochemical detection of the 2-nitroimidazole EF5 was performed to determine the presence and level of hypoxia in the biopsy samples. Comparisons between the power Doppler-determined red blood cell flux and EF5 binding were made. In seven out of eight tumours studied, power Doppler ultrasound allowed differentiation of a relatively hypoxic region from a relatively oxic region by localizing relatively low vs high red blood cell flux areas respectively. In one of these seven tumours, RBC flux was high in both biopsied sites and hypoxia was not present in either. In two of these seven tumours, hypoxia was present in each biopsy and both of the red blood cell flux measurements were low. In the eighth tumour, both the EF5 binding and the red blood cell flux measurements were low. In this tumour, low EF5 binding was due to the dominance of necrotic cells, which will not reduce or bind EF5 in the biopsy specimen. Using EF5-binding techniques, we have confirmed that regions of relatively low red blood cell flux are more hypoxic than those with relatively high red blood cell flux. Counterstaining specimens with haematoxylin and eosin allows differentiation of low EF5-binding regions due to oxia vs necrosis. These methods have clinical implications for the expanded use of power Doppler ultrasound as a means to direct tissue sampling when it is important to identify the presence of hypoxia. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:9374376

  9. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    PubMed

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  10. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  11. The role of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the diagnosis of childhood febrile urinary tract infections

    PubMed Central

    İlarslan, Nisa Eda Çullas; Fitöz, Ömer Suat; Öztuna, Derya Gökmen; Küçük, Nuriye Özlem; Yalçınkaya, Fatma Fatoş

    2015-01-01

    Aim: This study assessed the ability of tissue harmonic imaging ultrasound combined with power Doppler ultrasound in the detection of childhood febrile urinary tract infections in comparison with the gold standard reference method: Tc-99m dimercaptosuccinicacid renal cortical scintigraphy. Material and Methods: This prospective study included 60 patients who were hospitalized with a first episode of febrile urinary tract infections. All children were examined with dimercaptosuccinicacid scan and tissue harmonic imaging ultrasound combined with power Doppler ultrasound within the first 3 days of admission. Results: Signs indicative of acute infection were observed in 29 patients according to the results of tissue harmonic imaging ultrasound combined with power Doppler ultrasound while dimercaptosuccinicacid scan revealed abnormal findings in 33 patients. The sensitivity, specificity, positive predictive value and negative predictive value of tissue harmonic imaging combined with power Doppler ultrasound using dimercaptosuccinicacid scintigraphy as the reference method in patients diagnosed with first episode febrile urinary tract infections were calculated as 57.58% (95% confidence interval: 40.81%–72.76%); 62.96% (95% confidence interval: 44.23%–78.47%); 65.52% (95% confidence interval: 52.04%–77%); 54.84% (95% confidence interval: 41.54%–67.52%); respectively. Conclusions: Although current results exhibit inadequate success of power Doppler ultrasound, this practical and radiation-free method may soon be comprise a part of the routine ultrasonographic evaluation of febrile urinary tract infections of childhood if patients are evaluated early and under appropriate sedation. PMID:26265892

  12. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  13. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  14. Time-resolved measurement of bubble cavitation by using power Doppler ultrasound image

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Izumi, Yosuke; Nagai, Hayato; Yamakoshi, Yoshiki

    2017-04-01

    In this study, a novel measurement method for a secondary ultrasound wave irradiated by microbubble cavitation is proposed. High-intensity ultrasound (h-US, 1.0–1.5 MPa), which produces bubble cavitation, is irradiated with a fixed time delay after introducing imaging US, whose frequency is different from that of the h-US. The bubble cavitation signal (BCS) is detected by the signal-processing unit of an ultrasound power Doppler imaging instrument. By this method, both a spatially resolved bubble image (S-image) and the temporal transition of the BCS (T-image) are monitored simultaneously. A feature of the method is that the BCS is observed in situ with sub-µs time resolution. The accuracy of the method is evaluated and it is found that the maximum deviation of the amplitude of the simulated BCS is 4.80%. This method is applied to measure the BCS of ultrasound contrast agent microbubbles. As a result, the dependence of the inherent temporal transition of the BCS on the sound pressure of the h-US (0.6–1.2 MPa) is observed.

  15. Neovascularity in patellar tendinopathy and the response to eccentric training: a case report using Power Doppler ultrasound.

    PubMed

    McCreesh, Karen M; Riley, Sara J; Crotty, James M

    2013-12-01

    This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case.

  16. Transvaginal 3-d power Doppler ultrasound evaluation of the fetal brain at 10-13 weeks' gestation.

    PubMed

    Hata, Toshiyuki; Tanaka, Hirokazu; Noguchi, Junko

    2012-03-01

    The objective of this study was to measure the fetal brain volume (FBV) and vascularization and blood flow using transvaginal 3-D power Doppler (3DPD) ultrasound late in the first trimester of pregnancy. 3DPD ultrasound examinations with the VOCAL imaging analysis program were performed on 36 normal fetuses from 10-13 weeks' gestation. FBV and 3DPD indices related to the fetal brain vascularization (vascularization index [VI], flow index [FI] and vascularization flow index [VFI]) were calculated in each fetus. Intra- and interclass correlation coefficients and intra- and interobserver agreements of measurements were assessed. FBV was curvilinearly correlated well with the gestational age (R2 = 0.861, p < 0.0001). All 3-D power Doppler indices (VI, FI and VFI) showed no change at 10-13 weeks' gestation. FBV and all 3-D power Doppler indices (VI, FI and VFI) showed a correlation > 0.82, with good intra- and interobserver agreement. Our findings suggest that 3-D ultrasound is a superior means of evaluating the FBV in utero, and that 3-D power Doppler ultrasound histogram analysis may provide new information on the assessment of fetal brain perfusion.

  17. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  18. Settings and artefacts relevant in colour/power Doppler ultrasound in rheumatology.

    PubMed

    Torp-Pedersen, S T; Terslev, L

    2008-02-01

    The paper explains the most important parameters for the use of colour and power Doppler in rheumatology. Recommendations for machine settings are given. The commonly encountered artefacts and their importance for image interpretation are explained.

  19. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  20. Power Doppler ultrasound phenotyping of expanding versus collapsed popliteal lymph nodes in murine inflammatory arthritis.

    PubMed

    Bouta, Echoe M; Ju, Yawen; Rahimi, Homaira; de Mesy-Bentley, Karen L; Wood, Ronald W; Xing, Lianping; Schwarz, Edward M

    2013-01-01

    Rheumatoid arthritis is a chronic inflammatory disease manifested by episodic flares in affected joints that are challenging to predict and treat. Longitudinal contrast enhanced-MRI (CE-MRI) of inflammatory arthritis in tumor necrosis factor-transgenic (TNF-Tg) mice has demonstrated that popliteal lymph nodes (PLN) increase in volume and contrast enhancement during the pre-arthritic "expanding" phase of the disease, and then suddenly "collapse" during knee flare. Given the potential of this biomarker of arthritic flare, we aimed to develop a more cost-effective means of phenotyping PLN using ultrasound (US) imaging. Initially we attempted to recapitulate CE-MRI of PLN with subcutaneous footpad injection of US microbubbles (DEFINITY®). While this approach allowed for phenotyping via quantification of lymphatic sinuses in PLN, which showed a dramatic decrease in collapsed PLN versus expanding or wild-type (WT) PLN, electron microscopy demonstrated that DEFINITY® injection also resulted in destruction of the lymphatic vessels afferent to the PLN. In contrast, Power Doppler (PD) US is innocuous to and efficiently quantifies blood flow within PLN of WT and TNF-Tg mice. PD-US demonstrated that expanding PLN have a significantly higher normalized PD volume (NPDV) versus collapsed PLN (0.553 ± 0.007 vs. 0.008 ± 0.003; p<0.05). Moreover, we define the upper (>0.030) and lower (<0.016) quartile NPDVs in this cohort of mice, which serve as conservative thresholds to phenotype PLN as expanding and collapsed, respectively. Interestingly, of the 12 PLN phenotyped by the two methods, there was disagreement in 4 cases in which they were determined to be expanding by CE-MRI and collapsed by PD-US. Since the adjacent knee had evidence of synovitis in all 4 cases, we concluded that the PD-US phenotyping was correct, and that this approach is currently the safest and most cost-effective in vivo approach to phenotype murine PLN as a biomarker of arthritic flare.

  1. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  2. Real-time virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Khoshniat, Mahdieh; Thorne, Meghan L.; Poepping, Tamie L.; Holdsworth, David W.; Steinman, David A.

    2004-04-01

    Doppler ultrasound (DUS) is widely used to diagnose and plan treatments for vascular diseases, but the relationship between complex blood flow dynamics and the observed DUS signal is not completely understood. In this paper, we demonstrate that Doppler ultrasound can be realistically simulated in a real-time manner via the coupling of a known, previously computed velocity field with a simple model of the ultrasound physics. In the present case a 3D computational fluid dynamics (CFD) model of physiologically pulsatile flow a stenosed carotid bifurcation was interrogated using a sample volume of known geometry and power distribution. Velocity vectors at points within the sample volume were interpolated using a fast geometric search algorithm and, using the specified US probe characteristics and orientation, converted into Doppler shifts for subsequent display as a Doppler spectrogram or color DUS image. The important effect of the intrinsic spectral broadening was simulated by convolving the velocity at each point within the sample volume by a triangle function whose width was proportional to velocity. A spherical sample volume with a Gaussian power distribution was found to be adequate for producing realistic Doppler spectrogram in regions of uniform, jet, and recirculation flow. Fewer than 1000 points seeded uniformly within a radius comprising more than 99% of the total power were required, allowing spectra to be generated from high resolution CFD data at 100Hz frame rates on an inexpensive desktop workstation.

  3. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods

    PubMed Central

    Ziębiński, Adam

    2016-01-01

    Objectives Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. Material and methods This paper focus on a computer aided diagnostic system that was developed within joint Polish–Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner’s experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. Results The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Conclusions Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner’s experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity

  4. Understanding quantification of microvascularity with high-frequency power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Pinter, Stephen Z.; Lacefield, James C.

    2009-02-01

    High-frequency power Doppler imaging of angiogenesis can be challenging given the presence of small blood vessels and slow flow velocities. In the presence of substantial Doppler artifacts such as false-positive color pixels or undetected vessels, color pixel density (CPD) and related vascularity metrics do not provide accurate estimates of vascular volume fraction. As a step towards improved microvascular quantification, flow-phantom experiments were performed to establish relationships between CPD and wall filter cut-off velocity for various combinations of vessel size (160, 200, 250, 300, and 360 μm), flow velocity (4, 3, 2, 1, and 0.5 mm/s), and transducer frequency (30 and 40 MHz). Three distinct regions were observed in plots of CPD versus wall filter cut-off velocity: overestimation of CPD at low cut-offs, underestimation of CPD at high cut-offs, and a plateau at intermediate cut-offs. The CPD at the plateau closely matched the phantom's actual vascular volume fraction. The length of the plateau corresponded with the flow-detection performance of the Doppler system, which was assessed using receiver operating characteristic analysis. Color pixel density versus wall filter cut-off curves from analogous in vivo experiments exhibited the same shape, including a distinct CPD plateau. The similar shape of the flow-phantom and in vivo curves suggests that the presence of a plateau can be used to identify the best-estimate CPD value in an in vivo experiment. The ability to identify the best CPD estimate is expected to improve quantification of angiogenesis and anti-angiogenic treatment responses with power Doppler.

  5. Ultrasound resistive index, power Doppler, and clinical parameters in established rheumatoid arthritis.

    PubMed

    Bisi, Melissa Cláudia; do Prado, Aline Defaveri; Piovesan, Deise Marcela; Bredemeier, Markus; da Silveira, Inês Guimarães; de Mendonça, José Alexandre; Staub, Henrique Luiz

    2017-04-01

    Ultrasonography (US) is a useful tool for the evaluation of sinovial vascularization and proliferation in rheumatoid arthritis (RA). Accordingly, resistive index (RI) on spectral Doppler (sD) US provides a quantitative analysis of vascular inflammation, but its utility in the evaluation of RA activity has not been established. Our objective was to determine the association of RI with other US parameters of synovitis and with clinical disease activity in established RA. Patients with positive power Doppler (pD) were included in a prospective cross-sectional study. Disease activity and disability were evaluated using the Disease Activity Score in 28-joints (DAS28) and Health Assessment Questionnaire (HAQ), respectively. Gray scale (GS) synovitis, pD, and sD analyses were performed by one of two examiners in wrists and the second and third metacarpophalangeal and proximal interphalangeal joints. The 10-joint GS and 10-joint pD scores and mean RI were then calculated. Weighted kappa (WK) values were employed to assess interobserver reability, and correlations were tested using the Spearman coefficient. Ninety-five RA patients (median duration of disease of 7 years and mean DAS28 of 4.32 ± 1.66) were included. WK values in real-time US were 0.77 for synovitis, 0.87 for pD, and 0.68 for RI. There were no significant correlations of RI with 10-joint GS, 10-joint pD, DAS28, joint counts, or HAQ (P > 0.10 for all tests). Patients in remission had a mean RI similar to those with high disease activity (0.62 ± 0.10, n = 15 versus 0.63 ± 0.13, n = 34, respectively). The addition of the RI score did not seem to improve US performance in patients with established RA.

  6. Sizing of Emboli in Flowing Blood Using Pulse Doppler Ultrasound and the Embolus-To Power Ratio.

    NASA Astrophysics Data System (ADS)

    Moehring, Mark Alan

    The embolus to blood ratio (EBR) theoretical model describing pulse Doppler ultrasound observations of emboli in flowing blood is summarized. The EBR model uses the backscattered signal power from blood in the Doppler sample volume as a reference from which to assess embolus size and composition. This EBR is independent of attenuation and reflection loss in intervening tissues between probe and bloodflow. An in vitro investigation is presented that tests the validity of the EBR model. The experimental apparatus includes a novel phantom for Doppler observation of circulating emboli and a Doppler system which uses 1.6 and 2.4 MHz concurrently for interrogation of an embolus. The phantom contains a tubeless flow conduit inside a polyacrylamide gel and a blood-mimicking fluid flowing in the conduit. Time series Doppler shift data which are gathered while polystyrene microsphere "emboli" transit the sample volume are post -processed to calculate the EBR on each embolic signature. EBR measurements from microspheres of three different diameters are summarized and shown to contain pronounced and systematic variability. The hypothesis is presented that this variability is due to a small speed of sound mismatch between the gel and the blood-mimicking fluid, a phenomenon anticipated in vivo. This speed of sound mismatch results in beam refraction and a non-uniformly insonated sample volume (thereby causing variability in embolus signatures). A three dimensional theoretical study is presented that models beam refraction resulting from speed of sound mismatch between the blood mimicking fluid and the surrounding gel. A Monte Carlo study of the EBR behavior in the presence of beam refraction is performed and yields similar results to the data obtained in vitro. This study is evidence that the experimental signal variability is due to speed of sound mismatch between blood-mimicking fluid and gel. A method of extracting embolus size from the dual frequency EBR data based on the

  7. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla; Tegnander, Eva; Ekroll, Ingvild; Kiss, Gabriel; Torp, Hans

    2016-07-07

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this work for maximum velocity point detection has been developed by modifying an existing method - Signal Noise Slope Intersection (SNSI), incorporating in it steps from an altered version of another method called Geometric Method (GM). Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained post detection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings as well as in vivo recordings from uterine, umbilical, carotid and subclavian arteries. Results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles and SNR levels. Standard deviation in the envelope is low - less than 2% in case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow; and also less than 2% in case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of Pulsatility Index estimation in uterine and umbilical arteries.

  8. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla H; Tegnander, Eva; Ekroll, Ingvild Kinn; Kiss, Gabriel; Torp, Hans

    2016-11-01

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method-signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low-less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.

  9. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  10. Semiquantitative Evaluation of Extrasynovial Soft Tissue Inflammation in the Shoulders of Patients with Polymyalgia Rheumatica and Elderly-Onset Rheumatoid Arthritis by Power Doppler Ultrasound.

    PubMed

    Suzuki, Takeshi; Yoshida, Ryochi; Okamoto, Akiko; Seri, Yu

    2017-01-01

    Objectives. To develop a scoring system for evaluating the extrasynovial soft tissue inflammation of the shoulders in patients with polymyalgia rheumatica (PMR) and elderly-onset rheumatoid arthritis with PMR-like onset (pm-EORA) using ultrasound. Methods. We analyzed stored power Doppler (PD) images obtained by the pretreatment examination of 15 PMR patients and 15 pm-EORA patients. A semiquantitative scoring system for evaluating the severity of PD signals adjacent to the anterior aspect of the subscapularis tendon was designed. Results. A four-point scale scoring for the hyperemia on the subscapularis tendon was proposed as follows in brief: 0 = absent or minimal flow, 1 = single vessel dots or short linear-shape signals, 2 = long linear-shape signals or short zone-shape signals, or 3 = long zone-shape signals. This scoring system showed good intra- and interobserver reliability and good correlation to quantitative pixel-counting evaluation. By using it, we demonstrated that inflammation in PMR is dominantly localized in extrasynovial soft tissue as compared with pm-EORA. Conclusions. We proposed a reliable semiquantitative scoring system using ultrasound for the evaluation of extrasynovial soft tissue inflammation of the shoulders in patients with both PMR and pm-EORA. This system is simple to use and can be utilized in future investigations.

  11. Semiquantitative Evaluation of Extrasynovial Soft Tissue Inflammation in the Shoulders of Patients with Polymyalgia Rheumatica and Elderly-Onset Rheumatoid Arthritis by Power Doppler Ultrasound

    PubMed Central

    Yoshida, Ryochi; Okamoto, Akiko; Seri, Yu

    2017-01-01

    Objectives. To develop a scoring system for evaluating the extrasynovial soft tissue inflammation of the shoulders in patients with polymyalgia rheumatica (PMR) and elderly-onset rheumatoid arthritis with PMR-like onset (pm-EORA) using ultrasound. Methods. We analyzed stored power Doppler (PD) images obtained by the pretreatment examination of 15 PMR patients and 15 pm-EORA patients. A semiquantitative scoring system for evaluating the severity of PD signals adjacent to the anterior aspect of the subscapularis tendon was designed. Results. A four-point scale scoring for the hyperemia on the subscapularis tendon was proposed as follows in brief: 0 = absent or minimal flow, 1 = single vessel dots or short linear-shape signals, 2 = long linear-shape signals or short zone-shape signals, or 3 = long zone-shape signals. This scoring system showed good intra- and interobserver reliability and good correlation to quantitative pixel-counting evaluation. By using it, we demonstrated that inflammation in PMR is dominantly localized in extrasynovial soft tissue as compared with pm-EORA. Conclusions. We proposed a reliable semiquantitative scoring system using ultrasound for the evaluation of extrasynovial soft tissue inflammation of the shoulders in patients with both PMR and pm-EORA. This system is simple to use and can be utilized in future investigations. PMID:28293635

  12. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  13. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  14. Adaptive clutter rejection for ultrasound color Doppler imaging

    NASA Astrophysics Data System (ADS)

    Yoo, Yang Mo; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    We have developed a new adaptive clutter rejection technique where an optimum clutter filter is dynamically selected according to the varying clutter characteristics in ultrasound color Doppler imaging. The selection criteria have been established based on the underlying clutter characteristics (i.e., the maximum instantaneous clutter velocity and the clutter power) and the properties of various candidate clutter filters (e.g., projection-initialized infinite impulse response and polynomial regression). We obtained an average improvement of 3.97 dB and 3.27 dB in flow signal-to-clutter-ratio (SCR) compared to the conventional and down-mixing methods, respectively. These preliminary results indicate that the proposed adaptive clutter rejection method could improve the sensitivity and accuracy in flow velocity estimation for ultrasound color Doppler imaging. For a 192 x 256 color Doppler image with an ensemble size of 10, the proposed method takes only 57.2 ms, which is less than the acquisition time. Thus, the proposed method could be implemented in modern ultrasound systems, while providing improved clutter rejection and more accurate velocity estimation in real time.

  15. Contrast M-mode power Doppler ultrasound in the detection of right-to-left shunts: utility of submandibular internal carotid artery recording.

    PubMed

    Topçuoglu, M A; Palacios, I F; Buonanno, F S

    2003-10-01

    Cardiac right-to-left shunts (RLSs) can be detected by echocardiography and transcranial Doppler ultrasound (TCD). In patients without adequate transtemporal bone windows, results may be obtained by insonating extracranial arteries; however, the sensitivity and practicality of this approach is unknown. In 34 patients evaluated with echocardiography for RLSs, 73 studies were performed with unilateral, simultaneous contrast TCD (cTCD) of the middle cerebral artery (MCA) and anterior cerebral artery (ACA) and submandibular power M-mode Doppler (PMD) ultrasound of the extracranial internal carotid artery (ecICA). The number of microbubble (MB) signals and their times of first appearance were determined. RLS volume was graded on 6 levels (I = trace, II = small, III = medium, IVa = large, IVb = shower, IVc = curtain) and compared between MCA and ecICA recordings. In 2 of 24 cTCD studies in 15 patients without evidence of RLSs on single-gated MCA monitoring, low-volume RLSs (grades I and II) were detected via ecICA insonation; in both, MB signatures were tracked in the ecICA, passing into the ipsilateral ACA. In 40 of 49 studies (26 patients) in which RLSs were demonstrated with single-gated MCA monitoring, more MBs were detected in the ecICA than the MCA, with either single-gated or M-mode images, with increases of 76.9% and 66.1%, respectively (P = .027). Compared to single-gated studies, M-mode technology detected nonsignificant increases in MB number in both the MCA and the ecICA (by 20.2% and 14.0%, respectively). Contrast PMD with cervical ICA recording is at least as sensitive and specific as the traditional MCA method in detecting RLSs; furthermore, this method seems to be more sensitive for low-volume RLSs (grades I-III) because of air MB decay (9.2%) and entry into the ipsilateral ACA (34.2%). This is in concordance with the increase of detected RLS grades observed in 32.7% of patients with echocardiography-documented RLSs. The authors therefore suggest the

  16. Detection of microemboli by transcranial Doppler ultrasound.

    PubMed Central

    Grosset, D G; Georgiadis, D; Kelman, A W; Cowburn, P; Stirling, S; Lees, K R; Faichney, A; Mallinson, A; Quin, R; Bone, I; Pettigrew, L; Brodie, E; MacKay, T; Wheatley, D J

    1996-01-01

    Doppler ultrasound detection of abnormally high-pitched signals within the arterial waveform offers a new method for diagnosis, and potentially for prediction, of embolic complications in at-risk patients. The nature of Doppler "microembolic" signals is of particular interest in patients with prosthetic heart valves, where a high prevalence of these signals is observed. Monitoring the middle cerebral artery with 2-MHz transcranial Doppler ultrasound (TC-2000, Nicolet Biomedical; Warwick, UK), we looked for microemboli signals in 150 patients (95 women and 55 men), and found 1 or more signals during a 30-min recording in 89% of 70 patients with Bjork-Shiley valves (principally monostrut), 54% of 50 patients with Medtronic-Hall valves, and 50% of 30 patients with Carpentier-Edwards valves (p < 0.001, chi 2). In the patients with Bjork-Shiley valves, the mean number of signals per hour was 59 (range, 42-86; 95% confidence interval), which was significantly higher than the mean in patients with Medtronic-Hall and Carpentier-Edwards valves (1.5[range, 0.5-2.5] and 1 [range, 0-5.3], respectively; both p < 0.04, multiple comparisons. Bonferroni correction). In the patients undergoing serial pre- and postoperative studies, the causative role of the valve implant was emphasized. There was no correlation between the number of emboli signals and a prior history of neurologic deficit, cardiac rhythm, previous cardiac surgery, or the intensity of oral anticoagulation, in patients with prosthetic heart valves. In Bjork-Shiley patients, dual (mitral and aortic) valves were associated with more signals than were single valves. In Medtronic-Hall patients, the signal count was greater for valves in the aortic position than it was for valves in the mitral position. Comparative studies of Doppler emboli signals in other clinical settings suggest a difference in composition or size of the underlying maternal between prosthetic valve patients and patients with carotid stenosis. These

  17. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  18. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  19. Renal power Doppler ultrasonographic evaluation of children with acute pyelonephritis.

    PubMed

    Shajari, Ahmad; Nafisi-Moghadam, Reza; Malek, Mahrooz; Smaili, Agha; Fallah, Mahmud; Pahlusi, Ali

    2011-01-01

    Urinary tract infections are common in children. The available gold standard method for diagnosis, Tc-99m dimercaptosuccinic acid scan is expensive and exposes patients to considerable amount of radiation. This study was performed to compare and assess the efficacy of Power Doppler Ultrasound versus Tc-99m DMSA scan for diagnosis of acute pyelonephritis. A quasi experimental study was conducted on 34 children with mean age of 2.8 ± 2.7 years who were hospitalized with their first episode of febrile urinary tract infection. All children were evaluated in the first 3 days of admission by Doppler Ultrasound and Tc-99m DMSA scan. Patients with congenital structural anomalies were excluded. Each kidney was divided into three zones. The comparison between efficacy of Doppler Ultrasound and DMSA scan was carried out based on number of patients and on classified renal units. Based on the number of patients enrolled; the sensitivity, specificity, positive and negative predictive values and accuracy of Doppler Ultrasound were 89%, 53%, 70%, 80% and 74%, respectively but based on the renal units, it was 66%, 81%, 46%, 91% and 79% , respectively. Although Doppler Ultrasound has the potential for identifying acute pyelonephritis in children, but it is still soon to replace DMSA scan.

  20. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation.

  1. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  2. Pediatric imaging/doppler ultrasound of the chest: Extracardiac diagnosis

    SciTech Connect

    Huhta, J.C.

    1986-01-01

    In this book the author spells out new diagnostic applications in pediatrics for high resolution cross-sectional ultrasonography, and demonstrates the ways in which Doppler techniques complement the cross-sectional method. This reference presents practical, step-by-step methods for non-invasive ultrasound examination of extra-cardiac anatomy and assessment of vascular blood flow.

  3. Fetal and umbilical Doppler ultrasound in high-risk pregnancies

    PubMed Central

    Alfirevic, Zarko; Stampalija, Tamara; Gyte, Gillian ML

    2014-01-01

    Background Abnormal blood flow patterns in fetal circulation detected by Doppler ultrasound may indicate poor fetal prognosis. It is also possible false positive Doppler ultrasound findings could encourage inappropriate early delivery. Objectives The objective of this review was to assess the effects of Doppler ultrasound used to assess fetal well-being in high-risk pregnancies on obstetric care and fetal outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009) and the reference lists of identified studies. Selection criteria Randomised and quasi-randomised controlled trials of Doppler ultrasound for the investigation of umbilical and fetal vessels waveforms in high-risk pregnancies compared to no Doppler ultrasound. Data collection and analysis Two authors independently assessed the studies for inclusion, assessed risk of bias and carried out data extraction. Data entry was checked. Main results Eighteen completed studies involving just over 10,000 women were included. The trials were generally of unclear quality with some evidence of possible publication bias. The use of Doppler ultrasound in high-risk pregnancy was associated a reduction in perinatal deaths (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.52 to 0.98, 16 studies, 10,225 babies, 1.2% versus 1.7 %, numbers needed to treat = 203; 95%CI 103 to 4352). There were also fewer inductions of labour (average RR 0.89, 95% CI 0.80 to 0.99, 10 studies, 5633 women, random effects) and fewer caesarean sections (RR 0.90, 95% CI 0.84 to 0.97, 14 studies, 7918 women). No difference was found in operative vaginal births (RR 0.95, 95% CI 0.80 to 1.14, four studies, 2813 women) nor in Apgar scores less than seven at five minutes (RR 0.92, 95% CI 0.69 to 1.24, seven studies, 6321 babies). Authors’ conclusions Current evidence suggests that the use of Doppler ultrasound in high-risk pregnancies reduced the risk of perinatal deaths and resulted in less

  4. Robust estimation of fetal heart rate variability using Doppler ultrasound.

    PubMed

    Fernando, Kumari L; Mathews, V John; Varner, Michael W; Clark, Edward B

    2003-08-01

    This paper presents a new measure of heart rate variability (HRV) that can be estimated using Doppler ultrasound techniques and is robust to variations in the angle of incidence of the ultrasound beam and the measurement noise. This measure employs the multiple signal characterization (MUSIC) algorithm which is a high-resolution method for estimating the frequencies of sinusoidal signals embedded in white noise from short-duration measurements. We show that the product of the square-root of the estimated signal-to-noise ratio (SNR) and the mean-square error of the frequency estimates is independent of the noise level in the signal. Since varying angles of incidence effectively changes the input SNR, this measure of HRV is robust to the input noise as well as the angle of incidence. This paper includes the results of analyzing synthetic and real Doppler ultrasound data that demonstrates the usefulness of the new measure in HRV analysis.

  5. Simultaneous fetal magnetocardiography and ultrasound/Doppler imaging.

    PubMed

    Zhao, Hui; Chen, Mingli; Van Veen, Barry D; Strasburger, Janette F; Wakai, Ronald T

    2007-06-01

    The difficulty of utilizing multimodality diagnostic imaging techniques for fetal surveillance remains one of the greatest challenges in providing enhanced prenatal care. In this Letter we demonstrate the feasibility of performing fetal magnetocardiography (fMCG) and ultrasound/Doppler imaging simultaneously, using a multichannel SQUID magnetometer and a portable ultrasound scanner. Despite large magnetic interference from the scanner, the implementation of simple noise reduction procedures and appropriate signal processing techniques yielded fMCG recordings of sufficient quality for assessment of fetal heart rate and rhythm. A variation of reference channel filtering, referred to here as synthetic reference channel filtering, was used to reduce nonstationary low-frequency interference. The combination of fMCG and/or fMEG with ultrasound/Doppler offers new possibilities for assessment of fetal well-being and fetal cardiac function.

  6. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  7. Compressed Sensing Doppler Ultrasound Reconstruction Using Block Sparse Bayesian Learning.

    PubMed

    Lorintiu, Oana; Liebgott, Herve; Friboulet, Denis

    2016-04-01

    In this paper we propose a framework for using duplex Doppler ultrasound systems. These type of systems need to interleave the acquisition and display of a B-mode image and of the pulsed Doppler spectrogram. In a recent study (Richy , 2013), we have shown that compressed sensing-based reconstruction of Doppler signal allowed reducing the number of Doppler emissions and yielded better results than traditional interpolation and at least equivalent or even better depending on the configuration than the study estimating the signal from sparse data sets given in Jensen, 2006. We propose here to improve over this study by using a novel framework for randomly interleaving Doppler and US emissions. The proposed method reconstructs the Doppler signal segment by segment using a block sparse Bayesian learning (BSBL) algorithm based CS reconstruction. The interest of using such framework in the context of duplex Doppler is linked to the unique ability of BSBL to exploit block-correlated signals and to recover non-sparse signals. The performance of the technique is evaluated from simulated data as well as experimental in vivo data and compared to the recent results in Richy , 2013.

  8. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    NASA Astrophysics Data System (ADS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  9. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams.

  10. [The value of Doppler ultrasound studies in threatened premature labor].

    PubMed

    Jörn, H; Funk, A; Fendel, H

    1993-01-01

    95 patients were investigated using Doppler ultrasound to evaluate its usefulness during the clinical management of patients with preterm labor, preterm rupture of membranes and incompetent cervix. Cases with additional pregnancy complications as preeclampsia or intrauterine growth retardation or infection of the amnion or the birth canal were excluded from our study. We examined the umbilical artery and the uterine arteries. Predicting preterm birth we found a sensitivity of 31.4% and a specificity of 70% for the former and a sensitivity of 34.3% and a specificity of 83.3% for the latter. As a result of our investigation we have to conclude that Doppler ultrasound is not able to predict sufficiently reliable preterm birth to use it in clinical management. Normal uterine blood flow in cases with preterm labor seems to indicate birth at term in a high degree.

  11. Sevoflurane Used for Color Doppler Ultrasound Examination in Children.

    PubMed

    Fan, Conghai; Zhang, Fengchao; Huang, Xiaomei; Wen, Cheng; Shan, Chengjing

    2015-05-01

    The objective of this study is to investigate the feasibility of sevoflurane inhalation in pediatric color doppler ultrasound examination. In this study, 30 cases of children under 1 year were selected. They were all I or II levels according to American Society of Anesthesiology. Children with severe cyanotic congenital heart disease or severe pneumonia were excluded. All the children received anesthesia with sevoflurane. The University of Michigan Sedation Scale was assessed and bispectral index (BIS) was recorded before induction (T0), after induction (T1), when maintaining (T2), and when waking-up (T3). Blood pressure and heart rate were monitored during the color doppler ultrasound examination, the time to receive sedation examination and anesthesia recovery time were also recorded. (1) Score for UMSS was zero at T0 and 3 at T1; (2) BIS value was 93.18 ± 2.94 at T0 and decreased to 87.6 ± 3.9 at T1; (3) Blood pressure or heart rate did not decline obviously; (4) The time to receive sedation examination was 46.4 ± 13.1 s and anesthesia recovery time was 7.8 ± 5.3 min. In conclusion, sevoflurane can be used in pediatric color doppler ultrasound examination safely and effectively.

  12. Doppler ultrasound wall removal based on the spatial correlation of wavelet coefficients.

    PubMed

    Jin, Dawei; Wang, Yuanyuan

    2007-11-01

    In medical Doppler ultrasound systems, a high-pass filter is commonly used to reject echoes from the vessel wall. However, this leads to the loss of the information from the low velocity blood flow. Here a spatially selective noise filtration algorithm cooperating with a threshold denoising based on wavelets coefficients is applied to estimate the wall clutter. Then the blood flow signal is extracted by subtracting the wall clutter from the mixed signal. Experiments on computer simulated signals with various clutter-to-blood power ratios indicate that this method achieves a lower mean relative error of spectrum than the high-pass filtering and other two previously published separation methods based on the recursive principle component analysis and the irregular sampling and iterative reconstruction, respectively. The method also performs well when applied to in vivo carotid signals. All results suggest that this approach can be implemented as a clutter rejection filter in Doppler ultrasound instruments.

  13. A new clutter rejection algorithm for Doppler ultrasound.

    PubMed

    Cloutier, Guy; Chen, Danmin; Durand, Louis-Gilles

    2003-04-01

    Several strategies, known as clutter or wall Doppler filtering, were proposed to remove the strong echoes produced by stationary or slow moving tissue structures from the Doppler blood flow signal. In this study, the matching pursuit (MP) method is proposed to remove clutter components. The MP method decomposes the Doppler signal into wavelet atoms that are selected in a decreasing energy order. Thus, the high-energy clutter components are extracted first. In the present study, the pulsatile Doppler signal s(n) was simulated by a sum of random-phase sinusoids. Two types of high-amplitude clutter signals were then superimposed on s(n): time-varying low-frequency components, covering systole and early diastole, and short transient clutter signals, distributed within the whole cardiac cycle. The Doppler signals were modeled with the MP method and the most dominant atoms were subtracted from the time-domain signal s(n) until the signal-to-clutter (S/C) ratio reached a maximum. For the low-frequency clutter signal, the improvement in S/C ratio was 19.0 +/- 0.6 dB, and 72.0 +/- 4.5 atoms were required to reach this performance. For the transient clutter signal, ten atoms were required and the maximum improvement in S/C ratio was 5.5 +/- 0.5 dB. The performance of the MP method was also tested on real data recorded over the common carotid artery of a normal subject. Removing 15 atoms significantly improved the appearance of the Doppler sonogram contaminated with low-frequency clutter. Many more atoms (over 200) were required to remove transient clutter components. These results suggest the possibility of using this signal processing approach to implement clutter rejection filters on ultrasound commercial instruments.

  14. Doppler ultrasound and renal artery stenosis: An overview.

    PubMed

    Granata, A; Fiorini, F; Andrulli, S; Logias, F; Gallieni, M; Romano, G; Sicurezza, E; Fiore, C E

    2009-12-01

    Renovascular disease is a complex disorder, most commonly caused by fibromuscular dysplasia and atherosclerotic diseases. It can be found in one of three forms: asymptomatic renal artery stenosis (RAS), renovascular hypertension, and ischemic nephropathy. Particularly, the atherosclerotic form is a progressive disease that may lead to gradual and silent loss of renal function. Thus, early diagnosis of RAS is an important clinical objective since interventional therapy may improve or cure hypertension and preserve renal function. Screening for RAS is indicated in suspected renovascular hypertension or ischemic nephropathy, in order to identify patients in whom an endoluminal or surgical revascularization is advisable. Screening tests for RAS have improved considerably over the last decade. While captopril renography was widely used in the past, Doppler ultrasound (US) of the renal arteries (RAs), angio-CT, or magnetic resonance angiography (MRA) have replaced other modalities and they are now considered the screening tests of choice. An arteriogram is rarely needed for diagnostic purposes only. Color-Doppler US (CDUS) is a noninvasive, repeatable, relatively inexpensive diagnostic procedure which can accurately screen for renovascular diseases if performed by an expert. Moreover, the evaluation of the resistive index (RI) at Doppler US may be very useful in RAS affected patients for predicting the response to revascularization. However, when a discrepancy exists between clinical data and the results of Doppler US, additional tests are mandatory.

  15. An ideal blood mimicking fluid for doppler ultrasound phantoms.

    PubMed

    Samavat, H; Evans, J A

    2006-10-01

    In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic) should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  16. Contrast-enhanced power Doppler US in the diagnosis of renal pseudotumors.

    PubMed

    Ascenti, G; Zimbaro, G; Mazziotti, S; Gaeta, M; Lamberto, S; Scribano, E

    2001-01-01

    The term "pseudotumor" is used to refer to several anatomic variants that can simulate a renal mass, the most frequent of which are hypertrophied column of Bertin, persistence of fetal lobation, and the dromedary or splenic hump. We describe the findings of power Doppler US after the ultrasound contrast agent (Levovist, Schering, Berlin, Germany) administration in 4 patients with a renal focal lesion in whom gray-scale and baseline power Doppler US was not able to certainly differentiate pseudotumor from neoplasm.

  17. [Noise and speckle reduction in ultrasound Doppler blood flow spectrograms by using MP-PCNN].

    PubMed

    Li, Haiyan; Ma, Yue; Zhang, Yufeng; Shu, Xinling

    2011-10-01

    To reduce background noise and Dopplar speckle in the spectrogram of ultrasound Doppler blood flow signals, a novel method, called Matching Pursuit with threshold decaying pulse coupled neural network (MP-PCNN), has been proposed. The proposed method used an iterative algorithm, which decomposed the ultrasound Doppler signals into linear expansion of atoms in a time-frequency dictionary by using the Matching Pursuit (MP) for de-noising the ultrasound Doppler signal. Subsequently, a simplified unidirectional pulse coupled neural network was applied to calculate the firing matrix of the denoised spectrogram. The Doppler speckles were located and removed through analyzing and processing the PCNN firing matrix. Experiments were conducted on simulation signals which SNRs were 0dB, 5dB and 10dB. The result showed that the MP-PCNN performed effectively in reducing noise, eliminating Doppler speckles, and achieved better performance than exiting noise and speckle suppression algorithm for Doppler ultrasound blood flow spectrogram.

  18. An audit of a hospital-based Doppler ultrasound quality control protocol using a commercial string Doppler phantom.

    PubMed

    Cournane, S; Fagan, A J; Browne, J E

    2014-05-01

    Results from a four-year audit of a Doppler quality assurance (QA) program using a commercially available Doppler string phantom are presented. The suitability of the phantom was firstly determined and modifications were made to improve the reliability and quality of the measurements. QA of Doppler ultrasound equipment is very important as data obtained from these systems is used in patient management. It was found that if the braided-silk filament of the Doppler phantom was exchanged with an O-ring rubber filament and the velocity range below 50 cm/s was avoided for Doppler quality control (QC) measurements, then the maximum velocity accuracy (MVA) error and intrinsic spectral broadening (ISB) results obtained using this device had a repeatability of 18 ± 3.3% and 19 ± 3.5%, respectively. A consistent overestimation of the MVA of between 12% and 56% was found for each of the tested ultrasound systems. Of more concern was the variation of the overestimation within each respective transducer category: MVA errors of the linear, curvilinear and phased array probes were in the range 12.3-20.8%, 32.3-53.8% and 27-40.7%, respectively. There is a dearth of QA data for Doppler ultrasound; it would be beneficial if a multicentre longitudinal study was carried out using the same Doppler ultrasound test object to evaluate sensitivity to deterioration in performance measurements.

  19. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  20. Color Doppler ultrasound of the hand: observations on clinical utility in rheumatoid arthritis.

    PubMed

    Saadeh, Constantine; Gaylor, Patrick; Lee, Doohi; Malacara, Jan; Gaylor, Michael

    2004-02-01

    The use of ultrasound with color Doppler in the evaluation of rheumatoid arthritis was followed in 25 patients with joint complaints. Small joint ultrasound of the metacarpophalangeal joints (MCPs) as well as the wrists was performed with supplementation by color Doppler. In addition, 6 patients were followed for at least 3 months after start of treatment of rheumatoid arthritis using the same technique. In patients with what appeared to be definite rheumatoid arthritis, ultrasound supported this diagnosis as evidenced by the finding of cortical defects, extensor tendon sheath thickening, and synovial proliferation. Increased activity by color Doppler ultrasonography was the most common finding. Significant decrease in color Doppler activity was noted in the 6 patients who were followed up after 3 months of therapy with disease-modifying agents. Therefore, the use of ultrasound with color Doppler could aid in the diagnosis and follow up of patients with rheumatoid arthritis.

  1. Doppler ultrasound study and venous mapping in chronic venous insufficiency.

    PubMed

    García Carriazo, M; Gómez de las Heras, C; Mármol Vázquez, P; Ramos Solís, M F

    2016-01-01

    Chronic venous insufficiency of the lower limbs is very prevalent. In recent decades, Doppler ultrasound has become the method of choice to study this condition, and it is considered essential when surgery is indicated. This article aims to establish a method for the examination, including venous mapping and preoperative marking. To this end, we review the venous anatomy of the lower limbs and the pathophysiology of chronic venous insufficiency and explain the basic hemodynamic concepts and the terminology required to elaborate a radiological report that will enable appropriate treatment planning and communication with other specialists. We briefly explain the CHIVA (the acronym for the French term "cure conservatrice et hémodynamique de l'insuffisance veineuse en ambulatoire"=conservative hemodynamic treatment for chronic venous insufficiency) strategy, a minimally invasive surgical strategy that aims to restore correct venous hemodynamics without resecting the saphenous vein.

  2. Role of Ultrasound with Color Doppler in Acute Scrotum Management

    PubMed Central

    Agrawal, Alka M.; Tripathi, Prem Siddharth; Shankhwar, Amit; Naveen, C.

    2014-01-01

    Background and Objective: An acute scrotum is defined as acute pain with or without scrotal swelling, may be accompanied by local signs or general symptoms. Acute scrotal pain is a medical emergency. Depending on cause, the management is entirely different. Torsion of testis and strangulated hernia are surgical emergency; whereas, epididymo-orchitis is treated by medicines. Testicular trauma and obstructed hernia can be differentiated by taking history from patient. Physical examination adds only a little information. Color Doppler ultrasound (US) is the modality of choice to differentiate testicular torsion from inflammatory conditions and can thus help in avoiding unnecessary surgical explorations. Subjects and Methods: A study on 50 patients was conducted who were referred with history of acute scrotal pain to our department between January 2013 and January 2014. Trauma and scrotal mass were excluded from the study. The clinical presentation, outcome, and US results were analyzed. Results: Color Doppler sonography yielded a positive and negative predictive value (PPV and NPV) of 100% each for torsion, whereas, 93.9 and 70.6% for epididymo-orchitis, respectively; a sensitivity and specificity of 100% for torsion, whereas, for epididymo-orchitis it was found to be 86.1 and 85.7%, respectively. In cases of incomplete or early torsion, some residual perfusion may be detected leading to false-negative results. Conclusion: We therefore conclude that color Doppler sonography can reliably rule out testicular torsion and can thus help in avoiding unnecessary surgical explorations. Hence, it can significantly improve outcome and decrease morbidity of patient. It is an accurate, rapid, nonexpensive, nonionizing, important adjunct to clinical assessment of scrotum. PMID:25657954

  3. [Doppler ultrasound diagnosis in post-term pregnancy].

    PubMed

    Jörn, H; Funk, A; Fendel, H

    1993-09-01

    The capability of Doppler flow velocimetry to predict intrauterine growth retardation is well known. The increased morbidity and mortality rate of postterm newborns is also well known. The aim of our study was to examine if Doppler flow velocimetry is able to indicate foetal jeopardy in the postterm period. Flow velocimetry of the foetal descending aorta, the umbilical artery, the uterine arteries and in 59 cases also the foetal middle cerebral artery was obtained from 167 pregnancies after 40 completed weeks of gestation. We found significant changes of normal values in prolonged pregnancy compared to third trimester normal values, examining the mean velocity of the foetal descending aorta and the S/D-ratio of the umbilical artery. No clinically significant changes were found examining the S/D-ratio of the uterine arteries and the pulsatility index of the foetal middle cerebral artery. Daily examinations of the foetal descending aorta were carried out in 23 and of the umbilical artery in 19 cases during the last four days before delivery, and in 11 cases of the foetal middle cerebral artery during the last three days before delivery. We did not find significant changes in the medians of the mean velocity of the foetal aorta, of the S/D-ratio of the umbilical artery and of the pulsatility index of the foetal middle cerebral artery. Measurement of sensitivity and positive predictive value of the four arteries examined showed, that Doppler ultrasound could not predict small for date infants or Caesarean section because of foetal distress.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Real-time numerical simulation of Doppler ultrasound in the presence of nonaxial flow.

    PubMed

    Khoshniat, Mahdieh; Thorne, Meghan L; Poepping, Tamie L; Hirji, Samira; Holdsworth, David W; Steinman, David A

    2005-04-01

    Numerical simulations of Doppler ultrasound (DUS) relying on computational fluid dynamics (CFD) models of nonaxial flow have traditionally employed detailed (but computationally intensive) models of the DUS physics, or have sacrificed much of the physics in the interest of computational or conceptual simplicity. In this paper, we present a compromise between these extremes, with the objective of simulating the essential characteristics of DUS spectrograms in a real-time manner. Specifically, a precomputed pulsatile CFD velocity field is interrogated at some number, N, of discrete points distributed spatially within a sample volume of prescribed geometry and power distribution and temporally within a prescribed sampling window. Intrinsic spectral broadening is accounted for by convolving each of the point velocities with a semiempirical broadening function. Real-time performance is facilitated through the use of an efficient algorithm for interpolating the unstructured CFD data. A spherical sample volume with Gaussian power distribution, N = 1000 sampling points, and quadratic broadening function are shown to be adequate for simulating, at frame rates of 86 Hz on a 1.5 GHz desktop workstation, realistic-looking spectrograms at representative locations within a stenosed carotid bifurcation model. Via qualitative comparisons with matched in vitro data, these simulated spectrograms are shown to mimic the distinctive spectral envelopes, broadening and power characteristics associated with common carotid, stenotic jet and poststenotic recirculating flows. We conclude that the complex interaction between Doppler ultrasound and complicated clinically relevant blood flow dynamics can be simulated in real time via this relatively straightforward semiempirical approach.

  5. The role of Doppler ultrasound in rheumatic diseases.

    PubMed

    Porta, Francesco; Radunovic, Goran; Vlad, Violeta; Micu, Mihaela C; Nestorova, Rodina; Petranova, Tzvetanka; Iagnocco, Annamaria

    2012-06-01

    The use of Doppler techniques, including power, colour and spectral Doppler, has greatly increased in rheumatology in recent years. This is due to the ability of Doppler US (DUS) to detect pathological vascularization within joints and periarticular soft tissues, thereby demonstrating the presence of active inflammation, which has been reported to be correlated with the local neo-angiogenesis. In synovitis, DUS showed a high correlation with histological and MRI findings, thus it is considered a valid tool to detect pathological synovial vascularization. Moreover, it is more sensitive than clinical examination in detecting active joint inflammation and in the evaluation of response to treatment. In addition, DUS may be considered as a reference imaging modality in the assessment of enthesitis, MRI being not sensitive and histology not feasible. Moreover, it has been demonstrated to be able to detect changes in asymptomatic enthesis. In conclusion, DUS is a useful and sensitive tool in the evaluation and monitoring of active inflammation. Its widespread use in clinical rheumatological practice is recommended. The aim of this article is to review the current literature about the role of DUS in rheumatic diseases, analysing its validity, reliability and feasibility.

  6. Measurement of Thermal Effects of Doppler Ultrasound: An In Vitro Study

    PubMed Central

    Helmy, Samir; Bader, Yvonne; Koch, Marianne; Tiringer, Denise; Kollmann, Christian

    2015-01-01

    Objective Ultrasound is considered a safe imaging modality and is routinely applied during early pregnancy. However, reservations are expressed concerning the application of Doppler ultrasound in early pregnancy due to energy emission of the ultrasound probe and its conversion to heat. The objective of this study was to evaluate the thermal effects of emitted Doppler ultrasound of different ultrasound machines and probes by means of temperature increase of in-vitro test-media. Methods We investigated the energy-output of 5 vaginal and abdominal probes of 3 ultrasound machines (GE Healthcare, Siemens, Aloka). Two in-vitro test objects were developed at the Center for Medical Physics and Biomedical Engineering, Medical University Vienna (water bath and hydrogel bath). Temperature increase during Doppler ultrasound emission was measured via thermal sensors, which were placed inside the test objects or on the probes’ surface. Each probe was emitting for 5 minutes into the absorbing test object with 3 different TI/MI settings in Spectral Doppler mode. Results During water bath test, temperature increase varied between 0.1 and 1.0°C, depending on probe, setting and focus, and was found highest for spectral Doppler mode alone. Maximum temperature increase was found during the surface heating test, where values up to 2.4°C could be measured within 5 minutes of emission. Conclusions Activation of Doppler ultrasound in the waterbath model causes a significant increase of temperature within one minute. Thermally induced effects on the embryo cannot be excluded when using Doppler ultrasound in early pregnancy. PMID:26302465

  7. Direct Measurement of Basilar Membrane Motion Using Pulsed-Wave Doppler High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Torbatian, Z.; Garland, P.; Adamson, R. B. A.; Bance, M.; Brown, J. A.

    2011-11-01

    We present a preliminary report on the use of a new technique for measuring the motion of the basilar membrane, high-frequency ultrasound Doppler vibrometry. Using a custom-built, 1 mm diameter probe, we collected ultrasonic reflections from intracochlear structures and applied pulsed-wave Doppler vibrometry to measure the basilar membrane response to pressure applied in the ear canal.

  8. New adaptive clutter rejection for ultrasound color Doppler imaging: in vivo study.

    PubMed

    Yoo, Yang Mo; Kim, Yongmin

    2010-03-01

    Clutter rejection is essential for accurate flow estimation in ultrasound color Doppler imaging. In this article, we present a new adaptive clutter rejection (ACR) technique where an optimum filter is dynamically selected depending upon the underlying clutter characteristics (e.g., tissue acceleration and power). We compared the performance of the ACR method with other adaptive methods, i.e., down-mixing (DM) and adaptive clutter filtering (ACF), using in vivo data acquired from the kidney, liver and common carotid artery. With the kidney data, the ACR method provided an average improvement of 3.05 dB and 1.7 dB in flow signal-to-clutter ratio (SCR) compared with DM and ACF, respectively. With the liver data, SCR was improved by 2.75 dB and 1.8 dB over DM and ACF while no significant improvement with ACR was found in the common carotid artery data. Thus, the proposed adaptive method could provide more accurate flow estimation by improving clutter rejection in abdominal ultrasound color Doppler imaging pending validation.

  9. Renal transplantation parenchymal complications: what Doppler ultrasound can and cannot do.

    PubMed

    Granata, Antonio; Di Nicolò, Pierpaolo; Scarfia, Viviana R; Insalaco, Monica; Lentini, Paolo; Veroux, Massimiliano; Fatuzzo, Pasquale; Fiorini, Fulvio

    2015-06-01

    Kidney transplantation is the treatment of choice in end-stage renal disease, given the better quality of life of transplanted patients when compared with patients on maintenance dialysis. In spite of surgical improvements and new immunosuppressive regimens, parts of transplanted grafts still develop chronic dysfunction. Ultrasonography, both in B-mode and with Doppler ultrasound, is an important diagnostic tool in case of clinical conditions which might impair kidney function. Even though ultrasonography is considered fundamental in the diagnosis of vascular and surgical complications of the transplanted kidney, its role is not fully understood in case of parenchymal complications of the graft. The specificity of Doppler is low both in case of acute complications, such as acute tubular necrosis, drugs toxicity and acute rejection, and in case of chronic conditions, such as chronic allograft nephropathy. Single determinations of resistance indices present low diagnostic accuracy, which is higher in case of successive measurements performed during the follow-up of the graft. Modern techniques such as tissue pulsatility index, maximal fractional area and contrast-enhanced ultrasound increase ultrasonography diagnostic power in case of parenchymal complications of the transplanted kidney.

  10. Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA

    PubMed Central

    Hu, Chang-hong; Zhou, Qifa; Shung, K. Kirk

    2009-01-01

    The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and real-time processing capability is achieved. PMID:18986909

  11. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  12. Transthoracic needle biopsy of thoracic tumours by a colour Doppler ultrasound puncture guiding device.

    PubMed Central

    Wang, H. C.; Yu, C. J.; Chang, D. B.; Yuan, A.; Lee, Y. C.; Yang, P. C.; Kuo, S. H.; Luh, K. T.

    1995-01-01

    BACKGROUND--Ultrasound guided transthoracic needle aspiration biopsy has recently been used to obtain specimens for histological diagnosis of pulmonary and mediastinal tumours. Conventional real time, grey scale puncture guiding devices cannot differentiate vascular structures, and clear visualisation of the needle shaft or tip within a desired target is not always possible. This study describes a new built-in colour Doppler ultrasound puncture guiding device and assesses the relative safety of transthoracic needle aspiration biopsy of thoracic tumours by grey scale or colour Doppler ultrasound guidance. METHODS--Thirty patients with radiographic evidence of pulmonary (22 patients) or mediastinal tumours (eight patients) underwent ultrasonographic evaluation and transthoracic needle aspiration biopsy by using the colour Doppler ultrasound puncture guiding device (Aloka UST 5045P-3.5). These tumours were initially examined by grey scale ultrasound, and colour Doppler imaging was then used to evaluate the number of blood vessels surrounding and within the target tumour and the possibility of visualisation of the needle shaft or needle tip during the aspiration biopsy procedure. RESULTS--The colour Doppler ultrasound guiding device was far superior to the grey scale device for identification of the number of vessels surrounding or within the target tumour (83% v 20%) and for visualisation of the needle shaft or needle tip (80% v 17%). CONCLUSIONS--By using the colour Doppler ultrasound puncture device, vascular structures surrounding or within the target tumour can be verified. Visualisation of the needle shaft or tip is also better. Biopsy routes can be selected to avoid puncturing vessels. This approach should be particularly helpful for guiding biopsies of mediastinal tumours, where puncturing the heart or great vessels is a potential complication. Images PMID:8553297

  13. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2015-08-01

    This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.

  14. Sensitivity evaluation of DSA-based parametric imaging using Doppler ultrasound in neurovascular phantoms

    NASA Astrophysics Data System (ADS)

    Balasubramoniam, A.; Bednarek, D. R.; Rudin, S.; Ionita, C. N.

    2016-03-01

    An evaluation of the relation between parametric imaging results obtained from Digital Subtraction Angiography (DSA) images and blood-flow velocity measured using Doppler ultrasound in patient-specific neurovascular phantoms is provided. A silicone neurovascular phantom containing internal carotid artery, middle cerebral artery and anterior communicating artery was embedded in a tissue equivalent gel. The gel prevented movement of the vessels when blood mimicking fluid was pumped through it to obtain Colour Doppler images. The phantom was connected to a peristaltic pump, simulating physiological flow conditions. To obtain the parametric images, water was pumped through the phantom at various flow rates (100, 120 and 160 ml/min) and 10 ml contrast boluses were injected. DSA images were obtained at 10 frames/sec from the Toshiba C-arm and DSA image sequences were input into LabVIEW software to get parametric maps from time-density curves. The parametric maps were compared with velocities determined by Doppler ultrasound at the internal carotid artery. The velocities measured by the Doppler ultrasound were 38, 48 and 65 cm/s for flow rates of 100, 120 and 160 ml/min, respectively. For the 20% increase in flow rate, the percentage change of blood velocity measured by Doppler ultrasound was 26.3%. Correspondingly, there was a 20% decrease of Bolus Arrival Time (BAT) and 14.3% decrease of Mean Transit Time (MTT), showing strong inverse correlation with Doppler measured velocity. The parametric imaging parameters are quite sensitive to velocity changes and are well correlated to the velocities measured by Doppler ultrasound.

  15. Common carotid artery pseudoaneurysm after neck dissection: colour Doppler ultrasound and multidetector computed tomography findings.

    PubMed

    Flor, N; Sardanelli, F; Ghilardi, G; Tentori, A; Franceschelli, G; Felisati, G; Cornalba, G P

    2007-05-01

    Common carotid artery pseudoaneurysm is a rare disease, which has been previously unreported in association with neck dissection. We describe the Doppler ultrasound and multidetector computed tomography (CT) findings of a case of carotid pseudoaneurysm, one month after pharyngolaryngectomy with bilateral neck dissection. Multidetector CT confirmed the diagnosis made on the basis of Doppler ultrasound; the high image quality of axial and three-dimensional reconstructions avoided the need for pre-operative conventional angiography. In the presence of a pulsatile cervical mass after neck surgery, pseudoaneurysm of the carotid artery should be included in the differential diagnosis, and multidetector CT can be the sole pre-operative diagnostic imaging modality.

  16. Doppler ultrasound compatible plastic material for use in rigid flow models.

    PubMed

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  17. Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.

    2014-03-01

    Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.

  18. Coherent Flow Power Doppler (CFPD): Flow Detection using Spatial Coherence Beamforming

    PubMed Central

    Li, You Leo; Dahl, Jeremy J.

    2015-01-01

    Power Doppler imaging is a widely used method of flow detection for tissue perfusion monitoring, inflammatory hyperemia detection, deep vein thrombosis diagnosis, and other clinical applications. However, thermal noise and clutter limit its sensitivity and ability to detect slow flow. In addition, large ensembles are required to obtain sufficient sensitivity, which limits frame rate and yields flash artifacts during moderate tissue motion. We propose an alternative method of flow detection using the spatial coherence of backscattered ultrasound echoes. The method enhances slow flow detection and frame rate, while maintaining or improving the signal quality of conventional power Doppler techniques. The feasibility of this method is demonstrated with simulations, flow-phantom experiments, and an in-vivo human thyroid study. In comparison to conventional power Doppler imaging, the proposed method can produce Doppler images with 15-30 dB SNR improvement. Therefore, it is able to detect flow with velocities approximately 50% lower than conventional power Doppler, or improve the frame rate by a factor of 3 with comparable image quality. The results show promise for clinical applications of the method. PMID:26067037

  19. Time-resolved volumetric MRI blood flow: a Doppler ultrasound perspective

    NASA Astrophysics Data System (ADS)

    van Pelt, Roy; Oliván Bescós, Javier; Nagel, Eike; Vilanova, Anna

    2014-03-01

    Hemodynamic information is increasingly inspected to assess cardiovascular disease. Abnormal blood-flow patterns include high-speed jet flow and regurgitant flow. Such pathological blood-flow patterns are nowadays mostly inspected by means of color Doppler ultrasound imaging. To date, Doppler ultrasound has been the prevailing modality for blood-flow analysis, providing non-invasive and cost-effective blood-flow imaging. Since recent years, magnetic resonance imaging (MRI) is increasingly employed to measure time-resolved blood-flow data. Albeit more expensive, MRI enables volumetric velocity encoding, providing true vector-valued data with less noise. Domain experts in the field of ultrasound and MRI have extensive experience in the interpretation of blood-flow information, although they employ different analysis techniques. We devise a visualization framework that extends on common Doppler ultrasound visualizations, exploiting the added value of MRI velocity data, and aiming for synergy between the domain experts. Our framework enables experts to explore the advantages and disadvantages of the current renditions of their imaging data. Furthermore, it facilitates the transition from conventional Doppler ultrasound images to present-day high-dimensional velocity fields. To this end, we present a virtual probe that enables direct exploration of MRI-acquired blood-flow velocity data using user-friendly interactions. Based on the probe, Doppler ultrasound inspired visualizations convey both in-plane and through-plane blood-flow velocities. In a compound view, these two-dimensional visualizations are linked to state-of-the-art three-dimensional blood-flow visualizations. Additionally, we introduce a novel volume rendering of the blood-flow velocity data that emphasizes anomalous blood-flow patterns. The visualization framework was evaluated by domain experts, and we present their feedback.

  20. Atypical Cerebral Lateralisation in Adults with Compensated Developmental Dyslexia Demonstrated Using Functional Transcranial Doppler Ultrasound

    ERIC Educational Resources Information Center

    Illingworth, Sarah; Bishop, Dorothy V. M.

    2009-01-01

    Functional transcranial Doppler ultrasound (fTCD) is a relatively new and non-invasive technique that assesses cerebral lateralisation through measurements of blood flow velocity in the middle cerebral arteries. In this study fTCD was used to compare functional asymmetry during a word generation task between a group of 30 dyslexic adults and a…

  1. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method

    PubMed Central

    2011-01-01

    Aortic stiffness is an independent predictor factor for cardiovascular risk. Different methods for determining pulse wave velocity (PWV) are used, among which the most common are mechanical methods such as SphygmoCor or Complior, which require specific devices and are limited by technical difficulty in obtaining measurements. Doppler guided by 2D ultrasound is a good alternative to these methods. We studied 40 patients (29 male, aged 21 to 82 years) comparing the Complior method with Doppler. Agreement of both devices was high (R = 0.91, 0.84-0.95, 95% CI). The reproducibility analysis revealed no intra-nor interobserver differences. Based on these results, we conclude that Doppler ultrasound is a reliable and reproducible alternative to other established methods for the measurement of aortic PWV. PMID:21496271

  2. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  3. Doppler ultrasound spectral enhancement using the Gabor transform-based spectral subtraction.

    PubMed

    Zhang, Yu; Zhang, Hong

    2005-10-01

    Most of the important clinical indices of blood flow are estimated from the spectrograms of Doppler ultrasound (US) signals. Any noise may degrade the readability of the spectrogram and the precision of the clinical indiCes, so the spectral enhancement plays an important role in Doppler US signal processing. A new Doppler US spectral enhancement method is proposed in this paper and implemented in three main steps: the Gabor transform is used to compute the Gabor coefficients of a Doppler US signal, the spectral subtraction is performed on the magnitude of the Gabor coefficients, and the Gabor expansion with the spectral subtracted Gabor coefficients is used to reconstruct the denoised Doppler US signal. The different analysis and synthesis windows are examined in the Gabor transform and expansion. The signal-to-noise ratio (SNR) improvement together with the overall enhancement of spectrograms are examined on the simulated Doppler US signals from a femoral artery. The results show the denoising method based on the orthogonal-like Gabor expansion achieves the best denoising performance. The experiments on some clinical Doppler US signals from umbilical arteries confirm the superior denoising performance of the new method.

  4. Cerebral blood flow in the newborn infant: comparison of Doppler ultrasound and /sup 133/xenon clearance

    SciTech Connect

    Greisen, G.; Johansen, K.; Ellison, P.H.; Fredriksen, P.S.; Mali, J.; Friis-Hansen, B.

    1984-03-01

    Two techniques of Doppler ultrasound examination, continuous-wave and range-gated, applied to the anterior cerebral artery and to the internal carotid artery, were compared with /sup 133/xenon clearance after intravenous injection. Thirty-two sets of measurements were obtained in 16 newborn infants. The pulsatility index, the mean flow velocity, and the end-diastolic flow velocity were read from the Doppler recordings. Mean cerebral blood flow was estimated from the /sup 133/Xe clearance curves. The correlation coefficients between the Doppler and the /sup 133/Xe measurements ranged from 0.41 to 0.82. In the subset of 16 first measurements in each infant, there were no statistically significant differences between the correlation coefficients of the various Doppler ultrasound variables, but the correlation coefficients were consistently lower for the pulsatility index than for mean flow velocity or end-diastolic flow velocity, and they were consistently higher for the range-gated than for the continuous-wave Doppler technique.

  5. Power ultrasound in meat processing.

    PubMed

    Alarcon-Rojo, A D; Janacua, H; Rodriguez, J C; Paniwnyk, L; Mason, T J

    2015-09-01

    Ultrasound has a wide range of applications in various agricultural sectors. In food processing, it is considered to be an emerging technology with the potential to speed up processes without damaging the quality of foodstuffs. Here we review the reports on the applications of ultrasound specifically with a view to its use in meat processing. Emphasis is placed on the effects on quality and technological properties such as texture, water retention, colour, curing, marinating, cooking yield, freezing, thawing and microbial inhibition. After the literature review it is concluded that ultrasound is a useful tool for the meat industry as it helps in tenderisation, accelerates maturation and mass transfer, reduces cooking energy, increases shelf life of meat without affecting other quality properties, improves functional properties of emulsified products, eases mould cleaning and improves the sterilisation of equipment surfaces.

  6. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  7. Duplex Doppler ultrasound study of the temporomandibular joint.

    PubMed

    Stagnitti, A; Marini, A; Impara, L; Drudi, F M; Lo Mele, L; Lillo Odoardi, G

    2012-06-01

    Sommario INTRODUZIONE: La fisiologia articolare dell’articolazione temporo-mandibolare (ATM) può essere esaminata sia dal punto di vista clinico che strumentale. La diagnostica per immagini ha da tempo contribuito con la risonanza magnetica (RM) e anche con la radiografia (Rx) e la tomografia computerizzata (TC) all’analisi della morfologia dei capi articolari e della cinetica condilare. L’esame duplex-ecodoppler è una metodica di largo impiego nello studio delle strutture in movimento in particolar modo a livello delle strutture del sistema vascolare. MATERIALI E METODI: È stata utilizzata un’apparecchiatura Toshiba APLIO SSA-770A, con l’uso di tecnica duplex-ecodoppler multi display, che consente la visualizzazione contemporanea dell’immagine ecografica e dei segnali Doppler utilizzando una sonda lineare del tipo phased array con cristalli trasduttori funzionanti ad una frequenza fondamentale di 6 MHz per gli spettri Doppler pulsati e 7.5 MHz per l’imaging ecografico. Sono stati esaminati nel Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo-patologiche dell’Università “Sapienza” di Roma, 30 pazienti del reparto di Ortognatodonzia dell’Istituto di Odontoiatria della stessa Università. RISULTATI: Nei pazienti normali si è ottenuta un’alternanza regolare degli spettri Doppler, mentre nei soggetti con disfunzioni del complesso condilo-meniscale, si è persa la regolarità della sommatoria degli spettri di Fourier, con altezze incostanti in relazione a spostamenti irregolari del complesso condilo-meniscale. CONCLUSIONI: L’esame ecodoppler si è dimostrato, in tutti i pazienti, capace di discriminare quelli normali dai patologici e tra questi ultimi ha permesso di identificare gli aspetti più significativi delle patologie disfunzionali.

  8. Doppler Frequency-Shift Compensated Photorefractive Interferometer for Ultrasound Detection on Objects in Motion

    NASA Astrophysics Data System (ADS)

    Campagne, B.; Blouin, A.; Néron, C.; Monchalin, J.-P.

    2003-03-01

    Two-wave mixing based interferometry has been demonstrated to be a powerful technique for non-contact, broadband and speckle insensitive measurements of the small surface displacements produced by ultrasonic waves propagating in an object. When the object is in rapid motion along the line-of-sight of the probing laser or when the laser beam is rapidly scanned on a wavy surface, the two-wave mixing photorefractive interferometer loses sensitivity to the point it could become useless. To circumvent the Doppler frequency-shift produced by this relative motion, we propose a dynamic compensation scheme. We report a particularly simple scheme to implement this concept by monitoring the low-frequency output signal of a balanced two-wave mixing demodulator whose output is proportional to the frequency difference between the pump and signal beams, and feeding this signal back to the acousto-optic shifter. With this new concept, the two-wave mixing interferometer can operate on objects in rapid motion while maintaining its sensitivity to low frequency ultrasound.

  9. Effect of low level laser therapy on revascularization of free gingival graft using ultrasound Doppler flowmetry

    PubMed Central

    Arunachalam, Lalitha T.; Sudhakar, Uma; Janarthanam, Akila Sivaranjani; Das, Nimisha Mithra

    2014-01-01

    Low level laser therapy (LLLT) is widely used during the post-operative period to accelerate the healing process. It promotes beneficial biological action on neovascularization with anti-inflammatory and analgesic effects. Two systemically healthy patients with Miller's grade II recession on 33 and 41, respectively, were treated with free gingival graft. After surgery, second patient received LLLT using a 830 nm diode laser, with output power of 0.1 W on the first day half hour following surgery, on the third day, seventh day, and lastly on the ninth day. Both the patients were asked to assess the pain on second, fourth and tenth day using a Numerical Rating Scale and revascularization of the grafted area was assessed using a color Doppler ultrasound imaging on the fourth and the ninth day. Neovascularization was noted in both the patients but the second patient elicited marked increase in vascularity on the fourth as well as the tenth day and drastic reduction in pain on day four, with no change on the tenth day. The results showed that LLLT was an effective adjunctive treatment in promoting reevascularization and pain control during early healing of free gingival graft. PMID:25024560

  10. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    PubMed

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  11. Applications of power ultrasound in food processing.

    PubMed

    Kentish, Sandra; Feng, Hao

    2014-01-01

    Acoustic energy as a form of physical energy has drawn the interests of both industry and scientific communities for its potential use as a food processing and preservation tool. Currently, most such applications deal with ultrasonic waves with relatively high intensities and acoustic power densities and are performed mostly in liquids. In this review, we briefly discuss the fundamentals of power ultrasound. We then summarize the physical and chemical effects of power ultrasound treatments based on the actions of acoustic cavitation and by looking into several ultrasound-assisted unit operations. Finally, we examine the biological effects of ultrasonication by focusing on its interactions with the miniature biological systems present in foods, i.e., microorganisms and food enzymes, as well as with selected macrobiological components.

  12. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity.

    PubMed

    Herr, Michael D; Hogeman, Cynthia S; Koch, Dennis W; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A

    2010-05-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system.

  13. Embedded System for Real-Time Digital Processing of Medical Ultrasound Doppler Signals

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Dallai, A.; Boni, E.; Bassi, L.; Guidi, F.; Cellai, A.; Tortoli, P.

    2008-12-01

    Ultrasound (US) Doppler systems are routinely used for the diagnosis of cardiovascular diseases. Depending on the application, either single tone bursts or more complex waveforms are periodically transmitted throughout a piezoelectric transducer towards the region of interest. Extraction of Doppler information from echoes backscattered from moving blood cells typically involves coherent demodulation and matched filtering of the received signal, followed by a suitable processing module. In this paper, we present an embedded Doppler US system which has been designed as open research platform, programmable according to a variety of strategies in both transmission and reception. By suitably sharing the processing tasks between a state-of-the-art FGPA and a DSP, the system can be used in several medical US applications. As reference examples, the detection of microemboli in cerebral circulation and the measurement of wall _distension_ in carotid arteries are finally presented.

  14. Use of an ultrasound blood-mimicking fluid for Doppler investigations of turbulence in vitro.

    PubMed

    Thorne, Meghan L; Poepping, Tamie L; Rankin, Richard N; Steinman, David A; Holdsworth, David W

    2008-07-01

    Turbulence is an important factor in the assessment of stenotic disease and a possible causative mechanism for thromboembolism. Previous Doppler studies of turbulence have typically used whole-blood preparations or suspensions of erythrocytes. Recently, a water-glycerol based blood-mimicking fluid (BMF) has been developed for use in Doppler ultrasound studies. This fluid has desirable ultrasound properties but it has not previously been described during in vitro investigations of turbulence intensity. We report on investigations of grid-generated and constrained-jet turbulence in an in vitro test system. The BMF was found to generate significant levels of turbulence during steady flow at physiological flow rates, producing turbulent patterns in the distal region that were consistent with previous studies. Turbulence intensity increased significantly with flow rate (p < 0.005) for both the constrained jet and the constrained grid. Based on our observations, we conclude that a water-glycerol based BMF provides a suitable working fluid during in vitro investigations of turbulence using Doppler ultrasound.

  15. Preoperative color Doppler ultrasound assessment of the lateral thoracic artery perforator flap and its branching pattern.

    PubMed

    Tashiro, Kensuke; Harima, Mitsunobu; Mito, Daisuke; Shibata, Takashi; Furuya, Megumi; Kato, Motoi; Yamamoto, Takumi; Yamashita, Shuji; Narushima, Mitsunaga; Iida, Takuya; Koshima, Isao

    2015-06-01

    The anatomy of the lateral thoracic artery perforator flap remains controversial, but this region is extremely useful as a reconstructive donor site. In this report, we describe the usefulness of the preoperative color Doppler ultrasound evaluation for the harvesting of the lateral thoracic artery perforator flap, and we clarify its branching pattern. Twenty-seven patients underwent the preoperative color Doppler ultrasound assessment before perforator flaps were harvested. We evaluated the branching pattern and the diameter of the flaps by direct observation. All flaps were successfully transferred, and it was found that the branching pattern of the lateral thoracic perforator is divided into three groups: the superficial branch, the medial branch, and the deep branch. Their appearance ratios were 48.1% (13/27), 14.8% (4/27), and 81.5% (22/27), respectively. The lateral thoracic artery perforator flap has a great deal of anatomical variation, and vessels with relatively small diameters compared to those of other flaps. This is why flaps from this region are not currently popular. This study revealed the superiority of the color Doppler ultrasound for preoperative planning of the lateral thoracic artery perforator flap elevation. Furthermore, the branching pattern and the diameters of the different branches were specified.

  16. Quantitative investigation of in vitro flow using three-dimensional colour Doppler ultrasound.

    PubMed

    Guo, Z; Moreau, M; Rickey, D W; Picot, P A; Fenster, A

    1995-01-01

    A quantitative in vitro flow study was performed by using a three-dimensional colour Doppler imaging system. This system was based on a clinical ultrasound instrument with its transducer mounted on a motor-driven translation stage. A vascular and tissue-mimicking phantom containing two wall-less vessels, one normal and another stenotic, was used to quantify the measurement accuracy of the flow velocity and the flow field. Steady state flows, having Reynolds numbers ranging between 460 and 1300, were generated by a computer-controlled positive displacement pump. Effects of the parameter settings of the ultrasound instrument on results of the estimation of flow field were also studied. Experimental results show that our three-dimensional colour Doppler system's velocity accuracy was better than 7% of the Nyquist velocity and its spatial accuracy was better than 0.5 mm. The system showed a good correlation (r = 0.999) between the estimated and the true mean flow velocity, and a good correlation (r = 0.998) between the estimated maximum and the true mean flow velocity. This study is our first step toward validating the measurement of the three-dimensional velocity and wall shear stress distributions by using three-dimensional colour Doppler ultrasound

  17. Activity of Crohn's disease assessed by colour Doppler ultrasound analysis of the affected loops.

    PubMed

    Esteban, J M; Maldonado, L; Sanchiz, V; Minguez, M; Benages, A

    2001-01-01

    The aim of this study was to evaluate with colour Doppler ultrasound the vascular changes in the wall of the loops affected by Crohn's disease, and to establish whether these changes reflects clinical or biochemical activity of Crohn's disease. Seventy-nine patients with Crohn's disease (44 with active disease and 35 inactive patients) were studied with frequency- and amplitude-encoded duplex Doppler sonography. A group of 35 healthy volunteers were also included. The exam consisted of the search for colour signals in the walls of the loops affected by Crohn's disease, classifying the degree of vascularity with a simple scoring system into three groups: absence of colour signal (score of 0); weak or scattered colour signals (score of 1); and multiple colour signals or clear identification of vessels in the loops walls (score of 2). Doppler curves were obtained of the detected vessels with measurement of the resistive index (RI). There was a visible increase in the gut walls' vascularity in the active patients compared with those with inactive disease. The mean RI was statistically significantly lower in the gut wall vessels of the patients with active illness than that obtained in the inactive patients. Colour Doppler ultrasound is a useful tool in the assessment of activity in Crohn's disease.

  18. Interactive realtime Doppler-ultrasound visualization of the heart.

    PubMed

    Heid, V; Evers, H; Henn, C; Glombitza, G; Meinzer, H P

    2000-01-01

    Heart valve insufficiencies can optimally be assessed using transesophageal, triggered, three-dimensional ultrasound imaging. The dynamic ultrasound data contain morphological as well as functional components which are recorded and displayed simultaneously. It allows the visualization of intracardiac motion which is an important parameter to detect abnormal flow caused by defect valves. A realtime reconstruction is desired to get a spatial impression on the one hand and to interactively clip parts of the volume on the other hand. Therefore, we use the OpenGL Volumizer API. Scalability of the visualization was tested with respect to different workstations and graphics resources using a Multipipe Utility library. The combination of both APIs enables a visualization of volumetric and functional data with frame rates up to 10 frames per second. By using the proposed method, it is possible to visualize the jet in the original color-coding which is employed during a conventional two-dimensional examination for displaying the velocity values. The morphological and the functional data are handled as two independent data channels. A good scalability from low cost up to high end graphic workstations is given by the use of the MPU. The quality of the resulting 3D images allows exact differentiation of heart valve insufficiencies to support the diagnostic procedure.

  19. Doppler ultrasound venous mapping of the lower limbs

    PubMed Central

    Galeandro, Aldo Innocente; Quistelli, Giovanni; Scicchitano, Pietro; Gesualdo, Michele; Zito, Annapaola; Caputo, Paola; Carbonara, Rosa; Galgano, Giuseppe; Ciciarello, Francesco; Mandolesi, Sandro; Franceschi, Claude; Ciccone, Marco Matteo

    2012-01-01

    Background The study aim was to test the accuracy (intra and interobserver variability), sensitivity, and specificity of a simplified noninvasive ultrasound methodology for mapping superficial and deep veins of the lower limbs. Methods 62 consecutive patients, aged 62 ± 11 years, were enrolled. All underwent US-examinations, performed by two different investigators, of both legs, four anatomical parts, and 17 veins, to assess the interobserver variability of evaluation of superficial and deep veins of the lower limbs. Results Overall the agreement between the second versus the first operator was very high in detecting reflux (sensitivity 97.9, specificity 99.7, accuracy 99.5; P = 0.80 at McNemar test). The higher CEAP classification stages were significantly associated with reflux (odds ratio: 1.778, 95% confidence interval: 1.552–2.038; P < 0.001) as well as with thrombosis (odds ratio: 2.765, 95% confidence interval: 1.741–4.389; P < 0.001). Thus, our findings show a strict association between the symptoms of venous disorders and ultrasound evaluation results for thrombosis or reflux. Conclusion This study demonstrated that our venous mapping protocol is a reliable method showing a very low interobserver variability, which makes it accurate and reproducible for the assessment of the morphofunctional status of the lower limb veins. PMID:22371652

  20. Two-dimensional blood flow vectors obtained with bidirectional Doppler ultrasound.

    PubMed

    Masuno, Genta; Nagaoka, Ryo; Omori, Aiko; Ishikawa, Yasuo; Akagawa, Osamu; Arakawa, Mototaka; Saijo, Yoshifumi

    2014-01-01

    Precise measurement of blood flow is important because blood flow closely correlates formation of thrombus and atherosclerotic plaque. Among clinically applied modalities for blood flow measurement, color Doppler ultrasound shows two-dimensional (2D) distribution of one-dimensional blood flow component along the ultrasound beam. In the present study, 2D blood flow vector is obtained with high temporal and bidirectional Doppler ultrasound technique. Linear array probe with the central frequency of 7.5 MHz and an ultrasound data acquisition system with 128 transmit and 128 receive channels were equipped. Frame rate of 5 kHz was achieved by parallel receive beam forming with a wide transmitted wave. The flow velocity was measured from two different angles by beam steering. The interval of two measurements was 0.8 msec and it was considered as almost one moment to obtain 2D blood flow vector. B-mode image and 2D blood flow vector of the pulsatile flow in a carotid artery model showed small vortex at the bifurcation area. The method was also applied for visualization of in vivo blood flow vector in human carotid arteries. 2D blood flow measurement may predict the risk area of thrombus and plaque formation induced by abnormal blood flow.

  1. Experimental characterization of a vector Doppler system based on a clinical ultrasound scanner.

    PubMed

    Eranki, Avinash; Sikdar, Siddhartha

    2009-01-01

    We have developed a vector Doppler system using a clinical ultrasound scanner with a research interface. In this system, vector Doppler estimation is performed by electronically dividing a linear array transducer into a transmit sub-aperture and two receive sub-apertures. The receive beams are electronically steered, and two velocity components are estimated from echoes received from the beam overlap region. The velocity vector is reconstructed from these two estimates. The goal of this study was to characterize this vector Doppler system in vitro using a string phantom with a pulsatile velocity waveform. We studied the effect of four parameters on the estimation error: beam steering angle, angle of the velocity vector, depth of the scatterer relative to the beam overlap region and the transmit focus depth. Our results show that changing these parameters have minimal effect on the velocity and angle estimates, and robust velocity vector estimates can be obtained under a variety of conditions. The mean velocity error was less than 0.06 x pulse repetition frequency. The velocity estimates are sensitive to the Doppler estimation method. Our results indicate that vector Doppler using a linear array transducer is feasible for a wide range of imaging parameters. Such a system would facilitate the investigation of complex blood flow and tissue motion in human subjects.

  2. In vitro evaluation of volumetric flow from Doppler power-weighted and amplitude-weighted mean velocities.

    PubMed

    Minich, L L; Snider, A R; Meliones, J N; Yanock, C

    1993-01-01

    Ultrasound theory suggests that the volume of flow is directly related to the power and amplitude of the backscattered Doppler signals. To evaluate the accuracy of volume flow calculated with power-weighted and amplitude-weighted mean velocities (PWMV and AWMV), volume flows were measured in a pulsatile flow-tank system equipped with a 1.25 cm diameter simulated femoral artery. Analyses were performed throughout a range of physiologic flows, mean driving pressures, and pulse rates. At each hemodynamic setting, volume flow in the simulated artery was measured with an electromagnetic flow probe and with pulsed Doppler echocardiography by use of 7.0 and 3.5 MHz transducers. In addition, to determine the effects of vessel size and parabolic flow on the accuracy of the Doppler volumes, volume flow was evaluated in several differently sized vessels at sampling distances of 20 times the vessel diameter downstream from the orifice. On the ultrasound system, PWMV was calculated as the sum of the individual velocities multiplied by their respective power fractions (the fraction of the total instantaneous power represented by the individual signal power). The instantaneous PWMV was plotted continuously in time and superimposed on the spectral recording. Similarly, AWMV was calculated with amplitudes measured as the square root of the signal power. The PWMV and AWMV were integrated over the flow period and multiplied by the known cross-sectional area of flow to obtain the Doppler volume. In all analyses performed, volumetric flows calculated with Doppler echocardiography with PWMV and AWMV correlated extremely well with those measured with the electromagnetic flow probe. Thus, over a wide range of physiologic conditions, transducers frequencies, and vessel sizes, volume flow can be accurately calculated from PWMV and AWMV Doppler data. This technique provides an accurate, automatic method for on-line determination of volumetric flow.

  3. The removal of wall components in Doppler ultrasound signals by using the empirical mode decomposition algorithm.

    PubMed

    Zhang, Yufeng; Gao, Yali; Wang, Le; Chen, Jianhua; Shi, Xinling

    2007-09-01

    Doppler ultrasound systems, used for the noninvasive detection of the vascular diseases, normally employ a high-pass filter (HPF) to remove the large, low-frequency components from the vessel wall from the blood flow signal. Unfortunately, the filter also removes the low-frequency Doppler signals arising from slow-moving blood. In this paper, we propose to use a novel technique, called the empirical mode decomposition (EMD), to remove the wall components from the mixed signals. The EMD is firstly to decompose a signal into a finite and usually small number of individual components named intrinsic mode functions (IMFs). Then a strategy based on the ratios between two adjacent values of the wall-to-blood signal ratio (WBSR) has been developed to automatically identify and remove the relevant IMFs that contribute to the wall components. This method is applied to process the simulated and clinical Doppler ultrasound signals. Compared with the results based on the traditional high-pass filter, the new approach obtains improved performance for wall components removal from the mixed signals effectively and objectively, and provides us with more accurate low blood flow.

  4. Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study

    NASA Astrophysics Data System (ADS)

    Raine-Fenning, N. J.; Ramnarine, K. V.; Nordin, N. M.; Campbell, B. K.

    2004-01-01

    Three-dimensional (3D) power Doppler data is increasingly used to assess and quantify blood flow and tissue perfusion. The objective of this study was to assess the validity of common 3D power Doppler ‘vascularity’ indices by quantification in well characterised in-vitro flow models. A computer driven gear pump was used to circulate a steady flow of a blood mimicking fluid through various well characterised flow phantoms to investigate the effect of the number of flow channels, flow rate, depth dependent tissue attenuation, blood mimic scatter particle concentration and ultrasound settings. 3D Power Doppler data were acquired with a Voluson 530D scanner and 7.5 MHz transvaginal transducer (GE Kretz). Virtual Organ Computer-aided Analysis software (VOCAL) was used to quantify the vascularisation index (VI), flow index (FI) and vascularisation-flow index (VFI). The vascular indices were affected by many factors, some intuitive and some with more complex or unexpected relationships (e.g. VI increased linearly with an increase in flow rate, blood mimic scatter particle concentration and number of flow channels, and had a complex dependence on pulse repetition frequency). Use of standardised settings and appropriate calibration are required in any attempt at relating ‘vascularity indices’ with flow.

  5. Sonographic imaging of extra-testicular focal lesions: comparison of grey-scale, colour Doppler and contrast-enhanced ultrasound

    PubMed Central

    Rafailidis, Vasileios; Robbie, Hasti; Konstantatou, Eleni; Huang, Dean Y; Deganello, Annamaria; Sellars, Maria E; Cantisani, Vito; Isidori, Andrea M

    2016-01-01

    Extra-testicular lesions are usually benign but present with nonspecific grey-scale sonography findings. This study assesses conventional sonographic characteristics in the differentiation of extra-testicular tumoural from inflammatory lesions and whether contrast-enhanced ultrasound has a role. A retrospective database analysis was performed. All patients were examined by experienced sonographers employing standard techniques combining grey-scale, colour Doppler sonography and contrast-enhanced ultrasound. Features recorded were: clinical symptoms, size, location, echogenicity, colour Doppler sonography and contrast-enhanced ultrasound enhancement. Vascularity on colour Doppler sonography and contrast-enhanced ultrasound was graded and compared. The lesions were classified as tumoural or inflammatory. The Chi-square test was used to analyse the sonographic patterns and kappa coefficient to measure the agreement between colour Doppler sonography and contrast-enhanced ultrasound. A total of 30 lesions were reviewed (median diameter 12 mm, range 5–80 mm, median age 52 years, range 18–86 years), including 13/30 tumoural and 17/30 inflammatory lesions. Lesions were hypoechoic (n = 12), isoechoic (n = 6), hyperechoic (n = 2) or mixed (n = 10). Grey-scale characteristics of tumoural vs. inflammatory lesions differed significantly (P = 0.026). On colour Doppler sonography, lesions had no vessels (n = 16), 2–3 vessels (n = 10) and ≥4 vessels (n = 4). On contrast-enhanced ultrasound, lesions showed no vascularity (n = 17), perfusion similar to testis (n = 7) and higher (n = 6). All abscesses identified (n = 9) showed no vascularity on both colour Doppler sonography and contrast-enhanced ultrasound. There was good agreement between these techniques in evaluating vascularity (κ = 0.719) and no significant difference between colour Doppler sonography and contrast-enhanced ultrasound of tumoural vs. inflammatory

  6. Limited Accuracy of Colour Doppler Ultrasound Dynamic Tissue Perfusion Measurement in Diabetic Adults

    PubMed Central

    Stoperka, Felix; Karger, Claudia

    2016-01-01

    Dynamic tissue perfusion measurement (DTPM) is a pre-described and available method in pediatric ultrasound to quantify tissue perfusion in renal Doppler ultrasound by particular video analysis software. This study evaluates DTPM during single and between repeated visits after 6 months, calibrates repeated DTPM within different region of interest (ROI) and compares DTPM with kidney function markers in adult patients with early diabetic nephropathy (n = 17). During repeated measurements, no association of readings at the same patients in the same (n = 3 readings) as well as repeated visit (n = 2 visits) could be retrieved. No association between DTPM, MDRD-GFR, albuminuria, age and duration of diabetes was observed. These negative results are presumably related to inconsistency of DTPM due to non-fixed ROI position as could be shown in calibrating series. Further development of the method should be performed to enable reproducible DTPM readings in adults. PMID:28033403

  7. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    SciTech Connect

    Zhang, Y; Stekel, S; Tradup, D; Hangiandreou, N

    2014-06-15

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

  8. [Duplex ultrasound and color-coded Doppler ultrasound of visceral blood vessels in abdominal diseases].

    PubMed

    Mostbeck, G; Mallek, R; Gebauer, A; Tscholakoff, D

    1992-01-01

    Duplex Doppler sonography (DS) and color-flow Doppler sonography (FDS) are noninvasive diagnostic methods for the evaluation of a patient with suspected vascular disease of the abdomen. They represent a useful adjunct to realtime sonography in the identification of normal and variant visceral vascular anatomy. Aneurysms and pseudo-aneurysms of visceral arteries are readily differentiated from other cystic lesions. DS and FDS have a high sensitivity in the detection of portal vein thrombosis and stenosis. Both methods allow the observation and measurement of splanchnic hemodynamics in patients with chronic liver disease and portal hypertension. Hence, DS and FDS already play an important role in the pre- and postoperative assessment of patients undergoing liver or pancreas transplantation. The possibility that DS and FDS may enable discrimination between hypovascular and hypervascular tumors is under clinical investigation. FDS facilitates an excellent anatomic display of the abdominal vasculature and allows easy placement of the Doppler sample volume. Consequently, quantitative data acquired with DS are accomplished within short scanning times. However, the diagnostic impact of both modalities depends to a great extent on the experience of the investigator.

  9. Effect of Power Ultrasound on Food Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hyoungill; Feng, Hao

    Recent food processing technology innovations have been centered around producing foods with fresh-like attributes through minimal processing or nonthermal processing technologies. Instead of using thermal energy to secure food safety that is often accompanied by quality degradation in processed foods, the newly developed processing modalities utilize other types of physical energy such as high pressure, pulsed electric field or magnetic field, ultraviolet light, or acoustic energy to process foods. An improvement in food quality by the new processing methods has been widely reported. In comparison with its low-energy (high-frequency) counterpart which finds applications in food quality inspection, the use of high-intensity ultrasound, also called power ultrasound, in food processing is a relatively new endeavor. To understand the effect of high-intensity ultrasound treatment on food quality, it is important to understand the interactions between acoustic energy and food ingredients, which is covered in Chapter 10. In this chapter, the focus will be on changes in overall food quality attributes that are caused by ultrasound, such as texture, color, flavor, and nutrients.

  10. B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones

    PubMed Central

    Harper, Jonathan D.; Hsi, Ryan S.; Shah, Anup R.; Dighe, Manjiri K.; Carter, Stephen J.; Moshiri, Mariam; Paun, Marla; Lu, Wei; Bailey, Michael R.

    2013-01-01

    Abstract Purpose To compare color Doppler twinkling artifact and B-mode ultrasonography in detecting kidney stones. Patients and Methods Nine patients with recent CT scans prospectively underwent B-mode and twinkling artifact color Doppler ultrasonography on a commercial ultrasound machine. Video segments of the upper pole, interpolar area, and lower pole were created, randomized, and independently reviewed by three radiologists. Receiver operator characteristics were determined. Results There were 32 stones in 18 kidneys with a mean stone size of 8.9±7.5 mm. B-mode ultrasonography had 71% sensitivity, 48% specificity, 52% positive predictive value, and 68% negative predictive value, while twinkling artifact Doppler ultrasonography had 56% sensitivity, 74% specificity, 62% positive predictive value, and 68% negative predictive value. Conclusions When used alone, B-mode is more sensitive, but twinkling artifact is more specific in detecting kidney stones. This information may help users employ twinkling and B-mode to identify stones and developers to improve signal processing to harness the fundamental acoustic differences to ultimately improve stone detection. PMID:23067207

  11. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom.

    PubMed

    Kenwright, David A; Anderson, Tom; Moran, Carmel M; Hoskins, Peter R

    2015-08-01

    Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam-target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam-target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound.

  12. Technology Insight: the role of color and power Doppler ultrasonography in rheumatology.

    PubMed

    Schmidt, Wolfgang A

    2007-01-01

    An increasing number of rheumatologists have access to ultrasound equipment that provide both color and power Doppler modes, which can be used to investigate musculoskeletal and vascular pathologies. Musculoskeletal Doppler ultrasonography can be used to estimate levels of inflammation, to document the anti-inflammatory effect of agents such as corticosteroids and tumor necrosis factor inhibitors, to differentiate between inflammatory and degenerative disease, and to distinguish between normal and inflamed joints in cases of minor synovial swelling. Vascular Doppler ultrasonography can be used to determine organ involvement in small-vessel vasculitides, to delineate aneurysms in vasculitides of medium-sized arteries, and to assess the characteristic findings in large-vessel vasculitis. Numerous studies, including a meta-analysis, have been published on the use of temporal-artery ultrasonography for the diagnosis of giant cell arteritis. Duplex ultrasonography is a sensitive approach for detecting characteristic edematous wall swellings in active temporal arteritis and for assessing vasculitis of the axillary arteries (large-vessel giant cell arteritis) in patients with suspected temporal arteritis, polymyalgia rheumatica, or fever of unknown origin. Duplex ultrasonography can also be used to assess vasculitis of subclavian and carotid arteries in younger patients with Takayasu's arteritis and acute finger artery occlusions in patients with small-vessel vasculitides.

  13. Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis?

    PubMed

    Escudero, D; Otero, J; Quindós, B; Viña, L

    2015-05-01

    Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation.

  14. Comparison of blood flow velocity through the internal carotid artery based on Doppler ultrasound and numerical simulation.

    PubMed

    Hassani-Ardekani, Hajar; Ghalichi, Farzan; Niroomand-Oscuii, Hanieh; Farhoudi, Mehdi; Tarzmani, Mohammad Kazem

    2012-12-01

    Doppler ultrasound is a usual non-invasive method to estimate the stenosis percentage in large arteries such as carotid by measuring maximum velocity of blood flow. Based on clinical investigations, because of vessel wall motions, Doppler positioning and angle correction, some errors can arise in Doppler results which lead to incorrect diagnosis. The aim of this study was to compare the results of Doppler test and the numerical simulation of blood flow in the same case. For this evaluation, two patients including an 87-year-old man and a 72-year-old woman suffering from stenosis in the internal carotid artery were selected. First, clinical information of each patient such as CT-Angio scan images and Doppler ultrasound results on different locations of the stenosed artery were obtained. Then, the geometries were reconstructed and numerical simulations were carried out using ANSYS software. Results showed that the velocity profile of Doppler test and numerical simulation were in good agreement at the regions of pre-and post-stenosis. However, the value of maximum velocity at the stenotic region had significant differences.

  15. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10°C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  16. Acoustical imaging and processing of blood vessel and the related materials using ultrasound Doppler effect.

    PubMed

    Yokobori, A T; Ohkuma, T; Yoshinari, H; Yokobori, T; Ohuchi, H; Mori, S

    1991-01-01

    In the present paper a method is proposed to measure the degree of the degradation of the elasticity in natural blood vessel and the related materials by using ultrasound Doppler effect. It was found that the deformation rate and its acceleration in the radial direction of the blood vessel can be detected by acoustical imaging and processing using this method. These results were proven to correspond to the degree of the degradation of the elasticity, that is, the degree of viscoelasticity in the blood vessel from the wave versus time pattern detected and its simple analysis. This method was applied to predicting the arteriosclerosis of blood vessels of humans by acoustical imaging and processing uninvadedly, as the characteristics of viscoelasticity in blood vessels.

  17. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  18. Power Doppler ultrasonographic assessment of the ankle in patients with inflammatory rheumatic diseases.

    PubMed

    Suzuki, Takeshi

    2014-11-18

    Ankle involvement is frequent in patients with inflammatory rheumatic diseases, but accurate evaluation by physical examination is often difficult because of the complex anatomical structures of the ankle. Over the last decade, ultrasound (US) has become a practical imaging tool for the assessment of articular and periarticular pathologies, including joint synovitis, tenosynovitis, and enthesitis in rheumatic diseases. Progress in power Doppler (PD) technology has enabled evaluation of the strength of ongoing inflammation. PDUS is very useful for identifying the location and kind of pathologies in rheumatic ankles as well as for distinguishing between inflammatory processes and degenerative changes or between active inflammation and residual damage. The aim of this paper is to illustrate the US assessment of ankle lesions in patients with inflammatory rheumatic diseases, including rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus, focusing on the utility of PDUS.

  19. Evaluation of a fractional filter-based receive beamforming method for low-cost ultrasound color Doppler imaging

    NASA Astrophysics Data System (ADS)

    Yang, Hana; Kang, Jeeun; Chang, Jin Ho; Yoo, Yangmo

    2012-03-01

    In medical ultrasound imaging, dynamic receive beamforming has been used for improving signal-to-noise ratio (SNR) and spatial resolution. For low-cost portable ultrasound imaging systems, a fractional filter-based receive beamforming (FFRB) method was previously proposed to reduce the hardware complexity compared to conventional interpolation filter-based receive beamforming methods (IFRB). While this new beamforming method substantially reduces the hardware complexity, it yields the nonlinear phase response for high frequencies due to the limited length of fractional filter coefficients, leading to the bias on flow estimation in ultrasound color Doppler imaging. In this paper, to evaluate the FFRB method for ultrasound color Doppler imaging, the Field II simulation and string phantom experiments were conducted. In Field II simulation, the radio-frequency (RF) data were generated by assuming a 7.5-MHz linear array probe with the transmit frequency of 6 MHz, the ensemble size of 8, and the sampling frequencies of 20 MHz. In string phantom experiments, the RF channel data were obtained with a commercial SonixTouch ultrasound scanner equipped with a research package (Ultrasonix Corp., Vancouver, BC, Canada; a 5-MHz linear array connected to a SonixDAQ parallel system. The ensemble size and the sampling frequency were set to 10 and 20 MHz, respectively. For the Field II simulation and string phantom experiments, only 1.2% and 2.3 % in color Doppler estimation error ratio was observed with mean and standard deviation along the lateral direction. This result indicates that the proposed FFRB method could be utilized for a low-cost ultrasound color Doppler imaging system with lowered hardware complexity and minimized phase errors.

  20. Prevalence in a volunteer population of pelvic cancer detected with transvaginal ultrasound and color flow Doppler.

    PubMed

    Schulman, H; Conway, C; Zalud, I; Farmakides, G; Haley, J; Cassata, M

    1994-09-01

    Our objective was to find the prevalence of non-symptomatic endometrial and ovarian neoplasms in a volunteer population of women, aged 40 and over. We offered a free volunteer screening program to asymptomatic women for a study using transvaginal ultrasound and color flow Doppler for the detection of pelvic cancer. In the first 2 years, 2117 women were examined, 51.3% post-menopausal. An ovarian cyst was defined as having a maximum diameter of more than 2.4 cm. Color flow was used to identify blood vessels feeding pelvic organs and adnexal enlargements. An abnormal Doppler flow velocity for the ovary was defined as a resistance index of less than 0.41. Ovarian cysts of less than 5 cm with normal Doppler indices were followed up in 6 months to 1 year. An adnexal morphology score was created to quantify the usefulness of this parameter, particularly in postmenopausal women. Indications for surgery were pre-defined as a persistent ovarian cyst of more than 5 cm, a persistent suspicious Doppler and a total endometrial thickness of greater than 0.59 cm in postmenopausal women not taking hormones.A total of 202 women (9.5%) had ovarian cysts. Fourteen women were operated upon because of size criteria, one because of family history and three for persistent abnormal flow. By Doppler study, 15 cysts were predicted to be benign and histology was confirmatory. There were two false positives and one true positive, a stage Ib ovarian cancer. There were no false negatives, although a stage I endometrioid cancer of the ovary was detected 8 months after a negative scan. In those cases in which follow-up data were available, 56% of the cysts regressed in premenopausal women. In postmenopausal women, 28% regressed. Twenty of 1086 postmenopausal women had endometrial biopsies. Three had endometrial cancer, two stage I and one stage IIA. Five had atypical or adenomatous hyperplasia, and seven had benign polyps. So many women have small asymptomatic cysts of the ovary that a major

  1. In vitro Doppler ultrasound investigation of turbulence intensity in pulsatile flow with simulated cardiac variability.

    PubMed

    Thorne, Meghan L; Poepping, Tamie L; Nikolov, Hristo N; Rankin, Richard N; Steinman, David A; Holdsworth, David W

    2009-01-01

    An in vitro investigation of turbulence intensity (TI) associated with a severe carotid stenosis in the presence of physiological cardiac variability is described. The objective of this investigation was to determine if fluctuations due to turbulence could be quantified with conventional Doppler ultrasound (DUS) in the presence of normal physiological cycle-to-cycle cardiac variability. An anthropomorphic model of a 70% stenosed carotid bifurcation was used in combination with a programmable flow pump to generate pulsatile flow with a mean flow rate of 6 mL/s. Utilizing the pump, we studied normal, nonrepetitive cycle-to-cycle cardiac variability (+/-3.9%) in flow, as well as waveform shapes with standard deviations equal to 0, 2 and 3 times the normal variation. Eighty cardiac cycles of Doppler data were acquired at two regions within the model, representing either laminar or turbulent flow; each measurement was repeated six times. Turbulence intensity values were found to be 11 times higher (p < 0.001), on average, in the turbulent region than in the laminar region, with a mean difference of 24 cm/s. Twenty cardiac cycles were required for confidence in TI values. In conclusion, these results indicate that it is possible to quantify TI in vitro, even in the presence of normal and exaggerated cycle-to-cycle cardiac variability.

  2. Doppler ultrasound in vitro modeling of turbulence in carotid vascular disease

    NASA Astrophysics Data System (ADS)

    Thorne, Meghan L.; Poepping, Tamie L.; Rankin, Richard N.; Nikolov, Hristo N.; Holdsworth, David W.

    2004-04-01

    Turbulence is ubiquitous to many systems in nature, except the human vasculature. Development of turbulence in the human vasculature is an indication of abnormalities and disease. A severely stenosed vessel is one such example. In vitro modeling of common vascular diseases, such as a stenosis, is necessary to develop a better understanding of the fluid dynamics for a characteristic geometry. Doppler ultrasound (DUS) is the only available non-invasive technique for in vivo applications. Using Doppler velocity-derived data, turbulence intensity (TI) can be calculated. We investigate a realistic 70% stenosed bifurcation model in pulsatile flow and the performance of this model for turbulent flow. Blood-mimicking fluid (BMF) was pumped through the model using a flow simulator, which generated pulsatile flow with a mean flow rate of 6 ml/s. Twenty-five cycles of gated DUS data were acquired within regions of laminar and turbulent flow. The data was digitized at 44.1 kHz and analyzed at 79 time-points/cardiac cycle with a 1024-point FFT, producing a 1.33 cm/s velocity resolution. We found BMF to exhibit DUS characteristics similar to blood. We demonstrated the capabilities to generate velocities comparable to that found in the human carotid artery and calculated TI in the case of repetitive pulsatile flow.

  3. [Ultrasound and color Doppler applications in nephrology. The normal kidney: anatomy, vessels and congenital anomalies].

    PubMed

    Meola, Mario; Petrucci, Ilaria; Giovannini, Lisa; Samoni, Sara; Dellafiore, Carolina

    2012-01-01

    Gray-scale ultrasound is the diagnostic technique of choice in patients with suspected or known renal disease. Knowledge of the normal and abnormal sonographic morphology of the kidney and urinary tract is essential for a successful diagnosis. Conventional sonography must always be complemented by Doppler sampling of the principal arterial and venous vessels. B-mode scanning is performed with the patient in supine, prone or side position. The kidney can be imaged by the anterior, lateral or posterior approach using coronal, transverse and oblique scanning planes. Morphological parameters that must be evaluated are the coronal diameter, the parenchymal thickness and echogenicity, the structure and state of the urinary tract, and the presence of congenital anomalies that may mimic a pseudomass. The main renal artery and the hilar-intraparenchymal branches of the arterial and venous vessels should be accurately evaluated using color Doppler. Measurement of intraparenchymal resistance indices (IP, IR) provides an indirect and quantitative parameter of the stiffness and eutrophic or dystrophic remodeling of the intrarenal microvasculature. These parameters differ depending on age, diabetic and hypertensive disease, chronic renal glomerular disease, and interstitial, vascular and obstructive nephropathy.

  4. Doppler ultrasound in kidney diseases: a key parameter in clinical long-term follow-up.

    PubMed

    Spatola, Leonardo; Andrulli, Simeone

    2016-12-01

    Doppler ultrasound has been extensively used in detecting reno-vascular diseases, showing to be a non-invasive, safe, low cost and repeatable tool. The Renal Resistive Index (RRI) [(peak systolic velocity - end diastolic velocity)/peak systolic velocity] is a semi-quantitative index derived by Doppler evaluation of renal vascular bed. Normally RRI is in the range of 0.47-0.70, it increases with aging and, usually, it shows a difference between the two kidneys less than 5-8 %. RRI is an important prognostic marker in chronic kidney diseases (CKD), both in diabetic and non-diabetic kidney diseases, because, in longitudinal prospective studies, it significantly correlated with hemodynamic (ABPM, SBP, DBP, pulse pressure) and histopathological parameters (glomerular sclerosis, arteriolosclerosis, interstitial fibrosis/tubular atrophy, interstitial infiltration). In acute kidney injury (AKI) RI is a valid tool in differentiating between pre-renal and renal failure and in predicting renal response to vaso-active agents. In addition a RRI >0.74 can predict the onset of AKI in septic patients. Renal Resistive Index is a useful marker in allograft diseases because it has been widely showed a correlation with histological lesions during worsening of renal function, both in acute rejection and in chronic allograft nephropathy. Recent studies suggest its role in the risk of new onset diabetes after transplantation and it could be one of the parameters to evaluate to shift or withdrawal immunological and/or hypertensive therapy.

  5. Arterial pulse wave propagation velocity in healthy dogs by pulse wave Doppler ultrasound.

    PubMed

    Nogueira, Rodrigo B; Pereira, Lucas A; Basso, Alice F; da Fonseca, Ingrid S; Alves, Lorena A

    2017-03-01

    The aim of this study was to prospectively evaluate the carotid-femoral pulse wave velocity (PWV) values in healthy dogs using pulse wave Doppler ultrasound. A secondary aim was to determine the feasibility of this method and to report the intra- and interobserver reproducibilities of the PWV in conscious dogs. The data were studied in 30 healthy, adult, male (n = 15) and female (n = 15) dogs. The time interval marked between the R wave peak of the electrocardiogram and the intersection of the blood flow wave upstroke of the Doppler spectrum with the baseline of zero frequency was determined for the carotid (T1) and for the femoral (T2) arteries. The distance covered by the pulse wave (L) was determined. The PWV was then calculated using the following formula: L/T2 - T1. The mean values of PWV calculated from the total sample (n = 30) evaluated were 13.41 ± 2.20 m/s. No significant statistical difference was observed for the PWV measurements between males (14.82 ± 3.18 m/s) and females (12.64 ± 2.45 m/s). The analysis revealed no intra nor interobserver differences. A reasonable reproducibility of the PWV measurements was showed by intraclass correlation coefficients (ICC), and the coefficients of variation (CV). These data demonstrate that noninvasive vascular Doppler analysis is a feasible and reproducible method to determine the carotid-femoral PWV in dogs.

  6. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  7. Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Hodges, Ryan; Endo, Masayuki; La Gerche, Andre; Eixarch, Elisenda; DeKoninck, Philip; Ferferieva, Vessilina; D'hooge, Jan; Wallace, Euan M.; Deprest, Jan

    2013-01-01

    Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is

  8. Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows.

    PubMed

    Franke, S; Lieske, H; Fischer, A; Büttner, L; Czarske, J; Räbiger, D; Eckert, S

    2013-03-01

    We present a novel pulsed-wave ultrasound Doppler system for fluid flow investigations being able to determine two-dimensional vector fields of flow velocities. Electromagnetically-driven liquid metal flows appear as an attractive application field for such a measurement system. Two linear ultrasound transducer arrays each equipped with 25 transducer elements are used to measure the flow field in a square plane of 67×67 mm(2). The application of advanced processing methods as a multi-beam operation, an interlaced echo signal acquisition and a segmental array technique enable high data acquisition rates and concurrently a high spatial resolution, which have not been obtained so far for flow measurements in liquid metals. The extended pulsing strategy and essential operation principles such as the multiplexing electronic concept will be presented within this paper. The capabilities of the measuring system make it suitable for investigations of non-transparent, turbulent flows. Here, we present measurements of liquid metal flows driven by a rotating magnetic field for demonstration purposes. The measuring setup realized here reveals details of the swirling fluid motion in a horizontal section of a cube. Frame acquisition rates up to 30 fps were achieved for a complete two-dimensional flow mapping.

  9. Assessment of arterial distension based on continuous wave Doppler ultrasound with an improved Hilbert-Huang processing.

    PubMed

    Zhang, Yufeng; Su, Nafeng; Li, Zhiyao; Gou, Zhengpin; Chen, Qiuying; Zhang, Yan

    2010-01-01

    A novel approach based on continuous wave (CW) Doppler ultrasound and the Hilbert-Huang transform with end-effect restraint by mirror extending is proposed to assess arterial distension. In the approach, bidirectional Doppler signals were first separated using the phasing-filter technique from the mixed quadrature Doppler signals, which were produced by bidirectional blood and vessel wall movements. Each separated unidirectional signal was decomposed into intrinsic mode functions (IMFs) using the empirical mode decomposition with end effect restraint by mirror extending algorithm, and then the relevant IMFs that contribute to the vessel wall components were identified. Finally, the displacement waveforms of the vessel wall were calculated by integrating its moving velocity waveforms, which were extracted from the bidirectional Hilbert spectrum estimated from the identified wall IMFs. This approach was applied to simulated and clinical Doppler signals from normal common carotid arteries (CCAs). In the simulation study, the estimated wall moving velocity and displacement waveforms were compared with the theoretical ones, respectively. The mean and standard deviation of the root-mean-square errors between the estimated and theoretical wall distension of the 30 realizations was 4.2 +/- 0.4 microm. In the clinical study, peak-to-peak distension was extracted in a subject and then averaged over 15 cardiac cycles, resulting in 603 +/- 22 microm. The mean and standard deviation of the CCA distension averaged over the experimental measurements of 12 healthy subjects gave the result of 620 +/- 154 microm. The clinical results were in agreement with those measured by using the multigate Doppler ultrasound and echo tracking systems. The results show that based on the CW Doppler ultrasound, the proposed approach is practical for extracting arterial wall peak-to-peak distension correctly and could be an alternative method for the vessel wall distension estimation.

  10. 'Son et lumière': a new combined optical and Doppler ultrasound approach to the detection of breast cancer.

    PubMed

    Watmough, D J; Moran, C; Watmough, J A

    1988-04-01

    X-ray mammography is the gold standard for diagnosis of lesions within the female breast. It is also recognized as the technique of choice for breast cancer screening in women over 50-years-old. Notwithstanding these important roles it has shortcomings in terms of limited sensitivity and specificity, especially in younger women. This paper describes the concept of a combined optical density and Doppler ultrasound method proposed initially as a supplement to mammography. A specially devised tissue compressor is also described. Results obtained using test phantoms and initial clinical studies are presented. Neovascularization at the advancing front of neoplastic lesions is believed to underlie detection of lesions by both telediaphanography and Doppler ultrasound.

  11. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  12. Doppler Ultrasound Detection of Preclinical Changes in Foot Arteries in Early Stage of Type 2 Diabetes

    PubMed Central

    Leoniuk, Jolanta; Łukasiewicz, Adam; Szorc, Małgorzata; Sackiewicz, Izabela; Janica, Jacek; Łebkowska, Urszula

    2014-01-01

    Summary Background There are few reports regarding the changes within the vessels in the initial stage of type 2 diabetes. The aim of this study was to estimate the hemodynamic and morphological parameters in foot arteries in type 2 diabetes subjects and to compare these parameters to those obtained in a control group of healthy volunteers. Material/Methods Ultrasound B-mode, color Doppler and pulse wave Doppler imaging of foot arteries was conducted in 37 diabetic patients and 36 non-diabetic subjects to determine their morphological (total vascular diameter and flow lumen diameter) and functional parameters (spectral analysis). Results In diabetic patients, the overall vascular diameter and wall thickness were statistically significantly larger when compared to the control group in the right dorsalis pedis artery (P=0.01; P=0.001), left dorsalis pedis artery (P=0.007; P=0.006), right posterior tibial artery (P=0.005; P=0.0005), and left posterior tibial artery (P=0.007; P=0.0002). No significant differences were observed in both groups in flow lumen diameters and blood flow parameters (PSV, EDV, PI, RI). In the diabetic group, the level of HbA1c positively correlated with flow resistance index in the right dorsalis pedis artery (r=0.38; P=0.02), right posterior tibial artery (r=0.38; P=0.02) and left posterior tibial artery (r=0.42; P=0.009). The pulsatility index within the dorsalis pedis artery decreased with increased trophic skin changes (r=–0.431, P=0.009). Conclusions In the diabetic group, overall artery diameters larger than and flow lumina comparable to the control group suggest vessel wall thickening occurring in the early stage of diabetes. Doppler flow parameters are comparable in both groups. In the diabetic group, the level of HbA1c positively correlated with flow resistance index and negative correlation was observed between the intensity of trophic skin changes and the pulsatility index. PMID:25202434

  13. Improved determination of vascular blood-flow shear rate using Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Farison, James B.; Begeman, Garett A.; Salles-Cunha, Sergio X.; Beebe, Hugh G.

    1997-05-01

    Shear rate has been linked to endothelial and smooth muscle cell function, neointimal hyperplasia, poststenotic dilation and progression of atherosclerotic plaque. In vivo studies of shear rate have been limited in humans due to the lack of a truly accurate noninvasive method of measuring blood flow. In clinical vascular laboratories, the primary method of wall shear rate estimation is the scaled ratio between the center line systolic velocity and the local arterial radius. The present study compares this method with the shear rate calculated directly from data collected using a Doppler ultrasound scanner. Blood flow in the superficial femoral artery of 20 subjects was measured during three stages of distal resistance. Analysis and display programs were written for use with the MATLAB image processing software package. The experimental values of shear rate were calculated using the formal definition and then compared to the standard estimate. In all three states of distal resistance, the experimental values were significantly higher than the estimated values by a factor of approximately 1.57. These results led to the conclusion that the direct method of measuring shear rate is more precise and should replace the estimation model in the clinical laboratory.

  14. Clinical value of color doppler ultrasound in prenatal diagnosis of umbilical cord entry abnormity

    PubMed Central

    Sun, Jiandong; Wang, Li; Li, Yinghui

    2016-01-01

    Objective: To study the clinical value of prenatal diagnosis of umbilical cord entry abnormity (UCEA) by means of color Doppler ultrasound (CDUS). Methods: Clinical data of sixty-four cases with confirmed umbilical cord entry abnormity were reviewed and the specific UCEA conditions and the outcomes of perinatal infants were analyzed. Results: Detection rates of marginal umbilical cord entry abnormity and velamentous umbilical cord entry abnormity by means of CDUS at second trimester were 94.1% and 93.8% respecdtively much higher than 80.0% and 68.8% which were those of third trimester. Discrepancy had statistical significance (P<0.05). True positive rate of prenatal diagnosis of UCEA by means of CDUS was 85.9% (55/64), and false negative rate was 14.1% (9/64). Among sixty four patients with UCEA, seventeen patients (26.6%) underwent selective caesarean delivery; twenty-six patients (35.9%) underwent emergency caesarean delivery and twenty-four patients (37.5%) had normal delivery. Conclusion: Prenatal diagnosis of UCEA by means of CDUS is intuitive and accurate. It provides an evidence for determination of the best time to diagnose UCEA, and also offers a proper advice for pregnant women about delivery mode to ensure the fetus survival rate, which is clinically valuable. PMID:28083036

  15. Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Balocco, Simone; Basset, Olivier; Courbebaisse, Guy; Boni, Enrico; Frangi, Alejandro F.; Tortoli, Piero; Cachard, Christian

    2010-06-01

    Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.

  16. Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound.

    PubMed

    Balocco, Simone; Basset, Olivier; Courbebaisse, Guy; Boni, Enrico; Frangi, Alejandro F; Tortoli, Piero; Cachard, Christian

    2010-06-21

    Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.

  17. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  18. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function.

    PubMed

    Willie, C K; Colino, F L; Bailey, D M; Tzeng, Y C; Binsted, G; Jones, L W; Haykowsky, M J; Bellapart, J; Ogoh, S; Smith, K J; Smirl, J D; Day, T A; Lucas, S J; Eller, L K; Ainslie, P N

    2011-03-30

    There is considerable utility in the use of transcranial Doppler ultrasound (TCD) to assess cerebrovascular function. The brain is unique in its high energy and oxygen demand but limited capacity for energy storage that necessitates an effective means of regional blood delivery. The relative low cost, ease-of-use, non-invasiveness, and excellent temporal resolution of TCD make it an ideal tool for the examination of cerebrovascular function in both research and clinical settings. TCD is an efficient tool to access blood velocities within the cerebral vessels, cerebral autoregulation, cerebrovascular reactivity to CO(2), and neurovascular coupling, in both physiological states and in pathological conditions such as stroke and head trauma. In this review, we provide: (1) an overview of TCD methodology with respect to other techniques; (2) a methodological synopsis of the cerebrovascular exam using TCD; (3) an overview of the physiological mechanisms involved in regulation of the cerebral blood flow; (4) the utility of TCD for assessment of cerebrovascular pathology; and (5) recommendations for the assessment of four critical and complimentary aspects of cerebrovascular function: intra-cranial blood flow velocity, cerebral autoregulation, cerebral reactivity, and neurovascular coupling. The integration of these regulatory mechanisms from an integrated systems perspective is discussed, and future research directions are explored.

  19. Scalpel versus electrosurgery: Comparison of gingival perfusion status using ultrasound Doppler flowmetry

    PubMed Central

    Manivannan, N.; Ahathya, R. S.; Rajaram, P. C.

    2013-01-01

    The main prerequisites of any surgical procedure are achievement of good visibility and access to the site with minimal bleeding and rapid and painless healing. With the advancement of technology the armamentarium for oral surgical procedures has also widened. The use of alternate methods to the traditional scalpel such as electrosurgery, laser, and chemicals has been widely experimented with. This article aims to report the gingival perfusion pre-operatively and post-operatively, comparing the use of scalpel and electrosurgery in different anatomic sites in patient. Since wound healing is influenced by its revascularization rate, which follows the pattern of new connective tissue formation, the perfusion status of the gingiva has been studied using ultrasound spectral Doppler. The results of our study show that there was 30% more blood flow by 7th day, 19% more blood flow by 15th day and 11% more blood flow by 30th day in sites where the scalpel was used compared with sites where electrosurgery technique was used. PMID:23956596

  20. Pulsatility Produced by the Hemodialysis Roller Pump as Measured by Doppler Ultrasound.

    PubMed

    Fulker, David; Keshavarzi, Gholamreza; Simmons, Anne; Pugh, Debbie; Barber, Tracie

    2015-11-01

    Microbubbles have previously been detected in the hemodialysis extracorporeal circuit and can enter the blood vessel leading to potential complications. A potential source of these microbubbles is highly pulsatile flow resulting in cavitation. This study quantified the pulsatility produced by the roller pump throughout the extracorporeal circuit. A Sonosite S-series ultrasound probe (FUJIFILM Sonosite Inc., Tokyo, Japan) was used on a single patient during normal hemodialysis treatment. The Doppler waveform showed highly pulsatile flow throughout the circuit with the greatest pulse occurring after the pump itself. The velocity pulse after the pump ranged from 57.6 ± 1.74 cm/s to -72 ± 4.13 cm/s. Flow reversal occurred when contact between the forward roller and tubing ended. The amplitude of the pulse was reduced from 129.6 cm/s to 16.25 cm/s and 6.87 cm/s following the dialyzer and venous air trap. This resulted in almost nonpulsatile, continuous flow returning to the patient through the venous needle. These results indicate that the roller pump may be a source of microbubble formation from cavitation due to the highly pulsatile blood flow. The venous air trap was identified as the most effective mechanism in reducing the pulsatility. The inclusion of multiple rollers is also recommended to offer an effective solution in dampening the pulse produced by the pump.

  1. Short-Term Wind Power Forecasts using Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Magerman, Beth

    With a ground-based Doppler lidar on the upwind side of a wind farm in the Tehachapi Pass of California, radial wind velocity measurements were collected for repeating sector sweeps, scanning up to 10 kilometers away. This region consisted of complex terrain, with the scans made between mountains. The dataset was utilized for techniques being studied for short-term forecasting of wind power by correlating changes in energy content and of turbulence intensity by tracking spatial variance, in the wind ahead of a wind farm. A ramp event was also captured and its propagation was tracked. Orthogonal horizontal wind vectors were retrieved from the radial velocity using a sector Velocity Azimuth Display method. Streamlines were plotted to determine the potential sites for a correlation of upstream wind speed with wind speed at downstream locations near the wind farm. A "virtual wind turbine" was "placed" in locations along the streamline by using the time-series velocity data at the location as the input to a modeled wind turbine, to determine the extractable energy content at that location. The relationship between this time-dependent energy content upstream and near the wind farm was studied. By correlating the energy content with each upstream location based on a time shift estimated according to advection at the mean wind speed, several fits were evaluated. A prediction of the downstream energy content was produced by shifting the power output in time and applying the best-fit function. This method made predictions of the power near the wind farm several minutes in advance. Predictions were also made up to an hour in advance for a large ramp event. The Magnitude Absolute Error and Standard Deviation are presented for the predictions based on each selected upstream location.

  2. Anticoagulant therapy for venous thromboembolism detected by Doppler ultrasound in patients with metastatic colorectal cancer receiving bevacizumab

    PubMed Central

    Suenaga, Mitsukuni; Mizunuma, Nobuyuki; Shinozaki, Eiji; Matsusaka, Satoshi; Ozaka, Masato; Ogura, Mariko; Chin, Keisho; Yamaguchi, Toshiharu

    2015-01-01

    Background Doppler ultrasound imaging is useful for management of venous thromboembolism associated with a subclavicular implantable central venous access system in patients receiving bevacizumab (Bev). We investigated the efficacy and safety of our anticoagulant regimen based on Doppler findings. Methods Patients aged ≤75 years with metastatic colorectal cancer, no history of thromboembolism, and no prior use of Bev received chemotherapy plus Bev. Doppler ultrasound imaging of the deep venous system to detect thrombosis was performed after the first course of Bev and repeated after the third course in patients with asymptomatic thrombosis. Indications for anticoagulant therapy in patients with asymptomatic thrombosis were as follows: enlarging thrombus (E), thrombus >40 mm in diameter (S), thrombus involving the superior vena cava (C), and decreased blood flow (V). Results Among 79 patients enrolled in this study, asymptomatic thrombosis was detected in 56 patients (70.9%) by Doppler ultrasound imaging after the first course of Bev and there was no thrombus in 23 patients (29.1%). Of these 56 patients, 11 (19.6%) received anticoagulant therapy with warfarin, including eight after the first course and three after follow-up imaging. S + V was observed in four of 11 patients (36.4%), as well as V in two (18.2%), S + V + C in one (9.1%), E + S + V in one (9.1%), E + C in one (9.1%), E in one (9.1%), and C in one (9.1%). All patients resumed chemotherapy, including seven who resumed Bev. Improvement or stabilization of thrombi was achieved in ten patients (90.9%). Only one patient had symptomatic thromboembolism. Mild bleeding due to anticoagulant therapy occurred in six patients (54.5%), but there were no treatment-related severe adverse events or deaths. Severe thromboembolism was not observed in the other 68 patients. Conclusion Our anticoagulant protocol for asymptomatic thrombosis detected by Doppler ultrasound imaging was effective at preventing severe

  3. Color Doppler Ultrasound in Diagnosis and Assessment of Carotid Body Tumors: Comparison with Computed Tomography Angiography.

    PubMed

    Jin, Zhan-Qiang; He, Wen; Wu, Dong-Fang; Lin, Mei-Ying; Jiang, Hua-Tang

    2016-09-01

    A carotid body tumor (CBT) is a rare, non-chromaffin paraganglioma, and its diagnosis mainly depends on imaging modalities. The aim of this study was to investigate the ability of color Doppler ultrasound (CDU) in the diagnosis and assessment of CBT based on computed tomography (CT). We retrospectively reviewed the CDU and CT features of 49 consecutive CBTs and 23 schwannomas from 67 patients and compared these findings with surgical resection specimens. The mean size of CBT lesions on ultrasound scans and CT angiography (CTA) was 3.24 cm ± 0.82 cm (range, 1.6-5.2 cm) and 3.84 cm ± 1.08 cm (range, 1.8-6.8 cm), respectively, which had statistically significant difference (t = 9.815, p = 0.000). The vascularity of CBT lesions was richer than that of schwannoma lesions (p < 0.05). Intra-lesional vascularities feeding CBT mostly arose from the external carotid artery and had spectrum characteristics including low velocity and resistance. Peak systolic velocity (PSV) and resistance index (RI) of the vasa vasorum were 39.8 cm/s ± 19.8 cm/s and 0.54 ± 0.06, respectively. There was the correlation between CTA and CDU in identifying Shamblin type I CBT lesions, while CTA technique was superior for CDU, identifying Shamblin type II and III CBT lesions. Accuracy, specificity and sensitivity of CDU in diagnosing CBTs were 87.5% (63 of 72), 82.6% (19 of 23) and 89.8% (44 of 49), respectively. Both accuracy and sensitivity of CTA in diagnosing CBTs were 100%. CDU can be useful for assessment of Shamblin's type and intra-lesional blood flow of CBTs before its metastases, while CT imaging can reveal the relationship between lesions and adjacent arteries, as well as the involvement of the skull base. CDU combined with CT imaging can be used as an optimal detection modality for the assessment and management of CBT.

  4. Power Doppler ultrasonography in the diagnosis of acute childhood pyelonephritis.

    PubMed

    Halevy, Raphael; Smolkin, Vladislav; Bykov, Sergey; Chervinsky, Leonid; Sakran, Waheeb; Koren, Ariel

    2004-09-01

    In the absence of specific symptomatology in children, the early diagnosis of acute pyelonephritis (APN) is a challenge, particularly during infancy. In an attempt to differentiate APN from lower urinary tract infection (UTI), we evaluated the ability of power Doppler ultrasonography (PDU) to predict renal parenchymal involvement, as assessed by dimercaptosuccinic acid ((99m )Tc-DMSA) scintigraphy. The study comprised 62 patients, 46 girls and 16 boys, aged 2 weeks to 5 years, admitted to the pediatric department with febrile UTI. All children were examined by PDU and DMSA scintigraphy within the first 3 days of admission. In the group of 31 patients with one or more DMSA scan abnormalities, the PDU showed a matching perfusion defect in 27 (87%). Of 26 children with normal DMSA scintigraphy, the PDU evaluation was also normal in 24. The sensitivity and specificity of PDU for the detection of affected kidneys were 87% and 92.3%, and the positive predictive value and negative predictive value were 93.1% and 85.7%, respectively. These data indicate the PDU has a high sensitivity and specificity for differentiating APN from lower UTI and may be a useful and practical tool for the diagnosis of APN in infants and children.

  5. Accuracy of velocity and power determination by the Doppler method

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1984-01-01

    When designing a Mesosphere-Stratosphere-Troposphere (MST) radar antenna one has to trade between the choices to optimize the effective aperture or to optimize the sidelobe suppression. An optimization of the aperture increases the sensitivity. Suppression of side-lobes by tapering attenuates undesirable signals which spoil the estimates of reflectivity and velocity. Generally, any sidelobe effects are equivalent to a broadening of the antenna beam. The return signal is due to a product of the antenna pattern with the varying atmospheric reflectivity structures. Thus, knowing the antenna pattern, it is in principle possible to find the signal spectra, which, however, may be a tedious computational and ambiguous procedure. For vertically pointing main beams the sidelobe effects are efficiently suppressed because of the aspect sensitivity. It follows that sidelobes are a minor problem for spaced antenna methods. However, they can be crucial for Doppler methods, which need off-vertical beams. If a sidelobe is pointing towards the zenith a larger power may be received from the vertical than off-vertical directions, but quantitative estimates of this effect are not yet known. To get an error estimate of sidelobe effects with an off-vertical main beam a 1-dimensional example is considered.

  6. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.

    PubMed

    Guo, Z; Durand, L G; Lee, H C

    1994-04-01

    The time-frequency distribution of the Doppler ultrasound blood flow signal is normally computed by using the short-time Fourier transform or autoregressive modeling. These two techniques require stationarity of the signal during a finite interval. This requirement imposes some limitations on the distribution estimate. In the present study, three new techniques for nonstationary signal analysis (the Choi-Williams distribution, a reduced interference distribution, and the Bessel distribution) were tested to determine their advantages and limitations for analysis of the Doppler blood flow signal of the femoral artery. For the purpose of comparison, a model stimulating the quadrature Doppler signal was developed, and the parameters of each technique were optimized based on the theoretical distribution. Distributions computed using these new techniques were assessed and compared with those computed using the short-time Fourier transform and autoregressive modeling. Three indexes, the correlation coefficient, the integrated squared error, and the normalized root-mean-squared error of the mean frequency waveform, were used to evaluate the performance of each technique. The results showed that the Bessel distribution performed the best, but the Choi-Williams distribution and autoregressive modeling are also techniques which can generate good time-frequency distributions of Doppler signals.

  7. Screening for rheumatoid arthritis with finger joint power Doppler ultrasonography: quantification of conventional power Doppler ultrasonographic scoring.

    PubMed

    Fukae, Jun; Shimizu, Masato; Kon, Yujiro; Tanimura, Kazuhide; Matsuhashi, Megumi; Kamishima, Tamotsu; Koike, Takao

    2009-01-01

    Power Doppler ultrasonography (PD-US) has proved to be a useful technique to measure synovial vascularity due to its capability to provide data that can be used to evaluate the level of joint inflammation and assess rheumatoid arthritis (RA). We have developed a novel PD-US finger joint scoring method that introduces quantitative measurements into the conventional PD-US assessment method. A comparison of the two methods revealed that our novel PD-US method strongly correlates with the conventional method in terms of RA assessment. We performed finger joint PD-US on 69 patients with RA and 70 patients who had multiple joint pain but showed no evidence of inflammatory diseases (non-inflammatory disease, NI) and measured the synovial vascularity of the metacarpophalangeal joints 1-5 and proximal interphalangeal (PIP) joints 1-5 for each patient. We analyzed the data with receiver operating characteristic analysis and, based on the results for the total vascularity of 20 finger joints, defined a cut-off value of 36% as discriminating between RA and NI. This cut-off value was found to be a valuable tool in screening for RA. We conclude that our finger joint PD-US scoring system is both useful and applicable for diagnosing RA.

  8. Power Doppler ultrasonography in the evaluation of infliximab treatment for sacroiliitis in patients with ankylosing spondylitis.

    PubMed

    Jiang, Yeqing; Chen, Ling; Zhu, Jiaan; Xue, Qin; Wang, Niansong; Huang, Yunxia; Liu, Fang; Hu, Yizhou; Hu, Bing

    2013-08-01

    The aim of this study was to evaluate the feasibility of using power Doppler ultrasound (PDUS) to detect changes in the sacroiliac joint regions after infliximab (an anti-TNF-α blocker) treatment in active axial ankylosing spondylitis (AS) patients. A total of 110 sacroiliac joints in 55 patients with active AS were detected by PDUS before and after the infliximab treatment. The color flow signals inside the sacroiliac joints were observed, and the resistance index (RI) was measured. The clinical condition of the AS patients was improved compared with their condition before the infliximab treatment. Before the treatment, color flow signals were observed in 103 joints, and the mean RI value was 0.56 ± 0.06. Three months after the first infliximab treatment, color flow signals were observed in 50 joints, and the mean RI value was 0.87 ± 0.11. There were more blood flow signals in the sacroiliac joints before the infliximab treatment in patients with active AS (p < 0.01), and the mean RI value was higher after the infliximab treatment (p < 0.01). The blood flow signals in the sacroiliac joints became weaker or even disappeared and the RI values increased in patients with active sacroiliitis after infliximab treatment. This result shows that PDUS can be used in the follow-up of patients with axial AS.

  9. Wireless ultrasound pitch-catch sensor powered by microwave energy

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Yao, Jun; Huang, Haiying

    2015-03-01

    This paper presents a compact, batteryless wireless ultrasound pitch-catch system that wirelessly transmits the excitation signals to the actuator installed on the structure, and acquires the ultrasound sensing signal from the wireless sensor. The principle of frequency conversion is used to transform the ultrasound signals to microwave signals so that it can be wirelessly transmitted without digitization. As such, the power hungry digital-to-analog data conversion at the wireless actuator is eliminated. The wireless sensor node is equipped with a low power amplifier, which can be powered continuously by a microwave energy harvester. In addition, compact microstrip patch antennas are implemented for wireless transmissions, which help to achieve a compact interrogation unit.

  10. Colour Doppler ultrasound hemodynamic characteristics of patients with priapism before and after therapeutic interventions.

    PubMed

    Chiou, Rei K; Aggarwal, Himanshu; Chiou, Christopher R; Broughton, Fleur; Liu, Susan

    2009-08-01

    BACKGROUND: Information in the literature on the hemodynamic characteristics of priapism, especially after therapeutic intervention, is very limited. We analyzed our colour Doppler ultrasound (CDU) studies performed for patients with various durations of priapism before and after therapeutic intervention. METHODS: We reviewed 52 CDU studies for 24 patients with priapism before and after treatment for the period 1997-2007. The duration of priapism ranged from 4 hours to 8 days. We performed 17 CDU studies in 8 patients who presented with a duration of priapism of 7 hours or less, 9 studies in 4 patients who presented with duration of priapism of more than 20 hours, 23 studies in 11 patients referred to us after they had failed prior therapeutic intervention at other institutions and 3 studies in 1 patient with priapism related to perineal trauma. RESULTS: Among the 8 patients who presented with a duration of priapism of 7 hours or less, CDU studies on presentation showed detectible cavernosal arterial flow in all except 1 study. Among the 4 patients who presented with a duration of more than 20 hours, the studies showed no detectible cavernosal arterial blood flow. We repeated CDU studies after therapeutic intervention, and they showed restoration of cavernosal arterial flow with relief of veno-occlusive status. Among the 11 patients in whom prior treatments failed before they were referred to us, CDU studies performed on presentation showed no detectible cavernosal arterial flow in 10 of the 11 patients. We performed 12 CDU studies in 8 patients after placing a penile cavernosa-dorsal vein (CD) shunt. We observed the presence of blood flow in the CD shunt, indicating its patency in all 8 patients. Some patients showed high cavernosal arterial flow (peak systolic velocity [PSV] up to 27.6 cm/s) after surgery. These patients appeared to have residual priapism of primarily arteriogenic status that improved after observation. CONCLUSION: After therapeutic intervention

  11. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  12. Focal bowel wall changes detected with colour Doppler ultrasound: diagnostic value in acute non-diverticular diseases of the colon.

    PubMed

    Danse, E M; Jamart, J; Hoang, P; Laterre, P F; Kartheuser, A; Van Beers, B E

    2004-11-01

    We performed a study to determine if colour Doppler findings may help to identify the cause of wall thickening in acute non-diverticular diseases of the colon. The study group included 66 patients admitted to the emergency department with a final diagnosis of infectious colitis (n=23), inflammatory colitis (n=10), ischaemic colitis (n=23) and malignant tumours (n=10). The following ultrasound features were assessed: maximal wall thickness, wall stratification, arterial flow in the colonic wall and arteriolar resistive index. Higher values of wall thickness were observed in malignant tumour (18.2+/-6.2 mm, p<0.001). Moderately thickened wall (6.6+/-1.3 mm, p< or =0.06), preserved stratification (90% versus 46% in the remainder of the study population) and lower resistive index (0.51+/-0.10, p< or =0.05) were significantly related to inflammatory colitis. Absence of arterial flow was more frequently observed in ischaemia (43% versus 12% in the remainder of the study population). In conclusion, despite some overlap, both ultrasound and colour Doppler features are helpful in the differential diagnosis of colonic thickening related to non-diverticular colonic lesions.

  13. Accuracy of velocity and shear rate measurements using pulsed Doppler ultrasound: a comparison of signal analysis techniques.

    PubMed

    Markou, C P; Ku, D N

    1991-01-01

    An experimental investigation was instituted to evaluate the performance of Doppler ultrasound signal processing techniques for measuring fluid velocity under well-defined flow conditions using a 10-MHz multigated pulsed ultrasound instrument. Conditions of fully developed flow in a rigid, circular tube were varied over a Reynolds number range between 500 and 8000. The velocity across the tube was determined using analog and digital zero crossing detectors and three digital spectrum estimators. Determination of the Doppler frequency from analog or digital zero crossing detectors gave accurate velocity values for laminar and moderately turbulent flow away from the wall (0.969 less than or equal to r less than or equal to 0.986). Three digital spectrum estimators, Fast Fourier Transform, Burg autoregressive method, and minimum variance method, were slightly more accurate than the zero crossing detector (0.984 less than or equal to r less than or equal to 0.994), especially at points close to the walls and with higher levels of turbulence. Steep velocity gradients and transit-time-effects from high velocities produced significantly larger errors in velocity measurement. Wall shear rate estimates were most precise when calculated using the position of the wall and two velocity points. The calculated wall shears were within 20%-30% of theoretically predicted values.

  14. The Thermodynamic and Kinetic Aspects of Power Ultrasound Processes

    NASA Astrophysics Data System (ADS)

    Feng, Hao

    Most high intensity or power ultrasound applications involve a special transmission mode of sound waves in a medium that is composed of consecutive compressions and rarefactions. Since the propagation of such longitudinal waves is normally associated with a liquid medium, the use of power ultrasound is often termed as sonication. When the negative pressure in the rarefaction phase surpasses the tensile stress of the liquid, the liquid will be torn apart and cavities will be formed (Leighton, 1994). The inception of cavitation and the subsequent mechanical and chemical effects rising from the cavitation activity enable interactions between the acoustic energy and food and biological systems being processed. Such interactions take place at microscopic levels as the average diameters of cavitation bubbles are at 150-170 μm, for bubbles generated in water by 20 kHz ultrasound transducers (Awad, 1996; Vago, 1992).

  15. Echo contrast-enhanced three-dimensional power Doppler of intracranial arteries.

    PubMed

    Postert, T; Braun, B; Pfundtner, N; Sprengelmeyer, R; Meves, S; Przuntek, H; Büttner, T

    1998-09-01

    The purpose of this study was to evaluate the potential of contrast-enhanced three-dimensional (3-D) power Doppler (CE3DPD) in the assessment of intracranial vascular structures, and to compare the results with unenhanced 3-D power Doppler (3DPD) and magnetic resonance angiography (MRA) findings. We insonated 25 patients without cerebrovascular diseases through the temporal bone window using 3DPD and CE3DPD; for comparison, 13 patients underwent MRA. Identification rates of vascular segments and of small branches of intracranial vessels were evaluated by two independent investigators blinded to MRA results. In 21 patients with adequate insonation conditions, CE3DPD significantly improved identification rates compared to 3DPD for the complete visualization of the P1 segment (80.9 vs. 19.0%, p < 0.005, P2 segment (80.9 vs. 42.8%, p < 0.05 and A1 segment (85.7 vs. 38.1%, p < 0.005). Furthermore, CE3DPD depicted, in significantly more examinations, branches of the middle (MCA) and posterior cerebral artery (PCA). Interobserver agreement was higher than 95% for the main intracranial segments and branches of the MCA, but relatively low (80.1-85.7%) for branches of the PCA. In comparison to CE3DPD, MRA identified only parieto-occipital branches of the PCA, temporal branches of the MCA, frontal branches of the anterior cerebral artery and the MCA bifurcation more frequently and accurately. In 4 patients with inadequate acoustic temporal bone windows, the application of a galactose-based microbubble suspension allowed clear 3-D visualization of almost all major intracranial vascular segments and some branches of the large arteries. In conclusion, CE3DPD is a more sensitive ultrasonic tool compared to unenhanced 3-D reconstructions. It makes 3-D ultrasound imaging of the basal cerebral circulation easier to perform and interpret, by providing an improved spatially oriented display of image position. As such, this method may increase operator diagnostic confidence level under

  16. Wireless ultrasound-powered biotelemetry for implants.

    PubMed

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  17. Laser backscattering analytical model of Doppler power spectra about rotating convex quadric bodies of revolution

    NASA Astrophysics Data System (ADS)

    Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua

    2010-01-01

    We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.

  18. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  19. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  20. Role of 3D power Doppler sonography in early prenatal diagnosis of Galen vein aneurysm

    PubMed Central

    Ergenoğlu, Mete Ahmet; Yeniel, Ahmet Özgür; Akdemir, Ali; Akercan, Fuat; Karadadaş, Nedim

    2013-01-01

    Vein of Galen aneurysm malformation (VGAM) is a rare congenital vascular anomaly. Although the cause of VGAM remains to be elucidated, the current hypothesis is persistence of the embryonic vascular supply, which leads to progressive enlargement and formation of the aneurysmal component of a typical VGAM. Here, we present a 36-year-old woman at 23 weeks’ gestation (gravida 3, para 2) who was evaluated using 3D power Doppler sonography for the prenatal diagnosis of a vein of Galen aneurysm. Investigation using 3D power Doppler sonography allowed for a non-invasive yet diffuse and detailed prenatal assessment of VGAM. Thus, we suggest that prenatal sonography with 3D power Doppler may be an option in cases of VGAM. PMID:24592100

  1. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging.

    PubMed

    D'Ausilio, A; Maffongelli, L; Bartoli, E; Campanella, M; Ferrari, E; Berry, J; Fadiga, L

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners' tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan.

  2. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler.

    PubMed

    Soler, Marta; Dominguez, Elisabet; Lucas, Xiomara; Novellas, Rosa; Gomes-Coelho, Kassia Valeria; Espada, Yvonne; Agut, Amalia

    2016-08-01

    The aim of this study was to evaluate whether the comparison between the ultrasonographic features of canine mammary tumours, assessed by B-Mode, colour Doppler, power Doppler, spectral Doppler, and histopathologic features, would help to differentiate if a tumour is benign or malignant. Ultrasonographic examinations of 104 tumours were performed. Volume, margins, presence of a capsule, echotexture and presence and distribution of the vascular flow of the tumours were evaluated. All the tumours were surgically removed, submitted for histopathologic examination and classified in two groups: Group I (benign tumours) and Group II (malignant tumours). Echotexture was the only parameter evaluated by B-Mode ultrasonography where significant differences were found (p<0.01), with tumours in Group I being homogeneous and tumours in Group II presenting greater heterogeneity. Presence of vascular flow was observed in most of the tumours from both groups and no differences between them were found. Regarding flow distribution, significant differences were observed between groups (p<0.05). In benign tumours, the most common vascular pattern was the peripheral, showing significant differences (p<0.05) compared to mixed and central patterns. In malignant tumours the mixed pattern was the most frequent. Also significant differences among other patterns (peripheral and central) were found. Concerning vascular resistivity and pulsatility indexes, there were no significant differences between the two groups. The echotexture and type of vascular flow pattern of canine mammary gland tumours may help, in a first examination of the tumour, to differentiate between benign and malignant tumours; however to reach a definitive diagnosis histological study is required.

  3. New adaptive clutter rejection based on spectral analysis for ultrasound color Doppler imaging: phantom and in vivo abdominal study.

    PubMed

    Geunyong Park; Sunmi Yeo; Jae Jin Lee; Changhan Yoon; Hyun-Woo Koh; Hyungjoon Lim; Youngtae Kim; Hwan Shim; Yangmo Yoo

    2014-01-01

    Effective rejection of time-varying clutter originating from slowly moving vessels and surrounding tissues is important for depicting hemodynamics in ultrasound color Doppler imaging (CDI). In this paper, a new adaptive clutter rejection method based on spectral analysis (ACR-SA) is presented for suppressing nonstationary clutter. In ACR-SA, tissue and flow characteristics are analyzed by singular value decomposition and tissue acceleration of backscattered Doppler signals to determine an appropriate clutter filter from a set of clutter filters. To evaluate the ACR-SA method, 20 frames of complex baseband data were acquired by a commercial ultrasound system equipped with a research package (Accuvix V10, Samsung Medison, Seoul, Korea) using a 3.5-MHz convex array probe by introducing tissue movements to the flow phantom (Gammex 1425 A LE, Gammex, Middleton, WI, USA). In addition, 20 frames of in vivo abdominal data from five volunteers were captured. From the phantom experiment, the ACR-SA method provided 2.43 dB (p <; 0.001) and 1.09 dB ( ) improvements in flow signal-to-clutter ratio (SCR) compared to static (STA) and down-mixing (ACR-DM) methods. Similarly, it showed smaller values in fractional residual clutter area (FRCA) compared to the STA and ACR-DM methods (i.e., 2.3% versus 5.4% and 3.7%, respectively, ). The consistent improvements in SCR from the proposed ACR-SA method were obtained with the in vivo abdominal data (i.e., 4.97 dB and 3.39 dB over STA and ACR-DM, respectively). The ACR-SA method showed less than 1% FRCA values for all in vivo abdominal data. These results indicate that the proposed ACR-SA method can improve image quality in CDI by providing enhanced rejection of nonstationary clutter.

  4. Operator Auditory Perception and Spectral Quantification of Umbilical Artery Doppler Ultrasound Signals

    PubMed Central

    Thuring, Ann; Brännström, K. Jonas; Ewerlöf, Maria; Hernandez-Andrade, Edgar; Ley, David; Lingman, Göran; Liuba, Karina; Maršál, Karel; Jansson, Tomas

    2013-01-01

    Objective An experienced sonographer can by listening to the Doppler audio signals perceive various timbres that distinguish different types of umbilical artery flow despite an unchanged pulsatility index (PI). Our aim was to develop an objective measure of the Doppler audio signals recorded from fetoplacental circulation in a sheep model. Methods Various degrees of pathological flow velocity waveforms in the umbilical artery, similar to those in human complicated pregnancies, were induced by microsphere embolization of the placental bed (embolization model, 7 lamb fetuses, 370 Doppler recordings) or by fetal hemodilution (anemia model, 4 lamb fetuses, 184 recordings). A subjective 11-step operator auditory scale (OAS) was related to conventional Doppler parameters, PI and time average mean velocity (TAM), and to sound frequency analysis of Doppler signals (sound frequency with the maximum energy content [MAXpeak] and frequency band at maximum level minus 15 dB [MAXpeak-15 dB] over several heart cycles). Results We found a negative correlation between the OAS and PI: median Rho −0.73 (range −0.35– −0.94) and −0.68 (range −0.57– −0.78) in the two lamb models, respectively. There was a positive correlation between OAS and TAM in both models: median Rho 0.80 (range 0.58–0.95) and 0.90 (range 0.78–0.95), respectively. A strong correlation was found between TAM and the results of sound spectrum analysis; in the embolization model the median r was 0.91 (range 0.88–0.97) for MAXpeak and 0.91 (range 0.82–0.98) for MAXpeak-15 dB. In the anemia model, the corresponding values were 0.92 (range 0.78–0.96) and 0.96 (range 0.89–0.98), respectively. Conclusion Audio-spectrum analysis reflects the subjective perception of Doppler sound signals in the umbilical artery and has a strong correlation to TAM-velocity. This information might be of importance for clinical management of complicated pregnancies as an addition to conventional Doppler parameters

  5. Audio spectrum analysis of umbilical artery Doppler ultrasound signals applied to a clinical material.

    PubMed

    Thuring, Ann; Brännström, K Jonas; Jansson, Tomas; Maršál, Karel

    2014-12-01

    Analysis of umbilical artery flow velocity waveforms characterized by pulsatility index (PI) is used to evaluate fetoplacental circulation in high-risk pregnancies. However, an experienced sonographer may be able to further differentiate between various timbres of Doppler audio signals. Recently, we have developed a method for objective audio signal characterization; the method has been tested in an animal model. In the present pilot study, the method was for the first time applied to human pregnancies. Doppler umbilical artery velocimetry was performed in 13 preterm fetuses before and after two doses of 12 mg betamethasone. The auditory measure defined by the frequency band where the spectral energy had dropped 15 dB from its maximum level (MAXpeak-15 dB ), increased two days after betamethasone administration (p = 0.001) parallel with a less pronounced decrease in PI (p = 0.04). The new auditory parameter MAXpeak-15 dB reflected the changes more sensitively than the PI did.

  6. [Doppler ultrasound assisted hemorrhoid artery ligation. A new therapy in symptomatic hemorrhoids].

    PubMed

    Arnold, S; Antonietti, E; Rollinger, G; Scheyer, M

    2002-03-01

    In 1995, Morinaga et al. (Japan) reported on a new technique in the treatment of hemorrhoids. We report the results of our first 105 patients thus treated. By a specially designed proctoscope coupled with a Doppler transducer, the hemorrhoidal arteries are looked for and ligated. All stages of hemorrhoid were treated. This method is painless, successful, and has a low rate of complications. It is for outpatients and is an alternative to all other methods in the treatment of hemorrhoids.

  7. Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound.

    PubMed

    David, J Y; Jones, S A; Giddens, D P

    1991-06-01

    Four spectral analysis techniques were applied to pulsed Doppler ultrasonic quadrature signals to compare the relative merits of each technique for estimation of flow velocity and Doppler spectra. The four techniques were 1) the fast Fourier transform method, 2) the maximum likelihood method, 3) the Burg autoregressive algorithm, and 4) the modified covariance approach to autoregressive modeling. Both simulated signals and signals obtained from an in vitro flow system were studied. Optimal parameter values (e.g., model orders) were determined for each method, and the effects of signal-to-noise ratio and signal bandwidth were investigated. The modern spectral analysis techniques were shown to be superior to Fourier techniques in most circumstances, provided the model order was chosen appropriately. Robustness considerations tended to recommend the maximum likelihood method for both velocity and spectral estimation. Despite the restrictions of steady laminar flow, the results provide important basic information concerning the applicability of modern spectral analysis techniques to Doppler ultrasonic evaluation of arterial disease.

  8. Color Doppler Ultrasound Velocimetry Flow Reconstruction using Vorticity-Streamfunction Formulation

    NASA Astrophysics Data System (ADS)

    Meyers, Brett; Vlachos, Pavlos; Goergen, Craig; Scalo, Carlo

    2016-11-01

    Clinicians commonly utilize Color Doppler imaging to qualitatively assess the velocity in patient cardiac or arterial flows. However Color Doppler velocity are restricted to two-dimensional one-component measurements. Recently new methods have been proposed to reconstruct a two-component velocity field from such data. Vector Flow Mapping (VFM), in particular, utilizes the conservation of mass to reconstruct the flow. However, this method over-simplifies the influence of wall and surrounding blood motion on local measurements, which produce large, non-physical velocity gradients, requiring excessive smoothing operations to remove. We propose a new approach based on the Vorticity-Stream Function (Ψ- ω) formulation that yields more physiologically accurate velocity gradients and avoids any added smoothing operations. Zero-penetration conditions are specified at the walls, removing the need for measurement of wall velocity from additional scans, which introduce further uncertainties in the reconstruction. Inflow and outflow boundary conditions are incorporated by prescribing Dirichlet boundary conditions. The proposed solver is compared against the VFM using computational data to evaluate measurement improvement. Finally we demonstrate the method by evaluating murine left ventricle Color Doppler scans.

  9. Signal losses with real-time three-dimensional power Doppler imaging.

    PubMed

    Garcia, Damien; Fenech, Marianne; Qin, Zhao; Soulez, Gilles; Cloutier, Guy

    2007-10-01

    Power Doppler imaging (PDI) has been shown to be influenced by the wall filter when assessing arterial stenoses. Real-time 3-D Doppler imaging may likely become a widespread practice in the near future, but how the wall filter could affect PDI during the cardiac cycle has not been investigated. The objective of the study was to demonstrate that the wall filter may produce unexpected major signal losses in real-time 3-D PDI. To test our hypothesis, we first validated binary images obtained from analytical simulations with in vitro PDI acquisitions performed in a tube under pulsatile flow conditions. We then simulated PDI images in the presence of a severe stenosis, considering physiological conditions by finite element modeling. Power Doppler imaging simulations revealed important signal losses within the lumen area at different instants of the flow cycle, and there was a very good concordance between measured and predicted PDI binary images in the tube. Our results show that the wall filter may induce severe PDI signal losses that could negatively influence the assessment of vascular stenosis. Clinicians should therefore be aware of this cause of signal loss to properly interpret power Doppler angiographic images.

  10. Contrast-enhanced ultrasound in combination with color Doppler ultrasound can improve the diagnostic performance of focal nodular hyperplasia and hepatocellular adenoma.

    PubMed

    Kong, Wen-Tao; Wang, Wen-Ping; Huang, Bei-Jian; Ding, Hong; Mao, Feng; Si, Qin

    2015-04-01

    The aim of our study was to evaluate the value of combining color Doppler ultrasound (CDUS) with contrast-enhanced ultrasound (CEUS) in identifying and comparing features of focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA). Thirty-eight patients with FNH (n = 28) or HCA (n = 10), whose diagnoses were later confirmed by pathology, were examined with conventional ultrasonography and CEUS between 2010 and 2013. Two doctors blinded to the pathology results independently reviewed the conventional ultrasound and CEUS images and then reached a consensus through discussion. The following parameters evaluated for all lesions included vascularity pattern on CDUS or CEUS, enhancement characteristics on CEUS and the presence of a central scar. Statistical analysis was performed with the independent sample t-test and Fisher exact test. On CDUS, FNH was characterized by the presence of abundant blood flow signals exhibiting dendritic (53.6%, 15/28) and spoke-wheel (28.6%, 8/28) patterns, whereas blood flow signal of HCA was slightly less than FNH and often showed subcapsular short rod-like (50%, 5/10) appearance. On CEUS, the most common arterial enhancement pattern was centrifugal or homogeneous enhancement in FNH (both, 12/28, 42.9%) and homogeneous enhancement in HCA (6/10, 60%). Spoke-wheel arteries, feeding artery and central scar were detected in 5 (17.9%), 8 (28.6%) and 5 (17.9%) of 28 FNHs. Hypo-echogenic pattern during delayed phase was more common in HCA (60%, 6/10) than in FNH (3/28, 10.7%) (p = 0.010). A total of 25 (25/38, 65.8%) lesions were correctly assessed using CDUS in combination with CEUS, whereas the number decreased to 15 (15/38, 39.5%) when CDUS was used alone (p = 0.038). The areas under the ROC curves before and after CEUS administration were 0.768 and 0.879, respectively. In conclusion, CEUS in combination with CDUS improve the diagnostic performance of FNH and HCA. Blood signal of HCA was less than FNH on CDUS. The differences of

  11. Comparison of dynamic contrast enhanced MRI and Doppler ultrasound in the pre-operative assessment of the portal venous system.

    PubMed

    Naik, K S; Ward, J; Irving, H C; Robinson, P J

    1997-01-01

    The purpose of this study was to compare dynamic contrast enhanced MRI (DCEMR) with Doppler ultrasound (US) in the assessment of portal venous anatomy and to analyse the causes of discrepancy. Over a 1 year period, 97 patients undergoing assessment prior to hepatic surgery underwent imaging of the liver and portal venous system using US with colour and spectral Doppler and MRI with axial T2 weighted spin echo (SE) and coronal oblique T1 weighted rapid gradient echo (GRE) imaging before and immediately after bolus injection of Gd-DTPA (0.1 mmol kg-1). When the US and MRI findings were discrepant, the images were reviewed by two observers and compared with surgical findings. US and DCEMR were concordant in 90 patients (portal vein patent in 80, occluded in 10). In three patients with cirrhosis and gross ascites the portal vein was reported as occluded on US and patent on MRI; surgery confirmed the MRI findings. In one patient the portal vein was patient on US but not on MRI, but there was a 3 week interval between the examinations. In three patients the portal vein was patent on US, but MRI detected occlusion of intrahepatic portal vein branches in two, and encasement of an intrahepatic branch in the third case. Spontaneous splenorenal shunts were seen in 15 patients only on MRI; varices were seen in 39 patients on MRI and in 22 patients on US. Both US and DCEMR contribute to the pre-operative assessment of the portal venous system. MRI provides additional information over US in assessing intrahepatic portal branches and detecting varices and splenorenal shunts, and is recommended for all surgical candidates and in patients with abnormal portal venous anatomy and equivocal US findings.

  12. Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?

    PubMed

    Minhas, Jatinder S; Syed, Nazia F; Haunton, Victoria J; Panerai, Ronney B; Robinson, Thompson G; Mistri, Amit K

    2016-05-01

    Reliability of cerebral blood flow velocity (CBFV) and dynamic cerebral autoregulation estimates (expressed as autoregulation index: ARI) using spontaneous fluctuations in blood pressure (BP) has been demonstrated. However, reliability during co-administration of O2 and CO2 is unknown. Bilateral CBFV (using transcranial Doppler), BP and RR interval recordings were performed in healthy volunteers (seven males, four females, age: 54  ±  10 years) on two occasions over 9  ±  4 d. Four 5 min recordings were made whilst breathing air (A), then 5%CO2 (C), 80%O2 (O) and mixed O2  +  CO2 (M), in random order. CBFV was recorded; ARI was calculated using transfer function analysis. Precision was quantified as within-visit standard error of measurement (SEM) and the coefficient of variation (CV). CBFV and ARI estimates with A (SEM: 3.85 & 0.87; CV: 7.5% & 17.8%, respectively) were comparable to a previous reproducibility study. The SEM and CV with C and O were similar, though higher values were noted with M; Bland-Altman plots indicated no significant bias across all gases for CBFV and ARI (bias  <0.06 cm s(-1) and  <0.05, respectively). Thus, transcranial-Doppler-ultrasound-estimated CBFV and ARI during inhalation of O2 and CO2 have acceptable levels of reproducibility and can be used to study the effect of these gases on cerebral haemodynamics.

  13. Mathematical modelling of the human foetal cardiovascular system based on Doppler ultrasound data.

    PubMed

    Pennati, G; Bellotti, M; Fumero, R

    1997-06-01

    A lumped parameter model of the human foetal circulation primarily based on blood velocity data derived from the Doppler analysis was developed in this study. It consists of two major parts, the heart and the foetal vascular circulation. The heart model accounts for both ventricular and atrial contractility. The circulation was divided into 19 compliant vascular compartments in order to describe all of the clinically monitored sites. The model parameters refer to the final gestation period and were derived either from literature on foetal sheep circulation or from anatomical dimension monitoring of the human foetus. No control mechanism is incorporated into the model. The model was validated by comparing several index values of simulated velocity curves to those of the experimental Doppler waveforms. The mean and maximum percentual errors in the estimation of the experimental results by the model are 7.7% and 20.1%, respectively. Velocity and pressure tracings of the foetal circulation were investigated, as well as regional blood flow rate distribution.

  14. Assessment of cerebral autoregulation with transcranial Doppler sonography in poor bone windows using constant infusion of an ultrasound contrast agent.

    PubMed

    Lorenz, Matthias W; Thoelen, Nina; Loesel, Nadine; Lienerth, Christian; Gonzalez, Marilen; Humpich, Marek; Roelz, Waltraud; Dvorak, Florian; Sitzer, Matthias

    2008-03-01

    Cerebral autoregulation is an important pathophysiological and prognostic parameter for a variety of neurologic conditions. It can be assessed quickly and safely using transcranial Doppler sonography (TCD). In elderly patients, poor insonation conditions decrease the number of examinable patients and can cause a systematic bias in autoregulation parameters. The aim of this study was to investigate whether a constant infusion of an ultrasound contrast agent (Levovist((R))) can counteract these effects. We examined two cohorts of unselected neurologic patients. In 45 patients with good insonation windows (cohort 1), we used a thin aluminium foil between the skin and the TCD probe to artificially decrease the insonation quality. We determined two parameters of cerebral autoregulation (phase difference [PD] and a cross-correlation coefficient [Mx]) in native patients, with aluminium foil and with aluminium foil and a constant infusion of Levovist. In 30 patients with poor insonation windows (cohort 2), we measured the autoregulation twice, with and without an infusion of Levovist, to assess the reproducibility of the autoregulation parameters. In cohort 1, the foil model significantly decreased the Doppler signal quality, i.e., the mean spectrum energy decreased from 33.9 +/- 2.7 dB to 26.3 +/- 2.4 dB (p < 0.001). This introduced a significant bias to all autoregulation parameters (PD: decreased from 38.2 +/- 10.0 degrees to 27.9 +/- 12.5 degrees (p < 0.001); Mx: decreased from 0.308 +/- 0.170 to 0.254 +/- 0.162 (p < 0.01)). Both effects were compensated largely by a constant infusion of Levovist (300 mg/min). In cohort 2, infusion of the contrast agent at the same rate increased insonation quality, too, but to a lesser degree (27.4 +/- 2.4 dB to 32.0 +/- 3.7 dB, p < 0.001). This smaller increase did not cause a significant change in the autoregulation parameters, but the reproducibility of the PD was significantly improved (intraclass coefficient coefficient [ICC] 0

  15. Ultrasound

    MedlinePlus

    ... your test will be done. Alternative Names Sonogram Images Abdominal ultrasound Ultrasound in pregnancy 17 week ultrasound ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  16. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  17. Semen quality, testicular B-mode and Doppler ultrasound, and serum testosterone concentrations in dogs with established infertility.

    PubMed

    de Souza, Mírley Barbosa; England, Gary C W; Mota Filho, Antônio Cavalcante; Ackermann, Camila Louise; Sousa, Carmen Vládia Soares; de Carvalho, Gabriela Guedelha; Silva, Herlon Victor Rodrigues; Pinto, José Nicodemos; Linhares, Jussiara Candeira Spíndola; Oba, Eunice; da Silva, Lúcia Daniel Machado

    2015-09-15

    Retrospective examination of breeding records enabled the identification of 10 dogs of normal fertility and 10 dogs with established infertility of at least 12 months of duration. Comparisons of testicular palpation, semen evaluation, testicular ultrasound examination, Doppler ultrasound measurement of testicular artery blood flow, and measurement of serum testosterone concentration were made between the two groups over weekly examinations performed on three occasions. There were no differences in testicular volume (cm(3)) between the two groups (fertile right testis = 10.77 ± 1.66; fertile left testis = 12.17 ± 2.22); (infertile right testis = 10.25 ± 3.33; infertile left testis = 11.37 ± 3.30), although the infertile dogs all had subjectively softer testes compared with the fertile dogs. Infertile dogs were either azoospermic or when they ejaculated, they had lower sperm concentration, sperm motility, and percentage of morphologically normal spermatozoa than fertile dogs. Furthermore, infertile dogs had reduced sperm membrane integrity measured via the hypoosmotic swelling test. Infertile dogs had significantly lower basal serum testosterone concentrations (1.40 ± 0.62 ng/mL) than fertile dogs (1.81 ± 0.87 ng/mL; P < 0.05). There were subjective differences in testicular echogenicity in some of the infertile dogs, and important differences in testicular artery blood flow with lower peak systolic and end-diastolic velocities measured in the distal supratesticular artery, marginal testicular artery, and intratesticular artery of infertile dogs (P < 0.05). Notably, resistance index and pulsatility index did not differ between infertile and fertile dogs. These findings report important differences between infertile and fertile dogs which may be detected within an expanded breeding soundness examination.

  18. 5D interactive real time Doppler ultrasound visualization of the heart

    NASA Astrophysics Data System (ADS)

    Heid, Volker; Evers, Harald; Henn, Christian; Glombitza, Gerald; Meinzer, Hans-Peter

    2000-04-01

    Heart valve insufficiencies can optimally be assessed using transesophageal, triggered, three-dimensional ultrasound imaging. The dynamic ultrasound data contain morphological as well as functional components which are recorded and displayed simultaneously. It allows the visualization of intracardiac motion which is an important parameter to detect abnormal flow caused by defect valves. A realtime reconstruction is desired to get a spatial impression on the one hand and to interactively clip parts of the volume on the other hand. OpenGL Volumizer is used for visualization. Scalability of the visualization was tested with respect to different workstations and graphics resources using a Multipipe Utility library (MPU). The combination of both APIs enables a visualization of volumetric and functional data with frame rates up to 10 frames per second. By using the proposed method, it is possible to visualize the jet in the original color-coding which is employed during a conventional two- dimensional examination for displaying the velocity values. A good scalability from low cost up to high end graphic workstations is given by the use of the MPU. The quality of the resulting 3D images allows exact differentiation of heart valve insufficiencies to support the diagnostic procedure.

  19. Can simple clinical features be used to identify patients with severe carotid stenosis on Doppler ultrasound?

    PubMed Central

    Mead, G.; Wardlaw, J.; Lewis, S.; McDowall, M.; Dennis, M.

    1999-01-01

    OBJECTIVES—Carotid endarterectomy reduces the risk of stroke in symptomatic patients with severe ipsilateral carotid stenosis. Symptomatic patients should therefore undergo carotid Doppler imaging, but in some centres access to imaging is limited. It was therefore investigated whether simple clinical features alone or in combination could be used to identify patients with severe carotid stenosis, so that they could be referred preferentially for carotid imaging.
METHODS—1041 patients with acute stroke, cerebral or retinal transient ischaemic attacks, and retinal strokes admitted to Western General Hospital or seen in neurovascular clinics were assessed by a stroke physician. Their carotid arteries were investigated using colour Doppler imaging by a consultant neuroradiologist. Patients with primary intracerebral haemorrhage, total anterior circulation strokes, posterior circulation strokes, or posterior circulation transient ischaemic attacks were excluded because carotid surgery would be inappropriate.
RESULTS—726 patients were used in the analysis. Stepwise logistic regression showed that there were significant positive associations between severe carotid stenosis and an ipsilateral bruit, diabetes mellitus, and previous transient ischaemic attacks; and a negative association with lacunar events. The strategy with the highest specificity (97%) was "any three of these four features" but sensitivity was only 17%. The strategy with the highest sensitivity (99%) was to use one or more of the four features, but specificity was only 22%.
CONCLUSION—None of the strategies identified all patients with severe carotid stenosis with a reasonable specificity. When access to carotid imaging is severely limited, simple clinical features are of some use in prioritising patients for imaging, but access to carotid imaging should be improved. 

 PMID:9886444

  20. Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound.

    PubMed

    Zhou, Yu-Qing; Cahill, Lindsay S; Wong, Michael D; Seed, Mike; Macgowan, Christopher K; Sled, John G

    2014-08-15

    This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies.

  1. Enhanced Doppler reflectometry power response: physical optics and 2D full wave modelling

    NASA Astrophysics Data System (ADS)

    Pinzón, J. R.; Happel, T.; Blanco, E.; Conway, G. D.; Estrada, T.; Stroth, U.

    2017-03-01

    The power response of a Doppler reflectometer is investigated by means of the physical optics model; a simple model which considers basic scattering processes at the reflection layer. Apart from linear and saturated scattering regimes, non-linear regimes with an enhanced backscattered power are found. The different regimes are characterized and understood based on analytical calculations. The power response is also studied with two-dimensional full wave simulations, where the enhanced backscattered power regimes are also found in qualitative agreement with the physical optics results. The ordinary and extraordinary modes are compared for the same angle of incidence, with the conclusion that the ordinary mode is better suited for Doppler reflectometry turbulence level measurements due to the linearity of its response. The scattering efficiency is studied and a first approximation to describe it is proposed. At the end, the application of the physical optics results to experimental data analysis is discussed. In particular, a formula to assess the linearity of Doppler reflectometry measurements is provided.

  2. Transcranial Doppler ultrasound blood flow velocity and pulsatility index as systemic indicators for Alzheimer’s disease

    PubMed Central

    Roher, Alex E.; Garami, Zsolt; Tyas, Suzanne L.; Maarouf, Chera L.; Kokjohn, Tyler A.; Belohlavek, Marek; Vedders, Linda J.; Connor, Donald; Sabbagh, Marwan N.; Beach, Thomas G.; Emmerling, Mark R.

    2010-01-01

    Background Multiple lines of evidence suggest cardiovascular co-morbidities hasten the onset of Alzheimer’s disease (AD) or accelerate its course. Methods To evaluate the utility of cerebral vascular physical function/condition parameters as potential systemic indicators of AD, we employed transcranial Doppler (TCD) ultrasound to assess cerebral blood flow and vascular resistance of the 16 arterial segments comprising the circle of Willis and its major tributaries. Results Our study revealed decreased arterial mean flow velocity (MFV) and increased pulsatility index (PI) are associated with a clinical diagnosis of presumptive AD. Cerebral blood flow impairment revealed by these parameters reflects the global hemodynamic and structural consequences of a multifaceted disease process yielding diffuse congestive microvascular pathology, increased arterial rigidity, and decreased arterial compliance combined with putative age-associated cardiovascular output declines. Conclusions TCD evaluation offers direct physical confirmation of brain perfusion impairment and may ultimately provide a convenient, noninvasive means to assess the efficacy of medical interventions on cerebral blood flow or reveal incipient AD. In the near term, TCD-based direct assessments of brain perfusion may offer the prospect of preventing or mitigating AD simply by revealing patients who would benefit from interventions to improve circulatory system function. PMID:21388892

  3. Does cerebral lateralization develop? A study using functional transcranial Doppler ultrasound assessing lateralization for language production and visuospatial memory.

    PubMed

    Groen, Margriet A; Whitehouse, Andrew J O; Badcock, Nicholas A; Bishop, Dorothy V M

    2012-05-01

    In the majority of people, language production is lateralized to the left cerebral hemisphere and visuospatial skills to the right. However, questions remain as to when, how, and why humans arrive at this division of labor. In this study, we assessed cerebral lateralization for language production and for visuospatial memory using functional transcranial Doppler ultrasound in a group of 60 typically developing children between the ages of six and 16 years. The typical pattern of left-lateralized activation for language production and right-lateralized activation for visuospatial memory was found in the majority of the children (58%). No age-related change in direction or strength of lateralization was found for language production. In contrast, the strength of lateralization (independent of direction) for visuospatial memory function continued to increase with age. In addition, boys showed a trend for stronger right-hemisphere lateralization for visuospatial memory than girls, but there was no gender effect on language laterality. We tested whether having language and visuospatial functions in the same hemisphere was associated with poor cognitive performance and found no evidence for this "functional crowding" hypothesis. We did, however, find that children with left-lateralized language production had higher vocabulary and nonword reading age-adjusted standard scores than other children, regardless of the laterality of visuospatial memory. Thus, a link between language function and left-hemisphere lateralization exists, and cannot be explained in terms of maturational change.

  4. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  5. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels.

    PubMed

    Wallace, Sean; Logallo, Nicola; Faiz, Kashif W; Lund, Christian; Brucher, Rainer; Russell, David

    2014-04-01

    In theory, the power of a trans-cranial Doppler signal may be used to measure changes in blood flow and vessel diameter in addition to velocity. In this study, a flow index (FI) of relative changes in blood flow was derived from frequency-weighted Doppler power signals. The FI, plotted against velocity, was calibrated to the zero intercept with absent flow to reduce the effects of non-uniform vessel insonation. An area index was also calculated. FIs were compared with actual flow in four silicone tubes of different diameter at increasing flow rates and increasing hematocrit (Hct) in a closed-loop phantom model. FI values were strongly correlated with actual flow, at constant Hct, but varied substantially with changes in Hct. Percentage changes in area indexes, relative to the 4-mm tube, were strongly correlated with tube cross-sectional area. The implications of these results for in vivo use are discussed.

  6. Influence of Pulse Repetition Frequency on 3-D Power Doppler Quantification.

    PubMed

    Soares, Carlos A M; Pavan, Theo Z; Miyague, Andre H; Kudla, Marek; Martins, Wellington P

    2016-12-01

    Three-dimensional power Doppler quantification has limited application because of its high dependency on attenuation. The purpose of the study described here was to assess if different degrees of attenuation, depending on pulse repetition frequency (PRF) adjustment, alter 3-D power Doppler quantification in a region of 100% moving blood when using vascularization index, flow index and vascularization flow index (VFI). A cubic-shaped gelatin phantom with a 1.8-mm-internal-diameter silicon tube was used. The tube, placed at 45° to the phantom's surface, was filled with blood-mimicking fluid with as constant maximum velocity of 30 cm/s. Two different attenuation blocks (low and high attenuation) were alternatively placed between the phantom and the transvaginal transducer. One single observer acquired 10 data sets for each PRF level from 0.3 to 7.5 kHz, using the high- and low-attenuation blocks, for a total of 200 3-D power Doppler data sets. We assessed VFI from 1.5-mm-diameter spherical samples, virtually placed inside the tube, always at the same position. No difference was noted between high- and low-attenuation VFI values when using a PRF of 0.3 kHz. As PRF increased, it was observed that VFI quantification progressively differed between low and high attenuation. Also, a slope on VFI values for both high- and low-attenuation models could be observed when increasing PRF, particularly above 4.0 kHz. We concluded that PRF adjustment is very relevant when using VFI to quantify 3-D power Doppler signal.

  7. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    PubMed Central

    Jang, Jaeseong

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  8. Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2010-01-01

    Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).

  9. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  10. Use of Transcranial Doppler Ultrasound for Diagnosis of Brain Death in Patients with Severe Cerebral Injury.

    PubMed

    Li, Yuequn; Liu, Shangwei; Xun, Fangfang; Liu, Zhan; Huang, Xiuying

    2016-06-06

    BACKGROUND The aim of this study was to investigate the use of transcranial Doppler (TCD) for diagnosis of brain death in patients with severe cerebral injury. MATERIAL AND METHODS This retrospective study enrolled 42 patients based on inclusion and exclusion criteria. All patients were divided into either the brain death group or the survival group according to prognosis. Blood flow of the brain was examined by TCD and analyzed for spectrum changes. The average blood flow velocity (Vm), pulse index (PI), and diastolic blood flow in reverse (RDF) were recorded and compared. RESULTS The data demonstrated that the average speed of bilateral middle cerebral artery blood flow in the brain death group was significantly reduced (P<0.05). However, the PI of the brain death group increased significantly. Moreover, RDF spectrum and nail-like sharp peak spectrum of the brain death group was higher than in the survival group. CONCLUSIONS Due to its simplicity, high repeatability, and specificity, TCD combined with other methods is highly valuable for diagnosis of brain death in patients with severe brain injury.

  11. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.

    PubMed

    Fadel, Paul J; Keller, David M; Watanabe, Hitoshi; Raven, Peter B; Thomas, Gail D

    2004-04-01

    The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans (n = 13) and anesthetized rats (n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated (r = 0.80, P < 0.0001). Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated (r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.

  12. Studying cerebral hemodynamics and metabolism using simultaneous near-infrared spectroscopy and transcranial Doppler ultrasound: a hyperventilation and caffeine study

    PubMed Central

    Yang, Runze; Brugniaux, Julien; Dhaliwal, Harinder; Beaudin, Andrew E; Eliasziw, Misha; Poulin, Marc J; Dunn, Jeff F

    2015-01-01

    Caffeine is one of the most widely consumed psycho-stimulants in the world, yet little is known about its effects on brain oxygenation and metabolism. Using a double-blind, placebo-controlled, randomized cross-over study design, we combined transcranial Doppler ultrasound (TCD) and near-infrared spectroscopy (NIRS) to study caffeine's effect on middle cerebral artery peak blood flow velocity (Vp), brain tissue oxygenation (StO2), total hemoglobin (tHb), and cerebral oxygen metabolism (CMRO2) in five subjects. Hyperventilation-induced hypocapnia served as a control to verify the sensitivity of our measurements. During hypocapnia (∼16 mmHg below resting values), Vp decreased by 40.0 ± 2.4% (95% CI, P < 0.001), while StO2 and tHb decreased by 2.9 ± 0.3% and 2.6 ± 0.4%, respectively (P = 0.003 and P = 0.002, respectively). CMRO2, calculated using the Fick equation, was reduced by 29.3 ± 9% compared to the isocapnic-euoxia baseline (P < 0.001). In the pharmacological experiments, there was a significant decrease in Vp, StO2, and tHb after ingestion of 200 mg of caffeine compared with placebo. There was no significant difference in CMRO2 between caffeine and placebo. Both showed a CMRO2 decline compared to baseline showing the importance of a placebo control. In conclusion, this study showed that profound hypocapnia impairs cerebral oxidative metabolism. We provide new insight into the effects of caffeine on cerebral hemodynamics. Moreover, this study showed that multimodal NIRS/TCD is an excellent tool for studying brain hemodynamic responses to pharmacological interventions and physiological challenges. PMID:25907789

  13. Splanchnic Hemodynamics and Intestinal Vascularity in Crohn's Disease: An In Vivo Evaluation Using Doppler and Contrast-Enhanced Ultrasound and Biochemical Parameters.

    PubMed

    Maconi, Giovanni; Asthana, Anil K; Bolzacchini, Elena; Dell'Era, Alessandra; Furfaro, Federica; Bezzio, Cristina; Salvatore, Veronica; Maier, Jeanette A M

    2016-01-01

    Crohn's disease (CD) is characterized by inflammation and angiogenesis of affected bowel. We evaluated the correlation among vascularity of intestinal wall in CD, splanchnic hemodynamics, clinical activity and biochemical parameters of inflammation and angiogenesis. Sixteen patients with ileal CD and 10 healthy controls were investigated by means of Doppler ultrasound of the superior mesenteric artery and color Doppler and contrast-enhanced ultrasound of the ileal wall. In parallel, serum levels of vascular endothelial growth factor, tumor necrosis factor-α (TNF-α) and nitric oxide, before and 30 min after a standard meal, were evaluated. In CD patients, there was a significant post-prandial reduction in the resistance index and pulsatility index of the superior mesenteric artery, associated with increased levels of nitric oxide and decreased amounts of TNF-α. A correlation was observed between vascular endothelial growth factor and contrast-enhanced ultrasound parameters of intestinal wall vascularity (r = 0.63-0.71, p < 0.05) and between these parameters and superior mesenteric artery blood flow after fasting (resistance and pulsatility indexes: r = -0.64 and -0.72, p < 0.05). Our results revealed a post-prandial increase in nitric oxide and decrease in TNF-α in CD patients in vivo. They also confirm the role of vascular endothelial growth factor in angiogenesis and in pathologic vascular remodeling of CD and its effect on splanchnic blood flow.

  14. High-Power Ultrasound in Surface Cleaning and Decontamination

    NASA Astrophysics Data System (ADS)

    Awad, Sami B.

    High-power ultrasound is being widely utilized for decontamination in different industrial applications. The same technology is also being investigated as an effective tool for cleaning of components in the decontamination of produce. An understanding of the basic technology and how it works in cleaning various industrial parts should help in applying it on a large scale in the food industry. The technology has evolved throughout the past four decades. Different frequencies were developed and are now industrially available. The frequency range is from 20 kHz to 1 MHz. Current sound technology provides a uniform ultrasonic activity throughout the cleaning vessel, which was a major disadvantage in the earlier technology. The two main driving forces that affect cleaning of surfaces are cavitation and acoustic streaming. Both are generated as a result of the direct interaction of high-frequency sound waves with fluids.

  15. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  16. Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity.

    PubMed

    Cloutier, G; Qin, Z; Garcia, D; Soulez, G; Oliva, V; Durand, L G

    2000-11-01

    The objective of the project was to study the influence of various hemodynamic and rheologic factors on the accuracy of 3-D power Doppler angiography (PDA) for quantifying the percentage of area reduction of a stenotic artery along its longitudinal axis. The study was performed with a 3-D power Doppler ultrasound (US) imaging system and an in vitro mock flow model containing a simulated artery with a stenosis of 80% area reduction. Measurements were performed under steady and pulsatile flow conditions by circulating, at different flow rates, four types of fluid (porcine whole blood, porcine whole blood with a US contrast agent, porcine blood cell suspension and porcine blood cell suspension with a US contrast agent). A total of 120 measurements were performed. Computational simulations of the fluid dynamics in the vicinity of the axisymmetrical stenosis were performed with finite-element modeling (FEM) to locate and identify the PDA signal loss due to the wall filter of the US instrument. The performance of three segmentation algorithms used to delineate the vessel lumen on the PDA images was assessed and compared. It is shown that the type of fluid flowing in the phantom affects the echoicity of PDA images and the accuracy of the segmentation algorithms. The type of flow (steady or pulsatile) and the flow rate can also influence the PDA image accuracy, whereas the use of US contrast agent has no significant effect. For the conditions that would correspond to a US scan of a common femoral artery (whole blood flowing at a mean pulsatile flow rate of 450 mL min(-1)), the errors in the percentages of area reduction were 4.3 +/- 1.2% before the stenosis, -2.0 +/- 1.0% in the stenosis, 11.5 +/- 3.1% in the recirculation zone, and 2.8 +/- 1.7% after the stenosis, respectively. Based on the simulated blood flow patterns obtained with FEM, the lower accuracy in the recirculation zone can be attributed to the effect of the wall filter that removes low flow velocities. In

  17. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

  18. Ultrasound Annual, 1984

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1984-01-01

    The 1984 edition of Ultrasound Annual explores new applications of ultrasound in speech and swallowing and offers guidelines on the use of ultrasound and nuclear medicine in thyroid and biliary tract disease. Other areas covered include Doppler sonography of the abdomen, intraoperative abdominal ultrasound, sonography of the placenta, ultrasound of the neonatal head and abdomen, and sonographic echo patterns created by fat.

  19. Phentolamine re-dosing during penile dynamic colour Doppler ultrasound: a practical method to abolish a false diagnosis of venous leakage in patients with erectile dysfunction.

    PubMed

    Gontero, P; Sriprasad, S; Wilkins, C J; Donaldson, N; Muir, G H; Sidhu, P S

    2004-11-01

    Increased sympathetic tone may cause an equivocal response to a prostaglandin E1 (PGE1) penile Doppler ultrasound (US) examination interpreted as a venous leak. We evaluated the US parameters and erectile response to the addition of phentolamine to a PGE1 penile Doppler US examination to ascertain whether addition of phentolamine would abolish a suboptimal response. 32 patients (median age 29 years, range 17-70 years) with either a previous Doppler US pattern of venous leakage or a clinical suspicion of venogenic impotence, underwent Doppler US after a total dose of 20 microg of PGE1. Peak systolic velocity (PSV), end diastolic velocity (EDV) and grade of erection were documented. If erectile response was suboptimal irrespective of the EDV measurement, 2 mg-intracavernosal phentolamine was administered and measurements repeated. Six patients had a normal erectile response, the remaining 26 received phentolamine. A significant increase in PSV between baseline and 20 microg PGE1 (p<0.001) was observed in all cases. Following phentolamine there was a significant increase in grade of erection (p=0.0001) and a significant reduction in the EDV (p=0.0001). A reduction of the EDV to below 0.0 cm s(-1) was observed in 16 patients. Four patients with EDV <5.0 cm s(-1) but >0.0 cm s(-1) had improved erectile response following phentolamine while six showed persistent EDV elevation >5 cm s(-1). No priapism was documented. It is essential to ensure cavernosal relaxation using phentolamine before a Doppler US diagnosis of venous leak is made. This two-stage assessment will allow this to be done efficiently and with a low risk of priapism.

  20. Seminal, clinical and colour-Doppler ultrasound correlations of prostatitis-like symptoms in males of infertile couples.

    PubMed

    Lotti, F; Corona, G; Mondaini, N; Maseroli, E; Rossi, M; Filimberti, E; Noci, I; Forti, G; Maggi, M

    2014-01-01

    'Prostatitis-like symptoms' (PLS) are a cluster of bothersome conditions defined as 'perineal and/or ejaculatory pain or discomfort and National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) pain subdomain score ≥4' (Nickel's criteria). PLS may originate from the prostate or from other portions of the male genital tract. Although PLS could be associated with 'prostatitis', they should not be confused. The NIH-CPSI is considered the gold-standard for assessing PLS severity. Although previous studies investigated the impact of prostatitis, vesiculitis or epididymitis on semen parameters, correlations between their related symptoms and seminal or scrotal/transrectal colour-Doppler ultrasound (CDU) characteristics have not been carefully determined. And no previous study evaluated the CDU features of PLS in infertile men. This study was aimed at investigating possible associations among NIH-CPSI (total and subdomain) scores and PLS, with seminal, clinical and scrotal/transrectal CDU parameters in a cohort of males of infertile couples. PLS of 400 men (35.8 ± 7.2 years) with a suspected male factor were assessed by the NIH-CPSI. All patients underwent, during the same day, semen analysis, seminal plasma interleukin 8 (sIL-8, a marker of male genital tract inflammation), biochemical evaluation, urine/seminal cultures, scrotal/transrectal CDU. PLS was detected in 39 (9.8%) subjects. After adjusting for age, waist and total testosterone (TT), no association among NIH-CPSI (total or subdomain) scores or PLS and sperm parameters was observed. However, we found a positive association with current positive urine and/or seminal cultures, sIL-8 levels and CDU features suggestive of inflammation of the epididymis, seminal vesicles, prostate, but not of the testis. The aforementioned significant associations of PLS were further confirmed by comparing PLS patients with age-, waist- and TT-matched PLS-free patients (1 : 3 ratio). In conclusion, NIH

  1. Physiological aspects of the determination of comprehensive arterial inflows in the lower abdomen assessed by Doppler ultrasound

    PubMed Central

    2012-01-01

    Non-invasive measurement of splanchnic hemodynamics has been utilized in the clinical setting for diagnosis of gastro-intestinal disease, and for determining reserve blood flow (BF) distribution. However, previous studies that measured BF in a "single vessel with small size volume", such as the superior mesenteric and coeliac arteries, were concerned solely with the target organ in the gastrointestinal area, and therefore evaluation of alterations in these single arterial BFs under various states was sometimes limited to "small blood volumes", even though there was a relatively large change in flow. BF in the lower abdomen (BFAb) is potentially a useful indicator of the influence of comprehensive BF redistribution in cardiovascular and hepato-gastrointestinal disease, in the postprandial period, and in relation to physical exercise. BFAb can be determined theoretically using Doppler ultrasound by subtracting BF in the bilateral proximal femoral arteries (FAs) from BF in the upper abdominal aorta (Ao) above the coeliac trunk. Prior to acceptance of this method of determining a true BFAb value, it is necessary to obtain validated normal physiological data that represent the hemodynamic relationship between the three arteries. In determining BFAb, relative reliability was acceptably high (range in intra-class correlation coefficient: 0.85-0.97) for three arterial hemodynamic parameters (blood velocity, vessel diameter, and BF) in three repeated measurements obtained over three different days. Bland-Altman analysis of the three repeated measurements revealed that day-to-day physiological variation (potentially including measurement error) was within the acceptable minimum range (95% of confidence interval), calculated as the difference in hemodynamics between two measurements. Mean BF (ml/min) was 2951 ± 767 in Ao, 316 ± 97 in left FA, 313 ± 83 in right FA, and 2323 ± 703 in BFAb, which is in agreement with a previous study that measured the sum of BF in the major

  2. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  3. The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres.

    PubMed

    Turci, Francesco; Tomatis, Maura; Mantegna, Stefano; Cravotto, Giancarlo; Fubini, Bice

    2007-10-01

    The simultaneous action of power ultrasound and oxalic acid, as a chelating agent, rapidly converts chrysotile asbestos into water soluble material and a non-asbestos debris, not classifiable as hazardous under worldwide safety regulations.

  4. Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2004-03-01

    The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can

  5. Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Lu, Cheng-Biao; Li, Xiao-Li

    2015-08-01

    Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. Project supported by the National Natural Science Foundation of China (Grant No. 61273063), China Postdoctoral Science Foundation (Grant No. 2013M540215), and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).

  6. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  7. Doppler ultrasound in the evaluation of cirrhotic patients: the prevalence of intrahepatic arteriovenous shunting, and implications for diagnosis of hepatocellular carcinoma.

    PubMed

    Taylor, C R; Garcia-Tsao, G; Henson, B; Case, C Q; Taylor, K J

    1997-01-01

    To establish the prevalence and significance of Doppler-detected hepatic arteriovenous shunting (AVS) in patients with compensated cirrhosis, 115 patients (mean age 55.4 +/- 12.47 SD y) were prospectively screened using real-time ultrasound with pulsed Doppler at 2.5 MHz to detect focal liver lesions and quantify AVS. Focal masses were biopsied and correlated with the US findings. All other patients had clinical follow-up and imaging for at least 12 months. AVS occurred in 28 of 115 (24.3%), and in 18 of 20 proven malignancies (90%) including 11 of 13 cases of hepatocellular carcinoma (85%). However, 9 of 28 (32%) AVS (mean Doppler shift 2.73 +/- 1.51 [SD] kHz [range 0.6-5.41 kHz], n = 9) were in regions of fatty infiltration (4) or isolated (5), unassociated with malignancy. At a prevalence of 17.9% malignancy (11.3% due to hepatocellular carcinoma), specificity for malignancy increased with shunt velocity, from 76% (for mass alone), to 94.8% for mass with AVS, 96.8% for a mass with AVS of 1.75-2.4 kHz, and 100% for a mass with AVS > 2.4 kHz. Doppler US is useful in characterizing liver lesions in cirrhotic patients: the majority of malignant hepatic lesions are associated with AVS and specificity for malignancy increases with shunt velocity. However, isolated AVS or AVS associated with focal fat may be detected in 7.8% of compensated cirrhotics.

  8. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties.

  9. Ultrasound

    MedlinePlus

    ... called multiples) To screen for birth defects, like spina bifida or heart defects . Screening means seeing if your ... example, if the ultrasound shows your baby has spina bifida, she may be treated in the womb before ...

  10. Ultrasound

    MedlinePlus Videos and Cool Tools

    ... baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's uterus. The sound waves bounce off solid structures in the body ...

  11. Biophysical studies of the effect of high power ultrasound on the DNA solution.

    PubMed

    Ali, Mohamed H M; Al-Saad, Khalid A; Ali, Carmen M

    2014-03-01

    Stability and molecular size of the DNA double helical structure were studied on an aqueous solution of DNA after exposure to high power doses of continuous wave ultrasound at frequency of 20 kHz. Thermal transition spectrophotometry (UV-melting), constant-field gel electrophoresis (CFGE), differential scanning calorimetry (DSC) and dielectric properties measurements were used to evaluate the ultrasound-induced changes in the DNA double helical structure. The thermal transition spectrophotometry (UV-melting) and differential scanning calorimetry (DSC) results showed that ultrasound power caused loss of DNA double helical structure and the DNA double strands melting temperature decreased as the ultrasound power increased, indicating a decrease in the stability of the double helical structure of DNA. The constant-field gel electrophoresis (CFGE) results showed that the molecular size of the DNA fragments decreased as the ultrasound power increased. The dielectric data in the frequency range from 20 Hz to 100 kHz for the native DNA showed that dispersion at frequency of about 500 Hz resulted from polarization induced by counterions. The decrease in the dielectric increment indicated a decrease in length of DNA molecule after exposure to ultrasound power.

  12. 3D imaging options and ultrasound contrast agents for the ultrasound assessment of pediatric rheumatic patients.

    PubMed

    Madej, Tomasz

    2013-12-01

    The application of 3D imaging in pediatric rheumatology helps to make the assessment of inflammatory changes more objective and to estimate accurately their volume and the actual response to treatment in the course of follow-up examinations. Additional interesting opportunities are opened up by the vascularity analysis with the help of power Doppler and color Doppler in 3D imaging. Contrast-enhanced ultrasound examinations enable a more sensitive assessment of the vascularity of inflamed structures of the locomotor system, and a more accurate analysis of treatment's effect on changes in vascularity, and thereby the inflammation process activity, as compared to the classical options of power and color Doppler. The equipment required, time limitations, as well as the high price in the case of contrast-enhanced ultrasound, contribute to the fact that the 3D analysis of inflammatory changes and contrast-enhanced ultrasound examinations are not routinely applied for pediatric patients.

  13. Power Doppler myocardial contrast echocardiography using an improved multiple frame triggered Harmonic Angio technique.

    PubMed

    Murthy, T H; Locricchio, E; Kuersten, B; Li, P; Baisch, C; Vannan, M A

    2001-04-01

    Although B-mode harmonic, intermittent-triggered myocardial contrast echocardiography (MCE) is a well-established technique, a variety of MCE techniques have been introduced recently to improve myocardial opacification. One such technique uses a power Doppler method in conjunction with multiple frame triggering (MFT), but has been limited by nonuniform microbubble destruction and blooming as well as motion artifacts. Utilizing two different contrast agents, Definity and Optison, we tested the feasibility of an improved version of Harmonic Angio MFT that utilizes a lower transmit frequency, reduced packet size, and more stringent wall filter in normal volunteers and in patients with known perfusion defects. The results showed that Harmonic Angio MFT produced fill frames with readily visible opacification and destruction frames with little visible opacification. The patterns of opacification also correlated with the expected perfusion patterns in both groups of subjects. Thus, Harmonic Angio MFT appears to be a promising new MCE technique.

  14. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  15. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  16. On the reliability of voltage and power as input parameters for the characterization of high power ultrasound applications

    NASA Astrophysics Data System (ADS)

    Haller, Julian; Wilkens, Volker

    2012-11-01

    For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.

  17. Comparison of IOL--master and ultrasound biometry in preoperative intra ocular lens (IOL) power calculation.

    PubMed

    Kolega, Marija Škara; Kovačević, Suzana; Čanović, Samir; Pavičić, Ana Didović; Bašić, Jadranka Katušić

    2015-03-01

    Postoperative refractive outcome largely depends on the accuracy of calculating power of implanted IOL. Lens power calculation can be done by conventional ultrasound biometry and partial coherence laser interferometry (IOL Master). The aim was to compare the accuracy of IOL power calculations using conventional ultrasound biometry and partial coherence laser interferometry.40 eyes were included in this prospective randomized trial. Twenty eyes underwent IOL master and 20 eyes had aplanation ultrasound biometry. There were included only eyes with age-related cataract and postoperative natural visual acuity (VA) 0.7. Visual acuity was performed 6 weeks after cataract surgery. After 6 weeks best natural visual acuity were 0.9 (± 0.1) in IOL-Master group and 0.85 (± 0.15) in ultrasound biometry. The postoperative mean absolute refractive error was 0.75 (± 0.5) D for ultrasound biometry and 0.50 (± 0.50) D for IOL-Master. Optical biometry with the IOL-Master proved to be slightly more accurate than ultrasound biometry for IOL power calculation.

  18. Power ultrasound treatment of Listeria monocytogenes in apple cider.

    PubMed

    Baumann, Adam R; Martin, Scott E; Feng, Hao

    2005-11-01

    Inactivation experiments with Listeria monocytogenes 10403S, an ultrasound-resistant strain, were conducted at sublethal (20, 30, and 40 degrees C) and lethal (50, 55, and 60 degrees C) temperatures in saline solution (pH 7.0), acidified saline solution (pH 3.4), and apple cider (pH 3.4) with and without application of ultrasound (20 kHz, 457 mW.ml(-l)). The survival of recoverable L. monocytogenes 10403S in apple cider was evaluated, and the effects of temperature, ultrasound, pH, and food matrix on inactivation were studied. Application of ultrasound increased the inactivation rate at both sublethal and lethal temperatures. Additional death of L. monocytogenes 10403S was due to low acidity at the lethal temperatures. The reduction in surviving L. monocytogenes 10403S followed first order kinetics at sublethal temperatures, but at lethal temperatures, a two-section linear model described the inactivation behavior. The bactericidal effect of thermosonication was additive in apple cider. The survival tests of L. monocytogenes 10403S in apple cider indicated the possibility of using a mild treatment condition in combination with ultrasound to achieve a 5-log reduction in number of listerial cells.

  19. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... sickle cell disease. It is also used to measure conditions affecting blood flow to and within the brain, such as: Stenosis : ... saved. Doppler ultrasound, a special application of ultrasound, measures ... represent the flow of blood through the blood vessels. top of ...

  20. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    PubMed

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene.

  1. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  2. [Study on the spectrophotometric determination of hydroxyl free radical from low power trench-type ultrasound].

    PubMed

    Cao, Yan-ping; Yuan, Ying-mao; Zhu, Yu-chen

    2012-05-01

    Under the condition of different pH (7-11) and different ethanol volume fraction (45% to 85%), the ultraviolet-visible absorption spectra of malachite green were studied in neutral and alkaline ethanol solution, the maximum absorption wavelength at 620 nm was found, and the matching degree of standard curve was better established. In low power trench-type ultrasound apparatus, the absorption of the malachite green solution was measured under ultrasound and non-ultrasound, respectively. the difference values of the ultraviolet absorption of the malachite green solution under low power trench-type ultrasound were measured results of the hydroxyl free radical oxidation degrading malachite green, therefore hydroxyl free radical from low power trench-type ultrasound was determined indirectly. Then the contents of hydroxyl free radical in four conditions were measured. The detection limit of the method of 8.4 x 10(-6) mmol x L(-1) and the relative standard deviation of the method of 9.4 x 10(-5) - 3.7 x 10(-4) mmol x L(-1) were determined, a higher testing precision and good reproducibility were confirmed. It can be applied for fast detection of neutral and alkaline ethanol solution system in the case of very low concentration of hydroxyl free radicals. Since malachite green is heat sensitive, so compared to measuring temperature, the method possessed better functions for thermal effects of ultrasound.

  3. Leveraging the power of ultrasound for therapeutic design and optimization.

    PubMed

    Caskey, Charles F; Hu, Xiaowen; Ferrara, Katherine W

    2011-12-20

    Contrast agent-enhanced ultrasound can facilitate personalized therapeutic strategies by providing the technology to measure local blood flow rate, to selectively image receptors on the vascular endothelium, and to enhance localized drug delivery. Ultrasound contrast agents are micron-diameter encapsulated bubbles that circulate within the vascular compartment and can be selectively imaged with ultrasound. Microbubble transport-based estimates of local blood flow can quantify changes resulting from anti-angiogenic therapies and facilitate differentiation of angiogenic mechanisms. Microbubbles that are conjugated with targeting ligands attach to endothelial surface receptors that are upregulated in disease, providing high signal-to-noise ratio images of pathological vasculature. In addition to imaging applications, microbubbles can be used to enhance localized gene and drug delivery, either by changing membrane and vascular permeability or by carrying and locally releasing cargo. Our goal in this review is to provide an overview of the use of contrast-enhanced ultrasound methodologies in the design and evaluation of therapeutic strategies with emphases on quantitative blood flow mapping, molecular imaging, and enhanced drug delivery.

  4. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  5. Effects of Isoflurane on Coronary Blood Flow Velocity in Young, Old, and ApoE−/− Mice Measured by Doppler Ultrasound

    PubMed Central

    Hartley, Craig J.; Reddy, Anilkumar K.; Madala, Sridhar; Michael, Lloyd H.; Entman, Mark L.; Taffet, George E.

    2007-01-01

    The commonly used anesthetic agent, isoflurane (ISO), is a potent coronary vasodilator which could potentially be used in the assessment of coronary reserve, but its effects on coronary blood flow in mice are unknown. Coronary reserve is reduced by age, coronary artery disease, and other cardiac pathologies in man, and some of these conditions can now be modeled in mice. Accordingly, we used Doppler ultrasound to measure coronary flow velocity in mice anesthetized at low (1%) and at high (2.5%) levels of ISO to generate baseline (B) and elevated hyperemic (H) coronary flows respectively. A 20 MHz Doppler probe was mounted in a micromanipulator and pointed transthoracically toward the origin of the left main coronary arteries of 10 6-wk (Y), 10 2-yr (O), and 20 2-yr apolipoprotein-E null (ApoE−/−) atherosclerotic (A) mice. In each mouse we measured (B) and (H) peak diastolic velocities. B was 35.4 +/− 1.4 cm/s (Y), 24.8 +/− 1.6 (O), and 51.7 +/− 6.4 (A); H was 83.5 +/− 1.3 (Y), 86.5 +/− 1.9 (O), and 120 +/− 16.9 (A); and H/B was 2.4 +/− 0.1 (Y), 3.6 +/− 0.2 (O), and 2.5 +/− 0.2 (A). The differences in baseline velocities and H/B between O and Y and between A and O were significant (P < 0.01), while the differences in hyperemic velocities were not (P > 0.05). H/B was higher in old mice due to decreased baseline flow rather than increased hyperemic flow velocity. In contrast ApoE−/− mice have increased baseline and hyperemic velocities perhaps due to coronary lesions. The differences in baseline velocities between young and old mice could be due to age-related changes in basal metabolism or to differential sensitivity to isoflurane. We conclude that Doppler ultrasound combined with coronary vasodilation via isoflurane could provide a convenient and noninvasive method to estimate coronary reserve in mice, but also that care must be taken when assessing coronary flow in mice under isoflurane anesthesia because of its potent coronary vasodilator

  6. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    SciTech Connect

    Wellons, Sarah; Zhu, Yucong; Narayan, Ramesh; McClintock, Jeffrey E.; Psaltis, Dimitrios

    2014-04-20

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  7. The use of colour-coded and spectral Doppler ultrasound in the differentiation of benign and malignant breast lesions.

    PubMed Central

    Peters-Engl, C.; Medl, M.; Leodolter, S.

    1995-01-01

    The aim of this study was to evaluate the role of colour-coded and spectral Doppler sonography to predict the benign or malignant nature of breast lesions. A total of 112 women with mammographically suspicious breast lesions were investigated prior to surgery. Thirty-nine breast carcinomas and 73 benign lesions were evaluated for the resistance index, pulsatility index and the flow velocity. A resistance index of > or = 0.70 was characteristic of malignant tumours with a sensitivity of 82% and a specificity of 81%. The positive predictive value was 70% and the negative predictive value 89%. Doppler sonography offers one possible method for further investigation of patients with mammographic abnormalities. PMID:7819029

  8. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    PubMed

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface.

  9. Measurement of the Stopping Power of Water for Carbon Ions Using Inverted Doppler Shift Attenuation

    SciTech Connect

    Rahm, J.M.; Baek, W.Y.; Rabus, H.; Hofsaess, H.

    2015-07-01

    Carbon ion therapy has gained importance in cancer treatment due to its locally well confined dose distribution, but there is a significant lack of experimental data which is needed for dose calculations and estimation of biological damage. Since tissue is mainly comprised of water, the energy-dependent stopping power of water is the critical measure. Importantly, previous data gathered from experiments with light ions has been limited to water vapour and ice and neglected water in its liquid phase. Additionally, theoretical models regarding the stopping power cannot yet describe the complex charge transfer interactions of the projectile at velocities in the range of the mean velocity of the valence electrons of the traversed medium. There are also discrepancies in the amount of phase effects concerning water and water vapour cross sections. Despite its importance there exists no experimental data for the stopping power of water for carbon ions in the energy region between 1 MeV and 5 MeV. This may be due to the short track length of carbon ions which makes traditional transmission experiments unfeasible. Therefore a project was launched to measure the stopping power of liquid water for carbon ions in the vicinity of the Bragg peak which corresponds to the energy regime of the maximum stopping power. For this measurement the inverted Doppler shift attenuation method was used. This uses the gamma quanta emitted from excited carbon nuclei which are produced by means of the {sup 12}C(α,α'){sup 12}C* reaction. The recorded γ-spectra contain the information of the projectiles velocity at the time they decay to their ground state and an internal clock provided by the exponential decay law. The deceleration of the projectile is directly connected to the stopping power which can be determined with this method as a function of the projectiles kinetic energy. Further measurements have been carried out to improve the experimental method. The setup and the preliminary

  10. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  11. A brief history of ultrasound in rheumatology: where we were.

    PubMed

    Grassi, Walter; Filippucci, Emilio

    2014-01-01

    Ultrasonography in the '70s was a well-known and widely used method within several medical specialties but not in rheumatology. Initial development of the field was led by radiologists who mainly investigated the potential of ultrasound in the assessment of large joints. In the late '80s, the first studies supporting the role of ultrasound in the detection of soft tissue changes and bone erosions in the hands of patients with rheumatoid arthritis were published. In the '90s, the dramatic improvement of spatial resolution due to the new generation high frequency probes opened up new avenues for the exploration of otherwise undetectable anatomical details. Ultrasound research during this period was enhanced by the growing use of colour Doppler and power Doppler and by the first prototypes of three dimensional ultrasound. Over the last 10 years, the buzz words in ultrasound research in rheumatology have been standardisation, early diagnosis and therapy monitoring.

  12. The application of power ultrasound to the surface cleaning of silica and heavy mineral sands.

    PubMed

    Farmer, A D; Collings, A F; Jameson, G J

    2000-10-01

    Power ultrasound may be used in the processing of minerals to clean their surfaces of oxidation products and fine coatings, mainly through the large, but very localised, forces produced by cavitation. Results of the application of power ultrasound to remove iron-rich coatings from the surfaces of silica sand used in glass making and to improve the electrostatic separation of mineral sand concentrates through lowering the resistivity of the conducting minerals (ilmenite and rutile) are presented. Parameters affecting ultrasonic cleaning, such as input power and levels of reagent addition, are discussed. In particular, we present data showing the relationship between power input and the particle size of surface coatings removed. This can be explained by the Derjaguin approximation for the energy of interaction between a sphere and a flat surface.

  13. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review.

    PubMed

    Bilek, Seda Ersus; Turantaş, Fulya

    2013-08-16

    Decontamination of fresh fruits and vegetables is an important unsolved technological problem. The main focus of this review is to summarize and synthesize the results of studies and articles about ultrasonic processing which can be adapted to the wash water decontamination process for fruits and vegetables. This review will also provide an overview about the importance of an effective wash water decontamination process in fruits and vegetables, the increase of foodborne outbreaks caused by fresh fruits and vegetables, microbial inactivation using ultrasound, and an interpretation of the high power ultrasound results in the fruits and vegetable industry. In addition, the limitations of ultrasonic processing in commercial applications have also been introduced.

  14. FETAL RENAL ARTERY IMPEDANCE AS ASESSED BY DOPPLER ULTRASOUND IN PREGNANCIES COMPLICATED BY INTRA-AMNIOTIC INFLAMMATION AND PRETERM BIRTH

    PubMed Central

    Azpurua, Humberto; Dulay, Antonette T.; Buhimschi, Irina A.; Bahtiyar, Mert O.; Funai, Edmund; Abdel-Razeq, Sonya S.; Luo, Guoyang; Bhandari, Vineet; Copel, Joshua A.; Buhimschi, Catalin S.

    2013-01-01

    OBJECTIVE To evaluate the fetal renal artery impedance in the context of inflammation-associated preterm birth (PTB). STUDY DESIGN We conducted a prospective Doppler assessment of the fetal renal artery impedance in 70 singleton fetuses. The study group consisted of 56 premature fetuses (28.1 [25.3–30.6] weeks at enrollment). Gestational age (GA) reference ranges were generated based on fetuses with uncomplicated pregnancies (n=14). Doppler studies included renal artery pulsatility index (PI), resistance index (RI), systolic/diastolic (S/D) ratio and presence-or-absence of end-diastolic blood flow. We assessed amniotic fluid (AF) inflammation by proteomic profiling (SELDI-TOF). Data were interpreted in relationship to amniotic fluid index (AFI), cord blood interleukin-6 (IL-6) and erythropoietin (EPO) levels. The cardiovascular and metabolic profiles of the neonates were investigated in the first 24 hours of life. RESULTS Fetuses delivered by mothers with intra-amniotic inflammation had higher cord blood IL-6 but not EPO levels. Fetal inflammation did not affect either renal artery PI,RI,S/D ratio or end-diastolic blood flow. Neonates delivered in the context of intraamniotic inflammation had higher serum blood urea nitrogen levels, which correlated significantly with AF IL-6 levels. The renal artery RI and SD ratio were inversely correlated with the AFI independent of GA, cord blood IL-6 and status of the membranes. CONCLUSION The fetus is capable of sustaining normal renal artery impedance despite inflammation. Resistance in the renal vascular bed affects urine output independent of inflammation. PMID:19185102

  15. Ultrasound characterization of the infertile male testis with rf power spectrum analysis

    NASA Astrophysics Data System (ADS)

    Coleman, Jonathan A.; Silverman, Ronald H.; Rondeau, Mark; Coleman, D. J.; Schlegel, Peter

    2002-04-01

    Objective: To investigate and diagnose testicular pathology in patients with testicular dysfunction using the technique of ultrasound power spectrum analysis. Methods: Testicular ultrasound studies with power spectrum tissue characterization analysis were performed on men with testicular abnormalities as well as normal controls. Semen analysis, biopsy data, microscopic intra-operative findings and data pertaining to testicular function were collected for each surgically evaluated subject. Ultrasound data were analyzed for power spectrum characteristics of microscopic scatterer size and concentration within discrete areas of testicular tissue. Results: Patients with varicoceles and greater than 2x106 sperm/ml on semen analysis had larger average scatterer size (107.7 micrometers ) and lower scatterer concentration (-15.02 dB) than non-obstructed, azoospermic patients with varicoceles (92.4 micrometers and -11.41 dB, respectively). Subjects with obstructed azoospermia had slightly larger average tissue scatterer size (108.1 micrometers ) and lower concentration (-15.73 dB) while normal control data revealed intermediate values of size (102.3 micrometers ) and concentration (-13.1 dB) of scatterers. Spectral data from pure testicular seminoma lesions had the lowest average scatterer size (82.3 micrometers ) with low relative concentration (-14.7 dB). Summary: Ultrasound tissue characterization based on RF spectrum analysis may distinguish different types of testicular pathology including obstructed and non-obstructed azoospermia and tissue changes due to varicocele and tumor.

  16. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  17. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  18. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  19. The development of a combined b-mode, ARFI, and spectral Doppler ultrasound imaging system for investigating cardiovascular stiffness and hemodynamics

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.

    2011-03-01

    The progression of atherosclerotic disease, caused by the formation of plaques within arteries, is a complex process believed to be a function of the localized mechanical properties and hemodynamic loading associated with the arterial wall. It is hypothesized that measurements of vascular stiffness and wall-shear rate (WSR) may provide important information regarding vascular remodeling, endothelial function, and the growth of soft-lipid filled plaques that could help a clinician better diagnose a patient's risk of clinical events such as stroke. To that end, the approach taken in this work was to combine conventional B-mode, Acoustic Radiation Force Impulse (ARFI), Shear Wave Elasticity Imaging (SWEI), and spectral Doppler techniques into a single imaging system capable of simultaneously measuring the tissue displacements and WSR throughout the cardiac cycle and over several heartbeats. Implemented on a conventional scanner, the carotid arteries of human subjects were scanned to demonstrate the initial in vivo feasibility of the method. Two non-invasive ultrasound based imaging methods, SAD-SWEI and SAD-Gated Imaging, were developed that measure ARF-induced on-axis tissue displacements, off-axis transverse wave velocities, and WSR throughout the cardiac cycle. Human carotid artery scans were performed in vivo on 5 healthy subjects. Statistical differences were observed in both on-axis proximal wall displacements and transverse wave velocities during diastole compared to systole.

  20. Changes in the central and peripheral circulatory system in response to the cold: own studies using impedance plethysmography and Doppler ultrasound.

    PubMed

    Łastowiecka-Moras, Elżbieta; Kozyra-Pydyś, Eliza

    2016-12-01

    The aim of the study was to determine the cardiovascular response to continuous (4 °C for 60 min) and intermittent (10 min at 4 °C and 10 min at room temperature alternately) exposure to the cold in 30 healthy young men. The subjects were equipped with a set of identical clothing (insulation 2.1 clo) and during the stay in the chamber and outside performed the same activities, i.e., walking on a treadmill at a speed of 0.5 km/h. The tests included assessing the central circulatory system using the Holter system and assessing the peripheral circulatory system using impedance plethysmography and Doppler ultrasound. The analysis of the parameters that describe the central and peripheral circulation poses a difficulty in determining which variant of exposure constitutes a greater load on the circulatory system. It should be noted that even the conditions used in the study may cause adverse effects in the cardiovascular system.

  1. Ray tracing model for the estimation of power spectral properties in laser Doppler velocimetry of retinal vessels and its potential application to retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Petrig, Benno L.; Follonier, Lysianne

    2005-12-01

    A new model based on ray tracing was developed to estimate power spectral properties in laser Doppler velocimetry of retinal vessels and to predict the effects of laser beam size and eccentricity as well as absorption of laser light by oxygenated and reduced hemoglobin. We describe the model and show that it correctly converges to the traditional rectangular shape of the Doppler shift power spectrum, given the same assumptions, and that reduced beam size and eccentric alignment cause marked alterations in this shape. The changes in the detected total power of the Doppler-shifted light due to light scattering and absorption by blood can also be quantified with this model and may be used to determine the oxygen saturation in retinal arteries and veins. The potential of this approach is that it uses direct measurements of Doppler signals originating from moving red blood cells. This may open new avenues for retinal vessel oximetry.

  2. Internal iliac and uterine arteries Doppler ultrasound in the assessment of normotensive and chronic hypertensive pregnant women

    PubMed Central

    Guedes-Martins, L.; Cunha, A.; Saraiva, J.; Gaio, R.; Macedo, F.; Almeida, H.

    2014-01-01

    The objective of this work was to compare Doppler flows pulsatility index (PI) and resistance indexes (RI) of uterine and internal iliac arteries during pregnancy in low risk women and in those with stage-1 essential hypertension. From January 2010 and December 2012, a longitudinal and prospective study was carried out in 103 singleton uneventful pregnancies (72 low-risk pregnancies and 31 with stage 1 essential hypertension)at the 1st, 2nd and 3rd trimesters. Multiple linear regression models, fitted using generalized least squares and whose errors were allowed to be correlated and/or have unequal variances, were employed; a model for the relative differences of both arteries impedance was utilized. In both groups, uterine artery PI and RI exhibited a gestational age related decreasing trend whereas internal iliac artery PI and RI increased. The model testing the hemodynamic adaptation in women with and without hypertension showed similar trend. Irrespective of blood pressure conditions, the internal iliac artery resistance pattern contrasts with the capacitance pattern of its immediate pelvic division, suggesting a pregnancy-related regulatory mechanism in the pelvic circulation. PMID:24445576

  3. Time Course of Isoflurane-Induced Vasodilation: A Doppler Ultrasound Study of the Left Coronary Artery in Mice.

    PubMed

    Lenzarini, Francesca; Di Lascio, Nicole; Stea, Francesco; Kusmic, Claudia; Faita, Francesco

    2016-04-01

    Isoflurane is widely used as vasodilator in studies of coronary flow reserve (CFR) in small animals, but the protocols have not been standardized. This study assessed the time course of the increase in isoflurane-induced flow in the mouse coronary artery by pulsed-wave Doppler measurements at 1% isoflurane concentration maintained for 6 min and then increased to 2.5% for 30 min. Velocity-time integral and velocity peak values were best fitted by the sigmoid model, which allowed derivation of the mean time (Tt90 = 14 min) of high-isoflurane needed to reach 90% of the hyperemic plateau value. In subsequent experiments, CFR was measured at 4 min (mean time of literature data) and 14 min of hyperemic response. The 4-min CFR was significantly lower than the 14 -min CFR, and the Bland-Altman plot revealed significant bias of the 4-min CFR against the 14-min CFR. This result suggests that measurements of flow velocity at times shorter than 14 min may be inappropriate for expressing the effective value of CFR.

  4. Stroke and conversion to high risk in children screened with transcranial Doppler ultrasound during the STOP study.

    PubMed

    Adams, Robert J; Brambilla, Donald J; Granger, Suzanne; Gallagher, Dianne; Vichinsky, Elliott; Abboud, Miguel R; Pegelow, Charles H; Woods, Gerald; Rohde, Elizabeth M; Nichols, Fenwick T; Jones, Anne; Luden, Judith P; Bowman, Latonya; Hagner, Susan; Morales, Knashawn H; Roach, E Steve

    2004-05-15

    The Stroke Prevention Trial in Sickle Cell Anemia (STOP) was a randomized multicenter controlled trial comparing prophylactic blood transfusion with standard care in sickle cell anemia (SCA) children aged 2 to 16 years selected for high stroke risk by transcranial Doppler (TCD). More than 2000 children were screened with TCD to identify the 130 high-risk children who entered the randomized trial. A total of 5613 TCD studies from 2324 children were evaluated. We also collected information on stroke. We describe the changes in TCD with repeated testing and report the outcome without transfusion in the STOP screened cohort. Risk of stroke was higher with abnormal TCD than with normal or conditional TCD (P <.001) or inadequate TCD (P =.002), and risk with conditional TCD was higher than with normal TCD (P <.001). Repeated TCD in 1215 children showed that the condition of 9.4% of children became abnormal during observation. Younger patients and those with higher initial flow velocities were most likely to convert to abnormal TCDs. Screening in STOP confirmed the predictive value of TCD for stroke. Substantial differences in the probability of conversion to abnormal TCD were observed, with younger children and those with higher velocity more likely to have an abnormal TCD with rescreening.

  5. A harmonic cancellation technique for an ultrasound transducer excited by a switched-mode power converter.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    2008-02-01

    The aim of this study is to evaluate the feasibility of using harmonic cancellation for a therapeutic ultrasound transducer excited by a switched-mode power converter without an additional output filter. A switching waveform without the third harmonic was created by cascading two switched-mode power inverter modules at which their output waveforms were pi/3 phase shifted from each other. A PSPICE simulation model for the power converter output stage was developed. The simulated results were in good agreement with the measurement. The waveform and harmonic contents of the acoustic pressure generated by a 1-MHz, self-focused piezoelectric transducer with and without harmonic cancellation have been evaluated. Measured results indicated that the acoustic third harmonicto- fundamental ratio at the focus was small (-48 dB) with harmonic cancellation, compared to that without harmonic cancellation (-20 dB). The measured acoustic levels of the fifth harmonic for both cases with and without harmonic cancellation also were small (-46 dB) compared to the fundamental. This study shows that it is viable to drive a piezoelectric ultrasound transducer using a switched-mode power converter without the requirement of an additional output filter in many high-intensity focused ultrasound (HIFU) applications.

  6. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry.

    PubMed

    Yao, Guang-Long; Ma, Xing-Hui; Cao, Xian-Yin; Chen, Jian

    2016-11-18

    Power ultrasound (US) could potentially be used in the food industry in the future. However, the extent of anthocyanin degradation by US requires investigation. Cyanidin-3-glucoside (Cy-3-glu) obtained from blueberry extracts was used as research material to investigate the effect of power ultrasound on food processing of anthocyanin-rich raw materials. The effects of ultrasonic waves on the stability of Cy-3-glu and on the corresponding changes in UV-Vis spectrum and antioxidant activity were investigated, and the mechanisms of anthocyanin degradation induced by ultrasonic waves were discussed. To explore Cy-3-glu degradation in different environments, we kept the Cy-3-glu solution treated with ultrasonic waves in four concentrations (0%, 10%, 20%, and 50%) of ethanol aqueous solutions to simulate water, beer, wine, and liquor storage environment according to the chemical kinetics method. Results show that the basic spectral characteristics of Cy-3-glu did not significantly change after power ultrasound cell crusher application at 30 °C. However, with anthocyanin degradation, the intensity of the peak for Cy-3-glu at 504 nm significantly decreased (p < 0.05). The degradation kinetics of Cy-3-glu by ultrasonic waves (200-500 W frequency) fitted well to first-order reaction kinetics, and the degradation rate constant of Cy-3-glu under power ultrasound was considerably larger than that under thermal degradation (p < 0.05). The sensitivity of the anthocyanins of blueberry to temperature increased with increasing ethanol concentration, and the longest half-life was observed in 20% ethanol aqueous solution.

  7. The buoyancy method—a potential new primary ultrasound power standard

    NASA Astrophysics Data System (ADS)

    Rajagopal, Srinath; Shaw, Adam

    2012-06-01

    The acoustic output power produced by medical ultrasound equipment is a key quantity representing the safety of exposure to ultrasound during diagnostic or therapeutic applications. At present the widely used method for estimating the total output power from ultrasound sources is by measuring the radiation force using a gravimetric balance. The method described here is a non-radiation force method using a form of calorimetry where the average temperature change in a target filled with castor oil is inferred from its volume change. This method has been previously validated using a radiation force method at frequencies of 1 MHz and 3 MHz for acoustic powers in the range 1 W to 350 W. Estimated systematic uncertainty at the 95% confidence interval was 3.4% for a frequency of 1 MHz at 50 W measured power and typical overall uncertainties were of the order of 4%. The same method is extended and validated in the frequency range 3.151 MHz to 9.541 MHz using an improved target and applied powers in the range 100 mW to 1 W. The investigation of higher frequencies and modified data analysis has improved understanding of two important systematic effects. Firstly, heat loss from the front surface of the castor oil target: this was found to be a function of insonation time and increasingly significant at higher frequencies. Secondly, the effect of stored energy in a heating element inside the target which is used to calibrate the system by electrical heating: this could be significant for heating times less than 20 s. At a 95% confidence level, the estimated systematic uncertainty in the measured power with the improved target is 2.6% for 50 W acoustic power at a frequency of 3 MHz.

  8. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems

    PubMed Central

    Choi, Hojong; Yang, Hao-Chung; Shung, K. Kirk

    2013-01-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (–7.7 dB), THD (–74.6 dB) and lower RT (43 ns) at 100MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22 % and 140 %, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. PMID:24199954

  9. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    PubMed

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications.

  10. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry.

    PubMed

    Evelyn; Silva, Filipa V M

    2015-08-03

    Clostridium perfringens is a pathogen of concern in pasteurised foods. The main objective of this study was to use power ultrasound to enhance the thermal inactivation of C. perfringens spores in beef slurry. The effect of simultaneous ultrasound and heat (TS, thermosonication) on the spore inactivation in beef slurry was first investigated. At 75 °C, a 60 min TS process (24 kHz, 0.33 W/g) resulted in a less than 1.5 log reduction for both C. perfringens NZRM 898 and NZRM 2621 spores. Then, the thermal inactivation first order kinetic parameters of C. perfringens spores in beef slurry were estimated for the two strains. The D105 °C- and z-values were 2.5 min and 10.6 °C for NZRM 898 and 1.8 min and 10.9 °C for NZRM 2621. After, the effect of a spore heat shock followed by ultrasound on its thermal inactivation in beef slurry was investigated. This heat shock+ultrasound pretreatment was able to double the spore thermal inactivation rate in beef slurry. For example at 95 °C D-value of 20.2 min decreased to 9.8 min, demonstrating that spore exposure to heat shock followed by ultrasonication enhanced its thermal inactivation.

  11. Comparison of power Doppler and thermography for the selection of thyroid nodules in which fine-needle aspiration biopsy is indicated*

    PubMed Central

    Alves, Maria Lucia D'Arbo; Gabarra, Manoel Henrique Cintra

    2016-01-01

    Objective To compare two methods-power Doppler and thermography-for the analysis of nodule vascularization and subsequent selection of nodules to be biopsied. Materials and Methods A total of 510 subjects with thyroid nodules were analyzed by power Doppler and submitted to fine-needle aspiration biopsy (FNAB). Thirty-seven patients were submitted to nodule excision (29 due to carcinoma or suspected carcinoma and 8 by patient choice). Among those patients, power Doppler had raised the suspicion of malignancy in 39 lesions, compared with 48 for FNAB. Another group, comprising 110 patients, underwent thermography, which raised the suspicion of malignancy in 124 thyroid nodules, as did FNAB. Malignant nodules were excised in all 110 of those patients (95 underwent nodulectomy and 15 underwent thyroidectomy), malignancy being confirmed by intraoperative examination of frozen biopsy samples. Results In relation to the FNAB findings, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of power Doppler were 95.16%, 23.52%, 96.22%, 16.70%, and 89.51%, respectively, compared with 100%, 58.06%, 87.73%, 100%, and 89.51%, respectively, for thermography. Conclusion Thermography was more precise than was power Doppler for the selection of thyroid nodules to be biopsied. PMID:27818545

  12. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  13. Power Amplifier Linearizer for High Frequency Medical Ultrasound Applications

    PubMed Central

    Choi, Hojong; Jung, Hayong; Shung, K. Kirk

    2015-01-01

    Power amplifiers (PAs) are used to produce high-voltage excitation signals to drive ultrasonic transducers. A larger dynamic range of linear PAs allows higher contrast resolution, a highly desirable characteristic in ultrasonic imaging. The linearity of PAs can be improved by reducing the nonlinear harmonic distortion components of high-voltage output signals. In this paper, a linearizer circuit is proposed to reduce output signal harmonics when working in conjunction with a PA. The PA performance with and without the linearizer was measured by comparing the output power 1-dB compression point (OP1dB), and the second- and third-order harmonic distortions (HD2 and HD3, respectively). The results show that the PA with the linearizer circuit had higher OP1dB (31.7 dB) and lower HD2 (−61.0 dB) and HD3 (−42.7 dB) compared to those of the PA alone (OP1dB (27.1 dB), HD2 (−38.2 dB), and HD3 (−36.8 dB)) at 140 MHz. A pulse-echo measurement was also performed to further evaluate the capability of the linearizer circuit. The HD2 of the echo signal received by the transducer using a PA with the linearizer (−24.8 dB) was lower than that obtained for the PA alone (−16.6 dB). The linearizer circuit is capable of improving the linearity performance of PA by lowering harmonic distortions. PMID:26622209

  14. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media.

    PubMed

    Doche, M-L; Hihn, J-Y; Mandroyan, A; Viennet, R; Touyeras, F

    2003-10-01

    This paper is devoted to zinc corrosion and oxidation mechanism in an ultrasonically stirred aerated sodium sulfate electrolyte. It follows a previous study devoted to the influence of 20 kHz ultrasound upon zinc corrosion in NaOH electrolytes [Ultrason. Sonochemis. 8 (2001) 291]. In the present work, various ultrasound regimes were applied by changing the transmitted power and the wave frequency (20 and 40 kHz). Unlike NaOH electrolyte which turns the zinc electrode into a passive state, Na2SO4 saline media induces soft corrosion conditions. This allows a study of the combined effects of ultrasonically modified hydrodynamic and mechanical damage (cavitation) upon the zinc corrosion process. A series of initial experiments were carried out so as to determine the transmitted power and to characterize mass transfer distribution in the electrochemical cell. Zinc corrosion and oxidation process were subsequently studied with respect to the vibrating parameters. When exposed to a 20 kHz ultrasonic field, and provided that the electrode is situated at a maximum mass transfer point, the corrosion rate reaches values six to eight times greater than in silent conditions. The zinc oxidation reaction, in the absence of competitive reduction reactions, is also activated by ultrasound (20 and 40 kHz) but probably through a different process of surface activation.

  15. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  16. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements

    SciTech Connect

    Vorontsov, Sergei V.; Jefferies, Stuart M. E-mail: stuartj@ifa.hawaii.edu

    2013-11-20

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  17. Correlation between computerised findings and Newman's scaling on vascularity using power Doppler ultrasonography imaging and its predictive value in patients with plantar fasciitis

    PubMed Central

    Chen, H; Ho, H M; Ying, M; Fu, S N

    2012-01-01

    Objectives The purpose of this study was to correlate findings on small vessel vascularity between computerised findings and Newman's scaling using power Doppler ultrasonography (PDU) imaging and its predictive value in patients with plantar fasciitis. Methods PDU was performed on 44 patients (age range 30–66 years; mean age 48 years) with plantar fasciitis and 46 healthy subjects (age range 18–61 years; mean age 36 years). The vascularity was quantified using ultrasound images by a customised software program and graded by Newman's grading scale. Vascular index (VI) was calculated from the software program as the ratio of the number of colour pixels to the total number of pixels within a standardised selected area of proximal plantar fascia. The 46 healthy subjects were examined on 2 occasions 7–10 days apart, and 18 of them were assessed by 2 examiners. Statistical analyses were performed using intraclass correlation coefficient and linear regression analysis. Results Good correlation was found between the averaged VI ratios and Newman's qualitative scale (ρ = 0.70; p<0.001). Intratester and intertester reliability were 0.89 and 0.61, respectively. Furthermore, higher VI was correlated with less reduction in pain after physiotherapeutic intervention. Conclusions The computerised VI not only has a high level of concordance with the Newman grading scale but is also reliable in reflecting the vascularity of proximal plantar fascia, and can predict pain reduction after intervention. This index can be used to characterise the changes in vascularity of patients with plantar fasciitis, and it may also be helpful for evaluating treatment and monitoring the progress after intervention in future studies. PMID:22167513

  18. Assessment of changes in vascularity and blood volume in canine sarcomas and squamous cell carcinomas during fractionated radiation therapy using quantified contrast-enhanced power Doppler ultrasonography: a preliminary study.

    PubMed

    Ohlerth, Stefanie; Bley, Carla Rohrer; Laluhová, Dagmar; Roos, Malgorzata; Kaser-Hotz, Barbara

    2010-10-01

    Radiation therapy does not only target tumour cells but also affects tumour vascularity. In the present study, changes in tumour vascularity and blood volume were investigated in five grade 1 oral fibrosarcomas, eight other sarcomas (non-oral soft tissue and bone sarcomas) and 12 squamous cell carcinomas in dogs during fractionated radiation therapy (total dose, 45-56 Gy). Contrast-enhanced power Doppler ultrasound was performed before fraction 1, 3, 6, 8, 10, 12, 14 and 15 or 16 (sarcomas) or 17 (squamous cell carcinomas). Prior to treatment, median vascularity and blood volume were significantly higher in squamous cell carcinomas (P=0.0005 and 0.001), whereas measurements did not differ between oral fibrosarcomas and other sarcomas (P=0.88 and 0.999). During the course of radiation therapy, only small, non-significant changes in vascularity and blood volume were observed in all three tumour histology groups (P=0.08 and P=0.213), whereas median tumour volume significantly decreased until the end of treatment (P=0.04 for fibrosarcomas and other sarcomas, P=0.008 for squamous cell carcinomas). It appeared that there was a proportional decrease in tumour volume, vascularity and blood volume. Doppler measurements did not predict progression free interval or survival in any of the three tumour groups (P=0.06-0.86). However, the number of tumours investigated was small and therefore, the results can only be considered preliminary.

  19. General Ultrasound Imaging

    MedlinePlus Videos and Cool Tools

    ... of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and ... standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the ...

  20. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants.

  1. Novel Power MOSFET-Based Expander for High Frequency Ultrasound Systems

    PubMed Central

    Choi, Hojong; Shung, K. Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4 % and 240 % compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. PMID:23835308

  2. Ultrasound-modulated optical imaging using a photorefractive interferometer and a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2009-02-01

    Ultrasound-modulated optical imaging is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the spatial localization of an optically absorbing object embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. The practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must satisfy the biomedical safety limits. In this paper, we propose to use a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source allows illuminating the tissues mainly during the transit time of the ultrasonic wave. A single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue. When pumped by high intensity laser pulses, such an interferometer provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation encountered in biomedical applications. Consequently, the combination of a large-etendue photorefractive interferometer with a high-power pulsed laser could allow obtaining both the sensitivity and the fast response time necessary for biomedical applications. Measurements performed in 30- and 60-mm thick optical phantoms made of titanium dioxide particles dispersed in sunflower oil are presented. Results obtained in 30- and 60-mm thick chicken breast samples are also reported.

  3. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  4. Transvaginal ultrasound

    MedlinePlus

    ... Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; Infertility - transvaginal ultrasound; Ovarian - transvaginal ultrasound; Abscess - transvaginal ultrasound

  5. Quantitative Evaluation of Vascularity Using 2-D Power Doppler Ultrasonography May Not Identify Malignancy of the Thyroid.

    PubMed

    Yoon, Jung Hyun; Shin, Hyun Joo; Kim, Eun-Kyung; Moon, Hee Jung; Roh, Yun Ho; Kwak, Jin Young

    2015-11-01

    The purpose of this study was to evaluate the usefulness of a quantitative vascular index in predicting thyroid malignancy. A total of 1309 thyroid nodules in 1257 patients (mean age: 50.2 y, range: 18-83 y) were included. The vascularity pattern and vascular index (VI) measured by quantification software for each nodule were obtained from 2-D power Doppler ultrasonography (US). Gray-scale US + vascularity pattern was compared with gray-scale US + VI with respect to diagnostic performance. Of the 1309 thyroid nodules, 927 (70.8%) were benign and 382 (29.2%) were malignant. The area under the receiver operating characteristics curve (Az) for gray-scale US (0.82) was significantly higher than that for US combined with vascularity pattern (0.77) or VI (0.70, all p < 0.001). Quantified VIs were higher in benign nodules, but did not improve the performance of 2-D US in diagnosing thyroid malignancy.

  6. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    PubMed

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation.

  7. Perfusion imaging with non-contrast ultrasound

    NASA Astrophysics Data System (ADS)

    Tierney, Jaime E.; Dumont, Douglas M.; Byram, Brett C.

    2016-04-01

    A Doppler ultrasound clutter filter that enables estimation of low velocity blood flow could considerably improve ultrasound as a tool for clinical diagnosis and monitoring, including for the evaluation of vascular diseases and tumor perfusion. Conventional Doppler ultrasound is currently used for visualizing and estimating blood flow. However, conventional Doppler is limited by frame rate and tissue clutter caused by involuntary movement of the patient or sonographer. Spectral broadening of the clutter due to tissue motion limits ultrasound's ability to detect blood flow less than about 5mm/s at an 8MHz center frequency. We propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.41mm/s. The proposed filter uses an adaptive demodulation scheme that decreases the bandwidth of the clutter. To test the performance of the adaptive demodulation method at removing sonographer hand motion, six volunteer subjects acquired data from a basic quality assurance phantom. Additionally, to test initial in vivo feasibility, an arterial occlusion reactive hyperemia study was performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2mm/s or greater. The hand motion study resulted in initial average bandwidths of 577Hz (28.5mm/s), which were decreased to 7.28Hz (0.36mm/s) at -60 dB at 3cm using our approach. The in vivo power Doppler study resulted in 15.2dB and 0.15dB dynamic ranges between the lowest and highest blood flow time points for the proposed filter and conventional 50Hz high pass filter, respectively.

  8. Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound.

    PubMed

    Hassani, Hakim; Raynal, Gauthier; Spie, Romain; Daudon, Michel; Vallée, Jean-Noël

    2012-05-01

    We evaluated the value of combining noncontrast helical computerized tomography (NCHCT) and color Doppler ultrasound in the assessment of the composition of urinary stones. In vitro, we studied 120 stones of known composition, that separate into the five main types: 18 calcium oxalate monohydrate (COM) stones, 41 calcium oxalate dihydrate (COD) stones, 24 uric acid stones, 25 calcium phosphate stones and 12 cystine calculi. Stones were characterized in terms of their Hounsfield density (HU) in NCHCT and the presence of a twinkling artifact (TA) in color Doppler ultrasound. There were statistically significant HU differences between calcium and non-calcium stones (p < 0.001), calcium oxalate stones and calcium phosphate stones (p < 0.001) and uric acid stones and cystine calculi (p < 0.001) but not between COM and COD stones (p = 0.786). Hence, the HU was a predictive factor of the composition of all types of stones, other than for COM and COD stones within the calcium oxalate class (p > 0.05). We found that the TA does not enable differentiation between calcium and non-calcium stones (p > 0.999), calcium oxalate stones and calcium phosphate stones (p = 0.15), or uric acid stones and cystine calculi (p = 0.079). However, it did reveal a significant difference between COM and COD stones (p = 0.002). The absence of a TA is a predictive factor for the presence of COM stones (p = 0.008). Hence, the association of NCHCT and Doppler enables the accurate classification of the five types of stones in vitro.

  9. Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection.

    PubMed

    Gamboa-Santos, Juliana; Montilla, Antonia; Soria, Ana C; Cárcel, Juan A; García-Pérez, José V; Villamiel, Mar

    2014-10-15

    A study on the quality parameters of strawberries dehydrated by convection assisted by power ultrasound (US) at 40-70°C and 30 and 60W has been carried out for the first time. In general, the quality of US-treated samples was higher than that of commercial samples. Even under the most severe conditions used (US at 70°C and 60W), high values of vitamin C retention (>65%) and scarce advance of Maillard reaction (2-furoylmethyl derivatives of Lys and Arg<90mg 100g(-1) protein) were observed. Rehydration ratio was not affected by the power applied and the obtained values were similar to those of convectively-treated samples. According to the results here presented, US is a suitable example of an emerging and environmentally friendly technology that accelerates convective drying, allowing the obtainment of dried strawberries with premium quality.

  10. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.

    PubMed

    Holm, Sverre; Näsholm, Sven Peter

    2014-04-01

    A set of wave equations with fractional loss operators in time and space are analyzed. The fractional Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional Zener wave equation. The latter two equations are based on fractional constitutive equations, whereas the former wave equations have been derived from the desire to model power law attenuation in applications like medical ultrasound. This has consequences for use in modeling and simulation, especially for applications that do not satisfy the low-frequency approximation, such as shear wave elastography. In such applications, the wave equations based on constitutive equations are the viable ones.

  11. Multichannel optical-fibre heterodyne interferometer for ultrasound detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Posada, J. E.; Garcia-Souto, J. A.; Rubio-Serrano, J.

    2013-09-01

    A multichannel interferometric system is proposed for the ultrasonic detection of partial discharges using intrinsic optical fibre sensors that may be immersed in oil. It is based on a heterodyne scheme which drives at least four sensor heads in order to localize the source of the acoustic emissions. Proper design of the sensing head improves its sensitivity through magnification and reaches a compact encapsulated probe able to be installed within power transformers. The optoelectronic implementation and the experimental tests are presented to optimize the resolution (4 channels—4 mrad). In addition, the results of ultrasound measurements at 150 kHz with an optical fibre sensor immersed in water in an acoustic test bench are shown, in which a resolution better than 10 Pa was obtained. Finally, the set-up for three-phase power transformers is demonstrated and characterized to detect and locate the source of acoustic emissions.

  12. Ultrasound-modulated optical imaging using a powerful long pulse laser.

    PubMed

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-08-18

    Ultrasound-modulated optical imaging (or tomography) is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the localization of an absorbing object embedded in a strongly scattering medium. We propose to improve the sensitivity of the technique by using a pulsed single-frequency laser to raise the optical peak power applied to the scattering medium and thereby collect more ultrasonically tagged photons. Moreover, when the detection of tagged photons is done with a photorefractive interferometer, the high optical peak power reduces the response time of the photorefractive crystal below the speckle field decorrelation time. Results obtained with a GaAs photorefractive interferometer are presented for 30- and 60-mm thick scattering media.

  13. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  14. Novel low-power ultrasound digital preprocessing architecture for wireless display.

    PubMed

    Levesque, Philippe; Sawan, Mohamad

    2010-03-01

    A complete hardware-based ultrasound preprocessing unit (PPU) is presented as an alternative to available power-hungry devices. Intended to expand the ultrasonic applications, the proposed unit allows replacement of the cable of the ultrasonic probe by a wireless link to transfer data from the probe to a remote monitor. The digital back-end architecture of this PPU is fully pipelined, which permits sampling of ultrasonic signals at a frequency equal to the field-programmable gate array-based system clock, up to 100 MHz. Experimental results show that the proposed processing unit has an excellent performance, an equivalent 53.15 Dhrystone 2.1 MIPS/ MHz (DMIPS/MHz), compared with other software-based architectures that allow a maximum of 1.6 DMIPS/MHz. In addition, an adaptive subsampling method is proposed to operate the pixel compressor, which allows real-time image zooming and, by removing high-frequency noise, the lateral and axial resolutions are enhanced by 25% and 33%, respectively. Realtime images, acquired from a reference phantom, validated the feasibility of the proposed architecture. For a display rate of 15 frames per second, and a 5-MHz single-element piezoelectric transducer, the proposed digital PPU requires a dynamic power of only 242 mW, which represents around 20% of the best-available software-based system. Furthermore, composed by the ultrasound processor and the image interpolation unit, the digital processing core of the PPU presents good power-performance ratios of 26 DMIPS/mW and 43.9 DMIPS/mW at a 20-MHz and 100-MHz sample frequency, respectively.

  15. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  16. Three-dimensional ultrasound evaluation of the placenta.

    PubMed

    Hata, T; Tanaka, H; Noguchi, J; Hata, K

    2011-02-01

    Conventional two-dimensional (2D) ultrasound has been widely used for the evaluation of the placenta during pregnancy. This 2D ultrasound evaluation includes the morphology, anatomy, location, implantation, anomaly, size, and color/power and pulsed Doppler sonographic assessment of the placenta. The introduction of three-dimensional (3D) ultrasound would facilitate the novel assessment of the placenta, such as surface-rendered imaging and volume measurement. With the recent advances in 3D power Doppler (3DPD) ultrasound as well as quantitative 3DPD histogram analysis, quantitative and qualitative assessments of the vascularization and blood flow of the placenta have become feasible. These novel techniques may assist in the evaluation of the feto-placental function, and offer potential advantages relative to conventional 2D sonographic assessments. 3D ultrasound may be an important modality in future placental research, in the evaluation of feto-placental insufficiency in clinical practice, and in the prediction of fetal growth restriction and pre-eclampsia, although some limitations regarding the assessment of the placenta employing 3D ultrasound still remain unresolved.

  17. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  18. Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative analysis.

    PubMed

    Sajjadi, Baharak; Asgharzadehahmadi, Seyedali; Asaithambi, Perumal; Raman, Abdul Aziz Abdul; Parthasarathy, Rajarathinam

    2017-01-01

    This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.

  19. Sensory and Quality Evaluation of Traditional Compared with Power Ultrasound Processed Corn (Zea Mays) Tortilla Chips.

    PubMed

    Janve, Bhaskar; Yang, Wade; Sims, Charles

    2015-06-01

    Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P < 0.05) and ΔE was lower (P < 0.05) for fried and L, °h were significantly (P < 0.05) higher for baked chips produced from ultra-sonication as compare to traditional. Baked chips texture for ultra-sonication was significantly higher (P < 0.05) on BFG, BPD, PFF, and FD. Fried tortilla chips texture were higher significantly (P < 0.05) in BFG and PFF for ultra-sonication than traditional processing. However, the instrumental differences were not detected in sensory analysis, concluding possibility of power ultrasound as potential tortilla chips processing aid.

  20. Usefulness of enhanced power Doppler imaging in monitoring acral microcirculation in type 2 diabetes mellitus and its complications.

    PubMed

    Ma, Fang; Zhao, Baozhen; Zhang, Huiping; Li, Wei-Ping; Liu, Yuan-Yuan; Dang, Yuan-Yuan; Wu, Rong; Guo, Le Hang; Lu, Chen

    2011-11-01

    This study compared hemodynamic changes of acral arterioles (pulps and nail beds of fingers and toes) and the microcirculatory status of acra between patients with uncomplicated (n = 45) or complicated (n = 36) type 2 diabetic mellitus (type 2 DM) and healthy subjects (n = 40). Enhanced power Doppler imaging (e-Flow) was used to display the nail bed arterioles and distal branches of pulp arterioles (digitales palmares propriea and digitales plantares propriea) in the end knuckle of the right middle finger and right big toe. Arteriolar density (AD) was assessed by vascular pixel percentage. Compared to healthy subjects, in patients with DM the end diastolic velocity (EDV) of the nail bed arterioles of both finger and toe was diminished, while the vascular resistance index (RI) was increased. These changes became more prominent with a longer duration of the disease. Furthermore, both the peak systolic velocity (PSV) and AD were decreased in patients with DM. These hemodynamic changes were also evident in the pulp arterioles of fingers and toes, although they appeared at more advanced stages of the disease. Overall, the abnormal changes were more pronounced in patients with complications. In conclusion, hemodynamic changes (e.g. decrease in the number of acral arterioles) progress with a longer duration of the disease. The acral arteriolar damage is more pronounced in patients with a complicated type 2 DM.

  1. The Detection and Exclusion of the Prostate Neuro-Vascular Bundle (NVB) in Automated HIFU Treatment Planning Using a Pulsed-Wave Doppler Ultrasound System

    NASA Astrophysics Data System (ADS)

    Chen, Wohsing; Carlson, Roy F.; Fedewa, Russell; Seip, Ralf; Sanghvi, Narendra T.; Dines, Kris A.; Pfile, Richard; Penna, Michael A.; Gardner, Thomas A.

    2005-03-01

    Men with prostate cancer are likely to develop impotence after prostate cancer therapy if the treatment damages the neuro-vascular bundles (NVB). The NVB are generally located at the periphery of the prostate gland. To preserve the NVB, a Doppler system is used to detect and localize the associated blood vessels. This information is used during the therapy planning procedure to avoid treatment surrounding the blood vessel areas. The Sonablate®500 (Focus Surgery, Inc.) image-guided HIFU device is enhanced with a pulse-wave multi-gate Doppler system that uses the current imaging transducer and mechanical scanner to acquire Doppler data. Doppler detection is executed after the regular B-mode images are acquired from the base to the apex of the prostate using parallel sector scans. The results are stored and rendered in 3-D display, registered with additional models generated for the capsule, urethra, and rectal wall, and the B-mode data and treatment plan itself. The display of the blood flow can be in 2-D color overlaid on the B-mode image or in 3-D color structure. Based on this 3-D model, the HIFU treatment planning can be executed in automated or manual mode by the physician to remove originally defined treatment zones that overlap with the NVB (for preservation of NVB). The results of the NVB detection in animal experiments, and the 3-D modeling and data registration of the prostate will be presented.

  2. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    PubMed

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides.

  3. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment.

    PubMed

    Muñoz-Almagro, Nerea; Montilla, Antonia; Moreno, F Javier; Villamiel, Mar

    2016-12-01

    Pectin-derived oligosaccharides are emerging as a new generation of functional ingredients with new or improved technological and/or bioactive properties as compared to pectin. This work addresses the impact of power ultrasound (US) on the structure of citrus and apple pectin under different experimental conditions of power, amplitude and pectin concentration in aqueous and acid media, as well as in the presence of a pectinase. Results indicated that depolymerisation of both pectin increased with time and intensity of US in aqueous media and their polydispersity decreased. In general, a higher depolymerisation was observed in pectin treated by US in the presence of nitric and citric acids than in water, and hardly any difference was detected between both types of acids. Most of the assays gave rise to high-methoxylated pectin with a degree of esterification above 50%, pointing out their suitability for potential gelling agents. Finally, US did not have any impact in assisted enzymatic hydrolysis on the degree and/or rate of depolymerisation at low and medium levels of pectin concentration (0.5 and 2%), whereas a higher diversity of pectin fragments was found at 5% which could be indicative of a more controlled depolymerisation. These findings highlight the importance of the selection of appropriate US processing conditions to diversify the applications of modified pectin, as well as the potential of US as a prospective alternative to currently used depolymerisation techniques.

  4. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    NASA Astrophysics Data System (ADS)

    Sheng, Fei; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H.

    2014-12-01

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5-15 mg/ml, 112-141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144-365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound.

  5. Power Doppler sonography versus Tc-99m DMSA scintigraphy for diagnosing acute pyelonephritis in children: are these two methods comparable?

    PubMed

    Bykov, Sergey; Chervinsky, Leonid; Smolkin, Vladislav; Halevi, Rafi; Garty, Izak

    2003-03-01

    PURPOSE This study assessed the role of renal power Doppler ultrasonography (PDU) to identify acute pyelonephritis (APN) and to determine whether PDU can replace Tc-99m DMSA renal scintigraphy in the diagnosis of APN in children. METHODS A prospective study was conducted in 40 infants and young children (78 kidneys were evaluated) with a mean age of 25.9 months (range, 1 to 68 months) who were hospitalized with a first episode of high fever and bacteruria, possibly APN. All children were examined by PDU and Tc-99m DMSA within the first 3 days after admission. Patients with congenital abnormalities, hydronephrosis, and urinary reflux were excluded. RESULTS Twenty-seven of the 78 kidneys appeared abnormal on Tc-99m DMSA, and 20 of them were abnormal on PDU. Fifty-one of 78 kidneys were normal on Tc-99m DMSA, and 3 of 51 appeared diseased on PDU. The accuracy of PDU was 87%, sensitivity was 74%, and specificity was 94%. The positive predictive and negative predictive values were both 87%. When considering the numbers of lesions in 27 kidneys with positive Tc-99m DMSA studies (38 lesions), PDU did not disclose 16 lesions (false-negative results). Thus, the sensitivity of PDU for diagnosing lesions of APN decreased to 58%. CONCLUSIONS A positive PDU finding should obviate the use of Tc-99m DMSA in patients thought to have possible APN. However, because of a large number of false-negative results (26%) and underestimation of the number of pyelonephritic lesions (low sensitivity of 58%), PDU cannot replace Tc-99m DMSA in the diagnosis of APN in children.

  6. Evaluation of solid breast lesions with power Doppler: value of penetrating vessels as a predictor of malignancy

    PubMed Central

    Ibrahim, Rositaa; Rahmat, Kartini; Fadzli, Farhana; Rozalli, Faizatul Izza; Westerhout, Caroline Judy; Alli, Kasumawati; Vijayananthan, Anushya; Moosa, Fatimah

    2016-01-01

    INTRODUCTION This study aimed to evaluate the vascular pattern of solid breast lesions using power Doppler ultrasonography (PDUS) and assess whether the presence of intratumoural penetrating vessels can predict breast cancer malignancy. METHODS Greyscale ultrasonography (US) and PDUS were prospectively performed on 91 women in Malaysia with histopathologically proven breast lesions. The diagnostic accuracy of greyscale US, PDUS, and both greyscale US and PDUS was calculated and compared. RESULTS The 91 women had 102 breast lesions (55 benign, 47 malignant). Of the 47 malignant lesions, 36 demonstrated intratumoural penetrating vessels. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of greyscale US findings in diagnosing malignancy were 100.0%, 71.4%, 74.1% and 100.0%, respectively. The presence of calcification in the breast lesion and the margin, shape and posterior acoustic features of the lesion were significant parameters in predicting malignancy (p < 0.01). The sensitivity, specificity, PPV and NPV of the presence of intratumoural penetrating vessels in predicting malignancy were 76.5%, 80.0%, 76.5% and 80.0%, respectively. When both greyscale US and PDUS were used, there was a significant correlation in predicting malignancy (p < 0.05). The specificity and PPV values of the combined greyscale US and PDUS method (89.0% and 85.7%, respectively) were higher than those of greyscale US or PDUS alone. CONCLUSION Flow patterns revealed by PDUS can be useful for differentiating benign and malignant breast lesions. The visualisation of penetrating vessels in solid breast lesions can be used to complement greyscale US findings in predicting malignancy. PMID:27872938

  7. Subclinical enthesopathy in patients with psoriasis and its association with other disease parameters: a power Doppler ultrasonographic study

    PubMed Central

    Moshrif, Abdelhafeez; Mosallam, Ahmed; Mohamed, Essam elden M.; Gouda, Wesam; Doma, Mostafa

    2017-01-01

    Objective This study aimed to determine the prevalence of subclinical enthesopathy in patients with psoriasis using power Doppler ultrasonography (PDUS) and its association with other disease parameters. Material and Methods A total of 50 patients with psoriasis (31 females) aged 19–70 years underwent a thorough clinical examination that included assessment of body mass index (BMI) and psoriasis area and severity index (PASI) score. Measurements of inflammatory markers, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum uric acid, and plain radiography of the heels, knees, and sacroiliac joints were performed for all patients. Patients without clinical evidence of arthritis or enthesitis underwent an ultrasonographic (US) examination. According to the US examination, patients were classified into group I (patients with enthesitis) and group II (patients without enthesitis). Results In group I, Achilles enthesis was the most common site of US enthesitis (33.3%), followed by distal patellar enthesis (22.2%), proximal patellar enthesis (16.7%), quadriceps enthesis (16.7%), and plantar aponeurosis enthesis (11.1%). There was a statistically significant positive correlation between the occurrence of enthesitis and the patient’s age, disease duration, PASI score, BMI, and hyperuricemia (p<0.05 for each). In contrast, there was no significant correlation between enthesitis and sex or radiographic sacroiliitis (p>0.05 for each). Conclusion In addition to the importance of PDUS as a complimentary tool for examining enthesis in patients with psoriasis, the presence of high PASI score, increased BMI and hyperuricemia, and a long disease duration can be considered as predictive parameters for the presence of psoriatic enthesitis. PMID:28293449

  8. Localization of needle tip with color doppler during pericardiocentesis: In vitro validation and initial clinical application

    NASA Technical Reports Server (NTRS)

    Armstrong, G.; Cardon, L.; Vilkomerson, D.; Lipson, D.; Wong, J.; Rodriguez, L. L.; Thomas, J. D.; Griffin, B. P.

    2001-01-01

    This study evaluates a new device that uses color Doppler ultrasonography to enable real-time image guidance of the aspirating needle, which has not been possible until now. The ColorMark device (EchoCath Inc, Princeton, NJ) induces high-frequency, low-amplitude vibrations in the needle to enable localization with color Doppler. We studied this technique in 25 consecutive patients undergoing pericardiocentesis, and in vitro, in a urethane phantom with which the accuracy of color Doppler localization of the needle tip was compared with that obtained by direct measurement. Tip localization was excellent in vitro; errors axial to the ultrasound beam (velocity Doppler -0.13 +/- 0.90 mm, power Doppler -0.05 +/- 1.7 mm) were less than lateral errors (velocity -0.36 +/- 1.8 mm, power -0.02 +/- 2.8 mm). In 18 of 25 patients, the needle was identified and guided into the pericardial space with the ColorMark technique, and it allowed successful, uncomplicated drainage of fluid. Initial failures were the result of incorrect settings on the echocardiographic machine and inappropriate combinations of the needle puncture site and imaging window. This study demonstrates a novel color Doppler technique that is highly accurate at localizing a needle tip. The technique is feasible for guiding pericardiocentesis. Further clinical validation of this technique is required.

  9. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    PubMed

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.

  10. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics.

    PubMed

    Jiménez, A; Beltrán, G; Uceda, M

    2007-09-01

    The effect of high-power ultrasound on olive paste, on laboratory thermo-mixing operations for virgin olive oil extraction, has been studied. Direct sonication by an ultrasound probe horn (105 W cm(-2) and 24 kHz) and indirect sonication with an ultrasound-cleaning bath (150 W and 25 kHz) were applied and their effects compared with the conventional thermal treatment. A quick-heating of olive paste, from ambient (12-20 degrees C) to optimal temperature conditions (28-30 degrees C), and an oil extractability improvement were observed when applying sonication. Better extractability was obtained by direct sonication for high moisture olives (>50%) whereas indirect sonication gave greater extractability for low moisture olive fruits (<50%). Optimal application of ultrasound was achieved with direct sonication for 4 min at the beginning of paste malaxation and with indirect sonication during the malaxation time. Effect of high-power ultrasound on oil quality parameters and nutritional and sensory characteristics were studied. Changes in quality parameters (free acidity value, peroxide value, K270 and K232) were not found, however significant effects on the levels of bitterness, polyphenols, tocopherols (vitamin E), chlorophyll and carotenoids were observed. Oils from sonicated pastes showed lower bitterness and higher content of tocopherols, chlorophylls and carotenoids. Related to sensory characteristics, off-flavour volatiles were not detected in oils from sonication treatments. Total peak areas of volatiles and the ratio hexanal/E-2-hexenal, as determined by SPME analysis, were lower than non-sonicated reference oils; sensory evaluation by panel test showed higher intensity of positive attributes and lesser of negative characteristics than those untreated.

  11. Impact of Power Ultrasound on the Quality of Fruits and Vegetables During Dehydration

    NASA Astrophysics Data System (ADS)

    Villamiel, Mar; Gamboa, Juliana; Soria, A. Cristina; Riera, Enrique; García-Pérez, José V.; Montilla, Antonia

    In the present work, the influence of power ultrasound (US) on the quality of fruits and vegetables during both the pre-treatment and drying has been evaluated. Chemical indicators such as pectinmethyl esterase and peroxidase enzymes, vitamin C, carbohydrates, proteins, polyphenols and 2-furoylmethylamino acids (indicators of the early stages of Maillard reaction) have been studied. In addition, rehydration capacity, leaching losses and shrinkage and organoleptic characteristics of the final product have also been assessed. During blanching, similar leaching losses and enzyme inactivation were found in low temperature and prolonged conventional treatments and in US processes, but with a significant reduction in the time for the latter. Finally, application of US in drying of carrots and strawberries originated significant reductions in processing time, while providing high quality end-products. The quality was higher as compared to marketed products and superior or equivalent to samples obtained under similar conditions in a prototype convective dryer, and, in the case of some indicators, similar to that of freeze-dried samples.

  12. Chemical and physicochemical quality parameters in carrots dehydrated by power ultrasound.

    PubMed

    Soria, Ana Cristina; Corzo-Martínez, Marta; Montilla, Antonia; Riera, Enrique; Gamboa-Santos, Juliana; Villamiel, Mar

    2010-07-14

    Preservation of the quality and bioactivity of carrots dehydrated by power ultrasound (US) under different experimental conditions including prior blanching has been evaluated for the first time by measuring the evolution of the Maillard reaction and the changes in soluble sugars, proteins, total polyphenols, antioxidant activity, and rehydration ability. This study also includes a comparison with a freeze-dried sample and data of commercial dehydrated carrots. The synergic effect of US and temperature (60 degrees C) increased the dehydration rate of carrots (90% moisture loss in only 75 min) while still providing carrots with a level of 2-furoylmethyl-amino acids significantly lower than that of dehydrated commercial samples. Whereas a decrease in the content of reducing soluble sugars was observed with processing temperature, minor carbohydrates (scyllo- and myo-inositol and sedoheptulose) were rather stable, irrespective of the US dehydration parameters. Blanching significantly improved the rehydration ability of US-dehydrated carrots without increasing the loss of soluble sugars by leaching. As supported by the similarity of most quality indicators studied in both US-treated and freeze-dried carrots, the mild processing conditions employed in US dehydration gave rise to premium quality dehydrated carrots.

  13. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  14. Hyperhomocysteinemia as an Early Predictor of Erectile Dysfunction: International Index of Erectile Function (IIEF) and Penile Doppler Ultrasound Correlation With Plasma Levels of Homocysteine.

    PubMed

    Giovannone, Riccardo; Busetto, Gian Maria; Antonini, Gabriele; De Cobelli, Ottavio; Ferro, Matteo; Tricarico, Stefano; Del Giudice, Francesco; Ragonesi, Giulia; Conti, Simon L; Lucarelli, Giuseppe; Gentile, Vincenzo; De Berardinis, Ettore

    2015-09-01

    Erectile dysfunction (ED) is inability to achieve and maintain an erection to permit satisfactory sexual activity. Homocysteine (Hcys) is a sulfur-containing amino acid synthesized from the essential amino acid methionine. Experimental models have elucidated the role of hyperhomocysteinemia (HHcys) as a strong and independent predictor for atherosclerosis progression and impaired cavernosal perfusion. The aim of this study is to investigate the serum levels of Hcys in our cohort of patients with ED, to compare these values with these of control population and to examine Hcys as a predictive marker for those patients who are beginning to complain mild-moderate ED. A total of 431 patients were enrolled in the study. The whole cohort was asked to complete the International Index of Erectile Function (IIEF) questionnaire. The study population was divided in 3 main groups: Group A: 145 patients with no ED serving as a control group; Group B: 145 patients with mild or mild-moderate ED; Group C: 141 patients with moderate or severe ED. Each participant underwent blood analysis. All patients underwent baseline and dynamic penile Doppler ultrasonography. We found in our cohort mean Hcys plasma concentrations significantly higher than the cut-off point in both groups B and C (18.6 ± 4.7 and 28.38 ± 7.8, respectively). Mean IIEF score was 27.9 ± 1.39, 19.5 ± 2.6, and 11.1 ± 2.5 for groups A, B, and C, respectively (P < 0.0001). In the penile Doppler ultrasonography studies, a high significant inverse correlation was detected between the mean values of the 10th minute's peak-systolic velocity (PSV) and Hcys levels for the groups B and C. This establishes a dose-dependent association between Hcys and ED. Furthermore, we showed that Hcys was an earlier predictor of ED than Doppler studies, as the Hcys increase was present in patients with mild ED even before abnormal Doppler values.

  15. Quantitative Ultrasound in Cancer Imaging

    PubMed Central

    Feleppa, Ernest J.; Mamou, Jonathan; Porter, Christopher R.; Machi, Junji

    2010-01-01

    Ultrasound is a relatively inexpensive, portable, and versatile imaging modality that has a broad range of clinical uses. It incorporates many imaging modes, such as conventional gray-scale “B-mode” imaging to display echo amplitude in a scanned plane; M-mode imaging to track motion at a given fixed location over time; duplex, color, and power Doppler imaging to display motion in a scanned plane; harmonic imaging to display non-linear responses to incident ultrasound; elastographic imaging to display relative tissue stiffness; and contrast-agent imaging with simple contrast agents to display blood-filled spaces or with targeted agents to display specific agent-binding tissue types. These imaging modes have been well described in the scientific, engineering, and clinical literature. A less well-known ultrasonic imaging technology is based on quantitative ultrasound or (QUS), which analyzes the distribution of power as a function of frequency in the original received echo signals from tissue and exploits the resulting spectral parameters to characterize and distinguish among tissues. This article discusses the attributes of QUS-based methods for imaging cancers and providing improved means of detecting and assessing tumors. The discussion will include applications to imaging primary prostate cancer and metastatic cancer in lymph nodes to illustrate the methods. PMID:21362522

  16. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  17. Assessment of the effect of vessel curvature on Doppler measurements in steady flow.

    PubMed

    Balbis, S; Guiot, C; Roatta, S; Arina, R; Todros, T

    2004-05-01

    Blood vessel curvature is responsible for the appearance of nonaxial velocity components and for minor changes in the pattern of the axial flow. All the velocity components are expected to contribute to the Doppler signal produced by the ultrasound (US) backscattered by the insonated blood cells, the axial velocity, contributing to the actual volumetric blood flow, and the transverse velocity, causing the recirculating vortices. A detailed, separate analysis of the velocity components is, therefore, mandatory to quantify how vessel curvature can affect results and clinical diagnosis. Both experimental in vitro measures and numerical simulations were performed on a curved tube and the Doppler power spectra so obtained were compared. The satisfactorily agreement of the above spectra shows that the nonaxial velocity components are easily detectable with clinical equipment and that their amplitude, as expected, is not negligible and can bias Doppler measurements and resulting clinical diagnosis.

  18. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  19. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-12-19

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries.

  20. Fabrication of a PMN-PT Single Crystal-Based Transcranial Doppler Transducer and the Power Regulation of Its Detection System

    PubMed Central

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The −6 dB bandwidth of the transducer is 68.4% and the sensitivity is −17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  1. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing.

    PubMed

    Evelyn; Silva, F V M

    2015-12-02

    Byssochlamys nivea is a mold that can spoil processed fruit products and produce mycotoxins. In this work, high pressure processing (HPP, 600 MPa) and power ultrasound (24 kHz, 0.33 W/mL; TS) in combination with 75°C for the inactivation of four week old B. nivea ascospores in strawberry puree for up to 30 min was investigated and compared with 75°C thermal processing alone. TS and thermal processing can activate the mold ascospores, but HPP-75°C resulted in 2.0 log reductions after a 20 min process. For a 10 min process, HPP-75°C was better than 85°C alone in reducing B. nivea spores (1.4 vs. 0.2 log reduction), demonstrating that a lower temperature in combination with HPP is more effective for spore inactivation than heat alone at a higher temperature. The ascospore inactivation by HPP-thermal, TS and thermal processing was studied at different temperatures and modeled. Faster inactivation was achieved at higher temperatures for all the technologies tested, indicating the significant role of temperature in spore inactivation, alone or combined with other physical processes. The Weibull model described the spore inactivation by 600 MPa HPP-thermal (38, 50, 60, 75°C) and thermal (85, 90°C) processing, whereas the Lorentzian model was more appropriate for TS treatment (65, 70, 75°C). The models obtained provide a useful tool to design and predict pasteurization processes targeting B. nivea ascospores.

  2. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.

    PubMed

    Pinter, Stephen Z; Lacefield, James C

    2009-07-01

    Power Doppler imaging of physiologic and pathologic angiogenesis is widely used in preclinical studies to track normal development, disease progression and treatment efficacy but can be challenging given the presence of small blood vessels and slow flow velocities. Power Doppler images can be plagued with false-positive color pixels or undetected vessels, thereby complicating the interpretation of vascularity metrics such as color pixel density (CPD). As an initial step toward improved microvascular quantification, flow-phantom experiments were performed to establish relationships between vessel detection and various combinations of vessel size (160, 200, 250, 300 and 360 microm), flow velocity (4, 3, 2, 1 and 0.5 mm/s) and transducer frequency (30 and 40 MHz) while varying the wall filter cut-off velocity. Receiver operating characteristic (ROC) curves and areas under ROC curves indicate that good vessel detection performance can be achieved with a 40-MHz transducer for flow velocities > or =2 mm/s and with a 30-MHz transducer for flow velocities > or =1 mm/s. In the second part of the analysis, CPD was plotted as a function of wall filter cut-off velocity for each flow-phantom data set. Three distinct regions were observed: overestimation of CPD at low cut-offs, underestimation of CPD at high cut-offs and a plateau at intermediate cut-offs. The CPD at the plateau closely matched the phantom's vascular volume fraction and the length of the plateau corresponded with the flow-detection performance of the Doppler system assessed using ROC analysis. Color pixel density vs. wall filter cut-off curves from analogous in vivo experiments exhibited the same shape, including a distinct CPD plateau. The similar shape of the flow-phantom and in vivo curves suggests that the presence of a plateau in vivo can be used to identify the best-estimate CPD value that can be treated as a quantitative vascularity metric. The ability to identify the best CPD estimate is expected to

  3. Ultrasound anatomy and normal ECD of the kidney.

    PubMed

    Rosi, Paolo; Del Zingaro, Michele; Porena, Massimo

    2005-03-01

    The adult kidney is studied using convex-array probes with a frequency of 3.5 MHz, whereas in children higher frequencies are advisable (5 MHz). The study of the organ may be carried out with three possible approaches (access routes): abdominal (anterior), lumbar (lateral), dorsal (posterior). For a correct and complete study of the renal echostructure 5 fundamental parameters need to be evaluated: shape, size, parenchymal echotexture, renal sinus and renal hilum. The most common anatomical variants need to be identified and namely, dromedary humps, foetal lobation, hypertrophied column of Berten, hypertrophied renal tubercles and labia. The use of colour-Doppler ultrasound equipment permits assessment of the main renal arteries, the segmentary branches at the level of the hilum, the interlobar arteries, the arcuate arteries, and the interlobular arteries (inconsistently). Colour and duplex ultrasound enable identification of flow signals from arteries that are not directly visible at B-mode sonography, since frequency resolution (related to the Doppler-shift) is greater than spatial and contrast resolution. Power doppler provides a detailed visualisation of the distribution of vascular structures and blood circulation in the different regions of the kidney parenchyma, affording a perfusion study similar to angiographic parenchymography. Unlike colour Doppler, power Doppler allows identification of the cortical circulation. The Doppler pattern of the renal arteries is typical of arteries with parenchyma destination, which show a systolic peak and a well-depicted diastolic curve due to low peripheral resistance. The parameters to be analysed are peak systolic velocity, acceleration time, pulsatility index, and resistive index.

  4. Counterclockwise barber-pole sign on prenatal three-dimensional power Doppler sonography in a case of duodenal obstruction without intestinal malrotation.

    PubMed

    Hsu, Chin-Yuan; Chiba, Yoshihide; Fukui, On; Sasaki, Yoshihito; Miyashita, Susumu

    2004-02-01

    Three-dimensional (3D) power Doppler sonographic imaging provides a 3D view of the blood vessels. This technique reportedly has advantages over other forms of sonography in visualizing normal and abnormal fetal vascular anatomy. We report the case of a 36-year-old pregnant woman in whom 3D power Doppler sonography with simultaneous gray-scale imaging was performed at 32 weeks' gestational age to investigate an intestinal obstruction in the fetus that was suspected on the basis of 2-dimensional sonographic findings. The 3D sonograms revealed that the superior mesenteric artery and vein of the fetus were wound counterclockwise, forming the "barber-pole" sign. At 38 weeks' menstrual age, the female infant was delivered vaginally. Only duodenal atresia and annular pancreas, but not intestinal malrotation, were found postnatally. Surgical reconstruction of the duodenum was performed, with no major complications. Previous research suggests that the counterclockwise barber-pole sign is a normal finding. On the basis of our case, we believe that this "negative finding" might be used to exclude the diagnosis of midgut volvulus, a condition that would be expected to cause these vessels to wrap around in a clockwise direction.

  5. Ultrasound findings in cutaneous sarcoidosis

    PubMed Central

    Dybiec, Ewa; Pietrzak, Aldona; Kieszko, Robert; Kanitakis, Jean

    2015-01-01

    The diagnosis of cutaneous sarcoidosis relies mainly on the patient's history, presence of characteristic skin lesions and histological examination that shows a granulomatous, non-necrotizing dermal infiltration. The aim of the study was to assess the ultrasonographic features of cutaneous lesions of sarcoidosis before and after treatment. A 38-year-old woman with systemic sarcoidosis and specific cutaneous lesions was treated with systemic steroids followed by hydroxychloroquine. Ultrasonographic examination of the cutaneous sarcoidosis lesions was performed with a Philips iU 22 and Siemens Acuson S 2000 device, with the use of linear 15 MHz and 17 MHz transducers. Histological examination of skin lesions showed characteristic, naked, non-necrotizing granulomas in the upper dermis. Ultrasound examination revealed well-demarcated, hypoechogenic changes. Power-Doppler scan revealed increased vascularity within the lesions and the surrounding tissue. Clinical improvement of the skin lesions was confirmed by ultrasound examination, which showed a decrease in their size and normalization of dermal echogenicity and vascularity. Ultrasound examination can show cutaneous sarcoidosis lesions and their regression after appropriate treatment. PMID:25821428

  6. Cerebral laterality for language is related to adult salivary testosterone levels but not digit ratio (2D:4D) in men: A functional transcranial Doppler ultrasound study.

    PubMed

    Papadatou-Pastou, Marietta; Martin, Maryanne

    2017-03-01

    The adequacy of three competing theories of hormonal effects on cerebral laterality are compared using functional transcranial Doppler sonography (fTCD). Thirty-three adult males participated in the study (21 left-handers). Cerebral lateralization was measured by fTCD using an extensively validated word generation task. Adult salivary testosterone (T) and cortisol (C) concentrations were measured by luminescence immunoassay and prenatal T exposure was indirectly estimated by the somatic marker of 2nd to 4th digit length ratio (2D:4D). A significant quadratic relationship between degree of cerebral laterality for language and adult T concentrations was observed, with enhanced T levels for strong left hemisphere dominance and strong right hemisphere dominance. No systematic effects on laterality were found for cortisol or 2D:4D. Findings suggest that higher levels of T are associated with a relatively attenuated degree of interhemispheric sharing of linguistic information, providing support for the callosal and the sexual differentiation hypotheses rather than the Geschwind, Behan and Galaburda (GBG) hypothesis.

  7. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    NASA Astrophysics Data System (ADS)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  8. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  9. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  10. Three-dimensional ultrasound imaging of the vasculature.

    PubMed

    Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D

    1998-02-01

    With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.

  11. Role of 3-D ultrasound in clinical obstetric practice: evolution over 20 years.

    PubMed

    Tonni, Gabriele; Martins, Wellington P; Guimarães Filho, Hélio; Araujo Júnior, Edward

    2015-05-01

    The use of 3-D ultrasound in obstetrics has undergone dramatic development over the past 20 years. Since the first publications on this application in clinical practice, several 3-D ultrasound techniques and rendering modes have been proposed and applied to the study of fetal brain, face and cardiac anatomy. In addition, 3-D ultrasound has improved calculations of the volume of fetal organs and limbs and estimations of fetal birth weight. And furthermore, angiographic patterns of fetal organs and the placenta have been assessed using 3-D power Doppler ultrasound quantification. In this review, we aim to summarize current evidence on the clinical relevance of these methodologies and their application in obstetric practice.

  12. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  13. Heating of fetal bone by diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Doody, Claire

    Most pregnant women in the Western world undergo an ultrasound examination and so it is important to ensure that exposure of the embryo or fetus does not produce unwanted effects. It is known that ultrasound can heat tissue, especially bone, and so this thesis explores the degree to which fetal bone might be heated during a pulsed Doppler examination. This is done both by carrying out measurements and by developing computer models. Thermal measurements on human fetal thoracic vertebrae of gestational age ranging from 14 to 39 weeks are reported. The bone samples were insonated in vitro with an ultrasound beam which had power and intensity values typical of those from a clinical scanner operating in pulsed Doppler mode. Temperature rises ranging from 0.6°C to 1.8°C were observed after five minutes, with approximately 75% of the temperature rise occurring in the first minute. Two approaches to computer modelling are described. These are the heated disc technique, which is commonly used to model the temperature rise generated by an ultrasound beam, and finite element modelling, a more general approach used to obtain solutions to differential equations. The degree to which our limited knowledge of the properties of fetal tissue affect our ability to make accurate predictions of in vivo heating is explored. It is shown that the present uncertainty in the value of the thermal conductivity and attenuation coefficient of fetal bone can lead to significant uncertainty in predictions of heating. The degree to which the simplifications inherent in the heated disc model affect the results will also be discussed. The results from the models are compared with the experimental measurements in order to estimate the attenuation coefficient of the bone.

  14. Vascular flow and perfusion imaging with ultrasound contrast agents.

    PubMed

    Bruce, Matthew; Averkiou, Mike; Tiemann, Klaus; Lohmaier, Stefan; Powers, Jeff; Beach, Kirk

    2004-06-01

    Current techniques for imaging ultrasound (US) contrast agents (UCA) make no distinction between low-velocity microbubbles in the microcirculation and higher-velocity microbubbles in the larger vasculature. A combination of radiofrequency (RF) and Doppler filtering on a low mechanical index (MI) pulse inversion acquisition is presented that differentiates low-velocity microbubbles (on the order of mm/s) associated with perfusion, from the higher-velocity microbubbles (on the order of cm/s) in larger vessels. In vitro experiments demonstrate the ability to separate vascular flow using both harmonic and fundamental Doppler signals. Fundamental and harmonic Doppler signals from microbubbles using a low-MI pulse-inversion acquisition are compared with conventional color Doppler signals in vivo. Due to the lower transmit amplitude and enhanced backscatter from microbubbles, the in vivo signal to clutter ratios for both the fundamental (-11 dB) and harmonic (-4 dB) vascular flow signals were greater than with conventional power Doppler (-51 dB) without contrast agent. The processing investigated here, in parallel with conventional pulse-inversion processing, enables the simultaneous display of both perfusion and vascular flow. In vivo results demonstrating the feasibility and potential utility of the real-time display of both perfusion and vascular flow using US contrast agents are presented and discussed.

  15. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    PubMed

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis.

  16. The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions.

    PubMed

    Joyce, E; Mason, T J; Phull, S S; Lorimer, J P

    2003-07-01

    There is an increasing incidence in health problems related to environmental issues that originate from inadequate treatment of potable waters. This has compelled scientists and engineers to engage in innovative technologies to achieve a maximum disinfection at affordable costs. Some species of bacteria produce colonies and spores that can agglomerate in spherical clusters and thus protect organisms on the inside of the cluster against biocidal attack. Flocs of fine particles (e.g., clay) can entrap bacteria and this can also protect them against the biocides. Other bacteria have the ability to mutate, thus building up resistance to conventional biocides (e.g., chlorine). Ultrasound has been shown to be effective in improving the effectiveness of biocides such as chlorine. The aim of this present study was to investigate the effect of electrolysis and power ultrasound as a disinfection treatment and to provide a greater knowledge of the fundamentals of disinfection through the production of hypochlorite in situ from saline solution via electrolysis. The electrode materials investigated were, carbon (felt and graphite), copper and stainless steel rods. The results show that sonication appears to amplify the effect of electrolysis. A combination of both treatments is significantly better than sonication or electrolysis alone.

  17. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn.

    PubMed

    Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

    2011-01-01

    The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox).

  18. Skin Ultrasound in Kaposi Sarcoma.

    PubMed

    Carrascosa, R; Alfageme, F; Roustán, G; Suarez, M D

    2016-05-01

    The use of ultrasound imaging has recently been increasing in numerous dermatologic diseases. This noninvasive technique provides additional details on the structure and vascularization of skin lesions. Kaposi sarcoma is a vascular tumor that typically arises in the skin and mucosas. It can spread to lymph nodes and internal organs. We performed B-mode and color Doppler ultrasound studies in 3 patients with a clinical diagnosis of Kaposi sarcoma confirmed by histological examination. We found differences in the ultrasound pattern between nodular and plaque lesions, in both B-mode and color Doppler. We believe that skin ultrasound imaging could be a useful technique for studying cutaneous Kaposi sarcoma, providing additional information on the structural and vascular characteristics of the lesion.

  19. Doppler effect's contribution to ultrasonic modulation of multiply scattered coherent light: Monte Carlo modeling.

    PubMed

    Elazar, Jovan M; Steshenko, Oleg

    2008-01-15

    Modulation of light by ultrasound in turbid media is investigated by modified public domain software based on the Monte Carlo algorithm. Apart from the recognized modulation mechanisms, originating in scatterers' displacements and refractive index modulation, an additional mechanism, evolving from Doppler shift during photon scattering, is considered. Comparison of the relative contributions from all three mechanisms to light modulation by ultrasound is performed for different medium scattering properties and ultrasound frequencies. Refractive index modulation remains the strongest mechanism for light modulation by ultrasound, but for high ultrasound frequencies and for large scattering coefficients the Doppler effect can become dominant.

  20. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  1. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  2. Abdominal Ultrasound

    MedlinePlus

    ... Ultrasound - Abdomen Ultrasound imaging of the abdomen uses sound waves to produce pictures of the structures within ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  3. Hip Ultrasound

    MedlinePlus

    ... Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures of muscles, tendons, ligaments, ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  4. Obstetrical Ultrasound

    MedlinePlus

    ... Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures of a baby (embryo ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  5. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    PubMed

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  6. Real Time Fast Ultrasound Imaging Technology and Possible Applications

    NASA Astrophysics Data System (ADS)

    Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.

    In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.

  7. Value of contrast-enhanced ultrasound in rheumatic disease.

    PubMed

    Klauser, Andrea Sabine

    2005-12-01

    Ultrasound (US) is a useful tool in the assessment of rheumatic disease. It permits assessment of early erosive changes and vascularity detection in synovial proliferation, caused by inflammatory activity by using colour/power Doppler US (CDUS/PDUS). In the detection of slow flow and flow in small vessels, the CDUS/PDUS technique is limited. Contrast enhanced US can improve the detection of inflammatory vascularity but is not yet included in routine diagnosis of this condition. However, contrast enhanced US shows promising results in diagnosis, assessment of disease activity and follow up of inflammatory rheumatic diseases.

  8. Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Tissier, Anne-Marie; Correas, Jean-Michel; Wintzenrieth, Frédéric; Tanter, Mickaël; Couture, Olivier

    2017-01-01

    Contrast enhanced ultrasound (CEUS) takes advantage of the nonlinear behaviour of injected microbubbles. If these contrast techniques yield good specificity between bubbles and tissues, they suffer some drawbacks, inherently linked to their dependence on nonlinear content. In recent years, plane-wave ultrasound reached frame rates of up to 20 000 fps. In this study we propose a linear technique for CEUS that takes advantage of these very high frame rates to separate bubbles from tissue without requiring nonlinearities. Data-driven spatiotemporal filtering operations are used to separate different features in the image on the basis of coherence both in space and time. Such filter recently proved to improve Doppler sensitivity (Demene et al 2015 IEEE Trans. Med. Imaging 34 2271-85). In contrast with bubbles, even slow moving ones, tissues are highly coherent both in space and time. Therefore, singular value decomposition (SVD) seems to be a powerful tool for the separation of contrast agents and tissues. In this paper, we apply SVD processing to linear ultrafast ultrasound images for CEUS Doppler. The contrast levels reached by this technique were compared to those of a nonlinear gold standard sequence (PMPI Doppler) through a flow phantom study. The SVD technique reached contrast-to-tissue ratios (CTR) up to 10 dB higher in vitro, and proved to be robust in terms of probe motion and slow flow. A trial was also conducted on a transplanted human kidney, already imaged by means of power Doppler (Claudon et al 1999 Am. J. Roentgenol. 173 41-6) and microbubbles (Kay et al 2009 Clin. Radiol. 64 1081-7). Contrast levels yielded by the SVD technique measured up to 13 dB higher than those of PMPI Doppler.

  9. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  10. A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound.

    PubMed

    Turci, Francesco; Tomatis, Maura; Mantegna, Stefano; Cravotto, Giancarlo; Fubini, Bice

    2008-04-01

    A suspension of chrysotile asbestos fibres in aqueous 0.5M oxalic acid was subjected to power ultrasound with the aim to disrupt and detoxify the mineral by the leaching action of oxalic acid on its structural cations acting simultaneously with a vigorous acoustic cavitation. Sonication was performed in a "cavitating tube", a vertical hollow vibrating cylinder made of titanium, operating at 19.2 kHz and 150 W. Treatment lasted from 2.5 to 21 h. Scanning electron microscopy (SEM) showed that the joint action of the chelating agent and ultrasound (though not of either when applied independently) mostly converted asbestos fibres into micrometric aggregates and nano-sized debris, whose morphology totally differed from asbestos fibres. When treated suspensions were filtered through CA membranes (pore size 0.20 microm), more than half of the asbestos went through the filter because it had either been brought in solution or dispersed in the form of extremely small particles. Most of the structural metal ions were brought into solution (ICP-AES). After the treatment the BET surface area of the recovered solid was tenfold greater than the original. The crystalline fraction of residual solids, though resembling the original sample in XRD, was shown by micro-Raman spectra to be made of antigorite, a polymorph form of serpentine. Furthermore, as the length of these antigorite fibrils lay outside the fibre range rated as a health hazard under worldwide regulations, our procedure can be employed for the decontamination of chrysotile-polluted waters and sediments.

  11. Breast ultrasound.

    PubMed

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  12. Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter.

    PubMed

    Milne, Louise; Stewart, Isobel; Bremner, David H

    2013-05-01

    Ultrasonic frequencies of 20kHz, 382kHz, 584kHz, 862kHz (and 998kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862kHz is around 10% more efficient at generating hydroxyl radicals than the 382kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42°C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382kHz and 862kHz, though 582kHz is substantially lower, when the power levels are set at approximately 9W for all systems. An equivalent power level of 9W could not be obtained for the 998kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound.

  13. Denoising of arterial and venous Doppler signals using discrete wavelet transform: effect on clinical parameters.

    PubMed

    Tokmakçi, Mahmut; Erdoğan, Nuri

    2009-05-01

    In this paper, the effects of a wavelet transform based denoising strategy on clinical Doppler parameters are analyzed. The study scheme included: (a) Acquisition of arterial and venous Doppler signals by sampling the audio output of an ultrasound scanner from 20 healthy volunteers, (b) Noise reduction via decomposition of the signals through discrete wavelet transform, (c) Spectral analysis of noisy and noise-free signals with short time Fourier transform, (d) Curve fitting to spectrograms, (e) Calculation of clinical Doppler parameters, (f) Statistical comparison of parameters obtained from noisy and noise-free signals. The decomposition level was selected as the highest level at which the maximum power spectral density and its corresponding frequency were preserved. In all subjects, noise-free spectrograms had smoother trace with less ripples. In both arterial and venous spectrograms, denoising resulted in a significant decrease in the maximum (systolic) and mean frequency, with no statistical difference in the minimum (diastolic) frequency. In arterial signals, this leads to a significant decrease in the calculated parameters such as Systolic/Diastolic Velocity Ratio, Resistivity Index, Pulsatility Index and Acceleration Time. Acceleration Index did not change significantly. Despite a successful denoising, the effects of wavelet decomposition on high frequency components in the Doppler signal should be challenged by comparison with reference data, or, through clinical investigations.

  14. In-suit Doppler technology assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  15. The reclaiming of butyl rubber and in-situ compatibilization of thermoplastic elastomer by power ultrasound

    NASA Astrophysics Data System (ADS)

    Feng, Wenlai

    This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink

  16. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well.

  17. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  18. Ultrasound - Breast

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  19. Ultrasound -- Pelvis

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  20. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  1. Abdominal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  2. Obstetrical Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  3. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  4. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  5. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  6. Ultrasound - Breast

    MedlinePlus

    ... the examination. top of page What does the equipment look like? Ultrasound scanners consist of a console ... ultrasound that require biopsy are not cancers. Many facilities do not offer ultrasound screening, and the procedure ...

  7. Color Doppler Imaging of Cardiac Catheters Using Vibrating Motors

    PubMed Central

    Reddy, Kalyan E.; Light, Edward D.; Rivera, Danny J.; Kisslo, Joseph A.; Smith, Stephen W.

    2010-01-01

    We attached a miniature motor rotating at 11,000 rpm onto the proximal end of cardiac electrophysiological (EP) catheters in order to produce vibrations at the tip which were then visualized by color Doppler on ultrasound scanners. We imaged the catheter tip within a vascular graft submerged in a water tank using the Volumetrics Medical Imaging 3D scanner, the Siemens Sonoline Antares 2D scanner, and the Philips ie33 3D ultrasound scanner with TEE probe. The vibrating catheter tip was visualized in each case though results varied with the color Doppler properties of the individual scanner. PMID:19514134

  8. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria.

    PubMed

    Gao, Shengpu; Lewis, Gillian D; Ashokkumar, Muthupandian; Hemar, Yacine

    2014-01-01

    The aim of this study was to determine the effects of high-intensity low-frequency (20 kHz) ultrasound treatment on the viability of bacteria suspension. More specifically, we have investigated the relationship between the deactivation efficiency and the physical (size, hydrophobicity) and biological (gram-status, growth phase) properties of the microbes. Enterobacter aerogenes, Bacillus subtilis, Staphylococcus epidermidis, S. epidermidis SK and Staphylococcus pseudintermedius were chosen for this study owing to their varying physical and biological properties. The survival ratio of the bacteria suspension was measured as a function of the ultrasound power (up to 13 W) for a constant sonication time of 20 min. Transmission electron microscopy was used to evaluate the ultrasound-induced damages to the microbes. Ultrasound treatment resulted in lethal damage to E. aerogenes and B. subtilis (up to 4.5-log reduction), whereas Staphylococcus spp. were not affected noticeably. Further, E. aerogenes suspensions were more sensitive to ultrasonication in exponential growth phase than when they were in stationary phase. The results of this study demonstrate that the main reason for bacterial resistance to ultrasonic deactivation is due to the properties of the bacterial capsule. Microbes with a thicker and "soft" capsule are highly resistant to ultrasonic deactivation process.

  9. Assessment of the ability of myocardial contrast echocardiography with harmonic power Doppler imaging to identify perfusion abnormalities in patients with Kawasaki disease at rest and during dipyridamole stress.

    PubMed

    Ishii, M; Himeno, W; Sawa, M; Iemura, M; Furui, J; Muta, H; Sugahara, Y; Egami, K; Akagi, T; Ishibashi, M; Kato, H

    2002-01-01

    The aim of our study was to assess the ability of myocardial contrast echocardiography (MCE) with harmonic power Doppler imaging (HPDI) to identify perfusion abnormalities in patients with Kawasaki disease at rest and during pharmacological stress imaging with dipyridamole. Results were compared with those of 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) imaging as the clinical reference standard. MCE with HPDI was performed on 20 patients with a history of Kawasaki disease. Images were obtained at baseline and during dipyridamole infusion (0.56 mg x kg(-1)) in the apical two- and four-chamber views. Myocardial opacification suitable for the analysis was obtained in all patients. Nine patients with stenotic lesions had a reversible defect after dipyridamole infusion detected by both MCE with HPDI and SPECT, and 3 patients with a history of myocardial infarction had a partially or completely irreversible defect detected by both methods. Three patients with coronary aneurysm without stenotic lesion, 4 patients with regressed coronary aneurysm, and 2 patients with normal coronary artery in acute phase also had normal perfusion at rest and after pharmacological stress by both methods. A 96% concordance (kappa = 0.87) was obtained when comparing the respective segmental perfusion scores using the two methods at baseline, and an 86% concordance (kappa = 0.81) was obtained at postdipyridamole infusion. After combining baseline and postdipyridamole images, each segment was labeled as having normal perfusion, irreversible defects, or reversible defects. Using these classifications, concordance for the two methods was 92% (kappa = 0.87). MCE with HPDI is a safe and feasible method by which to detect asymptomatic ischemia due to severe stenotic lesion, and it may be an important addition to the modalities used to identify patients at risk for myocardial infarction as a complication of Kawasaki disease.

  10. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  11. Ultrasound anatomy of normal nails unit with 18 mhz linear transducer.

    PubMed

    Cecchini, Andrea; Montella, Andrea; Ena, Pasquale; Meloni, Giovanni Battista; Mazzarello, Vittorio

    2009-01-01

    Interest is growing in non-invasive diagnostic methods for nails in dermatological pathology. Currently, nail disease diagnosis is based mostly on clinical evaluation; instrumental examination, traditionally, has been performed by magnetic resonance. Ultrasound (US) can be proposed as an easier and more available method for the study of the nail apparatus. In this study, the nail unit normal ultrasound anatomy was investigated to obtain data on adult normal parameters. On 35 healthy volunteers (20 women and 15 men--average age of 27 years) we performed an ultrasonographic study on the nail plate (dorsal and ventral), nail matrix and nail bed of all fingers of the hands using a 18 MHz linear transducer with Esaote Mylab 50. A thick gel layer allowed for appropriate transmission of ultrasound without any additional device. Macroscopic nail features were studied by clinical examination and photographic analysis. The following ultrasound parameters were investigated: nail thickness; nail bed thickness; matrix lenght; matrix-bone distance. Blood flow was studied with the use of colour and power colour Doppler. The nail apparatus echographic anatomy consists in: (a) nail plate, represented by two hyperechoic bands (dorsal and ventral) with an hypoechoic or anechoic space between them; (b) nail bed, represented by an area of dys-homogeneous hypo-echogeneity; (c) nail matrix, represented by a markedly hypoechoic area corresponding to the region under the nail sulcus; (d) ligaments, sometimes well detectable and formed by a specialized connective tissue; and (e) vessels, well evaluable through doppler examination.

  12. Linear array transducer for high-power airborne ultrasound using flextensional structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  13. Medical ultrasound systems.

    PubMed

    Powers, Jeff; Kremkau, Frederick

    2011-08-06

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue.

  14. Sublethal effect assessment of a low-power and dual-frequency anti-cyanobacterial ultrasound device on the common carp (Cyprinus carpio): a field study.

    PubMed

    Techer, Didier; Milla, Sylvain; Banas, Damien

    2016-12-30

    The use of ultrasonication for cyanobacterial control in freshwater bodies has become increasingly popular during the last decades despite controversial efficiency on large scale application. Apart from that, little information is currently available regarding ultrasound toxicity potential towards non-target species. This work was designed to address this issue in the common carp using a low-power (7-9 W output) and dual-frequency (23 and 46 kHz) anti-cyanobacterial ultrasound device. Results showed that carps were unaffected by ultrasound exposure when exposed in floating cages in fish ponds over a 30-day period. The experiment duration was the main factor influencing all measured biological parameters in exposed and non-exposed organisms. Indeed, it was positively associated with an increase in fish condition factor. Cortisol level also tended to slightly increase over the number of days of experiment but its variation did not enable to sort out any ultrasound exposure-related stress. Moreover, an overall diminution along the experimental period of the expression level of a set of biomarkers could be reported, encompassing cellular antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxydase (GPx), catalase and glutathione S-transferase (GST), and lactate dehydrogenase activity. Subtle changes in these biomarkers were dependent of the type of enzyme activity and especially of the origin of fish (i.e., sampled pond) regardless of the presence of ultrasound equipment, reflecting thereby fish adaptation to local environmental conditions in each pond. In conclusion, this study does not provide indication that ultrasonication in the aforementioned conditions affects the welfare and physiological homeostasis of carps.

  15. Identification of piezoelectric complex parameters in rings for power ultrasound applications

    NASA Astrophysics Data System (ADS)

    Pérez, N.; Andrade, M. A.; Carbonari, R. C.; Buiochi, F.; Adamowski, J. C.

    2012-12-01

    Power ultrasonic devices frequently use Langevin type transducers. These types of transducers are essentially constructed using a sandwich of piezoelectric rings and two metal masses at the ends. The whole assembly is tuned to resonate in a desired main frequency and the total length corresponds to a half of the wavelength of that frequency. Finite element simulations (FEM) are used in the design of such complex structures; however the accuracy of the results is limited by the knowledge of the constitutive properties for the materials used in the transducer construction. Metals like aluminum or steel are well characterized, but the complete set of piezoelectric parameters for piezoceramics are difficult to find in the literature. In the few cases where the manufacturer gives the complete set of parameters, strong differences are observed between simulated and experimental data. In this work a novel methodology proposed by our research group is applied in the case of piezoelectric rings made with a hard piezoelectric material. The results are evaluated in rings with internal diameter 8 mm, external diameter 27 mm and thickness 5 mm. Finally the results are validated using an optical interferometer showing a good agreement.

  16. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  17. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  18. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced.

  19. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  20. [Myocardial function analysis with echocardiography-Doppler in septic shock].

    PubMed

    Fayssoil, A; Checinski, A

    2012-02-01

    Septic shock is a severe sepsis associated with cardio-circulatory failure and tissular hypoperfusion. Echocardiography-Doppler remains essential for the assessment of myocardial function in septic shock. This ultrasound procedure helps clinicians for the analysis of left ventricular systolic function, left ventricular diastolic function, right ventricular function and cardiac filling.

  1. [Usefulness, validity, and reliability of ultrasound in the diagnosis of osteoarthritis: a critical review of the literature].

    PubMed

    Guinsburg, Mara; Ventura-Ríos, Lucio; Bernal, Araceli; Hernández-Díaz, Cristina; Pineda, Carlos

    2013-01-01

    Ultrasound is outstripping other diagnostic imaging techniques in the evaluation of osteoarthritis (OA). Due to its sub-millimetric resolution, ultrasound has the ability to detect minimal morphostructural abnormalities, even from preclinical or asymptomatic disease stages located in the main joint structures predominantly affected by OA: articular cartilage, synovial membrane, and subchondral bone. As of today, ultrasound has proven to be a useful tool for the detection of abnormalities occurring within soft tissues, including synovial hypertrophy, fluid accumulation, and synovial cysts, as well as bony abnormalities, such as osteophyte formation. Additionally, power Doppler signal correlated with histologic evidence of synovial membrane vascularization. In order to describe the ultrasonographic findings of OA, its utility, reliability, and validity as a diagnostic and monitoring tool, a critical review of the literature of hand, hip, and knee OA is provided.

  2. Sono-sulfated zirconia nanocatalyst supported on MCM-41 for biodiesel production from sunflower oil: Influence of ultrasound irradiation power on catalytic properties and performance.

    PubMed

    Dehghani, Sahar; Haghighi, Mohammad

    2017-03-01

    Sono-sulfated zirconia nanocatalyst supported on MCM-41 was prepared by an ultrasound-assisted impregnation/hydrothermal hybrid method. The effect of irradiation power was studied by changing power of the sonication (30, 60 and 90W) during the synthesis which led to different physiochemical properties of the nanocatalyst. XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at highly irradiated nanocatalysts. The nanocatalyst irradiated at 90W for 30min showed a very narrow particle size distribution. About 59% of nanocatalyst particles were in the range of 1-30nm. The performance of investigated nanocatalysts in biodiesel production from sunflower oil showed ultrasound-assisted synthesized nanocatalysts had higher conversion in comparison to non-sonicated catalyst. Biodiesel conversion in catalyst with 90W and 30min ultrasonic irradiation exceeded 96.9% under constant condition at 60°C reaction temperature, methanol/oil molar ratio of 9:1 and 5% catalyst concentration. After five cycles, biodiesel conversion of non-sonicated catalyst was well maintained in a high extend (71.4%) while biodiesel conversion of non-sonicated catalyst barely reached to 43.5%. Among sonicated nanocatalysts, with increasing power of irradiation, the nanocatalyst represented higher conversion and reusability.

  3. History of intraoperative ultrasound.

    PubMed

    Makuuchi, M; Torzilli, G; Machi, J

    1998-11-01

    Intraoperative ultrasound (IOUS) using A-mode or non-real-time B-mode imaging started in the 1960s; however, it was not widely accepted mainly because of difficulty in image interpretation. In the late 1970s, IOUS became one of the topics in the surgical communities upon the introduction of high-frequency real-time B-mode ultrasound. Special probes for operative use were developed. In the 1980s, all over the world the use of IOUS spread to a variety of surgical fields, such as hepatobiliary pancreatic surgery, neurosurgery, and cardiovascular surgery. IOUS changed hepatic surgery dramatically because IOUS was the only modality that was capable of delineating and examining the interior of the liver during surgery. After 1990, color Doppler imaging and laparoscopic ultrasound were incorporated into IOUS. Currently, IOUS is considered an indispensable operative procedure for intraoperative decision-making and guidance of surgical procedures. For better surgical practice, education of surgeons in the use of ultrasound is the most important issue.

  4. Refining an Automated Transcranial Doppler System for the Detection of Vasospasm after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    SUBJECT TERMS traumatic brain injury, ultrasound , transcranial Doppler, vasospasm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...Presto’ that they have submitted to the FDA via a 510K for approval. Their system is based upon a novel and proprietary ultrasound platform along...within ultrasound -derived maps of blood flow speed captured by their device. This is reasonable because a view of each of the major cerebral arteries

  5. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  6. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  7. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  8. Abdominal ultrasound

    MedlinePlus

    ... Kidney - blood and urine flow Abdominal ultrasound References Chen L. Abdominal ultrasound imaging. In: Sahani DV, Samir ... the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used ...

  9. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  10. Thyroid ultrasound

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2013-01-01

    Thyroid ultrasonography has established itself as a popular and useful tool in the evaluation and management of thyroid disorders. Advanced ultrasound techniques in thyroid imaging have not only fascinated the radiologists but also attracted the surgeons and endocrinologists who are using these techniques in their daily clinical and operative practice. This review provides an overview of indications for ultrasound in various thyroid diseases, describes characteristic ultrasound findings in these diseases, and illustrates major diagnostic pitfalls of thyroid ultrasound. PMID:23776892

  11. Teaching the Doppler effect in astrophysics

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  12. Carotid Ultrasound

    MedlinePlus

    ... this page from the NHLBI on Twitter. Carotid Ultrasound Also known as carotid duplex. Carotid ultrasound is a painless imaging test that uses high- ... of your carotid arteries. This test uses an ultrasound machine, which includes a computer, a screen, and ...

  13. [Current status of 3D/4D volume ultrasound of the breast].

    PubMed

    Weismann, C; Hergan, K

    2007-06-01

    3D/4D volume ultrasound is an established method that offers various options for analyzing and presenting ultrasound volume data. The following imaging techniques are based on automatically acquired ultrasound volumes. The multiplanar view is the typical mode of 3D ultrasound data presentation. The niche mode view is a cut open view of the volume data set. The surface mode is a rendering technique that represents the data within a volume of interest (VOI) with different slice thicknesses (typically 1-4 mm) with a contrast-enhanced surface algorithm. Related to the diagnostic target, the transparency mode helps to present echopoor or echorich structures and their spatial relationships within the ultrasound volume. Glass body rendering is a special type of transparency mode that makes the grayscale data transparent and shows the color flow data in a surface render mode. The inversion mode offers a three-dimensional surface presentation of echopoor lesions. Volume Contrast Imaging (VCI) works with static 3D volume data and is able to be used with 4D for dynamic scanning. Volume calculation of a lesion and virtual computer-assisted organ analysis of the same lesion is performed with VoCal software. Tomographic Ultrasound Imaging (TUI) is the perfect tool to document static 3D ultrasound volumes. 3D/4D volume ultrasound of the breast provides diagnostic information of the coronal plane. In this plane benign lesions show the compression pattern sign, while malignant lesions show the retraction pattern or star pattern sign. The indeterminate pattern of a lesion combines signs of compression and retraction or star pattern in the coronal plane. Glass body rendering in combination with Power-Doppler, Color-Doppler or High-Definition Flow Imaging presents the intra- and peritumoral three-dimensional vascular architecture. 3D targeting shows correct or incorrect needle placement in all three planes after 2D or 4D needle guidance. In conclusion, it is safe to say that 3D/4D

  14. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed.

  15. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  16. Laser Doppler And Range Systems For Spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, P. W.; Gagliardi, R. M.

    1990-01-01

    Report discusses two types of proposed laser systems containing active transponders measuring distance (range) and line-of-sight velocity (via Doppler effect) between deep space vehicle and earth-orbiting satellite. Laser system offers diffraction advantage over microwave system. Delivers comparable power to distant receiver while using smaller transmitting and receiving antennas and less-powerful transmitter. Less subject to phase scintillations caused by passage through such inhomogeneous media as solar corona. One type of system called "incoherent" because range and Doppler measurements do not require coherence with laser carrier signals. Other type of system called "coherent" because successful operation requires coherent tracking of laser signals.

  17. Utero-placental vascularisation in normal and preeclamptic and intra-uterine growth restriction pregnancies: third trimester quantification using 3D power Doppler with comparison to placental vascular morphology (EVUPA): a prospective controlled study

    PubMed Central

    Duan, Jie; Chabot-Lecoanet, Anne-Claire; Perdriolle-Galet, Estelle; Christov, Christophe; Hossu, Gabriela; Cherifi, Aboubaker; Morel, Olivier

    2016-01-01

    Introduction Preeclampsia (PE) and intra-uterine growth restriction (IUGR) are two major pregnancy complications related to chronic utero-placental hypoperfusion. Three-dimensional power Doppler (3DPD) angiography has been used for the evaluation of utero-placental vascularisation and three vascular indices have been calculated: the vascularisation index (VI), flow index (FI) and vascularisation-FI (VFI). However, several technical endpoints hinder the clinical use of 3DPD as physical characteristics and machine settings may affect 3DPD indices, and so its clinical significance is not yet clear. Objectives The primary objective is to better understand the clinical significance of 3DPD indices by evaluating the relationship between these indices and placental morphometry. Secondary objectives are (i) to determine the impact of machine settings and physical characteristics on 3DPD indices, and (ii) to evaluate physio-pathological placental vascularisation patterns. Methods and analysis This is a prospective controlled study. We expect to include 112 women: 84 with normal pregnancies and 28 with PE and/or IUGR (based on our former cohort study on 3DPD indices for PE and/or IUGR prediction (unpublished data)). Within 72 h before planned or semi-urgent caesarean section, utero-placental 3DPD images with five different machine settings will be acquired. Placentas will be collected and examined after surgery and stereological indices (volume density, surface density, length density) calculated. The 3DPD indices (VI, FI and VFI) of the placenta and adjacent myometrium will be calculated. Correlation between Doppler and morphological indices will be evaluated by Pearson or Spearman tests. Agreement between 3DPD indices and morphological indices will be assessed by Bland and Altman plots. The impact of Doppler settings and maternal characteristics on 3DPD indices will be evaluated with a multivariate linear regression model. Ethics The study and related consent forms have

  18. Second harmonic inversion for ultrasound contrast harmonic imaging.

    PubMed

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; van Neer, Paul L M J; Cachard, Christian; van der Steen, Antonius F W; Basset, Olivier; de Jong, Nico

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p″, of the same frequency f(0) and the same amplitude P(0) to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  19. Entheseal ultrasound abnormalities in patients with SAPHO syndrome.

    PubMed

    Queiro, Rubén; Alonso, Sara; Alperi, Mercedes; Fernández, Mónica; Tejón, Patricia; Riestra, José L; Arboleya, Luis; Ballina, Javier

    2012-06-01

    This study was conducted to investigate the presence and characteristics of the ultrasound lesions that may be found in the entheses of patients with SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome. This cross-sectional study included 15 patients with SAPHO syndrome and 30 healthy controls matched for age, sex and body mass index. Subjects with regular sport activities as well as those with other rheumatic conditions were excluded from the study. Ultrasonography was used in both groups to study 14 entheses of the upper and lower extremities. Different elementary lesions representative of enthesis damage were defined. A total of 210 entheses in the study group and 420 in the control group were evaluated. Only one patient presented clinical enthesitis. In the study group, seven of the 15 patients (47%) showed morpho-structural entheseal alterations, versus only four of the 30 controls (13.3%; p < 0.001). The subjects with SAPHO showed ultrasound alterations in 32/210 entheses (15%), while the controls showed alterations in 20/420 entheses (4.8%), p < 0.001. The entheses with the largest number of morpho-structural alterations were those of the patellar and Achilles tendon. None of the controls showed power Doppler signal at enthesis or perienthesis level. Ultrasound evidence of enthesopathy seems to be a common feature in this series of patients with SAPHO syndrome.

  20. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  1. The Antivascular Actions of Mild Intensity Ultrasound on a Murine Neoplasm

    NASA Astrophysics Data System (ADS)

    Wood, Andrew K. W.; Bunte, Ralph M.; Ansaloni, Sara; Lee, William M.-F.; Sehgal, Chandra M.

    2006-05-01

    This study was aimed at determining whether mild intensity ultrasound affected the fragile and leaky angiogenic blood vessels in a tumor. In 27 mice (C3HV/HeN strain) a subcutaneous melanoma (K173522) was insonated with continuous physiotherapy ultrasound (1 MHz; spatial-average-temporal-average = 2.3 W cm-2). Analyses of contrast enhanced power Doppler observations showed that insonation significantly increased the avascular area in the neoplasm. A linear regression analysis demonstrated that each min of insonation lead to a 25% reduction in tumor vascularity. The predominant acute effect of insonation was an apparently irreparable dilation of the tumor capillaries; liquefactive necrosis of neoplastic cells, related to a secondary ischemia, was a delayed effect.

  2. New Ultrasound Modalities in Rheumatology.

    PubMed

    Gutierrez, Marwin; Okano, Tadashi; Reginato, Anthony M; Cazenave, Tomas; Ventura-Rios, Lucio; Bertolazzi, Chiara; Pineda, Carlos

    2015-12-01

    Over the years, ultrasound (US) has accumulated important evidence supporting its relevant role for the assessment of inflammatory processes of different rheumatologic diseases, as well as in the follow-up in assessing the response to different therapeutic approaches. This has been possible because of the increase in training, competency, and knowledge, as well as the rapid progress in the US technologies.Currently, some US machines can be equipped by sophisticated software modalities (i.e., 3-dimensional US, elastosonography, automated cardiovascular software, and fusion imaging) that can augment US traditional role as a safe, fast, and easy-to-perform modality and giving it new life and increased relevance in rheumatology. In this article, we evaluated the US developments, from conventional B-mode to more sophisticated technologies, and their potential clinical impact in the field of rheumatology.Three-dimensional US can improve the accuracy of the assessment of bone erosions and the quantification of power Doppler because of its multiplanar view including coronal, axial and sagital view. Elastosonography is still looking for its role in rheumatology. Preliminary works induce us to consider it as a promise tool for the assessment of tendon pathology and skin of patients with connective tissue disorders. The automated method for the measurement of carotid intima-media thickness permits a rapid and accurate assessment. The preliminary published data showed that it is reliable, and valid compared to the traditional method; they also support the future of rheumatologists as the direct operators in evaluating the cardiovascular risk in daily practice. Fusion imaging increases the diagnostic power of US, displaying simultaneously in the monitor, the US image, and the corresponding computed tomography/magnetic resonance imaging image. However, there are no sufficient data supporting its application in daily rheumatologic practice.

  3. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  4. Flexible Integration of Both High Imaging Resolution and High Power Arrays for Ultrasound-Induced Thermal Strain Imaging (US-TSI)

    PubMed Central

    Stephens, Douglas N.; Mahmoud, Ahmed M.; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T.H.; Chen, Xucai

    2013-01-01

    Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region. PMID:24297029

  5. Flexible integration of high-imaging-resolution and high-power arrays for ultrasound-induced thermal strain imaging (US-TSI).

    PubMed

    Stephens, Douglas N; Mahmoud, Ahmed M; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T H; Chen, Xucai; Kim, Kang

    2013-12-01

    Ultrasound-induced thermal strain imaging (USTSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US-induced heating to elevate the tissue temperature (~1°C to 3°C within 1 to 3 cardiac cycles) to produce a noticeable change in sound speed in the targeted tissues. Because the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented which utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3-D printed manifold was built to support both a high-resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5 to 4 MHz range. For the application of US-TSI in carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm(2) in the tissue target region.

  6. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  7. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  8. Ultrasound physics.

    PubMed

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  9. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  10. Catheter-based high-frequency intraluminal ultrasound imaging is a powerful tool to study esophageal dysmotility patients.

    PubMed

    Santander, Cecilio; Perea, Elena; Caldas, María; Clave, Pere

    2017-01-31

    High-resolution manometry (HRM) is currently the most important diagnostic test for esophageal motility disorders, providing information on the contraction pattern of the circular muscle layer, which helps classify these esophageal motor diseases. However, with the increasing development of ultrasound, other techniques, such as high-frequency intraluminal ultrasound (HFIUS), have gained importance. This technique uses a flexible shaft with a central wire integrated into a standard endoscope, which facilitates real-time sonography. Its main utility is to provide anatomical information on the structure of the esophageal wall, including both the circular and longitudinal layers that constitute the esophageal muscularis propria. Increasing knowledge about these motility disorders has led to the hypothesis that, in addition to an abnormal contraction pattern of the circular muscle, an overall increased muscle thickness and an abnormal longitudinal muscle contraction could be added as pathophysiological factors. The increase in muscle thickness could be an important indicator of the severity of diseases, such as achalasia, distal esophageal spasm, or hypercontractile esophagus. More studies are required before definitive conclusions can be reached, but HFIUS employed simultaneously with HRM could provide a more complete and precise evaluation of these esophageal motor disorders.

  11. Effects of high power ultrasound on all-E-β-carotene, newly formed compounds analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Carail, Michel; Fabiano-Tixier, Anne-Sylvie; Meullemiestre, Alice; Chemat, Farid; Caris-Veyrat, Catherine

    2015-09-01

    To study effects of high power ultrasound treatment (20 kHz) on β-carotene degradation, a second-order central composite design (CCD) was performed to investigate maximum β-carotene loss with three independent factors (ultrasonic intensity, sonication time, and temperature). Results based on variance analysis and Pareto chart have shown that sonication time is the most important factor, followed by ultrasonic intensity level. The evolved degradation products have been tentatively identified using ultra high performance liquid chromatography coupled to both diode array detector and a mass spectrometer (UHPLC-DAD-MS). The main degradation products, tentatively identified, are three Z-isomers of β-carotene and seven β-apo-carotenals/ones. Hypothesis on the degradation mechanism of carotenoids are presented.

  12. Combined B-Mode and Multigate Spectral Doppler-Mode Imaging for Flow-Mediated Dilation Investigation

    NASA Astrophysics Data System (ADS)

    Francalanci, Lorenzo; Palombo, Carlo; Ghiadoni, Lorenzo; Bini, Giacomo; Bassi, Luca; Tortoli, Piero

    Flow-mediated dilation (FMD) is an established non-invasive method to assess the endothelial function by ultrasound. Blood flow in the brachial artery is restricted by a cuff for about 5 min: during the reactive hyperemia following occlusion release, the consequent increase in wall shear stress stimulates the endothelial cells to release nitric oxide, a powerful vasodilator that causes relaxation of tunica media smooth muscle. By measuring the arterial diameter change induced by reactive hyperemia, a possible endothelial dysfunction can be detected. The traditional approach consists in the evaluation of arterial diameter changes, while the shear stress increase (i.e. the stimulus for dilation) has not been directly estimated so far. This paper describes an approach to simultaneously measure the wall shear rate (WSR), i.e. the blood velocity gradient near the walls, and the associated diameter changes. The WSR is measured through multigate spectral Doppler (MSD) analysis while B-Mode images are processed to estimate the instantaneous diameter. This approach was implemented in the ULtrasound Advanced Open Platform (ULA-OP), which can be programmed to arbitrarily interleave B- and PW Doppler- Modes. The method implementation and the results of a clinical validation over 15 healthy volunteers are reported.

  13. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  14. Role of ultrasound in posteromedial tarsal tunnel syndrome: 81 cases.

    PubMed

    Fantino, Olivier

    2014-06-01

    Posteromedial tarsal tunnel syndrome is a disorder affecting the tibial nerve or its branches. Diagnosis is established on the basis of physical examination and can be confirmed by electrophysiological evidence. However, diagnostic imaging is always required to identify the possible site of compression. High-resolution ultrasound (US) is playing an increasingly important role in the study of the nerves thanks to a series of advantages over magnetic resonance imaging, such as lower costs and widespread availability, high spatial resolution, fast examination using axial scans, dynamic and comparative studies, possibility of carrying out a study with the patient in the standing position, US Tinel sign finding, and the contribution of color/power Doppler US. We present the results obtained in a series of 81 patients who underwent US imaging between 2008 and 2013 due to posteromedial tarsal tunnel syndrome.

  15. Detection of focal renal perfusion defects in rabbits after sulphur hexafluoride-filled microbubble injection at low transmission power ultrasound insonation.

    PubMed

    Quaia, Emilio; Siracusano, Salvatore; Palumbo, Alessandro; Ciciliato, Stefano; Rossi, Stefania; Bruni, Stefano; Bussani, Rossana; Cova, Maria

    2006-01-01

    The aim of this study was to assess the feasibility of contrast-enhanced ultrasound (US) at low transmission power insonation for diagnosis of focal renal perfusion defects (RPDs) in rabbits. In seven adult New Zealand White rabbits focal RPDs were induced by polyvinyl alcohol embolizing particles (150-250 microm in diameter) injected into the abdominal aorta. Three other rabbits that were not subjected to embolization were considered as controls. Both kidneys were insonated at baseline and after injection of sulphur hexafluoride-filled microbubbles at low transmission power (mechanical index 0.09-0.12). One sonologist assessed on-site RPD dimensions and conspicuity (visual score 0-4). Digital cine-clips were also reviewed off-site by two other independent readers, blinded, who assigned a confidence level (grades 1-5) for the RPD diagnosis. At on-site analysis RPDs appeared as focal areas of absent or diminished enhancement with a median visual conspicuity score=4. At off-site analysis RPDs >6 mm in diameter were identified at contrast-enhanced US, and the confidence in RPD diagnosis improved significantly (P<0.05) after microbubble injection (area under receiver operating characteristic curve 0.615 vs 0.972 by reader 1; 0.720 vs 0.953 by reader 2). Contrast-enhanced US at low transmission power insonation effectively identified RPDs with diameters >6 mm in rabbits.

  16. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of endometrial pathology

    PubMed Central

    POP, CIPRIAN MIHAITA; MIHU, DAN; BADEA, RADU

    2015-01-01

    Ultrasound is the reference imaging procedure used for the exploration of endometrial pathology. As medical procedures improve and the requirements of modern medicine become more demanding, gray-scale ultrasound is insufficient in establishing gynecological diagnosis. Thus, more complex examination techniques are required: Doppler ultrasound, contrast-enhanced ultrasound (CEUS), 3D ultrasound, etc. Contrast-enhanced ultrasound is a special examination technique that gains more and more ground. This allows a detailed real-time evaluation of microcirculation in a certain territory, which is impossible to perform by Doppler ultrasound. The aim of this review is to synthesize current knowledge regarding CEUS applications in endometrial pathology, to detail the technical aspects of endometrial CEUS and the physical properties of the equipment and contrast agents used, as well as to identify the limitations of the method. PMID:26733740

  17. Ultrasound phase rotation beamforming on multi-core DSP.

    PubMed

    Ma, Jieming; Karadayi, Kerem; Ali, Murtaza; Kim, Yongmin

    2014-01-01

    Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines.

  18. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  19. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  20. Quo vadis medical ultrasound?

    PubMed

    Lewin, Peter A

    2004-04-01

    The last three decades of development in diagnostic ultrasound imaging and technology are briefly reviewed and the impact of the crucial link between the two apparently independent research efforts, which eventually facilitated implementation of harmonic imaging modality is explored. These two efforts included the experiments with piezoelectric PVDF polymer material and studies of the interaction between ultrasound energy and biological tissue. Harmonic imaging and its subsequent improvements revolutionized the diagnostic power of clinical ultrasound and brought along images of unparalleled resolution, close to that of magnetic resonance imaging (MRI) quality. The nonlinear propagation effects and their implications for both diagnostic and therapeutic applications of ultrasound are also briefly addressed. In diagnostic applications, the impact of these effects on image resolution and tissue characterization is reviewed; in therapeutic applications, the influence of nonlinear propagation effects on highly localized tissue ablation and cauterization is examined. Next, the most likely developments and future trends in clinical ultrasound technology, including 3D and 4D imaging, distant palpation, image enhancement using contrast agents, monitoring, and merger of diagnostic and therapeutic applications by e.g. introducing ultrasonically controlled targeted drug delivery are reviewed. Finally, a possible competition from other imaging modalities is discussed.

  1. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis

    PubMed Central

    Karlas, Thomas; Saur, Dorothee

    2017-01-01

    Background Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Methods Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. Results There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Conclusions Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with

  2. Performance of ultrasound to monitor Achilles enthesitis in patients with ankylosing spondylitis during TNF-a antagonist therapy.

    PubMed

    Wang, Cong-hua; Feng, Yuan; Ren, Zhen; Yang, Xichao; Jia, Jun-feng; Rong, Meng-yao; Li, Xue-yi; Wu, Zhen-biao

    2015-06-01

    Enthesitis is considered as the primary anatomical lesion in ankylosing spondylitis (AS). We aimed to investigate the potential of ultrasound to detect early changes after TNF-a antagonist therapy of Achilles enthesitis of AS patients. One hundred AS patients with active disease, requiring TNF-a antagonist therapy, were included (etanercept n = 25, infliximab n = 25, adalimumab n = 25, non-biologic disease-modifying antirheumatic drugs (DMARDs) n = 25). Physical examination was performed to evaluate disease activity and detect Achilles enthesitis and/or retrocalcaneal bursitis. Ultrasound of the Achilles enthesitis was performed bilaterally. Follow-up examinations were performed 3 months after the initiation of therapy. Gray scale (GS) scores, Power Doppler (PD) scores, and total additive scores (TS) decreased significantly during TNF-a antagonist therapy but not in traditional non-biologic traditional DMARDs group. The bath ankylosing spondylitis disease activity index (BASDAI), bath ankylosing spondylitis metrology index (BASMI), bath ankylosing spondylitis functional index (BASFI), and Maastricht ankylosing spondylitis enthesitis score (MASES) all showed significant improvements. When three different TNF-a antagonists were analyzed separately, no significant difference was observed in GS, PD, and total scores. Subclinical Achilles enthesitis, detected only with GS ultrasound, is present in a subset of AS patients and a significant improvement can be demonstrated after 3 months of TNF-a antagonist therapy. Doppler ultrasound provides a reliable estimation to monitor the therapeutic response to TNF antagonists in AS patients with Achilles enthesitis. TNF-a antagonists have been shown to be effective in decreasing ultrasound signs of enthesitis after 3 months of therapy in AS patients.

  3. Derivation of continuous wave mode output power from burst mode measurements in high-intensity ultrasound applications.

    PubMed

    Haller, Julian; Wilkens, Volker

    2014-03-01

    Measurement of the acoustic output power of transducers in burst mode and derivation of the results to the continuous wave (CW) case reduces heating problems during power measurements with radiation force balances and absorbing targets at high power levels, but requires the knowledge of an "effective duty factor," DReff. In this work, an alternative method for determining DReff is presented that allows the determination at any input voltage amplitude as it can be calculated from the input voltage rf signal in burst mode. Thus with this method, it is not necessary to apply CW signals at all.

  4. Power modulation contrast enhanced ultrasound for postoperative perfusion monitoring following free tissue transfer in head and neck surgery.

    PubMed

    Sharma, S; Anand, R; Hickman, M; Senior, R; Walji, S; Ramchandani, P L; Culliford, D; Ilankovan, V; Greaves, K

    2010-12-01

    This feasibility study evaluated whether contrast enhanced ultrasound (CEU) was able to assess free flap perfusion following free tissue transfer in the head and neck region. Thirty-six patients underwent standard clinical monitoring (SCM) and CEU postoperatively. The time taken for each technique to detect flap failure was recorded. Qualitative CEU analysis by visual assessment predicted survival in 30/30 (100%) and failure in 5/6 (83%) flaps with sensitivity, specificity, positive (PPV) and negative (NPV) predictive values of 100, 86, 97 and 100%, respectively. Quantitative CEU measurement of blood volume (α) values within healthy perfused flaps was over 60 times higher than in failing flaps (8.25±2.82dB vs. 0.12±0.17dB, respectively, P<0.0001). If a cut-off α value of <1.5dB was used to predict future flap failure, the accuracy of the test was 100% (sensitivity, specificity, PPV, NPV). If a cut-off α value of >1.9dB indicated flap success, the PPV and NPV are 100%. Following surgery, SCM took 76 (±15) h to detect flap failure compared with 18 (±38) h with CEU (P<0.05). CEU is highly accurate in its ability to distinguish between perfused and failing flaps. The technique is quick (<10min) and capable of imaging all flap types.

  5. Doppler ion program description

    SciTech Connect

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities.

  6. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  7. Measurement of rectus femoris muscle velocities during patellar tendon jerk using vector tissue doppler imaging.

    PubMed

    Sikdar, Siddhartha; Lebiedowska, Maria; Eranki, Avinash; Garmirian, Lindsay; Damiano, Diane

    2009-01-01

    We have developed a vector tissue Doppler imaging (TDI) system based on a clinical scanner that can be used to measure muscle velocities independent of the direction of motion. This method overcomes the limitations of conventional Doppler ultrasound, which can only measure velocity components along the ultrasound beam. In this study, we utilized this method to investigate the rectus femoris muscle velocities during a patellar tendon jerk test. Our goal was to investigate whether the muscle elongation velocities during a brisk tendon tap fall within the normal range of velocities that are expected due to rapid stretch of limb segments. In a preliminary study, we recruited six healthy volunteers (three men and three women) following informed consent. The stretch reflex response to tendon tap was evaluated by measuring: (1) the tapping force using an accelerometer instrumented to the neurological hammer (2) the angular velocities of the knee extension and flexion using a electrogoniometer (3) reflex activation using electromyography (EMG) and (4) muscle elongation, extension and flexion velocities using vector TDI. The passive joint angular velocity was linearly related to the passive muscle elongation velocity (R(2)=0.88). The maximum estimated joint angular velocity corresponding to muscle elongation due to tendon tap was less than 8.25 radians/s. This preliminary study demonstrates the feasibility of vector TDI for measuring longitudinal muscle velocities and indicates that the muscle elongation velocities during a clinical tendon tap test are within the normal range of values for rapid limb stretch encountered in daily life. With further refinement, vector TDI could become a powerful method for quantitative evaluation of muscle motion in musculoskeletal disorders.

  8. Ultrasound -- Vascular

    MedlinePlus

    ... plan for their effective treatment. detect blood clots (deep venous thrombosis (DVT) in the major veins of ... What are the limitations of Vascular Ultrasound? Vessels deep in the body are harder to see than ...

  9. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    PubMed Central

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-01-01

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm. PMID:23486218

  10. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy.

    PubMed

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-03-13

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  11. Trauma Ultrasound.

    PubMed

    Wongwaisayawan, Sirote; Suwannanon, Ruedeekorn; Prachanukool, Thidathit; Sricharoen, Pungkava; Saksobhavivat, Nitima; Kaewlai, Rathachai

    2015-10-01

    Ultrasound plays a pivotal role in the evaluation of acute trauma patients through the use of multi-site scanning encompassing abdominal, cardiothoracic, vascular and skeletal scans. In a high-speed polytrauma setting, because exsanguinations are the primary cause of trauma morbidity and mortality, ultrasound is used for quick and accurate detection of hemorrhages in the pericardial, pleural, and peritoneal cavities during the primary Advanced Trauma Life Support (ATLS) survey. Volume status can be assessed non-invasively with ultrasound of the inferior vena cava (IVC), which is a useful tool in the initial phase and follow-up evaluations. Pneumothorax can also be quickly detected with ultrasound. During the secondary survey and in patients sustaining low-speed or localized trauma, ultrasound can be used to help detect abdominal organ injuries. This is particularly helpful in patients in whom hemoperitoneum is not identified on an initial scan because findings of organ injuries will expedite the next test, often computed tomography (CT). Moreover, ultrasound can assist in detection of fractures easily obscured on radiography, such as rib and sternal fractures.

  12. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  13. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  14. Doppler wind profile experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.

    1985-01-01

    The data collection phase of a Doppler wind measurement experiment supported by high-resolution Jimsphere/FPS-16 wind data and Windsonde data was carried out at the Kennedy Space Center in February, March and early April of 1985. The Doppler wind measurements were made using a hybrid doppler profiler put in place by the Johnson Space Center and a SOUSY profiler operated by Radian Corporation. Both systems operated at 50 Mhz. Although the doppler profiler systems were located 10 km apart to enable concurrent operation of the systems for data comparison, little concurrent data were obtained due to set-up delays with the SOUSY system, and system problems with the WPL system during the last month of the test. During the test period, special serial Jimsphere soundings were taken at two-hour intervals on six days in March and April in addition to balloon soundings taken in support of the Shuttle launch operations. In addition, there is temperature, moisture and wind information available from the daily morning Radiosonde sounding taken at the Kennedy site. The balloon release point was at the same location as the SOUSY profiler. Vertical resolution of the SOUSY profiler was 150 M to approximately 20 km. The vertical resolution of the WPL profiler was 290 M to 10 km and 870 M to 17 km. Winds determined form the Jimsphere balloon have a vertical resolution of 30 M.

  15. Hybrid ultrasound imaging techniques (fusion imaging).

    PubMed

    Sandulescu, Daniela Larisa; Dumitrescu, Daniela; Rogoveanu, Ion; Saftoiu, Adrian

    2011-01-07

    Visualization of tumor angiogenesis can facilitate non-invasive evaluation of tumor vascular characteristics to supplement the conventional diagnostic imaging goals of depicting tumor location, size, and morphology. Hybrid imaging techniques combine anatomic [ultrasound, computed tomography (CT), and/or magnetic resonance imaging (MRI)] and molecular (single photon emission CT and positron emission tomography) imaging modalities. One example is real-time virtual sonography, which combines ultrasound (grayscale, colour Doppler, or dynamic contrast harmonic imaging) with contrast-enhanced CT/MRI. The benefits of fusion imaging include an increased diagnostic confidence, direct comparison of the lesions using different imaging modalities, more precise monitoring of interventional procedures, and reduced radiation exposure.

  16. Serum Calprotectin Discriminates Subclinical Disease Activity from Ultrasound-Defined Remission in Patients with Rheumatoid Arthritis in Clinical Remission

    PubMed Central

    Hulejova, Hana; Zavada, Jakub; Komarc, Martin; Hanova, Petra; Klein, Martin; Mann, Herman; Sleglova, Olga; Olejarova, Marta; Forejtova, Sarka; Ruzickova, Olga; Vencovsky, Jiri; Pavelka, Karel; Senolt, Ladislav

    2016-01-01

    Objective Clinical remission in some patients with rheumatoid arthritis (RA) may be associated with ongoing synovial inflammation that is not always detectable on clinical examination or reflected by laboratory tests but can be visualized by musculoskeletal ultrasound. The goal of our study was to determine the levels of serum calprotectin, a major leukocyte protein, in patients with RA in clinical remission and to investigate the ability of serum calprotectin levels to distinguish patients in ultrasound-defined remission from those with residual ultrasound subclinical inflammation. Methods Seventy RA patients in clinical remission underwent clinical and ultrasound examination. Ultrasound examination was performed according to the German US7 score. Ultrasound remission was defined as grey scale (GS) range 0–1 and power Doppler (PD) range 0. The levels of serum calprotectin and C-reactive protein (CRP) were determined. The discriminatory capacity of calprotectin and CRP in detecting residual ultrasound inflammation was assessed using ROC curves. Results The total number of patients fulfilling the DAS28-ESR, DAS28-CRP, SDAI and CDAI remission criteria was 58, 67, 32 and 31, respectively. Residual synovial inflammation was found in 58–67% of the patients who fulfilled at least one set of clinical remission criteria. Calprotectin levels were significantly higher in patients with residual synovial inflammation than in those with ultrasound-defined remission (mean 2.5±1.3 vs. 1.7±0.8 μg/mL, p<0.005). Using ultrasound-defined remission criteria, calprotectin had an AUC of 0.692, p<0.05 using DAS28-ESR remission criteria and an AUC of 0.712, p<0.005 using DAS28-CRP remission criteria. Calprotectin correctly distinguished ultrasound remission from subclinical activity in 70% of patients. CRP (AUC DAS28-ESR = 0.494, p = NS; AUC DAS28-CRP = 0.498, p = NS) had lower and insignificant discriminatory capacity. Conclusion The present study demonstrates the potential of

  17. Quantitative Doppler measures in coiled vessels: investigation on excised umbilical veins.

    PubMed

    Guiot, C; Roatta, S; Piccoli, E; Saccomandi, F; Todros, T

    1999-11-01

    Quantitative assessment of umbilical venous blood velocity with Doppler ultrasound (US) must cope with the coiled structure of the vein inside the cord. Both an experimental and a theoretical approach showed remarkable variations in the insonation angle when the probe was moved along the vein, provided the inclination between the Doppler probe and the cord was kept constant. Inaccurate signal processing, stochastic variability and flow disturbances could, however, mask the influence of the geometry. The above hypotheses were assessed by investigating five cords in vitro a few hours after delivery from normal pregnancies at term. The Doppler signal was sampled at different sites along each cord and the mean Doppler shift estimated by FFT spectral analysis, both directly and through the noise rejection D'Alessio's algorithm, which proved effective in improving the Doppler shift estimate in condition of low signal-to-noise ratio (SNR).

  18. Carotid Ultrasound Imaging

    MedlinePlus

    ... Index A-Z Ultrasound - Carotid Carotid ultrasound uses sound waves to produce pictures of the carotid arteries ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  19. Malignant thyroid nodules: comparison between color Doppler diagnosis and histological examination of surgical samples.

    PubMed

    Berni, Alberto; Tromba, Luciana; Falvo, Laura; Marchesi, Maurizio; Grilli, Paola; Peparini, Nadia

    2002-01-01

    The aim of this study was to verify the reliability of the differential diagnosis between benign and malignant thyroid nodules on the basis of vascularization. The study was conducted on 108 patients with a scintigraphically "cold" thyroid nodule, including 54 carcinomas and 54 benign nodules. All patients underwent total thyroidectomy. Diagnosis based on histological examination of the surgical specimen was compared with ultrasonographic diagnosis obtained according to a personal classification proposed by the authors. Vascular ultrasonographic investigation produced 10 false positives, 6 false negatives and 92 correct diagnoses, with 88.8% sensitivity, 81.5% specificity, an 82.7% positive predictive value and an 88% negative predictive value. It can thus be used effectively to identify the larger nodules, while it is unable to provide any indication as to their histological type. Ultrasound vascular thyroid study is a non-invasive and low-cost method and is very reliable in the differential diagnosis of cold thyroid nodules. The best ultrasonographic modality is power Doppler. Ultrasound contrast media increase vascular definition but, due to their higher cost and the longhier duration of the examination, they should only be used in the case of small nodules.

  20. Multigate Doppler measurements of ultrasonic attenuation and blood hematocrit in human arteries.

    PubMed

    Secomski, Wojciech; Nowicki, Andrzej; Tortoli, Piero; Olszewski, Robert

    2009-02-01

    A clinically applicable method for noninvasive measurement of hematocrit based on 20 MHz multigate Doppler ultrasound was developed. The ultrasound attenuation coefficient in blood is obtained by measuring the power of the signal coming from gates at different depths. A robust averaging method is introduced, which provides stable and repeatable results by using the echo signals from all depths inside the vessel. In vitro measurements have been done on porcine blood with hematocrit ranging from 3.0% to 65.0%. Steady and pulsatile flow conditions have been simulated using a peristaltic pump. The attenuation coefficient indicated the linear relation to hematocrit. The resulting correlation coefficient was R = 0.999 for the continuous blood flow and R = 0.992 for pulsatile flow. In vivo measurements have been performed in the brachial artery in 43 patients with hematocrit in the range of 32.0% to 49.3%. The mean absolute error has been 3.24% with a standard deviation of 3.72%.

  1. Reducing registration error in cross-beam vector doppler imaging with position sensor.

    PubMed

    Xu, Canxing; Beach, Kirk W; Leotta, Daniel; Stuzman, Edward; Kim, Yongmin

    2009-01-01

    Various vector Doppler methods have been proposed in the last several decades to overcome the Doppler angle dependency in both conventional spectral Doppler and color Doppler by measuring both the speed and direction of blood flow. However, they have not been adopted for routine use because most of them require specialized hardware, which is not available in commercial ultrasound systems. An alternative approach (cross-beam method) that uses color Doppler images obtained from different steered beam angles is more feasible, but there is error in registering multiple color Doppler images because they are not acquired simultaneously. To alleviate this problem, we have evaluated a cross-beam vector Doppler system that registers spatially with a position sensor two color Doppler images from two different angles and temporally with ECG synchronization. The registration error was reduced to an average of 0.92 mm from 2.49 mm in 9 human subjects. Vector Doppler carotid artery images of a healthy subject and a patient with atherosclerotic plaques are also presented.

  2. [Use of ultrasound in ophthalmology].

    PubMed

    Trier, H G

    1982-12-01

    In ophthalmology, ultrasound is applied in diagnostics as well as in surgery and therapy. This paper gives a short survey on both applications. Ultrasonic phacoemulsification is of considerable practical importance for modern cataract micro-surgery with intraocular lens implantation. Applications of that kind require consideration of ultrasonic bioeffects and equipment safety. Diagnostic use of ultrasound includes biometry (echometry), tissue examination and characterization, and vascular investigations in eye and orbit. The application of diagnostic ultrasound on in-patients, its individual indications, and the appropriate methods (A, B, automatic biometric devices for axial length measuring, M, Doppler) are described. Examples of commercially available instruments for the different applications are given. In comparison with other disciplines ophthalmic A-mode and B-mode echography is characterized by: refined depth resolution and lateral resolution; the important part of quantitative methods for clinical evaluation of echograms; and the advanced level of quality assurance for equipment performance. Refined tissue evaluation requires optimized and reproducible equipment parameters. To ensure these conditions the clinical echographer must be educated and willing to test performance and quality of his equipment. Finally, a perspective of actual research in diagnostic ultrasound of the eye is given.

  3. Role of ultrasound in colorectal diseases

    PubMed Central

    Bor, Renáta; Fábián, Anna; Szepes, Zoltán

    2016-01-01

    Ultrasound is an undervalued non-invasive examination in the diagnosis of colonic diseases. It has been replaced by the considerably more expensive magnetic resonance imaging and computed tomography, despite the fact that, as first examination, it can usefully supplement the diagnostic process. Transabdominal ultrasound can provide quick information about bowel status and help in the choice of adequate further examinations and treatment. Ultrasonography, as a screening imaging modality in asymptomatic patients can identify several colonic diseases such as diverticulosis, inflammatory bowel disease or cancer. In addition, it is widely available, cheap, non-invasive technique without the use of ionizing radiation, therefore it is safe to use in childhood or during pregnancy, and can be repeated at any time. New ultrasound techniques such as elastography, contrast enhanced and Doppler ultrasound, mini-probes rectal and transperineal ultrasonography have broadened the indication. It gives an overview of the methodology of various ultrasound examinations, presents the morphology of normal bowel wall and the typical changes in different colonic diseases. We will pay particular attention to rectal and transperineal ultrasound because of their outstanding significance in the diagnosis of rectal and perineal disorders. This article seeks to overview the diagnostic impact and correct indications of bowel ultrasound. PMID:27920469

  4. Doppler effect in optical velocimetry

    NASA Astrophysics Data System (ADS)

    Rinkevichius, Bronius S.

    1996-02-01

    The current state of the optical metrology based on the Doppler effect has been reviewed. Some historical and scientific information is given, in addition the contemporary optical methods of the velocity measurement using the Doppler effect are analyzed. The Doppler effect applications in astrophysics, plasma physics, investigations of gas and liquid flows, acoustics, mechanics of the deforming solid body and of the rotational motion are considered. The description is presented for the following techniques of the velocity measurement: laser Doppler anemometry, laser Doppler vibrometry, laser gyroscopy.

  5. Early Detection of Ovarian Cancer by Tumor Epithelium-Targeted Molecular Ultrasound

    DTIC Science & Technology

    2013-10-01

    were examined. 3. Archived ultrasound images were examined off-line, ovarian tumor associated changes in gray scale intensity and Doppler indices...tumor was selected and the average image intensity (in pixel values) was determined using 7 Figure 1: Enhancement of ultrasound signal intensity ...16 targeted imaging agents increased ultrasound signal intensity remarkably in post-targeted imaging. The tumor showed septa of tissue mass during

  6. Tissue Doppler imaging reproducibility during exercise.

    PubMed

    Bougault, V; Nottin, S; Noltin, S; Doucende, G; Obert, P

    2008-05-01

    Tissue Doppler imaging (TDI) is an echocardiographic technique used during exercising to improve the accuracy of a cardiovascular diagnostic. The validity of TDI requires its reproducibility, which has never been challenged during moderate to maximal intensity exercising. The present study was specifically designed to assess the transmitral Doppler and pulsed TDI reproducibility in 19 healthy men, who had undergone two identical semi-supine maximal exercise tests on a cycle ergometer. Systolic (S') and diastolic (E') tissue velocities at the septal and lateral walls as well as early transmitral velocities (E) were assessed during exercise up to maximal effort. The data were compared between the two tests at 40 %, 60 %, 80 % and 100 % of maximal aerobic power. Despite upper body movements and hyperventilation, good quality echocardiographic images were obtained in each case. Regardless of exercise intensity, no differences were noticed between the two tests for all measurements. The variation coefficients for Doppler variables ranged from 3 % to 9 % over the transition from rest to maximal exercise. The random measurement error was, on average, 5.8 cm/s for E' and 4.4 cm/s for S'. Overall, the reproducibility of TDI was acceptable. Tissue Doppler imaging can be used to accurately evaluate LV diastolic and/or systolic function for this range of exercise intensity.

  7. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  8. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  9. Laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A.

    1988-01-01

    The material in this NASA TM is to appear as a chapter on Laser Doppler Anemometry (LDA) in the AGARDograph entitled, A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers. The application of LDA (specifically, the dual-beam, burst-counter approach) to compressible flows is discussed. Subjects treated include signal processing, particle light scattering and tracking, data reduction and sampling bias, and three-dimensional measurements.

  10. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    PubMed

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product.

  11. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  12. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  13. Cerebral Lateralization and General Intelligence: Gender Differences in a Transcranial Doppler Study

    ERIC Educational Resources Information Center

    Njemanze, P.C.

    2005-01-01

    The present study evaluated cerebral lateralization during Raven's progressive matrices (RPM) paradigm in female and male subjects. Bilateral simultaneous transcranial Doppler (TCD) ultrasound was used to measure mean blood flow velocities (MBFV) in the right and left middle cerebral arteries (MCAs) in 24 (15 females and 9 males) right-handed…

  14. Microscopic observation of glass bead movement in soft tissue-mimicking phantom under ultrasound PW mode scanning.

    PubMed

    Liu, Lei; Funamoto, Kenichi; Tanabe, Masayuki; Hayase, Toshiyuki

    2015-01-01

    Previous studies have demonstrated that stones and calcification in soft tissue show special enhancement in response to color flow (CF) or pulse Doppler (PW) mode ultrasound scan. This phenomenon is known as the "twinkling sign (TS)". The authors conducted an in vitro experiment to investigate the mechanism of TS occurrence by observing a glass bead in a transparent PVA-H soft tissue-mimicking phantom. The TS in PW mode showed a low-power and slow-velocity spectrum. At the same time, analysis of images by high-speed camera showed that the glass bead in the phantom oscillated following the pulse repetition frequency (PRF) of the PW mode ultrasound scan. The harmonic oscillations were confirmed, as well. The ultrasound radiation force-driven micro-oscillation possibly affects the ultrasound propagation around the scatterer and triggers random signals in the received echo signals. The results indicate that TS is a phenomenon based on complicated acoustic-mechanical interaction of multiple mechanisms. Further investigation is required for gaining a full understanding of the mechanism of TS occurrence and its clinical application.

  15. Ultrasound in the evaluation of enthesitis: status and perspectives

    PubMed Central

    2011-01-01

    Introduction An increasing number of studies have applied ultrasound to the evaluation of entheses in spondyloarthritis patients. However, no clear agreement exists on the definition of enthesitis, on the number and choice of entheses to examine and on ultrasound technique, which may all affect the results of the examination. The objectives of this study were to first determine the level of homogeneity in the ultrasound definitions for the principal lesions of enthesitis in the published literature and second, to evaluate the metric properties of ultrasound for detecting enthesitis according to the OMERACT filter. Methods Search was performed in PUBMED and EMBASE. Both grey-scale and Doppler definitions of enthesitis, including describing features of enthesitis, were collected and metrological qualities of studies were assessed. Results After selection, 48 articles were analyzed. The definition of ultrasound enthesitis and elementary features varied among authors. Grey-scale enthesitis was characterized by increasing thickness (94% of studies), hypoechogenicity (83%), enthesophytes (69%), erosions (67%), calcifications (52%), associated bursitis (46%) and cortical irregularities (29%). Only 46% of studies reported the use of Doppler. High discrepancies were observed on frequency, type of probe and Doppler mode used. Face and content validity were the most frequently evaluated criteria (43%) followed by reliability (29%) and responsiveness (19%). Conclusions Ultrasound has evidence to support face, content validity and reliability for the evaluation of enthesitis, though there is a lack of well-reported methodology in most of the studies. Consensus on elementary lesions and standardization of exam is needed to determine the ultrasound definition of enthesitis in grey-scale and in Doppler for future applications. PMID:22093457

  16. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  17. Contrast-enhanced ultrasound (CEUS) in nephrology: Has the time come for its widespread use?

    PubMed

    Granata, Antonio; Zanoli, Luca; Insalaco, Monica; Valentino, Massimo; Pavlica, Pietro; Di Nicolò, Pier Paolo; Scuderi, Mario; Fiorini, Fulvio; Fatuzzo, Pasquale; Bertolotto, Michele

    2015-08-01

    Grey-scale ultrasound has an important diagnostic role in nephrology. The absence of ionizing radiations and nephrotoxicity, rapidity of execution, excellent repeatability, the possibility to perform the test at the patient's bed and the low cost represent important advantages of this technique. Paired with real-time sonography and colour-power-Doppler contrast-enhanced ultrasound (CEUS) reduces the diagnostic gap with computed tomography (CT) and magnetic resonance (MR) and represents a major step in the evolution of clinical ultrasound. Although there are several situations in which contrast-enhanced CT and MR are indicated (i.e. evaluation of cystic or ischemic lesions, traumatisms and ablative therapies of the native and transplanted kidney), the use of CT contrast media presents a high risk of contrast-induced nephropathy (i.e. in elderly people, subjects with comorbidities and those with renal dysfunction), while gadolinium-based RM contrast agents are contraindicated for the risk of nephrogenic systemic fibrosis (i.e. in patients with severe renal dysfunction). In these situations, CEUS may be a viable alternative, however, as any technique associated with the infusion of pharmacological substances, the potential advantages and risks of CEUS should be critically evaluated. In this regard, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) has published the guidelines for the use of CEUS for the kidney imaging and the International Contrast Ultrasound Society (ICUS) has been recently founded. The aim of this review is to offer an updated overview of the potential applications of CEUS in nephrology, reporting some indications and possible risks associated to its use.

  18. Standardized ultrasound evaluation of carotid stenosis for clinical trials: University of Washington Ultrasound Reading Center

    PubMed Central

    2010-01-01

    Introduction Serial monitoring of patients participating in clinical trials of carotid artery therapy requires noninvasive precision methods that are inexpensive, safe and widely available. Noninvasive ultrasonic duplex Doppler velocimetry provides a precision method that can be used for recruitment qualification, pre-treatment classification and post treatment surveillance for remodeling and restenosis. The University of Washington Ultrasound Reading Center (UWURC) provides a uniform examination protocol and interpretation of duplex Doppler velocity measurements. Methods Doppler waveforms from 6 locations along the common carotid and internal carotid artery path to the brain plus the external carotid and vertebral arteries on each side using a Doppler examination angle of 60 degrees are evaluated. The UWURC verifies all measurements against the images and waveforms for the database, which includes pre-procedure, post-procedure and annual follow-up examinations. Doppler angle alignment errors greater than 3 degrees and Doppler velocity measurement errors greater than 0.05 m/s are corrected. Results Angle adjusted Doppler velocity measurements produce higher values when higher Doppler examination angles are used. The definition of peak systolic velocity varies between examiners when spectral broadening due to turbulence is present. Examples of measurements are shown. Discussion Although ultrasonic duplex Doppler methods are widely used in carotid artery diagnosis, there is disagreement about how the examinations should be performed and how the results should be validated. In clinical trails, a centralized reading center can unify the methods. Because the goals of research examinations are different from those of clinical examinations, screening and diagnostic clinical examinations may require fewer velocity measurements. PMID:20822530

  19. Ultrasound Findings of Delayed-Onset Muscle Soreness.

    PubMed

    Longo, Victor; Jacobson, Jon A; Fessell, David P; Mautner, Kenneth

    2016-11-01

    The purpose of this series was to retrospectively characterize the ultrasound findings of delayed-onset muscle soreness (DOMS). The Institutional Review Board approved our study, and informed consent was waived. A retrospective search of radiology reports using the key phrase "delayed-onset muscle soreness" and key word "DOMS" from 2001 to 2015 and teaching files was completed to identify cases. The sonograms were reviewed by 3 fellowship-trained musculoskeletal radiologists by consensus. Sonograms were retrospectively characterized with respect to echogenicity (hypoechoic, isoechoic, or hyperechoic), distribution of muscle involvement, and intramuscular pattern (focal versus diffuse and well defined versus poorly defined). Images were also reviewed for muscle enlargement, fluid collection, muscle fiber disruption, and increased flow on color or power Doppler imaging. There were a total of 6 patients identified (5 male and 1 female). The average age was 22 years (range, 7-44 years). Of the 6 patients, there were a total of 11 affected muscles in 7 extremities (1 bilateral case). The involved muscles were in the upper extremity: triceps brachii in 27% (3 of 11), biceps brachii in 18% (2 of 11), brachialis in 18% (2 of 11), brachioradialis in 18% (2 of 11), infraspinatus in 9% (1 of 11), and deltoid in 9% (1 of 11). On ultrasound imaging, the abnormal muscle was hyperechoic in 100% (11 of 11), well defined in 73% (8 of 11), poorly defined in 27% (3 of 11), diffuse in 73% (8 of 11), and focal in 27% (3 of 11). Increased muscle size was found in 82% (9 of 11) and minimal hyperemia in 87.5% (7 of 8). The ultrasound findings of DOMS include hyperechoic involvement of an upper extremity muscle, most commonly appearing well defined and diffuse with increased muscle size and minimal hyperemia.

  20. Color-Doppler US features of a pyogenic granuloma of the upper dorsum tongue.

    PubMed

    Cantisani, Vito; Del Vecchio, Alessandro; Fioravanti, Eloisa; Romeo, Umberto; D'Ambrosio, Ferdinando

    2016-03-01

    The diagnosis of oral lesions is based on clinical history, clinical examination and imaging exams. Different imaging modalities are available for the diagnosis and follow-up of these lesions such as computed tomography, magnetic resonance imaging, color-Doppler ultrasound, angiography and positron emission tomography. To date, color-Doppler ultrasound is considered the first-line imaging approach since it provides a non-invasive, cost-effective, real-time evaluation of oral anomalies. It provides both morphological and vascular information which are useful to determine the best therapeutic options. Differential diagnosis of a bleeding lobular mass of the tongue is, however, not always easy and includes several vascular and non-vascular lesions. We present herein a case of pyogenic granuloma of the tongue that at Color-Doppler US appeared as hypervascular lesion.

  1. Ultrasound - Scrotum

    MedlinePlus

    ... especially when the mass is solid). Blood flow images of the testicles are not always reliable in determining the presence or absence of blood supply to a testicle that has twisted. When searching for an absent testicle, ultrasound may not be ...

  2. Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

    DTIC Science & Technology

    2014-05-01

    are presented. Keywords: Blind Doppler Shift Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . I...Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  3. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.

    PubMed

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-03-01

    Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

  4. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  5. Development of quantitative Doppler indices for uteroplacental and fetal blood flow during the third trimester.

    PubMed

    Joern, H; Funk, A; Goetz, M; Kuehlwein, H; Klein, A; Fendel, H

    1996-01-01

    The aim of our study was to describe the development of uteroplacental and fetal blood flow during the third trimester. Doppler examination was carried out on 393 uncomplicated pregnancies with uncomplicated term delivery. Using a pulsed color Doppler, we calculated the maximum systolic, mean and maximum end-diastolic velocity after correcting the angle of insonation. Patients under tocolysis or other medication influencing blood flow parameters were excluded from this cross-sectional study. Summarizing the results gained by Doppler ultrasound investigation of the uteroplacental and fetal blood vessels, we created quantiles as quantitative Doppler indices for the maximum systolic, mean (TAMX = time averaged maximum velocity) and maximum end-diastolic velocity. The following conclusions could be drawn: (1) resistance to the blood flow in the maternal portion of the placenta does not change during the third trimester; (2) resistance to the blood flow on the fetal side of the placenta decreases up to week 42 of gestation; (3) cerebral vascular resistance decreases constantly up to gestational week 42; and (4) vascular resistance to the blood flow of the kidney decreases only slightly during the third trimester. This study offers clinically important values for quantitative Doppler flow velocimetry for the first time. We hope that our findings improve the usefulness of Doppler ultrasound as a diagnostic tool in obstetrical management.

  6. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling.

    PubMed

    González-Centeno, M R; Comas-Serra, F; Femenia, A; Rosselló, C; Simal, S

    2015-01-01

    The kinetics of both conventional (mechanical stirring, 200rpm) and acoustic (55±5kHz, 435±5W/L) aqueous extraction of total phenolic content and antioxidant capacity from grape pomace by-products (Vitis vinifera L.) have been experimentally evaluated and modeled at different extraction temperatures (20, 35 and 50°C). A gradual and significant increase of total phenolic content and antioxidant capacity of the extracts was observed as the temperature increased, the highest values being obtained in the case of the extraction assisted acoustically. According to the results, the acoustic assistance of the extraction process led to aqueous extracts with phenolic and antioxidant characteristics similar to those obtained with mechanical stirring, working under lower temperature conditions and during less operating time. Specifically, the conventional extraction of total phenolics at 35 and 50°C did not differ significantly from extractions assisted with power ultrasound at 20 and 35°C, respectively; and the acoustic process required approximately 3, 4 and 8 times less time, at 20, 35 and 50°C, than the conventional extraction to obtain extracts with similar characteristics. The extraction curves obtained for total phenolic content and antioxidant capacity, measured by the ABTS and FRAP methods, were properly represented by a modified Weibull model for both conventional and acoustic extractions within the temperature range 20-50°C, presenting an average percentage of explained variance⩾97.9%, and an average mean relative error⩽7.0%. A high correlation (r(2)⩾0.992) was observed between the experimental and simulated values for all the quality attributes in study.

  7. Effects of low-power LED and therapeutic ultrasound in the tissue healing and inflammation in a tendinitis experimental model in rats.

    PubMed

    Moura Júnior, Manoel de Jesus; Arisawa, Emilia Ângela Loschiavo; Martin, Airton Abrahão; de Carvalho, Janderson Pereira; da Silva, José Mário Nunes; Silva, José Figueiredo; Silveira, Landulfo

    2014-01-01

    This work evaluated the anti-inflammatory response of low-power light-emitting diode (LED) and ultrasound (US) therapies and the quality and rapidness of tendon repair in an experimental model of tendinitis, employing histomorphometry and Raman spectroscopy. Tendinitis was induced by collagenase into the right tendon of 35 male Wistar rats with an average weight of 230 g. The animals were randomly separated into seven groups of five animals each: tendinitis without treatment-control (TD7 and TD14, where 1 and 2 indicated sacrifice on the 7th and 14th day, respectively), tendinitis submitted to US therapy (US7 and US14) and tendinitis submitted to LED therapy (LED7 and LED14). Contralateral tendons of the TD group at the 14th day were used as the healthy group (H). US treatment was applied in pulsed mode at 10 %, 1 MHz frequency, 0.5 W/cm(2), 120 s. LED therapy parameters were 4 J/cm(2), 120 s, daily dose at the same time and same point. Sacrifice was performed on the 7th or 14th day. Histomorphometric analysis showed lower number of fibroblasts on the 14th day of therapy for the US-treated group, compared to the TD and LED, indicating lower tissue inflammation. Raman showed that the LED group had an increase in the amount of collagen I and III from the 7th to the 14th day, which would indicate more organized fibers and a better quality of the healing, and US showed lower collagen I synthesis in the 14th day compared to H, indicating a lower tissue reorganization.

  8. Ultrasound-Assisted Freezing

    NASA Astrophysics Data System (ADS)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  9. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  10. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  11. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  12. Ambiguity resolution for satellite Doppler positioning systems

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  13. Robust estimation of fetal heart rate from US Doppler signals

    NASA Astrophysics Data System (ADS)

    Voicu, Iulian; Girault, Jean-Marc; Roussel, Catherine; Decock, Aliette; Kouame, Denis

    2010-01-01

    Introduction: In utero, Monitoring of fetal wellbeing or suffering is today an open challenge, due to the high number of clinical parameters to be considered. An automatic monitoring of fetal activity, dedicated for quantifying fetal wellbeing, becomes necessary. For this purpose and in a view to supply an alternative for the Manning test, we used an ultrasound multitransducer multigate Doppler system. One important issue (and first step in our investigation) is the accurate estimation of fetal heart rate (FHR). An estimation of the FHR is obtained by evaluating the autocorrelation function of the Doppler signals for ills and healthiness foetus. However, this estimator is not enough robust since about 20% of FHR are not detected in comparison to a reference system. These non detections are principally due to the fact that the Doppler signal generated by the fetal moving is strongly disturbed by the presence of others several Doppler sources (mother' s moving, pseudo breathing, etc.). By modifying the existing method (autocorrelation method) and by proposing new time and frequency estimators used in the audio' s domain, we reduce to 5% the probability of non-detection of the fetal heart rate. These results are really encouraging and they enable us to plan the use of automatic classification techniques in order to discriminate between healthy and in suffering foetus.

  14. Doppler ultrasound exam of an arm or leg

    MedlinePlus

    ... later. The test is done to help diagnose: Arteriosclerosis of the arms or legs Blood clot (deep ... the wrong direction in veins) Arterial occlusion from atherosclerosis This test may also be done to help ...

  15. [A versatile phantom for hemodynamic measurements with ultrasound Doppler equipment].

    PubMed

    von Boetticher, H; Delebinski, R; Risch, U; Luska, G

    1994-10-01

    The test object described comprises a blood simulating liquid pumped through tubes embedded in tissue-mimicking material. The main components of the system can be realised in different ways. They are largely exchangeable with each other. Water, reticulated foam or silicone rubber is used as bulk background material, blood vessels are simulated using latex or silicone tubes or heat-shrink sleeving; in the artificial blood, sephadex particles or silicone emulsion were used as scatterers. The suspension of scattering particles is driven by a roller pump or a membrane dosage pump. The features of the components are described and the applications of the different phantoms discussed.

  16. General Ultrasound Imaging

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  17. Venous Ultrasound (Extremities)

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  18. Carotid Ultrasound Imaging

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  19. A novel approach for Doppler blood flow measurement.

    PubMed

    McNamara, D M; Goli, A; Ziarani, A K

    2008-01-01

    A new approach to frequency estimation for the velocity estimation in Doppler ultrasound blood flow analysis is presented. The basis of the approach is an adaptive sinusoid-tracking algorithm which is effective in extracting nonstationary signals from within noise and estimating their time-varying parameters, such as the frequency, over time. The preliminary studies conducted using simulated signals show the potential of this approach in estimating Doppler frequency shifts under noisy conditions. A qualitative comparison with the short-time Fourier transform (STFT) is presented to show the advantages of the proposed technique over the STFT. The proposed approach offers advantages over conventional time-frequency analysis techniques in terms of high time-frequency resolution and high noise immunity.

  20. Are Prenatal Ultrasound Scans Associated with the Autism Phenotype? Follow-Up of a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Stoch, Yonit K.; Williams, Cori J.; Granich, Joanna; Hunt, Anna M.; Landau, Lou I.; Newnham, John P.; Whitehouse, Andrew J. O.

    2012-01-01

    An existing randomised controlled trial was used to investigate whether multiple ultrasound scans may be associated with the autism phenotype. From 2,834 single pregnancies, 1,415 were selected at random to receive ultrasound imaging and continuous wave Doppler flow studies at five points throughout pregnancy (Intensive) and 1,419 to receive a…

  1. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  2. Quantitative analysis of vascular heterogeneity in breast lesions using contrast-enhanced 3-D harmonic and subharmonic ultrasound imaging.

    PubMed

    Sridharan, Anush; Eisenbrey, John R; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F; Wallace, Kirk; Chalek, Carl L; Thomenius, Kai E; Forsberg, Flemming

    2015-03-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions.

  3. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  4. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  5. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  6. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  7. 4D in-vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves.

    PubMed

    Flesch, Martin; Pernot, Mathieu; Provost, Jean; Ferin, Guillaume; Nguyen-Dinh, An; Tanter, Mickael; Deffieux, Thomas

    2017-03-01

    4D ultrafast ultrasound imaging was recently shown using a 2D matrix (i.e., fully populated) connected to a 1024-channel ultrafast ultrasound scanner. In this study, we investigate the Row-Column Addressing (RCA) matrix approach, which allows a reduction of independent channels from N x N to N + N, with a dedicated beamforming strategy for ultrafast ultrasound imaging based on the coherent compounding of Orthogonal Plane Wave (OPW). OPW is based on coherent compounding of plane wave transmissions in one direction with receive beamforming along the orthogonal direction and its orthogonal companion sequence. Such coherent recombination of complementary orthogonal sequences leads to virtual transmit focusing in both directions which results into a final isotropic Point Spread Function (PSF). In this study, a 32 x 32 2D matrix array probe (1024 channels), centered at 5 MHz was considered. An RCA array, of same footprint with 32 + 32 elements (64 channels), was emulated by summing the elements either along a line or a column in software prior to beamforming. This approach allowed for the direct comparison of the 32 + 32 RCA scheme to the optimal fully sampled 32 x 32 2D matrix configuration, which served as the gold standard. This approach was first studied through PSF simulations and then validated experimentally on a phantom consisting of anechoic cysts and echogenic wires. The Contrast-to-Noise Ratio (CNR) and the lateral resolution of the RCA approach were found to be approximately equal to half (in decibel) and twice the values, respectively, obtained when using the 2D matrix approach. Results in a Doppler phantom and the human humeral artery in vivo confirmed that OPW compound imaging using emulated RCA matrix can achieve a power Doppler with sufficient contrast to recover the vein shape and provides an accurate Doppler spectrum.

  8. Optic Nerve Sheath Diameter Ultrasound and the Diagnosis of Increased Intracranial Pressure.

    PubMed

    Hylkema, Christopher

    2016-03-01

    Ultrasound has been used for almost 30 years in a wide variety of clinical applications and environments. From the austerity of battlefields to the labor and delivery ward, ultrasound has the ability to give clinicians real-time, noninvasive diagnostic imaging. Ultrasound by emergency physicians (and all nonradiologists) has become more prevalent and has been used for examinations such as the transcranial Doppler to evaluate for stroke, cardiac function, FAST and EFAST examinations for trauma, and now increased intracranial pressure (ICP) via Optic Nerve Sheath Diameter Ultrasound (ONSD). The ONSD is a valid and reliable indicator of ICP.

  9. [Modern ultrasound methods of examination in clinical ophthalmology. Background problems and future prospects].

    PubMed

    Kharlap, S I

    2003-01-01

    Historic aspects of ultrasound diagnostics in ophthalmology are described. The technological development of ultrasound diagnostic systems and the clinical application of different ultrasound modes in examining the eye and its choroids are traced back. The efficiency of Doppler mapping in the mode of three-dimension reconstruction at examining the orbital vascular system is evaluated. An experience obtained at the Research Institute for Eye Disease of the Russian Academy of Medical Sciences and outlooks for the diagnostic usage of computer ultrasound in clinical ophthalmology and angiologia are presented.

  10. Incidentally detection of non-palpable testicular nodules at scrotal ultrasound: what is new?

    PubMed

    Valentino, Massimo; Bertolotto, Michele; Martino, Pasquale; Barozzi, Libero; Pavlica, Pietro

    2014-12-30

    The increased use of ultrasound in patients with urological and andrological symptoms has given an higher detection of intra-testicular nodules. Most of these lesions are hypoechoic and their interpretation is often equivocal. Recently, new ultrasound techniques have been developed alongside of B-mode and color-Doppler ultrasound. Although not completely standardized, contrast-enhanced ultrasound (CEUS) and tissue elastography (TE), added to traditional ultrasonography, can provide useful information about the correct interpretation of incidentally detected non-palpable testicular nodules. The purpose of this review article is to illustrate these new techniques in the patient management.

  11. Prostate Focused Ultrasound Therapy.

    PubMed

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated.

  12. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process.

    PubMed

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Feng, J C; Liu, J H; Tian, H; Wang, S J

    2017-05-01

    High melting point Ni3Sn4 joints for the die attachment of SiC-based high temperature power devices was successfully achieved using an ultrasound-induced transient liquid phase (TLP) bonding process within a remarkably short bonding time of 8s. The formed intermetallic joints, which are completely composed of the refined equiaxial Ni3Sn4 grains with the average diameter of 2μm, perform the average shear strength of 26.7MPa. The sonochemical effects of ultrasonic waves dominate the mechanism and kinetics of the rapid formation of Ni3Sn4 joints.

  13. Shear-layer detection in poststenotic flow by spectrum analysis of Doppler signals.

    PubMed

    Tamura, T; Fronek, A

    1988-11-01

    Spectrum analysis of the Doppler signals was performed 0.5 tube diameters downstream from an axisymmetric constriction with an area reduction of 80 percent in steady flow at a jet Reynolds number of 2840. Both pulsed and continuous wave (CW) Doppler spectra showed significant reverse flow components in the separated flow. The pulsed Doppler spectra exhibited sudden changes when the sample volume crossed the shear layer between the center jet and the separated flow. A power spectrum equation was theoretically derived from continuity of flow to define the Doppler shift frequency for the shear layer velocity. The CW Doppler spectrum showed a minimum spectrum density at a frequency which equalled the shear layer Doppler shift frequency derived from the equation. The pulsed spectra exhibited the sudden changes at the same frequency as well.

  14. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  15. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  16. A novel application of musculoskeletal ultrasound imaging.

    PubMed

    Eranki, Avinash; Cortes, Nelson; Ferenček, Zrinka Gregurić; Sikdar, Siddhartha

    2013-09-17

    Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders.

  17. A Novel Application of Musculoskeletal Ultrasound Imaging

    PubMed Central

    Eranki, Avinash; Cortes, Nelson; Ferenček, Zrinka Gregurić; Sikdar, Siddhartha

    2013-01-01

    Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders. PMID:24084063

  18. [Evaluating the effectiveness of the new mouthguard design in athletes involved in power sports].

    PubMed

    Astashina, N B; Sergeeva, E S; Rogozhnikov, G I; Lukanin, A N; Kazakov, S V

    2016-01-01

    The aim of the study was to assess the effectiveness of the new mouthguard design for functional rehabilitation of dental system in athletes involved in contact power sports. The functional state of dental system was evaluated by interferential electromyography of masticatory muscles and Doppler ultrasound examination of periodontal tissues. Before mouthguard use the asynchrony of masticatory muscles was seen which was released after the mouthguard application: electromyographic activity of the left and right masticatory muscles was balanced and the decrease in biopotentials amplitude was found out. The mouthguard also caused no functional disorders in periodontal tissues.

  19. Use of ultrasound in treatment decisions for patients with rheumatoid arthritis: an observational study in Italy.

    PubMed

    Epis, Oscar; Scioscia, Crescenzio; Locaputo, Antonia; Cappelli, Antonella; Maier, Armin; Rocchetta, Pier Andrea; Tomietto, Paola; Perin, Antonella; Rigon, Chiara; Santo, Leonardo; Casilli, Oriana; Lapadula, Giovanni; Bruschi, Eleonora

    2016-08-01

    In rheumatoid arthritis (RA), treatment response is generally assessed using standard clinical disease activity measures. However, ultrasound has become increasingly popular among rheumatologists to monitor disease activity and response. The purpose of this analysis of ECOgraphic evaluation for STaging ARthritis (ECOSTAR) study data was to determine how ultrasound affects clinicians' decisions about changing treatment in RA. ECOSTAR was an observational, cohort study conducted between March 2010 and December 2012 at nine clinical centers in Italy in RA patients being considered for treatment change. After clinical evaluation of each patient, patients underwent diagnostic ultrasound (US) investigations and each patient was given a total echography score using a combination of scores for joint effusion, synovial hypertrophy, and power Doppler. The US results were provided to the clinicians and the influence of US on the clinicians' treatment choices were recorded. Ninety-five patients screened for study inclusion had confirmed RA (mean age 53.9 years; mean disease duration 8.9 years). Therapy changes were made by clinicians according to the hand and wrist joint US scores: score 0 appeared to have no influence on clinicians' decision to modify treatment, scores >0-3 were associated with a numerically higher estimated probability of not changing therapy than changing therapy, and scores >3 had a greater influence on the clinician to modify therapy and an increased probability of the clinician changing therapy versus not changing therapy. Ultrasonography scores appear to influence treatment decisions in patients with RA, with clinicians appearing less likely to alter treatment regimens in patients with low ultrasound scores and more likely to change treatment regimens when higher scores are obtained. Further research is warranted.

  20. Transmission media effects on precise Doppler tracking

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.

    1978-01-01

    The effects of the transmission media - the earth's troposphere and ionosphere, and the solar wind - on precise Doppler tracking are discussed. The charged particle effects can be largely removed by dual frequency observations; however there are limitations to these corrections (besides system noise and/or finite integration times) including the effects of magnetic fields, diffraction, and differential refraction, all of which must be carefully evaluated. The earth's troposphere can contribute an error of delta f/f approximately 10 to the minus 14th power.

  1. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  2. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  3. Presence of power Doppler synovitis in rheumatoid arthritis patients with synthetic and/or biological disease-modifying anti-rheumatic drug-induced clinical remission: experience from a Chinese cohort.

    PubMed

    Geng, Yan; Han, Jingjing; Deng, Xuerong; Zhang, Zhuoli

    2014-08-01

    The aim of this study was to evaluate the ultrasonographic synovitis in rheumatoid arthritis (RA) patients who reached clinical remission. Two hundred and two RA patients were enrolled into this study. One hundred and eleven RA patients achieved clinical remission with the treatment of synthetic and/or biologic disease-modifying anti-rheumatic drugs (DMARDs). Subclinical synovitis was assessed by power Doppler ultrasonography (PDUS). PD synovitis was semi-quantitatively recorded. Twenty-two joint regions were imaged: bilateral wrists, metacarpophalangeal (MCP) joints, and proximal interphalangeal (PIP) joints. PD remission was defined as a total PD score of 0. The subclinical synovitis in the RA patients who achieved clinical remission was evaluated. The correlations between PD total scores and clinical/laboratory parameters were analyzed. Among the 111 RA patients who achieved clinical remission, 110 (99.1 %), 67 (60.4 %), 55 (49.5 %), 50 (45.0 %), and 54 (48.6 %) patients, respectively, satisfied DAS28 (CRP), DAS28 (ESR), CDAI, SDAI, and 2010 ACR/EULAR remission criteria. However, only 54 (48.6 %) patients achieved PD remission. Subclinical synovitis was detectable in 57 (51.8 %), 30 (44.8 %), 22 (40.0 %), 19 (38.0 %), and 18 (33.3 %) patients accordingly. On the contrary, 11 (26.8 %) out of 41 patients who fulfilled all five clinical remission criteria had evidence of subclinical synovitis. In those 91 patients who did not achieved clinical remission, total PD score was correlated with swollen joint counts (SJC), tender joint counts (TJC), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and complex disease activity indexes (P < 0.01), but not the titers of rheumatoid factor and anti-cyclic citrullinated peptide. Among those 57 patients with subclinical synovitis after reaching clinical remission, no correlation was found between PD total score and SJC, TJC, ESR, CRP, and complex disease activity indexes. Presence of subclinical

  4. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  5. Ultrasound and Therapy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  6. [Ultrasound in emergency medicine].

    PubMed

    Lapostolle, F; Deltour, S; Petrovic, T

    2015-12-01

    Ultrasound has revolutionized the practice of emergency medicine, particularly in prehospital setting. About a patient with dyspnea, we present the role of ultrasound in the diagnosis and emergency treatment. Echocardiography, but also hemodynamic ultrasound (vena cava) and lung exam are valuable tools. Achieving lung ultrasound and diagnostic value of B lines B are detailed.

  7. Development of a feasible and responsive ultrasound inflammation score for rheumatoid arthritis through a data-driven approach

    PubMed Central

    Aga, Anna-Birgitte; Berner Hammer, Hilde; Christoffer Olsen, Inge; Uhlig, Till; Kvien, Tore K; van der Heijde, Désirée; Fremstad, Hallvard; Madland, Tor Magne; Lexberg, Åse Stavland; Haukeland, Hilde; Rødevand, Erik; Høili, Christian; Stray, Hilde; Noraas, Anne Lindtner; Widding Hansen, Inger Johanne; Bakland, Gunnstein; Lillegraven, Siri; Lie, Elisabeth; Haavardsholm, Espen A

    2016-01-01

    Objective To develop and validate a responsive and feasible ultrasound inflammation score for rheumatoid arthritis (RA). Methods We used data from cohorts of early RA (development) and established RA starting/switching biologic therapy (validation). 4 tendons and 36 joints were examined by a grey scale (GSUS) and power Doppler semiquantitative ultrasound (PDUS) scoring system (full score). Ultrasound score components were selected based on factor analyses of 3-month change in the development cohort. Responsiveness was assessed by standardised response means (SRMs). We assessed the proportion of information retained from the full score by linear regression. Results 118 patients with early and 212 patients with established RA were included. The final ultrasound score included 8 joints (metacarpophalangeal 1–2–3, proximal interphalangeal 2–3, radiocarpal, metatarsophalangeal 2–3) and 1 tendon (extensor carpi ulnaris) examined bilaterally. The 6-month SRMs for the final score were −1.24 (95% CI −1.47 to −1.02) for GSUS, and −1.09 (−1.25 to −0.92) for PDUS in early RA, with 87% of total information retained for GSUS and 90% for PDUS. The new score performed somewhat better than formerly proposed scores in the validation cohort. Conclusions The Ultrasound in Rheumatoid Arthritis 9 joint/tendon score (USRA9) inflammation score showed good responsiveness, retained most of the information from the original full score and overall performed better than previous scores in a validation cohort. Trial registration numbers NCT01205854, ACTRN12610000284066; Post-results. PMID:28074154

  8. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  9. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  10. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  11. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  12. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  13. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  14. Novel instantaneous laser Doppler velocimeter.

    PubMed

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  15. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    SciTech Connect

    Tanter, M.

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  16. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (