Method and apparatus for lead-unity-lag electric power generation system
NASA Technical Reports Server (NTRS)
Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)
2013-01-01
A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.
Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei
2016-05-15
We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2016-02-23
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
NASA Technical Reports Server (NTRS)
Lathem, W. C.; Hudson, W. R.
1972-01-01
Measurements of beam deflection angle with respect to spring positioning power and accelerator impingement current as a function of deflection angle were made on a 5-cm diameter system. Response time measurements on the translational grid beam deflection system showed that the time for the maximum deflection angle analyzed (+16.4 deg to -16.4 deg) could be reduced by a factor of nine by increasing the heating power applied to the positioning spring from 4 to 16 watts. At 14 watts the response time for maximum deflection was about 1 minute.
Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas
NASA Technical Reports Server (NTRS)
Hashmall, Joseph A.
2006-01-01
Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2015-01-01
The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.
The Mobility Decision. 1990 Wheelchair Guide.
ERIC Educational Resources Information Center
Henke, Cliff
1990-01-01
This article presents tips for parents shopping for wheelchairs for children with special mobility needs. Manual versus power chairs, dimensions, maneuverability, weight, transportability, durability, adaptability, maximum/minimum speeds, battery life (for power chairs), climbing angle, and other features are discussed. Factors to consider in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya
2016-08-15
The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
Study on fibre laser machining quality of plain woven CFRP laminates
NASA Astrophysics Data System (ADS)
Li, Maojun; Li, Shuo; Yang, Xujing; Zhang, Yi; Liang, Zhichao
2018-03-01
Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.
Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Yoshino, Masato
2017-06-01
The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.
Liew, Bernard X W; Morris, Susan; Netto, Kevin
2016-06-01
Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films
NASA Astrophysics Data System (ADS)
Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.
2016-12-01
The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
NASA Astrophysics Data System (ADS)
Reinhard, Karl E.
Electric power is fully interwoven into the fabric of American life. Its loss for extended periods has profound impacts upon public safety, health and welfare. The power system has been termed the most complex machine built by man. Not surprisingly, the measures to address the range of power system downtime causes are as diverse as the causes themselves. One important arc of effort is providing power system operators with full knowledge of the system's operating state, timely warning when changing conditions threaten system stability, and tools guiding control actions to maintain stable operations. This research is motivated, in part, by the need to explore opportunities for leveraging nascent synchrophasor data streams against known power system stability challenges. Over the past half-decade, power system operators have aggressively installed large networks of phasor measurement units (PMUs) and phasor data concentrators (PDCs) across the United States and Canada. Today, the synchrophasor data network has reached a state of maturity that opens the door to useful application. This dissertation investigates power system stability along three lines of effort. The first two efforts address steady-state power system stability--specifically methods for assessing system vulnerabilities arising from the phase angle difference between two buses connected by a transmission line. The third effort investigates the information that can be gleaned from synchrophasor measurements during a system's dynamic system response to changing system conditions. The first line of investigation extends steady-state distribution factor theory. Distribution factors are computed from a known non-linear power system load flow solution. They provide a computationally light method for estimating new system conditions under different operating circumstances. Distribution factors are extremely useful for very rapidly screening the impact of unexpected changes in power system configuration--e.g. a transmission line dropping out of service due to environmental conditions. The Line Outage Angle Factor (LOAF) developed herein provides a method for fast computation of bus voltage angle changes after a line outage. The Line Outage Generator Factor (LOGF) modifies the simulated circuit topology to include synchronous machine transient reactances, enabling rapid screening of operating states in which line opening (or re-closure) risks damaging equipment. The LOAF and LOGF provide promising results in MATLAB simulation of the Western System Coordinating Council 3-Machine, 9-Bus System. The second investigative line seeks to develop a Thevenin equivalent model to be used in tandem with synchrophasor data streams to provide real-time bus angle difference information for buses connected by a transmission line. The appeal is that real-time bus angle difference information could be computed on-site and very rapidly--and significantly, independent of other network bus measurements. The results show that developing a Thevenin equivalent that provides a useful angle difference measure often works well on paper, but is challenging using actual synchrophasor data. Efforts to develop a Thevenin equivalent using Monte Carlo methods show promise, but require further investigation. The third line of effort shifts to investigate the useful information that a PMU can produce during a power system disturbance event. A synchrophasor is defined at a specific frequency, i.e. the system steady-state operating frequency. Thus a PMU produces a data stream recording power system changes progressing slower than the nominal system frequency; consequently, this is an "off-label" synchrophasor data application. The test system is a generator with electrical and mechanical controls connected by a pair of identical transmission lines to an infinite bus. The synchronous generator is modeled as a three-damper-winding synchronous machine. A MATLAB simulation was written to simulate both the full 14 dynamic state and the reduced order 11 dynamic state system models. A Real-Time Digital Simulator (RTDS) simulation emulating the test system provides the capability to produce real-time analog generator terminal waveforms to be sampled by a commercial off-the-shelf PMU to produce synchrophasor data. We find that the RTDS generated synchrophasor data stream is similar to the MATLAB reduced order model voltage and current generator terminal data in the dqo reference frame--reflecting parallel, but distinct, filtering processes.
Askari Asli-Ardeh, Ezzatollah; Mohsenimanesh, Ahmad
2012-01-01
An experiment was conducted to investigate the effect of screw speed, inclination angle and variety on the required power, and conveying capacity of a screw conveyor. The experiment was designed with four levels of screw speed (600, 800, 1000, and 1200 rpm), five levels of inclination angle (0, 20, 40, 60, and 80°), and three levels of variety (Alikazemi, Hashemi, and Khazar). The Length, diameter, and pitch of screw were 2, 0.78, and 0.5 m, respectively. The experimental design was a randomized complete block (RCB) with factorial layout. Maximum and minimum power requirements of tested screw conveyor were 99.29 and 81.16 Watt corresponding to conveying capacity of 3.210 and 1.975 ton/hour obtained for khazar and Alikazemi varieties, respectively. The results indicated that as screw inclination angle increased from 0 to 80°, the conveying capacity decreased significantly from 3.581 to 0.932 t/h. It can be concluded that the most conveying capacity was 4.955 t/h at tests with khazar variety and conveyor inclination angle zero degree.
Experimental and numerical study of a dual configuration for a flapping tidal current generator.
Kim, Jihoon; Quang Le, Tuyen; Hwan Ko, Jin; Ebenezer Sitorus, Patar; Hartarto Tambunan, Indra; Kang, Taesam
2015-07-30
In this study, we conduct experimental and consecutive numerical analyses of a flapping tidal current generator with a mirror-type dual configuration with front-swing and rear-swing flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted by means of two-dimensional computational fluid dynamics simulations with an in-house code. An experimental study with a controller to determine the target arm angle shows that the resultant arm angle is dependent on the input arm angle, the frequency, and the applied load, while a high pitch is obtained simply with a high input arm angle. Through a parametric analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. Moreover, the optimal reduced frequency was found to be 0.125 in terms of the power extraction. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90° phase difference between the two. The high contribution stems from the high power generated by the rear-swing flapper, which mimics the tail fin movement of a dolphin along a flow, compared to a plunge system or a front-swing system, which mimics the tail fin movement of a dolphin against a flow. It is also due to the fact that the shed vorticities of the front-swing flapper slightly affect negatively or even positively the power performance of the rear-swing system at a given distance and phase angle.
Specular reflectance of soiled glass mirrors - Study on the impact of incidence angles
NASA Astrophysics Data System (ADS)
Heimsath, Anna; Lindner, Philip; Klimm, Elisabeth; Schmid, Tobias; Moreno, Karolina Ordonez; Elon, Yehonatan; Am-Shallem, Morag; Nitz, Peter
2016-05-01
The accumulation of dust and soil on the surface of solar reflectors is an important factor reducing the power output of solar power plants. Therefore the effect of accumulated dust on the specular reflectance of solar mirrors should be understood well in order to improve the site-dependent performance prediction. Furthermore, an optimization of the CSP System maintenance, in particular the cleaning cycles, can be achieved. Our measurements show a noticeable decrease of specular reflectance when the angle of incidence is increased. This effect may be explained by shading and blocking mechanisms caused by dirt particles. The main physical causes of radiation loss being absorption and scattering, the near-angle scattering leads to a further decrease of specular reflectance for smaller angles of acceptance. Within this study mirror samples were both outdoor exposed and indoor artificially soiled. For indoor soiling, the mirror samples were artificially soiled in an in-house developed dusting device using both artificial-standardized dust and real dust collected from an arid outdoor test field at the Negev desert. A model function is proposed that approximates the observed reduction of specular reflectance with the incidence angle with a sufficient accuracy and by simple means for this soil type. Hence a first step towards a new approach to improve site dependent performance prediction of solar power plants is taken.
Zhang, Ning; Yu, Hong; Yu, Hao; Cai, Yueyue; Huang, Linzhou; Xu, Cao; Xiong, Guosheng; Meng, Xiangbing; Wang, Jiyao; Chen, Haofeng; Liu, Guifu; Jing, Yanhui; Yuan, Yundong; Liang, Yan; Li, Shujia; Smith, Steven M; Li, Jiayang; Wang, Yonghong
2018-06-18
Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice (Oryza sativa L.) have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, WUSCHEL RELATED HOMEOBOX6 (WOX6) and WOX11, are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq dataset, and its use to explore further genetic components controlling tiller angle. Collectively these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture. © 2018 American Society of Plant Biologists. All rights reserved.
Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications
NASA Astrophysics Data System (ADS)
Pandiyarasan, V.; Suhasini, S.; Archana, J.; Navaneethan, M.; Majumdar, Abhijit; Hayakawa, Y.; Ikeda, H.
2017-10-01
We have investigated ZnO nanostructures on cotton fabric (CF) s a flexible material for an application of wearable thermoelectric (TE) power generator which requires super-hydrophobicity, UV protection, and high TE efficiency. Field emission scanning electron microscopy images revealed that the formed ZnO nanostructures have a mixture of nanorods and nanosheets and are uniformly coated on the CF. XRD pattern and Raman spectra revealed that the ZnO nanostructure has a wurtzite structure. Contact angle measurements showed that the ZnO-nanostructures-coated CF possessed a high super hydrophobic nature with an angle of 132.5°. ZnO nanocomposite/CF sample exhibited an excellent UV protection factor 183.84. Seebeck coefficient, electrical resistivity and thermoelectric power factor of the ZnO nanostructures on cotton fabric were evaluated to be 28 μV/K, 0.04 Ω-cm, and 22 μW/m K2, respectively.
Control of wind turbine generators connected to power systems
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.
1978-01-01
A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.
High-frequency AC/DC converter with unity power factor and minimum harmonic distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernekinch, E.R.
1987-01-01
The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimentalmore » results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.« less
NASA Astrophysics Data System (ADS)
Zeeshan, Mohd; Hazarika, Saheera Azmi; Nath, Sujit; Bhanja, Dipankar
2017-07-01
In the present work, a 3-D numerical investigation has been performed to explore the effect of attack angles on the thermal-hydraulic performance of fin and tube heat exchanger (FTHE) using rectangular winglet pairs (RWPs). RWPs are placed adjacent to the tubes and three attack angels are considered for the study i.e. 5°, 15° and 25°. The effect of attack angles are examined on the heat transfer characteristics as well as in pressure drop penalty with airside Reynolds number Rea ranges from 500 to 900. Two performance evaluation criteria namely PEC1 i.e. area goodness factor (j/f) and PEC2 i.e. heat transfer rate per unit fan power consumption (Q/Pf) are considered for the performance evaluation. Furthermore, MOORA method is applied to obtain the performance order of FTHE configurations by taking PEC1 and PEC2 as beneficial attributes and fan power Pf as a non-beneficial attribute, keeping equal importance to each attribute. The results show that 5° attack angle provides the better performance in terms of PEC1 as heat transfer coefficient is increased by 27.70% at Rea=500 and 32.73% at Rea=900 respectively with 13.01% increased pressure drop penalty at Rea=500 and 14.26% at Rea=900 respectively. In terms of PEC2, though the 5° attack angle provides the high values of Q/Pf factor among the 15° and 25° attack angles, but it is found insignificant to replace the baseline configuration i.e. plain fin and tube heat exchanger configuration without vortex generators. Moreover, in MOORA optimization analysis also, it is found that 5° attack angle provides the better thermal-hydraulic performance.
NASA Technical Reports Server (NTRS)
Michal, David H.
1950-01-01
An investigation of the static and dynamic longitudinal stability characteristics of 1/3.7 scale rocket-powered model of the Bell MX-776A has been made for a Mach number range from 0.8 to 1.6. Two models were tested with all control surfaces at 0 degree deflection and centers of gravity located 1/4 and 1/2 body diameters, respectively, ahead of the equivalent design location. Both models were stable about the trim conditions but did not trim at 0 degree angle of attack because of slight constructional asymmetries. The results indicated that the variation of lift and pitching moment was not linear with angle of attack. Both lift-curve slope and pitching-moment-curve slope were of the smallest magnitude near 0 degree angle of attack. In general, an increase in angle of attack was accompanied by a rearward movement of the aerodynamic center as the rear wing moved out of the downwash from the forward surfaces. This characteristic was more pronounced in the transonic region. The dynamic stability in the form of total damping factor varied with normal-force coefficient but was greatest for both models at a Mach number of approximately 1.25. The damping factor was greater at the lower trim normal-force coefficients except at a Mach number of 1.0. At that speed the damping factor was of about the same magnitude for both models. The drag coefficient increased with trim normal-force coefficient and was largest in the transonic region.
SHJAR Jet Noise Data and Power Spectral Laws
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors
Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2014-01-01
Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868
Directional reflectance factor distributions of a cotton row crop
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.
1984-01-01
The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.
Jet noise modification by the 'whistler nozzle'
NASA Technical Reports Server (NTRS)
Hasan, M. A. Z.; Islam, O.; Hussain, A. K. M. F.
1984-01-01
The farfield noise characteristics of a subsonic whistler nozzle jet are measured as a function of Mach number (0.25, 0.37, and, 0.51), emission angle, and excitation mode. It is shown that a whistler nozzle has greater total and broadband acoustic power than an excited contraction nozzle; and that the intensity of far-field noise is a function of emission angle, Mach number, and whistler excitation stage. The whistler nozzle excitation produces broadband noise amplification with constant spectral shape; the broadband noise amplification (without associated whistler tones and harmonics) increases omnidirectionally with emission angle at all Mach numbers; and the broadband amplification factor decreases as Mach number and emission angle increase. Finally the whistler nozzle is described as a very efficient but inexpensive siren with applications in not only jet excitation but also acoustics.
Ofeq-2 orbit, attitude, and flight evaluation
NASA Astrophysics Data System (ADS)
Grumer, Michael; Komem, Joseph; Kronenfeld, Joseph; Kubitski, Ophir; Lorber, Vitaly; Shyldkrot, Haim
1992-02-01
The most significant events and phenomena that occurred during the Ofeq-2 flight are evaluated in this work. Particular attention is paid to the physical and technological factors which affected its orbital lifetime. Comparison of Ofeq-2 telemetry results with prelaunch estimations and with Ofeq-1 flight data are presented. The satellite's orbit and mission characteristics are defined and the principal systems of Ofeq-2 are described. Topics addressed include the interaction between the spinner's attitude with respect to the sun and consequent electric power generation. The coning angle development history, the role of the solar data evaluation, and the factors influencing drag are also analyzed. All of these affected the Ofeq-2 power outage-recovery event. The orbit determination and the coning angle evolution estimation methods are discussed in some detail. A brief report on radiation effects on computer RAM (random access memory) is also given. An integrative systems engineering approach summary of the telemetry data reconstruction and analysis concludes the paper.
Inverter design for high frequency power distribution
NASA Technical Reports Server (NTRS)
King, R. J.
1985-01-01
A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.
Shioya, Nobutaka; Shimoaka, Takafumi; Murdey, Richard; Hasegawa, Takeshi
2017-06-01
Infrared (IR) p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a powerful tool for analyzing the molecular orientation in an organic thin film. In particular, pMAIRS works powerfully for a thin film with a highly rough surface irrespective of degree of the crystallinity. Recently, the optimal experimental condition has comprehensively been revealed, with which the accuracy of the analytical results has largely been improved. Regardless, some unresolved matters still remain. A structurally isotropic sample, for example, yields different peak intensities in the in-plane and out-of-plane spectra. In the present study, this effect is shown to be due to the refractive index of the sample film and a correction factor has been developed using rigorous theoretical methods. As a result, with the use of the correction factor, organic materials having atypical refractive indices such as perfluoroalkyl compounds ( n = 1.35) and fullerene ( n = 1.83) can be analyzed with high accuracy comparable to a compound having a normal refractive index of approximately 1.55. With this improved technique, we are also ready for discriminating an isotropic structure from an oriented sample having the magic angle of 54.7°.
Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R
2012-11-01
The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Everling, E
1923-01-01
This paper is restricted to the question of attainable speed limits and attacks the problem from different angles. Theoretical limits due to air resistance are presented along with design factors which may affect speed such as wing loads, wing areas, wing section shifting, landing speeds, drag-lift ratios, and power coefficients.
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The amount of wind energy in power systems is increasing at a significant rate. With this increased penetration, there are certain problems associated with the operation of windfarms which need careful attention. In the operations side, the wake effects of upstream wind turbines on downstream wind turbines can cause a reduction in the total generated power of a windfarm. On the market side, the fluctuation of real-time prices can make the operation of windfarms less profitable. Similarly, the intermittent nature of wind power prevents the windfarms from participating in the day-ahead and forward markets. On the system side, the volatile nature of wind speeds is also an obstacle for windfarms to provide frequency regulation to the system. In this thesis, we address these issues and optimize the operation of windfarms in power systems and deregulated electricity markets. First, the total power generation in a windfarm is maximized by using yaw angle of wind turbines as a control variable. We extend the existing wake models to include the effects of yaw misalignment and wake deflection of wind turbines. A numerical study is performed to find the optimal values of induction factor and yaw misalignment angle of wind turbines in a single row of a windfarm for achieving the maximum total power with wake effects. The numerical study shows that the maximum power is achieved by keeping the induction factor close to 1/3 and only changing the yaw angle to deflect the wake. We then propose a Dynamic Programming Framework (DPF) to maximize the total power production of a windfarm using yaw angle as the control variable. We compare the windfarm efficiency achieved with our DPF with the efficiency values obtained through greedy control strategy and induction factor optimization. We also extend our expressions to a windfarm with multiple rows and columns of turbines and perform simulations on the 3x3 and 4x4 grid topologies. Our results show that the optimal induction factor for most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze distributed control schemes for frequency regulation in a smart grid using energy storage, wind generators, demand response and conventional generators while having no communication or data sharing between them. We also propose a novel control scheme for frequency support by energy storage in which the power output of energy storage changes proportionally with the reduction in its available energy. The application of the proposed control schemes indicates an improvement in system frequency characteristics, when there is a sudden net loss of generation.
Ultrasound power deposition model for the chest wall.
Moros, E G; Fan, X; Straube, W L
1999-10-01
An ultrasound power deposition model for the chest wall was developed based on secondary-source and plane-wave theories. The anatomic model consisted of a muscle-ribs-lung volume, accounted for wave reflection and refraction at muscle-rib and muscle-lung interfaces, and computed power deposition due to the propagation of both reflected and transmitted waves. Lung tissue was assumed to be air-equivalent. The parts of the theory and numerical program dealing with reflection were experimentally evaluated by comparing simulations with acoustic field measurements using several pertinent reflecting materials. Satisfactory agreement was found. A series of simulations were performed to study the influence of angle of incidence of the beam, frequency, and thickness of muscle tissue overlying the ribs on power deposition distributions that may be expected during superficial ultrasound (US) hyperthermia of chest wall recurrences. Both reflection at major interfaces and attenuation in bone were the determining factors affecting power deposition, the dominance of one vs. the other depending on the angle of incidence of the beam. Sufficient energy is reflected by these interfaces to suggest that improvements in thermal doses to overlying tissues are possible with adequate manipulation of the sound field (advances in ultrasonic heating devices) and prospective treatment planning.
Numerical and Experimental Investigations on the Hydrodynamic Performance of a Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Su, Xiaohui; Zhang, Jiantao; Zhao, Yong; Zhang, Huiying; Zhao, Guang; Cao, Yao
2017-12-01
In this paper, numerical and experimental investigations are presented on the hydrodynamic performance of a horizontal tidal current turbine (TCT) designed and made by our Dalian University of Technology (DUT) research group. Thus it is given the acronym: DUTTCT. An open source CFD solver, called PimpleDyMFoam, is employed to perform numerical simulations for design analysis, while experimental tests are conducted in a DUT towing tank. The important factors, including self-starting velocity, tip speed ratio (TSR) and yaw angle, which play important roles in the turbine output power, are studied in the investigations. Results obtained show that the maximum power efficiency of the newly developed turbine (DUTTCT) could reach up to 47.6% and all its power efficiency is over 40% in the TSR range from 3.5 to 6; the self-starting velocity of DUTTCT is about 0.745m/s; the yaw angle has negligible influence on its efficiency as it is less than 10°.
NASA Lewis Stirling engine computer code evaluation
NASA Technical Reports Server (NTRS)
Sullivan, Timothy J.
1989-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was -11 percent for the P-40 and 12 percent for the Re-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvements to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions.
Propulsion requirements for communications satellites.
NASA Technical Reports Server (NTRS)
Isley, W. C.; Duck, K. I.
1972-01-01
The concept of characteristics thrust is introduced herein as a means of classifying propulsion system tasks related particularly to geosynchronous communications spacecraft. Approximate analytical models are developed to permit estimation of characteristic thrust for injection error corrections, orbit angle re-location, north-south station keeping, east-west station keeping, spin axis precession control, attitude rate damping, and orbit raising applications. Performance assessment factors are then outlined in terms of characteristic power, characteristic weight, and characteristic volume envelope, which are related to the characteristic thrust. Finally, selected performance curves are shown for power as a function of spacecraft weight, including the influence of duty cycle on north-south station keeping, a 90 degree orbit angle re-location in 14 days, and finally comparison of orbit raising tasks from low and intermediate orbits to a final geosynchronous station. Power requirements range from less than 75 watts for north-south station keeping on small payloads up to greater than 15 KW for a 180 day orbit raising mission including a 28.5 degree plane change.
Development of Jet Noise Power Spectral Laws Using SHJAR Data
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2009-01-01
High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.
Numerical simulations of novel high-power high-brightness diode laser structures
NASA Astrophysics Data System (ADS)
Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter
2001-07-01
One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Modeling laser brightness from cross Porro prism resonators
NASA Astrophysics Data System (ADS)
Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich
2006-08-01
Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.
Adaptive reference voltage generator for firing angle control of line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R. (Inventor)
1983-01-01
A control system for a permanent-magnet motor driven by a multiphase line-commulated inverter is described. It is provided with integrators for integrating the back EMF of each phase of the motor for use in generating system control signals for an inverter gate logic using a sync and firing angle control generator connected to the outputs of the integrators. The firing angle control signals are produced by the control generator by means for combining 120 deg segments of the integrated back EMF signals symmetrical about their maxima into composite positive and negative waveforms, and means for sampling the maxima of each waveform every 120 deg. These samples are then used as positive and negative firing angle control signals. Whereby any change in amplitude of the integrated back EMF signals will not affect a change in the operating power factor of the motor and inverter.
NASA Astrophysics Data System (ADS)
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-04-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.
Flight-determined characteristics of an air intake system on an F-111A airplane
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Johnson, H. J.
1972-01-01
Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.
To the theory of high-power gyrotrons with uptapered resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbrajs, O.; Nusinovich, G. S.
In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less
The effect of polarized light on the organization of collagen secreted by fibroblasts.
Akilbekova, Dana; Boddupalli, Anuraag; Bratlie, Kaitlin M
2018-04-01
Recent studies have demonstrated the beneficial effect of low-power lasers and polarized light on wound healing, inflammation, and the treatment of rheumatologic and neurologic disorders. The overall effect of laser irradiation treatment is still controversial due to the lack of studies on the biochemical mechanisms and the optimal parameters for the incident light that should be chosen for particular applications. Here, we study how NIH/3T3 fibroblasts respond to irradiation with linearly polarized light at different polarization angles. In particular, we examined vascular endothelial growth factor (VEGF) secretion, differentiation to myofibroblasts, and collagen organization in response to 800 nm polarized light at 0°, 45°, 90°, and 135° with a power density of 40 mW/cm 2 for 6 min every day for 6 days. Additional experiments were conducted in which the polarization angle of the incident was changed every day to induce an isotropic distribution of collagen. The data presented here shows that polarized light can upregulate VEGF production, myofibroblast differentiation, and induce different collagen organization in response to different polarization angles of the incident beam. These results are encouraging and demonstrate possible methods for controlling cell response through the polarization angle of the laser light, which has potential for the treatment of wounds.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Internal combustion engine system having a power turbine with a broad efficiency range
Whiting, Todd Mathew; Vuk, Carl Thomas
2010-04-13
An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.
Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia
2014-01-01
The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490
Amodio, John; Rivera, Rafael; Pinkney, Lynne; Strubel, Naomi; Fefferman, Nancy
2006-08-01
The arterial vascularity of the hip has been investigated in normal infants using duplex Doppler sonography. This study addressed the differences in hip vascularity in infants with respect to gender and acetabular morphology. To determine whether there is a relationship between the resistive index of the vessels of the femoral chondroepiphysis and the alpha angle in normal infant hips and in those with developmental dysplasia of the hip. We studied 76 hips (38 patients) with gray-scale and power Doppler US. The patients were referred because of a possible abnormal clinical hip examination or had risk factors for developmental dysplasia of the hip. The infants ranged in age from 1 day to 6 weeks. There were 13 boys and 25 girls. Gray-scale images were initially performed in the coronal and transverse planes to evaluate acetabular morphology, alpha angle and position of the femoral chondroepiphysis relative to the acetabulum. The hips were then examined with power Doppler US, in both sagittal and transverse planes, to identify arterial vessels within the femoral epiphysis. Resistive indices were then recorded from the spectral analysis in each vessel identified. Each examination was performed by one of five pediatric radiologists. Mixed model regression was used to assess the relationship between resistive index and alpha angle, age and gender. Of the 76 hips, 34 had an alpha angle of 60 degrees or greater and were classified as normal, 26 had an alpha angle between 50 degrees and 59 degrees and were classified as immature, and 13 had an alpha angle of less than 50 degrees and were either subluxed or dislocated at the time of examination. At least two vessels were documented in each femoral epiphysis except in three hips, in which no vessels could be documented because of technical factors. There was a statistically significant linear relationship between the alpha angle and resistive index, such that the resistive index tended to rise with increasing alpha angle (P=0.0022). In addition, female infants had a significantly higher average resistive index than the average resistive index in male infants with the same alpha angle (P=0.0005). There is a direct linear relationship between alpha angle and resistive index in the infant hip. Female infants have a higher average resistive index than male infants. We believe that these results might serve as a model for predicting an infant hip at risk of ischemia. In addition, the fact that lower resistive indices of the femoral epiphysis are associated with acetabular dysplasia might help explain the documented low incidence of avascular necrosis in untreated hip dysplasia.
NASA Astrophysics Data System (ADS)
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
The Effects of Bicycle Frame Geometry on Muscle Activation and Power During a Wingate Anaerobic Test
Ricard, Mark D.; Hills-Meyer, Patrick; Miller, Michael G.; Michael, Timothy J.
2006-01-01
The purpose of this study was to compare the effects of bicycle seat tube angles (STA) of (72° and 82°) on power production and EMG of the vastus laeralis (VL), vastus medialis (VM), semimembranous (SM), biceps femoris (BF) during a Wingate test (WAT). Twelve experienced cyclists performed a WAT at each STA. Repeated measures ANOVA was used to identify differences in muscular activation by STA. EMG variables were normalized to isometric maximum voluntary contraction (MVC). Paired t-tests were used to test the effects of STA on: peak power, average power, minimum power and percent power drop. Results indicated BF activation was significantly lower at STA 82° (482.9 ± 166.6 %MVC·s) compared to STA 72° (712.6 ± 265.6 %MVC·s). There were no differences in the power variables between STAs. The primary finding was that increasing the STA from 72° to 82° enabled triathletes’ to maintain power production, while significantly reducing the muscular activation of the biceps femoris muscle. Key Points Road cyclists claim that bicycle seat tube angles between 72° and 76° are most effective for optimal performance in racing. Triathletes typically use seat tube angles greater than 76°. It is thought that a seat tube angle greater than 76° facilitates a smoother bike to run transition in the triathlon. Increasing the seat tube angle from 72 to 82 enabled triathletes’ to maintain power production, while significantly reducing the muscular activation of the biceps femoris muscle. Reduced hamstring muscular activation in the triathlon frame (82 seat tube angle) may serve to reduce hamstring tightness following the bike phase of the triathlon, allowing the runner to use a longer stride length. PMID:24198678
Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources
2010-05-01
ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this
Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)
NASA Astrophysics Data System (ADS)
Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.
2013-12-01
Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to regulate the local grid and the city gird.
Sun-view angle effects on reflectance factors of corn canopies
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.
1985-01-01
The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.
Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
Fintelman, D M; Sterling, M; Hemida, H; Li, F-X
2014-06-03
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal Characterization of a Hall Effect Thruster
2008-03-01
View Factor A = Area θ = Angle R = Distance xiii J = Radiosity q = Heat Transfer Rate W = Radiated Power U = Voltage C...summation rule. 1 1 N ij j F = =∑ (18) Radiosity (Ji) takes into account both radiation emitted and reflected from a surface. Analyzing radiation...exchanges between two surfaces is made easier with a few assumptions. Each surface is assumed isothermal and characterized by a uniform radiosity
Theoretical analysis of start-up power in helium pulsating heat pipe
NASA Astrophysics Data System (ADS)
Li, Monan; Huang, Rongjin; Xu, Dong; Li, Laifeng
2017-02-01
An analytical model for one-turn helium pulsating heat pipes (PHPs) with single liquid slug and vapor plug is established in present study. When an additional heat power takes place in the evaporating section, temperature and pressure will increase. The pressure wave travels through vapor and liquid phases at different speed, producing a pressure difference in the system, which acts as an exciting force to start up the oscillating motion. Results show that the start-up power of helium PHP is related to the filling ratio. The start-up power increases with the filling ration. However, there exist an upper limit. Furthermore, the start-up power also depends on the inclination angle of PHP. When the inclination angle increases, the heat input needed to start up the oscillating motion decreases. But for one-turn helium PHP, it can not be started up when the inclination angle is up to 90°, equalling to horizontal position,. While the inclination angle ranges between 0° (vertical position) and 75°, it can operate successfully.
Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation
NASA Astrophysics Data System (ADS)
Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul
2018-03-01
The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.
2017-01-01
A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
NASA Astrophysics Data System (ADS)
Chen, Lin; Bai, Shu-Lin
2018-04-01
Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.
Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
Luo, Cheng; Hofmann, Heath F
2011-07-01
In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, R. G.; Wegscheider, W.
2014-11-10
We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-inducedmore » magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.« less
An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate
NASA Astrophysics Data System (ADS)
Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud
2018-03-01
In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François
2014-05-01
Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Although the total RF power is maintained at the same level than that in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitations, with the highest energy for 1 channel being a factor of 2.4 (1 spoke) and 2.2 (2 spokes) higher than that in CP mode. In vivo experiments demonstrated the necessity for including ΔB0 spatial variations during 2-spoke RF pulse design, particularly in areas with strong local susceptibility variations such as the lower frontal lobe. Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as that in CP mode. These results suggest that expanding parallel transmit methods, including the use of multidimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging.
Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois
2015-01-01
Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439
Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A
2015-12-01
Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (P<0.05). Quadriceps power at 90% of one repetition maximum accounted for 9% of the variance in peak knee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].
Kimura, Mikio; Usui, Junshi; Nozawa, Takeo
2007-03-20
In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.
Differences in Pedaling Technique in Cycling: A Cluster Analysis.
Lanferdini, Fábio J; Bini, Rodrigo R; Figueiredo, Pedro; Diefenthaeler, Fernando; Mota, Carlos B; Arndt, Anton; Vaz, Marco A
2016-10-01
To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (PO VT2 ) compared with cycling at their maximal power output (PO MAX ). Twenty athletes performed an incremental cycling test to determine their power output (PO MAX and PO VT2 ; first session), and pedal forces, muscle activation, muscle-tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in PO MAX and PO VT2 . Athletes were assigned to 2 clusters based on the behavior of outcome variables at PO VT2 and PO MAX using cluster analysis. Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle-tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at PO VT2 vs PO MAX , cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length. Increases in power output lead to greater variations in knee angle, muscle-tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
NASA Astrophysics Data System (ADS)
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Study of solar photospheric MHD oscillations: Observations with MDI, ASP and MWO
NASA Astrophysics Data System (ADS)
Norton, Aimee Ann
Magnetodydrodynamical waves are expected to be an important energy transport mechanism in the solar atmosphere. This thesis uses data from a spectro-polarimeter and longitudinal magnetographs to study characteristics of magneto-hydrodynamical oscillations at photospheric heights. Significant oscillatory magnetic power is observed with the Michelson Doppler Imager in three frequency regimes: 0.5--1.0, 3.0--3.5 and 5.5--6.0 mHz corresponding to timescales of magnetic evolution, p-modes and the three minute resonant sunspot oscillation. Spatial distribution of magnetogram oscillatory power exhibits the same general features in numerous datasets. Low frequency magnetogram power is found in rings with filamentary structure surrounding sunspots. Five minute power peaks in extended regions of plage. Three minute oscillations are observed in sunspot umbra. Phase angles between velocity and magnetic fluctuations are found to be approximately -90°, a signature of magnetoacoustic waves, in disk-center active region data. Phase dependence upon observation angle is established through sunspot values decreasing from -100° at disk-center towards -31° at the limb, confirming greater Alfen wave visibility at the limb. Consistent propagation direction or field-aligned velocities explain an unexpected phase jump from negative to positive values for divergent sunspot fields observed away from disk-center. Simultaneously obtained Stokes profiles and longitudinal magnetogram maps of a positive plage region provide time series which could be compared. The velocity signals are in excellent agreement. Magnetic flux correlates best with fluctuations in filling factor, not inclination angle or field strength, implying the responsible physical mechanism is internally unperturbed flux tubes being buffeted by external pressure fluctuations. Sampling signals from different heights of formation provides slight phase shifts and large propagation speeds for velocity, indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfven speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfven speed. Observed fluctuations, phase angles and phase lags are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.
Rayleigh, the unit for light radiance.
Baker, D J
1974-09-01
A 0.7% accurate formula is derived for the easy conversion of power spectral radiance L(lambda) in W cm(-2) sr(-1) microm(-1)to rayleigh spectral radiance R(lambda) in rayleigh/microm, R(lambda) = 2pilambdaL(lambda) x 10(13), where the wavelength lambda is in microm. The rationale for the rayleigh unit is discussed in terms of a photon rate factor and a solid angle factor. The latter is developed in terms of an equivalence theorem about optical receivers and extended sources, and the concept is extended to the computation of photon volume emission rates from altitude profiles of zenith radiance.
Investigation of rf power absorption in the plasma of helicon ion source.
Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V
2008-02-01
The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.
NASA Astrophysics Data System (ADS)
Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia
2017-04-01
Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.
2008-02-14
g. Material. 5.1.7 Wheel Geometry. a. Camber angle. b. Caster angle. c. Pivot angle. d. Static toe-in. e. Turning angles...the vehicle characteristics to be obtained during testing of wheeled and tracked vehicles and their components. Physical characterization of test...frontal area Characteristic data sheet Power train Suspention Wheel geometry Vehicle clearance angles Armament Gun control systems 16. SECURITY
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
Quasifree analyzing powers using the (p-->,n) reaction
NASA Astrophysics Data System (ADS)
Hicks, K. H.; Vetterli, M. C.; Celler, A.; Helmer, R. L.; Henderson, R. S.; Jackson, K. P.; Jeppesen, R. G.; Trudel, A.; Yen, S.
1989-12-01
The (p-->,n) reaction has been measured for 12C and 54Fe targets at 290 MeV for a lab angle of 20.4° and at 420 MeV for a lab angle of 24.0°. An additional angle of 27.0° was measured for 12C at 290 MeV. Both cross sections and analyzing powers were obtained up to excitation energies close to the quasifree peak. The (p-->,n) analyzing powers are suppressed relative to the free nucleon-nucleon values for the 12C data at 290 and 420 MeV, and for the 54Fe data at 290 MeV. An enhanced analyzing power is observed for the 54Fe data at 420 MeV. The data are compared with both relativistic and nonrelativistic model calculations.
Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation
NASA Astrophysics Data System (ADS)
Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.
2018-03-01
Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.
Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei
2011-12-01
Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the rock and city architecture discrimination and minerals mapping.
Ring magnet firing angle control
Knott, M.J.; Lewis, L.G.; Rabe, H.H.
1975-10-21
A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. Q.; Feng, H. Q.; Liu, Q.
Energetic electrons with power-law spectra are commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of the X2 mode rapidly decreases with respect to the electron pitch-angle cosinemore » μ {sub 0} at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as μ {sub 0} increases. Moreover, the O mode, as well as the X mode, can be the fastest growth mode, in terms of not only the plasma parameter but also the type of electron pitch-angle distribution. This result presents a significant extension of the recent researches on ECME driven by the lower energy cutoff of power-law electrons, in which the X mode is generally the fastest growth mode.« less
Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer
2017-01-01
To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.
GPS synchronized power system phase angle measurements
NASA Astrophysics Data System (ADS)
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft
NASA Technical Reports Server (NTRS)
Myrabo, L. N.; Dickenson, T.
2005-01-01
A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic thruster (i.e., geomagnetic re-boost) station-keeping system can maintain the orbit altitude. The rate at which the power station s superconducting magnetic energy storage system (SMES) is 'charged' directly relates to the beta angle since the station is operating in the edge-on attitude. The maximum charge rate occurs when the beta angle is at its maximum because time in the sun and projected area of the station are, too, at their maximums For the maximum charge of 2000 G.J with a maximum beta angle of 52 degrees, approximately 3 hours (2 orbital revolutions) are required to reach the full charge, while about 16 hours (10.3 revolutions) are required when the beta angle is 10 degrees. Overall, the LEO station concept appears to be a viable candidate fo1 the formidable power-beaming infrastructure needed to boost MWLC into low earth orbit.
NASA Astrophysics Data System (ADS)
Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Wang, Kai; Chen, Huibing; Hou, Xun
2018-03-01
The effects of the tilted angle of facets on the diffraction orders, diffraction spectra, dispersion power, and the neighbor channel crosstalk of successive etching strips based Bragg concave diffraction grating (Bragg-CDG) are studied in this paper. The electric field distribution and diffraction spectra of four Bragg-CDGs with different tilted angles are calculated by numerical simulations. With the reflection condition of Bragg facets constant, the blazing order cannot change with the titled angle. As the tilted angle increases, the number of diffraction orders of Bragg-CDG will decrease, thereby concentrating more energy on the blazing order and improving the uniformity of diffraction spectra. In addition, the dispersion power of Bragg-CDG can be improved and the neighbor channel crosstalk of devices can be reduced by increasing the tilted angle. This work is beneficial to optimize the performance of Bragg-CDG.
Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection
NASA Astrophysics Data System (ADS)
Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel
1991-04-01
Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.
Experimental study of separator effect and shift angle on crossflow wind turbine performance
NASA Astrophysics Data System (ADS)
Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
Kam, Jason P; Zepeda, Emily M; Ding, Leona; Wen, Joanne C
2017-01-01
To investigate the power use and complication frequency of resident-performed laser peripheral iridotomy (LPI). A retrospective analysis of 196 eyes from 103 patients who underwent neodymium: yttrium-aluminum-garnet laser iridotomy performed by resident physicians from January 1, 2010 through April 30, 2015 at a university-based county hospital was done. All patients were treated for primary angle closure, primary angle closure suspects, and primary angle closure glaucoma. Data were collected on pre- and post-laser intraocular pressure (IOP), ethnicity, laser parameters and complications. Mean power use and frequency of complications were evaluated. Complications included elevated post-laser IOP at 30-45 minutes (≥8 mmHg), hyphema, aborted procedures, and lasering non-iris structures. The number of repeated LPI procedures, was also recorded. Mean total power used for all residents was 78.2±68.7 mJ per eye. Power use by first-year trainees was significantly higher than second- and third-year trainees (103.5±75.5 mJ versus 73.7±73.8 mJ and 67.2±56.4 mJ, respectively, p =0.011). Complications included hyphema or microhyphema in 17.9% (35/196), IOP spikes in 5.1% (10/196), aborted procedures in 1.1% (3/196) and lasering non-iris structures in 0.5% (1/196). LPI was repeated in 22.4% of cases (44/196) with higher incidence of repeat LPI among non-Caucasian compared to the Caucasian subjects ( p =0.02). Complication rates did not differ with increased training ( p =0.16). Total power used for LPI decreased with increased resident training, while the complication rate did not differ significantly among resident classes. Complication rates were comparable to rates reported in the literature for attending-performed LPIs.
50 kHz bottom backscattering measurements from two types of artificially roughened sandy bottoms
NASA Astrophysics Data System (ADS)
Son, Su-Uk; Cho, Sungho; Choi, Jee Woong
2016-07-01
Laboratory measurements of 50 kHz bottom backscattering strengths as a function of grazing angle were performed on the sandy bottom of a water tank; two types of bottom roughnesses, a relatively smooth interface and a rough interface, were created on the bottom surface. The roughness profiles of the two interface types were measured directly using an ultrasound arrival time difference of 5 MHz and then were Fourier transformed to obtain the roughness power spectra. The measured backscattering strengths increased from -29 to 0 dB with increasing grazing angle from 35 to 86°, which were compared to theoretical backscattering model predictions. The comparison results implied that bottom roughness is a key factor in accurately predicting bottom scattering for a sandy bottom.
Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet
NASA Astrophysics Data System (ADS)
Putra Adnan, F.; Hartono, Firman
2018-04-01
In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Nodal weighting factor method for ex-core fast neutron fluence evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, R. T.
The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjointmore » flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)« less
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
One leg lateral jumps - a new test for team players evaluation.
Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E
2013-10-01
We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".
NASA Astrophysics Data System (ADS)
Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.
2013-05-01
In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.
Power System Observation by using Synchronized Phasor Measurements as a Smart Device
NASA Astrophysics Data System (ADS)
Mitani, Yasunori
Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.
Design, optimization, and analysis of a self-deploying PV tent array
NASA Astrophysics Data System (ADS)
Collozza, Anthony J.
1991-06-01
A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.
Melese, Ephrem; Peterson, Jeffrey R.; Feldman, Robert M.; Baker, Laura A.; Bell, Nicholas P.; Chuang, Alice Z.
2016-01-01
Purpose To evaluate the changes in anterior chamber angle (ACA) parameters in primary angle closure (PAC) spectrum eyes before and after cataract extraction (CE) and compare to the changes after laser peripheral iridotomy (LPI) using anterior segment optical coherence tomography (ASOCT). Methods Twenty-eight PAC spectrum eyes of 18 participants who underwent CE and 34 PAC spectrum eyes of 21 participants who underwent LPI were included. ASOCT images with 3-dimensional mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after CE or LPI. Mixed-effect model analysis was used to 1) compare best-corrected visual acuity, intraocular pressure, and ACA parameters before and after CE; 2) identify and estimate the effects of potential contributing factors affecting changes in ACA parameters; and 3) compare CE and LPI treatment groups. Results The increase in average angle parameters (TISA750 and TICV750) was significantly greater after CE than LPI. TICV750 increased by 102% (2.114 [±1.203] μL) after LPI and by 174% (4.546 [± 1.582] μL) after CE (P < 0.001). Change of TICV750 in the CE group was significantly affected by age (P = 0.002), race (P = 0.006), and intraocular lens power (P = 0.037). Conclusions CE results in greater anatomic changes in the ACA than LPI in PAC spectrum eyes. ASOCT may be used to follow anatomic changes in the angle after intervention. PMID:27606482
Large-angle cosmic microwave background anisotropies in an open universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.
1994-01-01
If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.
High-Power, Widely-Tunable Cr2+:ZnSe Master Oscillator Power Amplifier Systems
2010-05-01
Z-cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the gain element. However, it should be noted that the...crystal at Brewster’s angle carries with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an...respect to physical properties [13, 14]. Power scaling of chromium lasers has long been hampered by the problem of thermal lensing due to the high thermo
General analysis of slab lasers using geometrical optics.
Chung, Te-yuan; Bass, Michael
2007-02-01
A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.
NASA Astrophysics Data System (ADS)
Paramasivan, K.; Das, Sandip; Marimuthu, Sundar; Misra, Dipten
2018-06-01
The aim of this experimental study is to identify and characterize the response related to the effects of process parameters in terms of bending angle for micro-bending of AISI 304 sheet using a low power Nd:YVO4 laser source. Numerical simulation is also carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The developed numerical simulation indicates that bending is caused by temperature gradient mechanism in the present investigation involving laser micro-bending. The results of experiment indicate that bending angle increases with laser power, number of irradiations, and decreases with increase in scanning speed. Moreover, average bending angle increases with number of laser passes and edge effect, defined in terms of relative variation of bending angle (RBAV), decreases monotonically with the number of laser scans. The substrate is damaged over a width of about 80 μm due to the high temperatures experienced during laser forming at a low scanning speed.
High angle-of-attack aerodynamics of a strake-canard-wing V/STOL fighter configuration
NASA Technical Reports Server (NTRS)
Durston, D. A.; Schreiner, J. A.
1983-01-01
High angle-of-attack aerodynamic data are analyzed for a strake-canard-wing V/STOL fighter configuration. The configuration represents a twin-engine supersonic V/STOL fighter aircraft which uses four longitudinal thrust-augmenting ejectors to provide vertical lift. The data were obtained in tests of a 9.39 percent scale model of the configuration in the NASA Ames 12-Foot Pressure Wind Tunnel, at a Mach number of 0.2. Trimmed aerodynamic characteristics, longitudinal control power, longitudinal and lateral/directional stability, and effects of alternate strake and canard configurations are analyzed. The configuration could not be trimmed (power-off) above 12 deg angle of attack because of the limited pitch control power and the high degree of longitudinal instability (28 percent) at this Mach number. Aerodynamic center location was found to be controllable by varying strake size and canard location without significantly affecting lift and drag. These configuration variations had relatively little effect on the lateral/directional stability up to 10 deg angle of attack.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Wostyn, Peter; Killer, Hanspeter Esriel; De Deyn, Peter Paul
2017-07-01
The underlying pathophysiology of primary open-angle glaucoma remains unclear, but the lamina cribrosa seems to be the primary site of injury, and raised intraocular pressure is a major risk factor. In recent years, a decreased intracranial pressure, leading to an abnormally high trans-lamina cribrosa pressure difference, has gained interest as a new risk factor for glaucoma. New research now lends support to the hypothesis that a paravascular transport system is present in the eye analogous to the recently discovered 'glymphatic system' in the brain, which is a functional waste clearance pathway that promotes elimination of interstitial solutes, including β-amyloid, from the brain along paravascular channels. Given that β-amyloid has been reported to increase by chronic elevation of intraocular pressure in glaucomatous animal models and to cause retinal ganglion cell death, the discovery of a paravascular clearance system in the eye may provide powerful new insights into the pathophysiology of primary open-angle glaucoma. In this review, we provide a new conceptual framework for understanding the pathogenesis of primary open-angle glaucoma, present supporting preliminary data from our own post-mortem study and hypothesize that the disease may result from restriction of normal glymphatic flow at the level of the lamina cribrosa owing to a low intracranial pressure and/or a high trans-lamina cribrosa pressure gradient. If confirmed, this viewpoint could offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Head loss coefficient through sharp-edged orifices
NASA Astrophysics Data System (ADS)
Adam, Nicolas J.; De Cesare, Giovanni; Schleiss, Anton J.; Richard, Sylvain; Muench-Alligné, Cécile
2016-11-01
Nowadays, high-head power plants could increase their installed power capacity for many reasons, e.g. dam heightening, increase of their peak power capacity or refurbishment with new turbines. Frequently, due to several considerations, e.g. topographical or economical limitations, the existing surge tank cannot be extended to keep previous safety levels and efficiency. A valuable way to adapt these surge tanks is to place a throttle at their entrance like, for example, an orifice. The main effect of this adaptation is the introduction of head losses that reduce the extreme levels in the surge tank due to the mass oscillations resulting from a closure or opening of downstream discharge control. This research studies the influence of the edge angle of a ASME-standard orifice on the head losses. This angle introduces an asymmetrical behavior and influences head losses. Different angles are tested from 0° to the 67° (biggest angle possible for this configuration). The first step of this study is to determine experimentally the steady losses produced by orifice for several discharges. In the second step, a numerical model on ANSYS CFX is performed. Combining the two approaches, it is possible to understand and quantify the effect of the edge angle.
NASA Astrophysics Data System (ADS)
Prasetyo, Ari; Kristiawan, Budi; Danardono, Dominicus; Hadi, Syamsul
2018-03-01
Savonius turbine is one type of turbines with simple design and low manufacture. However, this turbine has a relatively low efficiency. This condition can be solved by installing fluid deflectors in the system’s circuit. The deflector is used to direct the focus of the water flow, thus increasing the torque working moment. In this study, a single stage horizontal axis Savonius water turbine was installed on a 3 inch diameter pipeline. This experiment aims to obtain optimal deflector angle design on each water discharge level. The deflector performance is analyzed through power output, TSR, and power coefficient generated by the turbine. The deflector angles tested are without deflector, 20°, 30°, 40°, and 50° with a deflector ratio of 50%. The experimental results at 10.67x10-3m3/s discharge show that turbine equipped with 30° deflector has the most optimal performance of 18.04 Watt power output, TSR of 1.12 and power coefficient 0.127. While with the same discharge, turbine without deflector produces only 9.77 Watt power output, TSR of 0.93, and power coefficient of 0.09. Thus, it can be concluded that the deflector increases power output equal to 85%.
Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study
NASA Astrophysics Data System (ADS)
Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.
2018-05-01
In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.
Effects of cruise engine location and power on interference
NASA Technical Reports Server (NTRS)
Bradley, D.
1972-01-01
Data are presented, in plotted form, of tests for determining the interference effects of space shuttle booster cruise engine location for power-on and power-off conditions. The tests were conducted in a 7 x 10 foot transonic wind tunnel; the model was a 0.015-scale space shuttle booster specially equipped for propulsion effects testing. Data were obtained over a Mach number range of 0.4 to 1.13 at angles of attack from -4 deg to 20 deg at zero degrees sideslip and at angles of sideslip from -6 deg to +6 deg at constant angles of attack of 0 deg, 6 deg, 15 deg, and in some cases 10 deg. Additional parameters investigated were: elevon deflection, canard deflection, aileron deflection, rudder deflection, canard position, and mass flow rate.
NASA Astrophysics Data System (ADS)
Melia, F.; López-Corredoira, M.
2018-03-01
Aim. The lack of large-angle correlations in the fluctuations of the cosmic microwave background (CMB) conflicts with predictions of slow-roll inflation. But while probabilities (≲0.24%) for the missing correlations disfavour the conventional picture at ≳3σ, factors not associated with the model itself may be contributing to the tension. Here we aim to show that the absence of large-angle correlations is best explained with the introduction of a non-zero minimum wave number kmin for the fluctuation power spectrum P(k). Methods: We assumed that quantum fluctuations were generated in the early Universe with a well-defined power spectrum P(k), although with a cut-off kmin ≠ 0. We then re-calculated the angular correlation function of the CMB and compared it with Planck observations. Results: The Planck 2013 data rule out a zero kmin at a confidence level exceeding 8σ. Whereas purely slow-roll inflation would have stretched all fluctuations beyond the horizon, producing a P(k) with kmin = 0 - and therefore strong correlations at all angles - a kmin ≠ 0 would signal the presence of a maximum wavelength at the time (tdec) of decoupling. This argues against the basic inflationary paradigm, and perhaps even suggests non-inflationary alternatives, for the origin and growth of perturbations in the early Universe. In at least one competing cosmology, the Rh = ct universe, the inferred kmin corresponds to the gravitational radius at tdec.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
NASA Astrophysics Data System (ADS)
Li, Jian; Wei, Yuan; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wu, Zhuolin
2017-05-01
Moisture is a significant factor that affects the insulation performance of outdoor high-voltage insulators in power systems. Accumulation of water droplets on insulators causes severe problems such as flashover of insulators and power outage. In this study, we develop a method to fabricate a micro/nano hierarchical super hydrophobic surface. The as-prepared super hydrophobic surface exhibits a water contact angle (WCA) of 160.4 ± 2°, slide angle (SA) less than 1° and surface free energy (SFE) of 5.99 mJ/m2. We investigated the electrohydropdynamic behavior of water droplet on a horizontal super hydrophobic surface compared with hydrophobic RTV silicone rubber surface which was widely used as anti-pollution coating or shed material of composite insulator. Results show that water droplet tended to a self-propelled motion on the super hydrophobic surface while it tended to elongate and break up on the RTV surface. The micro/nano hierarchical surface structure and chemical components with low surface free energy of the super hydrophobic surface jointly contributed to the reduction of skin fraction drag and subsequently made it possible for the motion of water droplet driven by electric field. Furthermore, the self-propelled motion of water droplets could also sweep away contaminations along its moving trace, which provides super hydrophobic surface a promising anti-pollution prospect in power systems.
The application of geostationary propagation models to non-geostationary propagation measurements
NASA Astrophysics Data System (ADS)
Haddock, Paul Christopher
Atmospheric attenuation becomes evident above 10 GHz due to the absorption of microwave energy from the molecular motion of the atmospheric constituents. Atmospheric effects on satellite communications systems operating at frequencies greater than 10 GHz become more pronounced. Most geostationary (GEO) climate models, which predict the fading statistics for earth-space telecommunications, have satellite elevation angle as one of the input parameters. There has been an interest in the industry to apply the propagation models developed for the GEO satellites to the non-geostationary (NGO) satellite case. With the NGO satellites, the elevation angle to the satellite is time-variable, and as a result the earth-space propagation medium is time varying. We can calculate the expected probability that a satellite, in a given orbit, will be found at a given elevation angle as a percentage of the year based on the satellite orbital elements, the minimum elevation angle allowed in the constellation operation plan, and the constellation configuration. From this calculation, we can develop an empirical fit to a given probability density function (PDF) to account for the distribution of elevation angles. This PDF serves as a weighting function for the elevation input into the GEO climate model to produce the overall fading statistics for the NGO case. In this research, a Ka-band total power radiometer was developed to measure the down-dwelling incoherent radiant electromagnetic energy from the atmosphere. This whole sky sampling radiometer collected 1 year of radiometric measurements. These observations occurred at varying elevation and azimuthal angles, in close proximity to a weak water vapor absorption line. By referencing the output power of the radiometer to known radiometric emissions and by performing frequent internal calibrations, the developed radiometer provided long term highly accurate and stable low-level derived attenuation measurements. By correlating the 1 year of atmospheric measurements to the modified GEO climate model, the hypothesis is tested. That by application of the proper elevation weighting factors, the GEO model is applicable to the NGO case, where the time-varying angle changes are occurring on a short-time period. Finally, we look at the joint statistics of multiple link failures. Using the 1 year of observed attenuations for multiple sky sections, we show that for a given sky section what the probability is that its attenuation level will be equaled or exceeded for each of the remaining sky sections.
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Zeng, Jianying; Ogera, Patricia; Benardete, Ethan A; Nicastri, Anthony D; Rao, Chandrakant
2012-08-15
Cellular solitary fibrous tumor is currently considered a synonym for hemangiopericytoma, as it became increasingly clear that the morphological and immunohistochemical features that separate these two entities have become tenuous, and evidence for a unifying concept has emerged. Furthermore, as no evidence of pericytic differentiation is given in most cases of hemangiopericytoma, this diagnostic term is waning in popularity. We present here a case of cellular solitary fibrous tumor in a 22-year-old man. Neuroimaging revealed a right cerebellopontine angle tumor. Most of the tumor was cellular although some less cellular areas were seen. Sinusoidally dilated large vessels, including staghorn type, were seen. Nuclear pleomorphism and increased mitotic activity (5 mitosis/10 high power field) were regarded as evidence of anaplasia. Diffuse CD34 immunoreactivity and focal positivity for Factor XIIIa were seen in the tumor, which was negative for EMA and S100. The tumor also displayed rich reticulin network. Solitary fibrous tumor at cerebellopontine angle is rare, and 20 such cases (five reported as hemangiopericytoma) have been reported in the English literature. Copyright © 2012 Elsevier GmbH. All rights reserved.
He, Xing; Li, Hua; Shao, Yan; Shi, Bing
2015-01-01
The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.
Human responses to upright tilt: a window on central autonomic integration
NASA Technical Reports Server (NTRS)
Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.
1999-01-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
Human responses to upright tilt: a window on central autonomic integration.
Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L
1999-06-01
1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low-frequency cardiovascular rhythms, is modulated by the level of arterial baroreceptor input. Tilt reduces respiratory gating of sympathetic and vagal motoneurone responsiveness to stimulatory inputs for different reasons; during tilt, sympathetic stimulation increases to a level that overwhelms the respiratory gate, and vagal stimulation decreases to a level below that necessary for maximal respiratory gating to occur.
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2015-01-01
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539
Investigation of Blade Angle of an Open Cross-Flow Runner
NASA Astrophysics Data System (ADS)
Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi
2015-04-01
The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.
NASA Astrophysics Data System (ADS)
Bhoomeeswaran, H.; Vivek, T.; Sabareesan, P.
2018-04-01
In this article, we have theoretically devised a Spin Torque Nano Oscillator (STNO) with perpendicular polarizer using macro spin model. The devised spin valve structure is heterogeneous (i.e.) it is made of two different ferromagnetic materials [Co and its alloy CoFeB]. The dynamics of magnetization provoked by spin transfer torque is studied numerically by solving the famous Landau-Lifshitz-Gilbert-Slonczewski [LLGS] equation. The results are obtained for the perpendicular polarizer and for that particular out of plane orientation we vary the free layer angle from 10° to 90°. The obtained results are highly appealing, because frequency range is available in all the tilt angles of free layer and it is exceptionally tunable in all free layer tilt angles with zero applied field. Moreover, the utmost operating frequency of about 83.3 GHz and its corresponding power of 4.488 µW/mA2/GHz is acquired for the free layer tilt angle θ = 90° with the solid applied current density of 10 × 1010 A/m2. Also, our device emits high quality factor of about 396, which is remarkably desirable for making devices. These pioneering results provides a significant development for future spintronic based devices.
NASA Astrophysics Data System (ADS)
Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.
2015-02-01
Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.
Effect of stern hull shape on turning circle of ships
NASA Astrophysics Data System (ADS)
Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman
2012-06-01
Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.
Impact of high power and angle of incidence on prism corrections for visual field loss.
Jung, Jae-Hyun; Peli, Eli
2014-01-17
Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.
Impact of high power and angle of incidence on prism corrections for visual field loss
Jung, Jae-Hyun; Peli, Eli
2014-01-01
Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice. PMID:24497649
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao
2013-08-01
Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.
In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less
NASA Technical Reports Server (NTRS)
Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank
1987-01-01
An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.
The Zeldovich approximation and wide-angle redshift-space distortions
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.
Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers
NASA Astrophysics Data System (ADS)
Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han
2013-03-01
This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.
An approach for estimating acoustic power in a pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Jiang, Xiao; Qiu, Limin; Duan, Chaoxiang; You, Xiaokuan; Zhi, Xiaoqin
2017-10-01
Acoustic power at the cold end of regenerator is the measure of gross cooling capacity for a pulse tube cryocooler (PTC), which cannot be measured directly. Conventionally, the acoustic power can only be derived from the measurement of velocity, pressure and their phase angle, which is still a challenge for an oscillating flow at cryogenic temperatures. A new method is proposed for estimating the acoustic power, which takes use of the easily measurable parameters, such as the pressure and temperature, instead of the velocity and phase angle between the pressure and velocity at cryogenic temperatures. The ratio of acoustic powers at the both ends of isothermal components, like regenerator, heat exchangers, can be conveniently evaluated by using the ratio of pressure amplitudes and the local temperatures. The ratio of acoustic powers at the both ends of adiabatic components, like transfer line and pulse tube, is obtained by using the ratio of pressure amplitudes. Accuracy of the approach for evaluating the acoustic power for the regenerator is analyzed by comparing the results with those from REGEN 3.3 and references. For the cold end temperature range of 40-80 K, the deviation is less than 5% if the phase angle at the cold end of regenerator is around -30°. The simple method benefits estimating the acoustic power and optimizing the PTC performance without interfering the cryogenic flow field.
Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S
2015-10-01
This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
CMB-lensing beyond the Born approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozzi, Giovanni; Fanizza, Giuseppe; Durrer, Ruth
2016-09-01
We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles ℓ ∼< 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussianmore » nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.« less
Usherwood, James R
2009-03-01
Predictions from aerodynamic theory often match biological observations very poorly. Many insects and several bird species habitually hover, frequently flying at low advance ratios. Taking helicopter-based aerodynamic theory, wings functioning predominantly for hovering, even for quite small insects, should operate at low angles of attack. However, insect wings operate at very high angles of attack during hovering; reduction in angle of attack should result in considerable energetic savings. Here, I consider the possibility that selection of kinematics is constrained from being aerodynamically optimal due to the inertial power requirements of flapping. Potential increases in aerodynamic efficiency with lower angles of attack during hovering may be outweighed by increases in inertial power due to the associated increases in flapping frequency. For simple hovering, traditional rotary-winged helicopter-like micro air vehicles would be more efficient than their flapping biomimetic counterparts. However, flapping may confer advantages in terms of top speed and manoeuvrability. If flapping-winged micro air vehicles are required to hover or loiter more efficiently, dragonflies and mayflies suggest biomimetic solutions.
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2009-11-01
The simple map is the simplest map that has topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007)]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)]. Action-angle coordinates for simple map cannot be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories cannot cross separatrix [op cit]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to the low mn magnetic perturbation with mode numbers m=1, and n=±1. The width of stochastic layer near the X-point scales as 0.63 power of the amplitude δ of low mn perturbation, toroidal flux loss scales as 1.16 power of δ, and poloidal flux loss scales as 1.26 power of δ. Scaling of width deviates from Boozer-Rechester scaling by 26% [A. Boozer, and A. Rechester, Phys. Fluids 21, 682 (1978)]. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars
NASA Astrophysics Data System (ADS)
Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.
2015-03-01
In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves for 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction. Appendices are available in electronic form at http://www.aanda.org
Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars
Pierbattista, M.; Harding, A. K.; Grenier, I. A.; ...
2015-02-10
In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves formore » 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. Furthermore, the relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.« less
Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars
NASA Technical Reports Server (NTRS)
Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.
2015-01-01
In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between gamma-ray luminosity and spin-down power is consistent with a square root dependence. The gamma-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.
1990-01-01
An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).
Spatial durbin error model for human development index in Province of Central Java.
NASA Astrophysics Data System (ADS)
Septiawan, A. R.; Handajani, S. S.; Martini, T. S.
2018-05-01
The Human Development Index (HDI) is an indicator used to measure success in building the quality of human life, explaining how people access development outcomes when earning income, health and education. Every year HDI in Central Java has improved to a better direction. In 2016, HDI in Central Java was 69.98 %, an increase of 0.49 % over the previous year. The objective of this study was to apply the spatial Durbin error model using angle weights queen contiguity to measure HDI in Central Java Province. Spatial Durbin error model is used because the model overcomes the spatial effect of errors and the effects of spatial depedency on the independent variable. Factors there use is life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity. Based on the result of research, we get spatial Durbin error model for HDI in Central Java with influencing factors are life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity.
Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning
NASA Astrophysics Data System (ADS)
Aguilera, Jesus; Wright, John D.; Bean, Vern E.
2008-01-01
We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawolle, M.; Koerstgens, V.; Ruderer, M. A.
2012-10-15
Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less
NASA Technical Reports Server (NTRS)
Corrigan, Robert D.; Ensworth, Clinton B. F., III; Miller, Dean R.
1987-01-01
Tests were conducted on the DOE/NASA mod-0 horizontal axis wind turbine to compare and evaluate the performance and the power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor. The two aileron-controlled rotor configurations used 20 and 38 percent chord ailerons, while the tip-controlled rotor had a pitchable blade tip. The ability of the control surfaces to regulate power was determined by measuring the change in power caused by an incremental change in the deflection angle of the control surface. The data shows that the change in power per degree of deflection angle for the tip-controlled rotor was four times the corresponding value for the 2- percent chord ailerons. The root mean square power deviation about a power setpoint was highest for the 20 percent chord aileron, and lowest for the 38 percent chord aileron.
Stopping power for 4.8-6.8 MeV C ions along [1 1 0] and [1 1 1] directions in Si
NASA Astrophysics Data System (ADS)
Yoneda, Tomoaki; Horikawa, Junsei; Saijo, Satoshi; Arakawa, Masakazu; Yamamoto, Yukio; Yamamoto, Yasukazu
2018-06-01
The stopping power for C ions with energies in the range of 4.8-6.8 MeV were investigated in a SIMOX (Separation by IMplanted OXygen into silicon) structure of Si(1 0 0)/SiO2/Si(1 0 0). Backscattering spectra were measured for random and channeling incidence along the [1 1 0] and [1 1 1] axes. The scattering angle was set to 90° to avoid an excessive decrease of the kinematic factor. The ratios of [1 1 0] and [1 1 1] channeling to the random stopping power were determined to be around 0.65 and 0.77 for 4.8-6.8 MeV ions, respectively. The validity of the impact parameter dependent stopping power calculated using Grande and Schiwietz's CasP (convolution approximation for swift particles) code was confirmed. The C ion trajectories and flux distributions in crystalline silicon were calculated by Monte Carlo simulation. The stopping power calculated with the CasP code is almost in agreement with the experimental results within the accuracy of measurement.
Photovoltaic array for Martian surface power
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Landis, G. A.
1992-01-01
Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.
Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate
NASA Astrophysics Data System (ADS)
Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao
2007-07-01
Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.
Radiation from long pulse train electron beams in space plasmas
NASA Technical Reports Server (NTRS)
Harker, K. J.; Banks, P. M.
1985-01-01
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Kapitonov, A. A.
2017-10-01
It is known that many of today’s ships and vessels have a shaft generator as a part of their power plants. Modern automatic control systems used in the world’s fleet do not enable their shaft generators to operate in parallel with the main diesel generators for long-term sustenance of the total load of the ship network. On the other hand, according to our calculations and experiments, a shaft generator operated in parallel with the main power plant helps save at least 10% of fuel while making the power system of the ship more efficient, reliable, and eco-friendly. The fouling and corrosion of the propeller as well as the weather conditions of navigation affect its modulus of resistance. It changes the free component of the transient process of shaft generator stress frequency changes in transient processes. While the shaft generator and the diesel generator of the ship power plant are paralleled, there emerges an angle between their EMF. This results in equalizing currents generated between them. The altering torque in the drive-shaft line—propeller system causes torsional fluctuations of the ship shaft line. To compensate for the effect of destabilizing factors and torsional fluctuations of the shaft line on the dynamic characteristics of the transient process that alters the RPM of the main engine, sliding mode controls can be used. To synthesize such a control, one has to evaluate the effect of destabilizing factors.
NASA Astrophysics Data System (ADS)
Kumar, Gautam; Maji, Kuntal
2018-04-01
This article deals with the prediction of strain-and stress-based forming limit curves for advanced high strength steel DP590 sheet using Marciniak-Kuczynski (M-K) method. Three yield criteria namely Von-Mises, Hill's 48 and Yld2000-2d and two hardening laws i.e., Hollomon power and Swift hardening laws were considered to predict the forming limit curves (FLCs) for DP590 steel sheet. The effects of imperfection factor and initial groove angle on prediction of FLC were also investigated. It was observed that the FLCs shifted upward with the increase of imperfection factor value. The initial groove angle was found to have significant effects on limit strains in the left side of FLC, and insignificant effect for the right side of FLC for certain range of strain paths. The limit strains were calculated at zero groove angle for the right side of FLC, and a critical groove angle was used for the left side of FLC. The numerically predicted FLCs considering the different combinations of yield criteria and hardening laws were compared with the published experimental results of FLCs for DP590 steel sheet. The FLC predicted using the combination of Yld2000-2d yield criterion and swift hardening law was in better coorelation with the experimental data. Stress based forming limit curves (SFLCs) were also calculated from the limiting strain values obtained by M-K model. Theoretically predicted SFLCs were compared with that obtained from the experimental forming limit strains. Stress based forming limit curves were seen to better represent the forming limits of DP590 steel sheet compared to that by strain-based forming limit curves.
Passive rejection of heat from an isotope heat source through an open door
NASA Technical Reports Server (NTRS)
Burns, R. K.
1971-01-01
The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.
Optimizing a tandem disk model
NASA Astrophysics Data System (ADS)
Healey, J. V.
1983-08-01
The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.
Non-periodic high-index contrast gratings reflector with large-angle beam forming ability
NASA Astrophysics Data System (ADS)
Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min
2016-05-01
A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.
The role of nonlinear effects in the propagation of noise from high-power jet aircraft.
Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A
2008-06-01
To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft.
Hypersonic Inlet for a Laser Powered Propulsion System
NASA Astrophysics Data System (ADS)
Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave
2011-11-01
Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.
NASA Technical Reports Server (NTRS)
Trimmer, L. L.; Love, D. A.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.; Rampy, J. M.
1972-01-01
Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration.
Design and analysis of solar thermoelectric power generation system
NASA Astrophysics Data System (ADS)
Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel
2005-09-01
This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.
Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station
NASA Technical Reports Server (NTRS)
Bendrick, Gregg A.; Kamine, Tovy Haber
2008-01-01
Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.
Test technology on divergence angle of laser range finder based on CCD imaging fusion
NASA Astrophysics Data System (ADS)
Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao
2016-09-01
Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Hines, D. E.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Jensen, J.; Lee, S.; Fandry, C.
1999-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the 36 GHz (8.3 mm) NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 deg roll attitude, interrogating off-nadir incidence angles from -15 deg through nadir to +29 deg. The aircraft turned azimuthally through 810 deg in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 m to 65 m). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. A unique feature of this experiment was the use of a nadir-directed low-gain horn antenna (35 deg beamwidth) to acquire azimuthally integrated backscattered power data versus incidence angle before and after the turn data.
In-flight measurement of propeller noise on the fuselage of an airplane
NASA Technical Reports Server (NTRS)
Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.
1989-01-01
In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.
Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine
NASA Technical Reports Server (NTRS)
Earle, Sherod L; Dutee, Francis J
1937-01-01
An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.
Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis
NASA Technical Reports Server (NTRS)
Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.
2004-01-01
Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
NASA Technical Reports Server (NTRS)
Martin, Ken E.; Esztergalyos, J.
1992-01-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
NASA Astrophysics Data System (ADS)
Martin, Ken E.; Esztergalyos, J.
1992-07-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
NASA Technical Reports Server (NTRS)
Wing, David J.
1998-01-01
The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.
Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers
2010-07-19
commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference
[Analysis of influencing factors of snow hyperspectral polarized reflections].
Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin
2010-02-01
Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.
Temperature field simulation on Ti6Al4V and Inconel718 heated by continuous infrared laser
NASA Astrophysics Data System (ADS)
Wang, Yanshen; Zhang, Zheng; Feng, Weiwei; Wang, Bo; Gai, Yuxian
2014-08-01
Laser assisted machining technology can heat and soften metals, which can be used for improving the machinability of superalloys such as Ti6Al4V and Inconel718. Researches on temperature field simulation of Ti6Al4V and Inconel718 are conducted in this paper. A thermal differential equation is established based on Fourier's law and energy conservation law. Then, a model using ABAQUS for simulating heat transfer process is brought out, which is then experimentally validated. Using the simulation model, detailed investigations on temperature field simulation are carried out in Ti6Al4V and Inconel718. According to simulation, surface temperature of the two superalloys eventually reaches their peak values, and the peak temperature of Ti6Al4V is much higher than that of Inconel718. To further investigate temperature heated by laser, laser parameters such as power, scanning velocity, laser spot radius and inclination angle are set to be variables separately for simulation. Simulation results show that laser power and laser spot radius are predominant factors in heating process compared with the influence of scanning velocity and inclination angle. Simulations in this paper provide valuable references for parameter optimization in the following laser heating experiments, which plays an important role in laser assisted machining.
Gong, Xuepeng; Lu, Qipeng
2015-01-01
A new monochromator is designed to develop a high performance soft X-ray microscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF). But owing to its high resolving power and high accurate spectrum output, there exist many technical difficulties. In the paper presented, as two primary design targets for the monochromator, theoretical energy resolution and photon flux of the beamline are calculated. For wavelength scanning mechanism, primary factors affecting the rotary angle errors are presented, and the measuring results are 0.15'' and 0.17'' for plane mirror and plane grating, which means that it is possible to provide sufficient scanning precision to specific wavelength. For plane grating switching mechanism, the repeatabilities of roll, yaw and pitch angles are 0.08'', 0.12'' and 0.05'', which can guarantee the high accurate switch of the plane grating effectively. After debugging, the repeatability of light spot drift reaches to 0.7'', which further improves the performance of the monochromator. The commissioning results show that the energy resolving power is higher than 10000 at Ar L-edge, the photon flux is higher than 1 × 108 photons/sec/200 mA, and the spatial resolution is better than 30 nm, demonstrating that the monochromator performs very well and reaches theoretical predictions.
Goldberg, Kenneth A; Yashchuk, Valeriy V
2016-05-01
For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.
Carty, Christopher P; Cronin, Neil J; Lichtwark, Glen A; Mills, Peter M; Barrett, Rod S
2012-12-01
Studying recovery responses to loss of balance may help to explain why older adults are susceptible to falls. The purpose of the present study was to assess whether male and female older adults, that use a single or multiple step recovery strategy, differ in the proportion of lower limb strength used and power produced during the stepping phase of balance recovery. Eighty-four community-dwelling older adults (47 men, 37 women) participated in the study. Isometric strength of the ankle, knee and hip joint flexors and extensors was assessed using a dynamometer. Loss of balance was induced by releasing participants from a static forward lean (4 trials at each of 3 forward lean angles). Participants were instructed to recover with a single step and were subsequently classified as using a single or multiple step recovery strategy for each trial. (1) Females were weaker than males and the proportion of females that were able to recover with a single step were lower than for males at each lean magnitude. (2) Multiple compared to single steppers used a significantly higher proportion of their hip extension strength and produced less knee and ankle joint peak power during stepping, at the intermediate lean angle. Strength deficits in female compared to male participants may explain why a lower proportion of female participants were able to recover with a single step. The inability to generate sufficient power in the stepping limb appears to be a limiting factor in single step recovery from forward loss of balance. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Hall, Emma; Bishop, Daniel C.; Gee, Thomas I.
2016-01-01
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors. PMID:26859381
Hall, Emma; Bishop, Daniel C; Gee, Thomas I
2016-01-01
This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors.
NASA Astrophysics Data System (ADS)
Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.
2016-03-01
Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.
Effect of twist on single-mode fiber-optic 3 × 3 couplers
NASA Astrophysics Data System (ADS)
Chen, Dandan; Ji, Minning; Peng, Lei
2018-01-01
In the fabricating process of a 3 × 3 fused tapered coupler, the three fibers are usually twisted to be close-contact. The effect of twist on 3 × 3 fused tapered couplers is investigated in this paper. It is found that though a linear 3 × 3 coupler may realize equal power splitting ratio theoretically by twisting a special angle, it is hard to be fabricated actually because the twist angle and the coupler's length must be determined in advance. While an equilateral 3 × 3 coupler can not only realize approximate equal power splitting ratio theoretically but can also be fabricated just by controlling the elongation length. The effect of twist on the equilateral 3 × 3 coupler lies in the relationship between the equal ratio error and the twist angle. The more the twist angle is, the larger the equal ratio error may be. The twist angle usually should be no larger than 90° on one coupling period length in order to keep the equal ratio error small enough. The simulation results agree well with the experimental data.
NASA Technical Reports Server (NTRS)
Whipple, R. D.; Ricket, J. L.
1986-01-01
A 1/8-scale model of the X-29A airplane was tested in the Ames 12-Foot Pressure Wind Tunnel at a Mach number of 0.20 and Reynolds numbers of 0.13 x 10 to the 6th power to 2.00 x 10 to the 6th power based on a fuselage forebody depth of 0.4 ft, For the test series presented herein, the angle of attack ranged from 40 deg. to 90 deg. and the angle of sideslip ranged from -10 deg. to 30 deg. for the erect attitude. Tests with the model inverted covered angles of attack from -40 deg. to -90 deg. and angles of sideslip from -30 deg. to 10 deg. Data were obtained for the basic design and for several forebody strakes. An alternate forebody design was also tested. The results provided information for selection of forebody strakes for compensation of Reynolds number effect on the 1/25-scale free-spinning model tested in the Langley Spin Tunnel.
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emergency lighting and power systems in vessel control and propulsion machinery spaces. (5) Main propulsion...) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle... power failure alarm. (vi) Each remote steering gear power unit failure alarm. (vii) The full movement of...
33 CFR 164.25 - Tests before entering or getting underway.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emergency lighting and power systems in vessel control and propulsion machinery spaces. (5) Main propulsion...) The main steering gear from the alternative power supply, if installed. (iv) Each rudder angle... power failure alarm. (vi) Each remote steering gear power unit failure alarm. (vii) The full movement of...
Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor
2016-06-01
the design study, each solver run was monitored. Plotting the value of the mass flows, as well as the torque on the rotor blades , allowed a simple...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) This study determined the optimum blade stagger angle for a cross-flow fan rotor and evaluated the...parametric study determined optimum blade stagger angle using thrust, power, and thrust-to-power ratio as desired output variables. A MarkForged Mark One 3D
An efficient multiplexing approach for adaptive aircraft communications via a relay satellite.
NASA Technical Reports Server (NTRS)
Devieux, C.; Bisaga, J. J.
1973-01-01
Description of a coherent wide-angle multiplexing approach which is 4 to 8 dB more efficient in the utilization of satellite power as compared to a multicarrier transmission accessing a single TWT amplifier transponder. The wide-angle multiplexing approach achieves this performance by efficiently trading the modulation power improvement against backoff at the satellite earth terminal phase modulator. A simple addition of an amplitude clipper at the modulator input is critical to the proper operation of the system.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1954-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Spectral Factorization and Homogenization Methods for Modeling and Control of Flexible Structures.
1986-12-15
to the computation of hybrid, state-space modeling of an integrated space platform . Throughout this effort we have focused on the potential for...models can provide an effective tool for analysis of dynamics of vibrations and their effect on small angle motions for complex space platforms . In this... WIX 1 v .41(Ac 0 0o4 1 2.. 9 2% - L .0U V)V14IC Ma a * 9L 0 a soe - a a.. x m c 4. i.! 0~~~I W ** PMiscellaneous Routines• Power Series Expansion
Development of adaptive liquid microlenses and microlens arrays
NASA Astrophysics Data System (ADS)
Berry, Shaun R.; Stewart, Jason B.; Thorsen, Todd A.; Guha, Ingrid
2013-03-01
We report on the development of sub-millimeter size adaptive liquid microlenses and microlens arrays using two immiscible liquids to form individual lenses. Microlenses and microlens arrays having aperture diameters as small as 50 microns were fabricated on a planar quartz substrate using patterned hydrophobic/hydrophilic regions. Liquid lenses were formed by a self-assembled oil dosing process that created well-defined lenses having a high fill factor. Variable focus was achieved by controlling the lens curvature through electrowetting. Greater than 70° of contact angle change was achieved with less than 20 volts, which results in a large optical power dynamic range.
2011-05-01
ER D C/ CH L TR -1 1- 3 Flood and Coastal Storm Damage Reduction R& D Program Adaptation of the Levee Erosional Equivalence Method for the...of vertical wall [-] γw Specific weight of water [kN/m3] γβ Reduction factor for influence of angle of wave attack [-] θ Landward-side levee ...stress multiplied by the flow velocity. Thus, from Equation (4) stream power has the form ERDC/CHL TR-11-3 9 S o D D dW P τ u ρ f u u ρ f u dt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay
The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession.more » This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.« less
A review of factors that affect contact angle and implications for flotation practice.
Chau, T T; Bruckard, W J; Koh, P T L; Nguyen, A V
2009-09-30
Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles. Other advanced techniques and measures complementary to contact angle will be essential to establish the link between research and practice in flotation.
Nonlinear time-series-based adaptive control applications
NASA Technical Reports Server (NTRS)
Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.
1991-01-01
A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.
Low-loss VIS/IR-XUV beam splitter for high-power applications.
Pupeza, Ioachim; Fill, Ernst E; Krausz, Ferenc
2011-06-20
We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster's angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1-0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.
Proposals for the implementation of the variants of automatic control of the telescope AZT-2
NASA Astrophysics Data System (ADS)
Shavlovskyi, V. I.; Puha, S. P.; Vidmachenko, A. P.; Volovyk, D. V.; Puha, G. P.; Obolonskyi, V. O.; Kratko, O. O.; Stefurak, M. V.
2018-05-01
Based on the experience of astronomical observations, structural features and results of the review of the technical state of the mechanism of the telescope AZT-2 in the Main Astronomical Observatory of NAS of Ukraine, in 2012 it was decided to carry out works on its modernization. To this end, it was suggested that the telescope control system should consist of angle sensors on the time axis "alpha" and the axis "delta", personal computer (PC), corresponding software, power control unit, and rotation system of telescope. The angle sensor should be absolute, with a resolution of better than 10 angular minutes. The PC should perform the functions of data processing from the angle sensor, and control the power node. The developed software allows the operator to direct the telescope in an automatic mode, and to set the necessary parameters of the system. With using of PC, the power control node will directly control the engine of the rotation system.
Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry
NASA Astrophysics Data System (ADS)
Hansen, M.; Frejsel, A. M.; Kim, J.; Naselsky, P.; Nesti, F.
2011-05-01
The temperature fluctuations of the cosmic microwave background (CMB) are supposed to be distributed randomly in both magnitude and phase, following to the simplest model of inflation. In this paper, we look at the odd and even multipoles of the spherical harmonic decomposition of the CMB, and the different characteristics of these, giving rise to a parity asymmetry. We compare the even and odd multipoles in the CMB power spectrum, and also the even and odd mean angles. We find for the multipoles of the power spectrum that there is power excess in odd multipoles, compared to even ones, meaning that we have a parity asymmetry. Further, for the phases, we present a random walk for the mean angles, and find a significant separation for even/odd mean angles, especially so for galactic coordinates. This is further tested and confirmed with a directional parity test, comparing the parity asymmetry in galactic and ecliptic coordinates.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less
Energy efficient lighting and communications
NASA Astrophysics Data System (ADS)
Zhou, Z.; Kavehrad, M.; Deng, P.
2012-01-01
As Light-Emitting Diode (LED)'s increasingly displace incandescent lighting over the next few years, general applications of Visible Light Communication (VLC) technology are expected to include wireless internet access, vehicle-to-vehicle communications, broadcast from LED signage, and machine-to-machine communications. An objective in this paper is to reveal the influence of system parameters on the power distribution and communication quality, in a general plural sources VLC system. It is demonstrated that sources' Half-Power Angles (HPA), receivers' Field-Of Views (FOV), sources layout and the power distribution among sources are significant impact factors. Based on our findings, we developed a method to adaptively change working status of each LED respectively according to users' locations. The program minimizes total power emitted while simultaneously ensuring sufficient light intensity and communication quality for each user. The paper also compares Orthogonal Frequency-Division Multiplexing (OFDM) and On-Off Keying (OOK) signals performance in indoor optical wireless communications. The simulation is carried out for different locations where different impulse response distortions are experienced. OFDM seems a better choice than prevalent OOK for indoor VLC due to its high resistance to multi-path effect and delay spread. However, the peak-to-average power limitations of the method must be investigated for lighting LEDs.
Experimental Study of the Angle of Repose of Surrogate Martian Dust
NASA Technical Reports Server (NTRS)
Moeller, L. E.; Tuller, M.; Baker, L.; Marshall, J.; Castiglione, P.; Kuhlman, K.
2003-01-01
Accumulation of wind-blown dust particles on solar cells and instruments will be a great challenge in the exploration of Mars, significantly reducing their lifetime, durability, and power output. For future Mars Lander missions it is crucial to gain information about the ideal angle at which solar panels can be positioned to minimize dust deposition and thus, maximize the power output and lifetime of the solar cells. The major determinant for the optimal panel angle is the angle of repose of the dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. To gain a basic understanding of the physical and chemical processes that govern dust deposition and to get feedback for the design of an experiment suitable for one of the future Mars Lander missions we simulate atmospheric conditions expected on the Mars surface in a controlled chamber, and observe the angle of repose of Mars dust surrogates. Dust deposition and angle of repose were observed on different sized spheres. To cover a range of potential materials we will use spheres made of 7075 aluminum (10 mm, and 15 mm), alumina oxide ceramic (10 mm), and Teflon(trademark) (10 mm) and wafers of gallium arsenide, silicon.
NASA Astrophysics Data System (ADS)
Taher, K. A.; Majumder, S. P.
2017-05-01
An analytical approach is developed to find the effect of cross-polarization (XPol)-induced crosstalk on the bit error rate (BER) performance of a polarization division multiplex (PDM) quadrature phase shift keying (QPSK) optical transmission system with polarization diversity receiver. Analytical expression for the XPol-induced crosstalk and signal to crosstalk plus noise ratio (SCNR) are developed at the output of polarization diversity PDM-QPSK coherent optical homodyne receiver conditioned on a given value of mean misalignment angle. Considering Maxwellian distribution for the pdf of the misalignment angle, the average SCNR and average BER are derived. Results show that there is significant deterioration in the BER performance and power penalty due to XPol-induced crosstalk. Penalties in signal power are found to be 8.85 dB, 11.28 dB and 12.59 dB correspondingly for LO laser power of -10 dBm, -5 dBm and 0 dBm at a data rate of 100 Gbps, mean misalignment angle of 7.5 degree and BER of 10-9 compared to the signal power without crosstalk.
Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Chen; Colonius, Tim
2017-11-01
Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.
NASA Astrophysics Data System (ADS)
Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.
2013-06-01
With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.
NASA Technical Reports Server (NTRS)
Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.
1977-01-01
Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan
A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less
Expertise of using striking techniques for power stroke in badminton.
Zhu, Qin
2013-10-01
Two striking techniques (fast swing and angled striking) were examined to see if they allowed effective use of string tension for the power stroke in badminton. 12 participants (4 novices, 4 recreational, and 4 expert badminton players) were recorded by a fast-speed camera while striking a shuttlecock with racquets of 8 different string tensions. The peak speed of the shuttlecock, the racquet angle and the shuttlecock angle were analyzed. The results showed that expert players succeeded in using both striking techniques to overcome the constraint of string tension and produce a consistently superior stroke. Failure to use either striking technique resulted in inferior performance that was constrained by string tension. Expertise in badminton allows the necessary motor adjustments based on the affordance perception of the string tension.
Powerful Electromechanical Linear Actuator
NASA Technical Reports Server (NTRS)
Cowan, John R.; Myers, William N.
1994-01-01
Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.
Recent mathematical developments in 2D correlation spectroscopy
NASA Astrophysics Data System (ADS)
Noda, I.
2000-03-01
Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
47 CFR 74.705 - TV broadcast analog station protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... from the authorized maximum radiated power (without depression angle correction), the horizontal... application for a new UHF low power TV or TV translator construction permit, a change of channel, or a major...
Walking on uneven terrain with a powered ankle prosthesis: A preliminary assessment.
Shultz, Amanda H; Lawson, Brian E; Goldfarb, Michael
2015-01-01
A successful walking gait with a powered prosthesis depends heavily on proper timing of power delivery, or push-off. This paper describes a control approach which provides improved walking on uneven terrain relative to previous work intended for use on even (level) terrain. This approach is motivated by an initial healthy subject study which demonstrated less variation in sagittal plane shank angle than sagittal plane ankle angle when walking on uneven terrain relative to even terrain. The latter therefore replaces the former as the control signal used to initiate push-off in the powered prosthesis described herein. The authors demonstrate improvement in consistency for several gait characteristics, relative to healthy, as well as controller characteristics with the new control approach, including a 50% improvement in the consistency of the percentage of stride at which push-off is initiated.
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Saif, Babak N.
1991-01-01
The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.
Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish
2017-09-01
In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.
Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe
2013-09-01
The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.
Zhou, Jun; Wang, Chao
2017-01-01
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics. PMID:28783079
Zhou, Jun; Wang, Chao
2017-08-06
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics.
Two or more impingement and/or instability deformities are often present in patients with hip pain.
Tibor, Lisa M; Liebert, Gunnar; Sutter, Reto; Impellizzeri, Franco M; Leunig, Michael
2013-12-01
Damage to the hip can occur due to impingement or instability caused by anatomic factors such as femoral and acetabular version, neck-shaft angle, alpha angle, and lateral center-edge angle (CEA). The associations between these anatomic factors and how often they occur in a painful hip are unclear but if unaddressed might explain failed hip preservation surgery. We determined (1) the influence of sex on the expression of impingement-related or instability-related factors, (2) the associations among these factors, and (3) how often both impingement and/or instability factors occur in the same hip. We retrospectively reviewed a cohort of 170 hips (145 patients) undergoing MR arthrography of the hip for any reason. We excluded 58 hips with high-grade dysplasia, Perthes' sequelae, previous surgery, or incomplete radiographic information, leaving 112 hips (96 patients). We measured femoral version and alpha angles on MR arthrograms. Acetabular anteversion, lateral CEA, and neck-shaft angle were measured on pelvic radiographs. We observed a correlation between sex and alpha angle. Weak or no correlations were observed between the other five parameters. In 66% of hips, two or more (of five) impingement parameters, and in 51% of hips, two or more (of five) instability parameters were found. Patients with hip pain frequently have several anatomic factors potentially contributing to chondrolabral damage. To address pathologic hip loading due to impingement and/or instability, all of the anatomic influences should be known. As we found no associations between anatomic factors, we recommend an individualized assessment of each painful hip.
Characteristic angles in the wetting of an angular region: deposit growth.
Popov, Yuri O; Witten, Thomas A
2003-09-01
Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power gamma of distance close to the vertex and as a stronger power beta of distance further from the vertex. The power gamma depends only slightly on the opening angle alpha and stays roughly between -1/3 and 0. The power beta varies from -1 to 0 as the opening angle increases from 0 degrees to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.
Jo, Woo Lam; Lee, Woo Suk; Chae, Dong Sik; Yang, Ick Hwan; Lee, Kyoung Min; Koo, Kyung Hoi
2016-10-01
Subchondral insufficiency fracture (SIF) of the femoral head occurs in the elderly and recipients of organ transplantation. Osteoporosis and deficient lateral coverage of the acetabulum are known risk factors for SIF. There has been no study about relation between spinopelvic alignment and anterior acetabular coverage with SIF. We therefore asked whether a decrease of lumbar lordosis and a deficiency in the anterior acetabular coverage are risk factors. We investigated 37 patients with SIF. There were 33 women and 4 men, and their mean age was 71.5 years (59-85 years). These 37 patients were matched with 37 controls for gender, age, height, weight, body mass index and bone mineral density. We compared the lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope, acetabular index, acetabular roof angle, acetabular head index, anterior center-edge angle and lateral center-edge angle. Lumbar lordosis, pelvic tilt, sacral slope, lateral center edge angle, anterior center edge angle, acetabular index and acetabular head index were significantly different between SIF group and control group. Lumbar lordosis (OR = 1.11), lateral center edge angle (OR = 1.30) and anterior center edge angle (OR = 1.27) had significant associations in multivariate analysis. Decreased lumbar lordosis and deficient anterior coverage of the acetabulum are risk factors for SIF as well as decreased lateral coverage of the acetabulum.
Lunar Reconnaissance Orbiter K-Band (26 GHz) Signal Analysis: Initial Study Results
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Heckman, D.
2017-11-01
Lower frequency telemetry bands are becoming more limited in bandwidth due to increased competition between flight projects and other entities. Higher frequency bands offer significantly more bandwidth and hence the prospect of much higher data rates. Future or prospective flight projects considering higher frequency bands such as Ka-band (32 GHz) for deep-space and K-band (26 GHz) for near-Earth telemetry links are interested in past flight experience with available received data at these frequencies. Given that there is increased degradation due to the atmosphere at these higher frequencies, there is an effort to retrieve flight data of received signal strength to analyze performance under a variety of factors. Such factors include elevation angle, season, and atmospheric conditions. This article reports on the analysis findings of over 10 million observations of received signal strength of the Lunar Reconnaissance Orbiter (LRO) spacecraft collected between 2014 and 2017. We analyzed these data to characterize link performance over a wide range of weather conditions, season, and as a function of elevation angle. Based on this analysis, we have confirmed the safety of using a 3-dB margin for preflight planning purposes. These results suggest that a 3-dB margin with respect to adverse conditions will ensure a 98 to 99 percent data return under 95 percent weather conditions at 26 GHz (K-band), thus confirming expectations from link budget predictions. The results suggest that this margin should be applicable for all elevation angles above 10 deg. Thus, missions that have sufficient power for their desired data rates may opt to use 10 deg as their minimum elevation angle. Limitations of this study include climate variability and the fact that the observations require removal of hotbody noise in order to perform an adequate cumulative distribution function (CDF) analysis, which is planned for a future comprehensive study. Flight projects may use other link margins depending upon available information, uncertainties of non-atmospheric link parameters, and mission phase.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-11-21
To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40-80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese.
Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan
2013-01-01
Purpose. To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. Methods. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40–80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. Results. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Conclusions. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese. PMID:24168992
NASA Astrophysics Data System (ADS)
Stens, C.; Riedelbauch, S.
2017-04-01
Due to a more fluctuating energy production caused by renewable energies such as wind and solar power, the number of changes between operating points in pumped storage power plants has increased over the last years. To further increase available regulating power, it is desirable to speed up these changes of operation conditions in Hydro units. Previous studies showed that CFD is well capable of predicting the flow phenomena in the machine under unsteady conditions for a large guide vane opening angle. The present paper investigates the benefits of nearly closed guide vanes during the transition. Results are compared between the two different angles as well as between simulation and measurement.
Can cosmic shear shed light on low cosmic microwave background multipoles?
Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha
2003-11-28
The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.
Directed search for gravitational waves from Scorpius X-1 with initial LIGO data
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Germain, V.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration, Virgo Collaboration
2015-03-01
We present results of a search for continuously emitted gravitational radiation, directed at the brightest low-mass x-ray binary, Scorpius X-1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F -statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3 ×10-24 and 8 ×10-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof-of-principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ˜1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.
GNSS Clock Error Impacts on Radio Occultation Retrievals
NASA Astrophysics Data System (ADS)
Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke
2017-04-01
We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.
Changes in speed skating velocity in relation to push-off effectiveness.
Noordhof, Dionne A; Foster, Carl; Hoozemans, Marco J M; de Koning, Jos J
2013-03-01
Speed skating posture, or technique, is characterized by the push-off angle or effectiveness (e), determined as the angle between the push-off leg and the ice; the preextension knee angle (θ(0)); and the trunk angle (θ(1)). Together with muscle-power output and environmental conditions, skating posture, or technique, determines velocity (v). To gain insight into technical variables that are important to skate efficiently and perform well, e, θ(0), θ(1), and skating v were determined every lap during a 5000-m World Cup. Second, the authors evaluated if changes (Δ) in e, θ(0), and θ(1) are associated with Δv. One camera filmed the skaters from a frontal view, from which e was determined. Another camera filmed the skaters from a sagittal view, from which θ(0) and θ(1) were determined. Radio-frequency identification tags around the ankles of the skaters measured v. During the race, e progressively increased and v progressively decreased, while θ(0) and θ(1) showed a less consistent pattern of change. Generalized estimating equations showed that Δe is significantly associated with Δv over the midsection of the race (β = -0.10, P < .001) and that Δθ(0) and Δθ(1) are not significantly associated with Δv. The decrease in skating v over the race is not due to increases in power losses to air friction, as knee and trunk angle were not significantly associated with changes in velocity. The decrease in velocity can be partly ascribed to the decrease in effectiveness, which reflects a decrease in power production associated with fatigue.
Metamaterial Designs for Photovoltaic and IR Focal-Plane-Imaging Array Applications
2013-03-01
incident angles above 17 degrees. There also seems to be no Brewster angle (i.e. the angle at which reflection = 0) for the reflection from the MTM...half- space, while glass has as Brewster angle at 56 degrees incident for TM polarized light. 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9...and incident spot beams from an objective lens . The spot beams hitting the detectors are absorbed, but the power of the spot beams falling in between
NASA Astrophysics Data System (ADS)
Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.
2018-01-01
We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.
The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application
NASA Astrophysics Data System (ADS)
Prasetyo, H.; Budiana, EP; Tjahjana, DDDP; Hadi, S.
2018-02-01
The design of Horizontal Axis Water Turbine in pico hydro power plants involves many parameters. To simplify that, usually using computer simulation is applied. This research performs simulation process variation on turbine blade number, turbine blade curvature angle, turbine bucket angle and blocking system tilt angle. Those four variations were combined in order to obtain the best design of turbine. The study used Flow Simulation Solidworks application, and obtain data on turbine speed, pressure, force, and torque. However, this research focused on turbine torque value. The best design of turbine was obtained in the turbine with 6 blades, blade curvature angle of 65° and bucket angle of 10°, and blocking system tilt angle of 40°. In the best turbine, the produced torque value was 8.464 Nm.
The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerick, F.; Saur, J.; Papen, M. von, E-mail: felix.gerick@uni-koeln.de
In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used asmore » a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.« less
Comparative study of plasma-deposited fluorocarbon coatings on different substrates
NASA Astrophysics Data System (ADS)
Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.
2011-05-01
The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.
NASA Astrophysics Data System (ADS)
Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan
2017-11-01
In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.
Jet Mixing Noise Scaling Laws SHJAR Data Vs. Predictions
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James
2008-01-01
High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter arc. Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.
Efficient Solar Concentrators: Affordable Energy from Water and Sunlight
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlightmore » to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, B.D.; Hanley, H.J.M.; Straty, G.C.
An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying tomore » interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.« less
Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project
NASA Technical Reports Server (NTRS)
Turgay, Eren H.
2004-01-01
One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar flux (the amount of solar energy reaching the planet), solar spectrum, solar angle, rover tilt, and optical depth (the opacity of the atmosphere due to dust) were the most significant. Microsoft Excel and Visual Basic are used for data analysis. The results of this work will be used to improve the dust accumulation and atmosphere effects model that was first created after the Mars Pathfinder mission. This model will be utilized and applied when considering the design of solar panel array systems on future Mars projects. Based on this data, and depending upon the tenure and application of the mission, designers may also elect to employ special tools to abate dust accumulation, or decide that the expected level of accumulation is acceptable.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars
NASA Technical Reports Server (NTRS)
Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.
2012-01-01
We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
The Properties of Extragalactic Radio Jets
NASA Astrophysics Data System (ADS)
Finke, Justin
2018-01-01
I show that by assuming a standard Blandford-Konigl jet, it is possible to determine the speed (bulk Lorentz factor) and orientation (angle to the line of sight) of self-similar parsec-scale blazar jets by using four measured quantities: the core radio flux, the extended radio flux, the magnitude of the core shift between two frequencies, and the apparent jet opening angle. Once the bulk Lorentz factor and angle to the line of sight of a jet are known, it is possible to compute their Doppler factor, magnetic field, and intrinsic jet opening angle. I use data taken from the literature and marginalize over nuisance parameters associated with the electron distribution and equipartition, to compute these quantities, albeit with large errors. The results have implications for the resolution of the TeV BL Lac Doppler factor crisis and the production of jets from magnetically arrested disks.
Design of an antagonistic shape memory alloy actuator for flap type control surfaces
NASA Astrophysics Data System (ADS)
Dönmez, Burcu; Özkan, Bülent
2011-03-01
This paper deals with the flap control of unmanned aerial vehicles (UAVs) using shape memory alloy (SMA) actuators in an antagonistic configuration. The use of SMA actuators has the advantage of significant weight and cost reduction over the conventional actuation of the UAV flaps by electric motors or hydraulic actuators. In antagonistic configuration, two SMA actuators are used: one to rotate the flap clockwise and the other to rotate the flap counterclockwise. In this content, mathematical modeling of strain and power dissipation of SMA wire is obtained through characterization tests. Afterwards, the model of the antagonistic flap mechanism is derived. Later, based on these models both flap angle and power dissipation of the SMA wire are controlled in two different loops employing proportional-integral type and neural network based control schemes. The angle commands are converted to power commands through the outer loop controller later, which are updated using the error in the flap angle induced because of the indirect control and external effects. In this study, power consumption of the wire is introduced as a new internal feedback variable. Constructed simulation models are run and performance specifications of the proposed control systems are investigated. Consequently, it is shown that proposed controllers perform well in terms of achieving small tracking errors.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
Transient stability enhancement of electric power generating systems by 120-degree phase rotation
Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.
1982-01-01
A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, Robert Lawrence; Marsden, David
The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
A laser technique for characterizing the geometry of plant canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Silva, L. F.; Bauer, M. E.
1977-01-01
The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower.
Optimization of spherical facets for parabolic solar concentrators
NASA Technical Reports Server (NTRS)
White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.
1986-01-01
Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.
A wind-tunnel investigation of wind-turbine wakes in yawed conditions
NASA Astrophysics Data System (ADS)
Bastankhah, Majid; Porté-Agel, Fernando
2015-06-01
Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately predict the load distribution in yawed conditions, both normal and tangential (with respect to the rotor plane) components of the induced velocity upstream of the turbine should be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barieau, R.E.
1977-03-01
The PROP Program of Wilson and Lissaman has been modified by adding the Newton-Raphson Method and a Step Wise Search Method, as options for the method of solution. In addition, an optimization method is included. Twist angles, tip speed ratio and the pitch angle may be varied to produce maximum power coefficient. The computer program listing is presented along with sample input and output data. Further improvements to the program are discussed.
NASA Technical Reports Server (NTRS)
Ko, H. C.
1973-01-01
The wave-normal emissivity and the ray emissivity formulas for an electron moving along a helical path in a magnetoactive medium are presented. Simplified formulas for the case of an isotropic plasma are also given. Because of the helical motion of the electron, a difference exists between the radiated power per unit solid angle and the received power per unit solid angle. The relation between these two quantities in a magnetoactive medium is shown. Results are compared with those obtained by others, and the sources of discrepancies are pointed out.
Zhou, Jian; Tian, Huiping; Yang, Daquan; Liu, Qi; Huang, Lijun; Ji, Yuefeng
2014-12-01
We exhibit a low-loss, efficient, and wide-angle 1×4 power splitter based on a silicon monolithic photonic crystal slab with triangular lattice air holes. A distinctive power-splitting ratio can be obtained depending on the hole shift in the bending region and the structure adjustment at the junction area with regard to the power splitter designed. Simulation results achieved with a rigorous finite-difference time-domain technique show that the TE-polarized light is designed to ensure single-mode operation and the transmitted power is distributed almost equally, with a total transmission of 93.4% at the 1550 nm optical operation wavelength. Furthermore, we demonstrate ultralow-loss output of the optimized power splitter, with a transmittance above 22.5% (-6.48 dB) achieved in the ranges of 1524-1594 and 1610-1620 nm, which cover the entire C-band and a large portion of the L-band of optical communication.
NASA Astrophysics Data System (ADS)
Iliev, Stanimir; Pesheva, Nina; Iliev, Pavel
2018-04-01
We report here on the contact angle hysteresis, appearing when a liquid meniscus is in contact with doubly sinusoidal wavelike patterned surfaces in Wenzel's wetting regime. Using the full capillary model we obtain numerically the contact angle hysteresis as a function of the surface roughness factor and the equilibrium contact angle for a block case and a kink case contact line depinning mechanism. We find that the dependencies of the contact angle hysteresis on the surface roughness factor are different for the different contact line depinning mechanisms. These dependencies are different also for the two types of rough surfaces we studied. The relations between advancing, receding, and equilibrium contact angles are investigated. A comparison with the existing asymptotical, numerical, and experimental results is carried out.
Iliev, Stanimir; Pesheva, Nina; Iliev, Pavel
2018-04-01
We report here on the contact angle hysteresis, appearing when a liquid meniscus is in contact with doubly sinusoidal wavelike patterned surfaces in Wenzel's wetting regime. Using the full capillary model we obtain numerically the contact angle hysteresis as a function of the surface roughness factor and the equilibrium contact angle for a block case and a kink case contact line depinning mechanism. We find that the dependencies of the contact angle hysteresis on the surface roughness factor are different for the different contact line depinning mechanisms. These dependencies are different also for the two types of rough surfaces we studied. The relations between advancing, receding, and equilibrium contact angles are investigated. A comparison with the existing asymptotical, numerical, and experimental results is carried out.
Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.
Heerenbrink, M Klein; Johansson, L C; Hedenström, A
2015-05-08
Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models.
Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight
Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.
2015-01-01
Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098
Spacecraft momentum unloading using controlled magnetic torques
NASA Technical Reports Server (NTRS)
Linder, David M. (Inventor); Goodzeit, Neil E. (Inventor); Schwarzschild, Marc (Inventor)
1992-01-01
A method for maintaining the attitude of a three-axis controlled satellite by use of magnetic torquers includes using magnetometers for measuring the direction of the ambient geomagnetic field. The direction of the net reaction wheel momentum is also determined. The angle between the direction of the geomagnetic field and the net reaction wheel momentum is determined. The angle is compared with a threshold value. Magnetic torquer power consumption is reduced by operating the magnetic torquers only when the angle exceeds the threshold value.
Design of a Paraxial Inverse Compton Scattering Diagnostic for an Intense Relativistic Electron Beam
2013-06-01
with a 50 cm focal length plano-convex lens (Fig. 4). Prior to entering the vacuum the laser light passes through a Brewster angled window, which...1/γ ~ 25 mrad. Brewster angled windows Beam dump Spectra Physics 5J Nd:YAG Focusing lens Insertable power meter z x y 37.8 cm Figure 4...visible green light is upscattered into the soft X-ray range and diverges from the interception point downstream at an angle θs = 1/γ ~ 25 mrad
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
NASA Astrophysics Data System (ADS)
Tarulescu, R.; Tarulescu, S.; Leahu, C.
2017-10-01
The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).
The influence of spray properties on intranasal deposition.
Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D
2007-01-01
While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.
NASA Astrophysics Data System (ADS)
Ohkura, Hiroshi
Full polarimetric SAR images of ALOS PALSAR of Shinmoe-dake volcano in Japan were analyzed. The volcano erupted in January, 2011 and volcano ash deposited more than 10 cm in 12 km (2) and 1 m in 2 km (2) . Two images before and after the eruption were compared based on a point view of the four-component scattering model to detect changes of polarimetric scattering characteristics. The main detected changes are as follows. Total power of the four-component scattering model decreased on a farslope after the eruption. An incident angle on a farslope is larger than the angle on a foreslope. Decrease of surface roughness due to deposited volcanic ashes makes back-scattering smaller in the area of a larger incidence angle. However the rate of the double-bounce component got higher in a forest at the foot of a mountain slope and on a plain, where the ground surface is almost horizontal and the incident angle is relatively-large. Decrease of roughness of the forest floor increases forward scattering on the floor of the larger incident angle. This increases the double-bounced scattering due to bouncing back between the forest floor and trunks which stand "perpendicularly" on the almost horizontal forest floor. The rate of the surface scattering component got higher around an area where layover occurred. In the study area, most of layovers occurred at a ridge where an incidence angle was small. Decrease of surface roughness due to the ash deposit increases the surface scattering power in the area of the small incidence angle.
NASA Astrophysics Data System (ADS)
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging and this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.
[Analysis of risk factors for dry eye syndrome in visual display terminal workers].
Zhu, Yong; Yu, Wen-lan; Xu, Ming; Han, Lei; Cao, Wen-dong; Zhang, Hong-bing; Zhang, Heng-dong
2013-08-01
To analyze the risk factors for dry eye syndrome in visual display terminal (VDT) workers and to provide a scientific basis for protecting the eye health of VDT workers. Questionnaire survey, Schirmer I test, tear break-up time test, and workshop microenvironment evaluation were performed in 185 VDT workers. Multivariate logistic regression analysis was performed to determine the risk factors for dry eye syndrome in VDT workers after adjustment for confounding factors. In the logistic regression model, the regression coefficients of daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and female gender on the results of Schirmer I test were 0.153, 0.548, 0.400, 0.796, 0.234, 0.516, 0.559, and -0.685, respectively; the regression coefficients of daily mean time of exposure to screen, parallel screen-eye angle, upward screen-eye angle, age, working years, and female gender on tear break-up time were 0.021, 0.625, 2.652, 0.749, 0.403, and 1.481, respectively. Daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and working years are risk factors for dry eye syndrome in VDT workers.
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.
2017-10-01
Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium that causes the radio-polarimetric filaments is probably wrapped around the H I.
Comparisons of Spectra from 3D Kinetic Meteor PIC Simulations with Theory and Observations
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Tarnecki, L. K.
2017-12-01
Meteoroids smaller than a grain of sand have significant impacts on the composition, chemistry, and dynamics of the atmosphere. The processes by which they turbulently diffuse can be studied using collisional kinetic particle-in-cell (PIC) simulations. Spectral analysis is a valuable tool for comparing such simulations of turbulent, non-specular meteor trails with observations. We present three types of spectral information: full spectra along the trail in k-ω space, spectral widths at common radar frequencies, and power as a function of angle with respect to B. These properties can be compared to previously published data. Zhou et al. (2004) use radar theory to predict the power observed by a radar as a function of the angle between the meteor trail and the radar beam and the size of field-aligned irregularities (FAI) within the trail. Close et al. (2008) present observations of meteor trails from the ALTAIR radar, including power returned as a function of angle off B for a small sample of meteors. Close et al. (2008) and Zhou et al. (2004) both suggest a power drop off of 2-3 dB per degree off perpendicular to B. We compare results from our simulations with both theory and observations for a range of conditions, including trail altitude and incident neutral wind speed. For 1m waves, power fell off by 1-3 dB per degree off perpendicular to B. These comparisons help determine if small-scale simulations accurately capture the behavior of real meteors.
Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films
NASA Astrophysics Data System (ADS)
Rawal, Sushant K.; Chawla, Amit Kumar; Jayaganthan, R.; Chandra, Ramesh
2011-08-01
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin 2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.
NASA Technical Reports Server (NTRS)
Flegel-McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements obtained in a transonic linear cascade were used to assess the impact of large incidence angle and Reynolds number variations on the 3-D flow field and midspan loss and turning of a 2-D section of a variable-speed power-turbine (VSPT) rotor blade. Steady-state data were obtained for ten incidence angles ranging from +15.8 deg to -51.0 deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×10(exp 5) to 2.12×10(exp 6). Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan total-pressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8 deg and -36.7 deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures. Tests were conducted in the NASA Glenn Transonic Turbine Blade Cascade Facility. The measurements reflect strong secondary flows associated with the high aerodynamic loading levels at large positive incidence angles and an increase in loss levels with decreasing Reynolds number. The secondary flows decrease with negative incidence as the blade becomes unloaded. Transitional flow is admitted in this low inlet turbulence dataset, making it a challenging CFD test case. The dataset will be used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range. deg
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
Highly Automated Module Production Incorporating Advanced Light Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perelli-Minetti, Michael; Roof, Kyle
2015-08-11
The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF filmmore » over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition, modeling showed that under diffuse lighting conditions such as when the sky is overcast, there would be no significant performance advantage for modules with LRF. Modules were sent to an outside contractor to measure the power performance under different angles of incident light in order to validate the modeling results. The measured data agreed very well with the modeling predictions and showed that the power gain for modules with LRF applied to tabbing ribbons was completely lost at an angle of 25 degrees off of perpendicular. At even larger angles, the power was lower than standard modules. From 35 degrees to 55 degrees off axis, the power loss was about 1.4% or equal to the power gain at the optimum condition of perfectly on-axis light.« less
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Brownson, J. J.
1979-01-01
Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.
NASA Technical Reports Server (NTRS)
Foster, John V.; Ross, Holly M.; Ashley, Patrick A.
1993-01-01
Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high-angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high-angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes ground-based piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
NASA Technical Reports Server (NTRS)
Foster, John V.; Ross, Holly M.; Ashley, Patrick A.
1993-01-01
Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.
Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori
2013-12-01
The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is important to pay attention not only to the posterior tibial slope, but also to the flexion medial/lateral ligament balance during surgery. A cruciate-retaining-type TKA has the potential to achieve both stability and a wide range of motion and to improve the patients' activities of daily living.
Dynamic wetting and spreading and the role of topography.
McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J
2009-11-18
The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.
2015-01-01
Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.
Recent results from the NN-interaction studies with polarized beams and targets at ANKE-COSY
NASA Astrophysics Data System (ADS)
Dymov, Sergey
2016-02-01
Adding to the nucleon-nucleon scattering database is one of the major priorities of the ANKE collaboration. Such data are necessary ingredients, not only for the understanding of nuclear forces, but also for the description of meson production and other nuclear reactions at intermediate energies. By measuring the cross section, deuteron analysing powers, and spin-correlation parameters in the dp → {pp}sn reaction, where {pp}s represents the 1S0 state, information has been obtained on small-angle neutron-proton spin-flip charge-exchange amplitudes. The measurements of pp elastic scattering by the COSY-EDDA have had a major impact on the partial wave analysis of this reaction above 1 GeV. However, these experiments only extended over the central region of c.m. angles, 300 < θcm < 1500, that has left major ambiguities in the phase shift analysis by the SAID group. In contrast, the small angle region is accessible at ANKE-COSY, that allowed measurement of the differential cross section and the analysing power at 50 < θcm < 300 in the 0.8 — 2.8 GeV energy range. The data on the pn elastic scattering are much more scarce than those of pp, especially in the region above 1.15 GeV. The study of the dp → {pp}s n reaction provides the information about the pn elastic scattering at large angles. The small angle scattering was studied with the polarized proton COSY beam and an unpolarised deuterium gas target. The detection the spectator proton in the ANKE vertex silicon detector allowed to use the deuterium target as an effective neutron one. The analysing powers of the process were obtained at six beam energies from 0.8 to 2.4 GeV.
Impinging Water Droplets on Inclined Glass Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.
Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initialmore » droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that photovoltaic modules and heliostats can be designed to maximize self-cleaning.« less
Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; ...
2014-11-29
A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less
2.1 μm high-power laser diode beam combining(Conference Presentation)
NASA Astrophysics Data System (ADS)
Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel
2016-10-01
Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation lenses used in the experiment. We evaluated two broadband (1.8 - 3 µm) AR coated Geltech aspheric lenses with focal lengths of 1.87 mm and 4 mm, with numerical apertures of 0.85 and 0.56, respectively, as an initial collimation lens, followed by an additional cylindrical lens of focal length 100 mm for fully collimating the slow axis. Using D-shaped gold-coated mirrors, multiple single emitter beams are stacked in the fast axis direction with the objective that the combined beam has a beam propagation factor in the stacking direction close to the beam propagation factor of the slow axis of a single emitter, e.g. M2 of 20 to 25 in both axes. We further found that the output beam of a single emitter is highly linearly polarized along the slow axis, making it feasible to implement polarization beam combining techniques to increase the beam power by a factor two while maintaining the same beam quality. Along with full beam characterization, a power scaling strategy towards a multi-watt output power beam combining laser system will be presented.
Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen
2015-03-01
To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.
Limited Investigation of Active Feel Control Stick System (Active Stick)
2009-06-01
contained no limit protection and was the baseline system. The second system was “F-16 like” and contained angle -of-attack and load factor limiting...system. The second system was “F-16 like” and contained angle of attack (AOA) and load factor limiting features built into the flight control system...Force PTI at VLO .......................... 13 Figure 9: Pitch Angle Response to 1.5 g Commanded Force PTI at VLO ........................ 14 Figure 10
Critical Exchange: Peculiar Bedfellows--Gender, Sexuality, Religion and Schooling: A Reply to Stern
ERIC Educational Resources Information Center
Rasmussen, Mary L.
2017-01-01
Mary L. Rasmussen is a sociologist of education with expertise in studies of gender and sexuality. This angle of scrutiny (Harwood 2006) is her point of departure in conversations about schooling and religion. From this angle, Rasmussen believes that schooling and religion can be incredibly powerful in creating community. She is also clear that…
Nonlinear analysis of a relativistic beam-plasma cyclotron instability
NASA Technical Reports Server (NTRS)
Sprangle, P.; Vlahos, L.
1986-01-01
A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.
Method to improve near-field nonlinearity of a high-power diode laser array on a microchannel cooler
NASA Astrophysics Data System (ADS)
Zhang, Hongyou; Jia, Yangtao; Cai, Wanshao; Tao, Chunhua; Zah, Chung-en; Liu, Xingsheng
2018-03-01
Due to thermal stress, each emitter in a semiconductor laser bar or array is vertically displaced along the p-n junction; the result is that each emitter is not in a line, called near-field nonlinearity. Near-field nonlinearity along a laser bar (also known as "SMILE" effect) degrades the laser beam brightness, which causes an adverse effect on optical coupling and beam shaping. A large SMILE value causes a large divergence angle after collimation and a wider line after collimation and focusing. We simulate the factors affecting the SMILE value of a high-power diode laser array on a microchannel cooler (MCC). According to the simulation results, we have fabricated a series of laser bars bonded on MCCs with lower SMILE value. After simulation and experiment analysis, we found the key factor to affect SMILE is the deformation of the thin MCC because of the distribution of strain and stress in it. We also decreased the SMILE value of 1-cm-wide full bar AuSn bonded on MCCs from 12 to 1 μm by balancing force on MCC to minimize the deformation.
Highly Efficient Small Form Factor LED Retrofit Lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Allen; Fred Palmer; Ming Li
2011-09-11
This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent powermore » quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.« less
Scarborough, Donna Moxley; Linderman, Shannon; Berkson, Eric M.; Oh, Luke S.
2017-01-01
Objectives: Unilateral partial squat tasks are often used to assess athletes’ lower extremity (LE) neuromuscular control. Single squat biomechanics such as lateral drop of the non-stance limb’s pelvis have been linked to knee injury risk. Yet, there are limited studies on the factors contributing to pelvic instability during the unilateral partial squat such as anatomical alignment of the knee and hip strength. The purpose of this study was 1) to assess the influence of leg dominance on pelvic drop among female athletes during the repeated unilateral partial squat activity and 2) to investigate the contributions that lower limb kinematics and hip strength have on pelvis drop. Methods: 42 female athletes (27= softball pitchers, 15=gymnasts, avg age=16.48 ± 2.54 years) underwent lower limb assessment. The quadriceps angle (Q angle) and the average of 3 trials for hip abduction and extension strength (handheld dynamometer measurements) were used for analyses. 3D biomechanical analysis of the repeated unilateral partial squat activity followed using a 20 motion capture camera system which created a 15 segment model of each subject. The subject stood on one leg at the lateral edge of a 17.78 cm box with hands placed on the hips and squatted so that the free hanging contralateral limb came as close to the ground without contact for 5 continuous repetitions. One trial for each limb was performed. Peak pelvic drop and ankle, knee and hip angles and torques (normalized by weight) at this time point were calculated using Visual 3D (C-Motion) biomechanical software. Paired T-test, Spearman correlations and multiple regression model statistical analyses were performed. Results: Peak pelvic drop during the unilateral partial squat did not differ significantly on the basis of limb dominance (p=0.831, Dom: -3.40 ± 5.10° , ND: -3.46 ± 4.44°). Peak pelvic drop displayed a Spearman correlation with the functional measure of hip abduction/adduction (ABD/ADD) angle (rs= 0.627, p< 0.001) (Figure 1). No association was noted between peak pelvic drop and anatomical measures of Q angle or isometric hip extension strength. A multiple regression was performed to predict pelvis drop angle from the following 6 variables: isometric hip ABD strength, hip ABD/ADD angle, hip internal/external rotation angle, ankle supination/pronation (S/P) angle, height and weight. These variables statistically predicted pelvis drop, F(6,73) = 17.848, p < .0005, R2 = 0.595. The strongest combined predictor variables for pelvic drop in the female athletes were hip abduction/ adduction angle and strength followed by subject’s weight and ankle S/P angle (Table 1). Conclusion: Peak pelvic drop during the repeated unilateral partial squat activity did not correlate significantly with Q angle and hip extension strength. Instead, peak pelvic drop appears more related to a combination of biomechanical limb positioning, hip ABD strength and subject demographics. The regression model run on the repeated unilateral partial squat demonstrates predictive power of this dynamic assessment tool based on kinematic measures across multiple joints. Results could guide clinician screening for excessive pelvic drop in female athletes and based on the predictive model make recommendations for corrective conditioning to help prevent knee injury and guide return to sport following LE surgery. Table 1: Multivariate linear regression model for pelvic drop, Isometric hip strength and lower extremity kinematics during repeated partial squat activity among female athletes. Variable P Isometric hip abduction strength 0.034* Hip Abduction/Adduction Angle <0.001* Hip Internal/External Rotation Angle 0.936 Ankle Internal/External Rotation Angle 0.072 Height 0.398 Weight 0.011* * Level of significance established at p<0.05
NASA Astrophysics Data System (ADS)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.
2002-10-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.
Tsuji, Takashi; Matsumoto, Morio; Nakamura, Masaya; Ishii, Ken; Fujita, Nobuyuki; Chiba, Kazuhiro; Watanabe, Kota
2017-09-01
The aim of the present study was to investigate the factors associated with C5 palsy by focusing on radiological parameters using multivariable analysis. The authors retrospectively assessed 190 patients with cervical spondylotic myelopathy treated by open-door laminoplasty. Four radiographic parameters-the number of expanded lamina, C3-C7 angle, lamina open angle and space anterior to the spinal cord-were evaluated to clarify the factors associated with C5 palsy. Of the 190 patients, 11 developed C5 palsy, giving an overall incidence of 5.8%. Although the number of expanded lamina, lamina open angle and space anterior to the spinal cord were significantly larger in C5 palsy group than those in non-palsy group, a multiple logistic regression analysis revealed that only the space anterior to the spinal cord (odds ratio 2.60) was a significant independent factor associated with C5 palsy. A multiple linear regression analysis indicated that the lamina open angle was associated with the space anterior to the spinal cord and the analysis identified the following equation: space anterior to the spinal cord (mm) = 1.54 + 0.09 × lamina open angle (degree). A cut-off value of 53.5° for the lamina open angle predicted the development of C5 palsy with a sensitivity of 72.7% and a specificity of 83.2%. The larger postoperative space anterior to the spinal cord, which was associated with the lamina open angle, was positively correlated with the higher incidence of C5 palsy.
Performance comparison of flat static and adjustable angle solar panels for sunny weather
NASA Astrophysics Data System (ADS)
Chua, Yaw Long; Yong, Yoon Kuang
2017-04-01
Nowadays solar panels are commonly used to collect sunlight so that it could convert solar energy into electrical energy. The power generated by the solar panels depends on the amount of sunlight collected on the solar panels. This paper presents a study that was carried out to study how changing the angle of the solar panels will impact the amount of electrical energy collected after conversion and the efficiencies of the solar panels. In this paper, the solar panels were placed at 30°, 35° and 40° angles throughout different days. The energy collected is then compared with energy collected by a flat static solar panel. It turns out that the solar panels with 40° angle performed best among the other angle solar panels.
Modification of Classical SPM for Slightly Rough Surface Scattering with Low Grazing Angle Incidence
NASA Astrophysics Data System (ADS)
Guo, Li-Xin; Wei, Guo-Hui; Kim, Cheyoung; Wu, Zhen-Sen
2005-11-01
Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions. The project supported by National Natural Science Foundation of China under Grant No. 60101001 and the National Defense Foundation of China
Assessment of a Solar Cell Panel Spatial Arrangement Influence on Electricity Generation
NASA Astrophysics Data System (ADS)
Anisimov, I. A.; Burakova, L. N.; Burakova, A. D.; Burakova, O. D.
2017-05-01
The research evaluates the impact of the spatial arrangement of solar cell panels on the amount of electricity generated (power generated by solar cell panel) in Tyumen. Dependences of the power generated by the solar panel on the time of day, air temperature, weather conditions and the spatial arrangement are studied. Formulas for the calculation of the solar cell panel inclination angle which provides electricity to urban infrastructure are offered. Based on the data in the future, changing of inclination angle of solar cell panel will be confirmed experimentally during the year in Tyumen, and recommendations for installing solar cell panels in urban infrastructure will be developed.
Angular distribution of electrons from powerful accelerators
NASA Astrophysics Data System (ADS)
Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.
2007-07-01
A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ≈0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.
Axicon based conical resonators with high power copper vapor laser.
Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim
2010-07-01
We report for the first time the performance of axicon based conical resonators (ABCRs) in a copper vapor laser, with novel results. The unstable conical resonator comprising of conical mirror (reflecting axicon) with axicon angle approximately pi/18, cone angle approximately 160 degrees, and a convex mirror of 60 cm radius of curvature was effective in reducing the average beam divergence to approximately 0.15 mrad (approximately 25 fold reduction compared to standard multimode plane-plane cavity) with output power of approximately 31 W. Extraction efficiency of approximately 50%-60% and beam divergence of <1 mrad was achieved in other stable ABCR configurations using flat and concave mirrors with the axicon. This is a significant improvement compared to 4-5 mrad normally observed in conventional stable resonators in copper vapor lasers. The conical resonators with copper vapor laser provide high misalignment tolerance beta approximately 4-5 mrad where beta is the tilt angle of the conical mirror from optimum position responsible for approximately 20% decline in laser power. The depth of focus d was approximately three times larger in case of conical resonator as compared to that of standard spherical unstable resonator under similar beam divergence and focusing conditions.
Presenting Your Best Self(ie): The Influence of Gender on Vertical Orientation of Selfies on Tinder.
Sedgewick, Jennifer R; Flath, Meghan E; Elias, Lorin J
2017-01-01
When taking a self-portrait or "selfie" to display in an online dating profile, individuals may intuitively manipulate the vertical camera angle to embody how they want to be perceived by the opposite sex. Concepts from evolutionary psychology and grounded cognition suggest that this manipulation can provide cues of physical height and impressions of power to the viewer which are qualities found to influence mate-selection. We predicted that men would orient selfies more often from below to appear taller (i.e., more powerful) than the viewer, and women, from an above perspective to appear shorter (i.e., less powerful). A content analysis was conducted which coded the vertical orientation of 557 selfies from profile pictures on the popular mobile dating application, Tinder. In general, selfies were commonly used by both men (54%) and women (90%). Consistent with our predictions, a gender difference emerged; men's selfies were angled significantly more often from below, whereas women's were angled more often from above. Our findings suggest that selfies presented in a mate-attraction context are intuitively or perhaps consciously selected to adhere to ideal mate qualities. Further discussion proposes that biological or individual differences may also facilitate vertical compositions of selfies.
NASA Astrophysics Data System (ADS)
Hata, Naoki; Seki, Hirokazu; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of a power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. This paper proposes a novel control method to prevent power assisted wheelchair from overturning. The man-wheelchair system can be regarded as an inverse pendulum model when the front wheels are rising. The center-of-gravity (COG) angle of the model is the most important information directly-linked to overturn. Behavior of the system can be analyzed using phase plane as shown in this paper. The COG angle cannot be directly measured using a sensor, therefore, COG observer based on its velocity is proposed. On the basis of the analysis on phase plane, a novel control method with variable assistance ratio to prevent a dangerous overturn is proposed. The effectiveness of the proposed method is verified by the practical experiments on the flat ground and uphill slope.
NASA Technical Reports Server (NTRS)
Helms, V. T., III; Bradley, P. F.
1984-01-01
Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.
A comparison of pairs figure skaters in repeated jumps.
Sands, William A; Kimmel, Wendy L; McNeal, Jeni R; Murray, Steven Ross; Stone, Michael H
2012-01-01
Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters.
NASA Astrophysics Data System (ADS)
Milanović, Veljko; Kasturi, Abhishek; Yang, James; Su, Yu Roger; Hu, Frank
2017-02-01
2D quasistatic (point-to-point) gimbal-less MEMS mirrors enable programmable, arbitrary control of laser beam position and velocity - up to their maximum limits. Hence, they provide the ability to track targets, point lasercom beams, and to scan uniform velocity lines over objects in laser imaging. They are becoming increasingly established in applications including 3D scanning, laser marking and 3D printing, biomedical imaging, communications, and LiDAR. With the increased utility in applications that demand larger mirror sizes and larger overall angle*diameter (θ*D) figures of merit, the technology is continuously pushed against its limit. As a result we have implemented mirrors with larger diameters including 5.0mm, 6.4mm, and 7.5mm, and have designed actuators with larger torque and angles to match the Θ*D demand. While the results have been very positive in certain application cases, a limitation for their more wide-spread use has been the relatively high susceptibility of large- θ*D mirrors to shock and vibrations. On the other hand, one of the challenges of MEMS mirrors of small diameters is their lower optical power tolerance simply due to their smaller area and heat removal ability. Although they can be operated at up to 2-3W of CW laser power, new developments in dynamic solid state lighting in e.g. headlights demand operation at up to 10W or beyond. In this work we study and present several package-level approaches to increase mechanical damping, shock robustness, and laser power tolerance. Specifically, we study back-filling of MEMS packages with different gases as well as with different (increased) pressures to control damping and in turn increase robustness and useable bandwidth. Additionally, we study the effects of specialized mechanical structures which were designed and fabricated to modify packages to significantly reduce volumes of space around moving structures. In their standard form and packaging the MEMS mirrors tested in this study typically measure quality factors of 75-100. Increases of pressure up to 50psi have shown relatively modest reductions of the overall quality factor to the 40-50 range. Backfilling of packages with heavier inert gasses such as Ar and SF6 results in lowering of the quality factor down to 20-30 range. Mechanical modifications of the package with special structures and reduced air-gap to the window yielded the best results, reducing the quality factor to 9-14. Combination of specialized packaging structures and gas backfill and pressure control could provide a very efficient heat transfer from the mirror and the desired near-critical damping, but has not been demonstrated yet. The increased performance does not change the compactness and low power consumption - the improved MEMS mirrors still consume <1mW. So far, designs with mirror sizes through 3.0mm diameter with increased damping have passed 500G shock tests. In terms of improved heat removal we have found that the packaging improvement greatly increased optical power tolerance of MEMS mirrors from few Watts of CW laser power to <10 Watts. The exact numbers for the upper limit are not yet available - in samples where the heat removing structure was added and air was replaced with Helium, our setup with 3 combined lasers was not able to damage any samples.
NASA Astrophysics Data System (ADS)
Goswami, B.; Kalita, M.
2014-11-01
The objective of the study is to measure backscattered power of bare soil and vegetation covered soil using X-band scatterometer system with full polarization and various angles during monsoon season and relate backscattered power to the density of vegetation over soil. The measurement was conducted at an experimental field located in the campus of Assam Engineering College, Guwahati, India. The soil sample consists of Silt and Clay in higher proportions as compared to Sand. The scatterometer system consists of dual-polarimetric square horn antennas, Power meter, Klystron, coaxial cables, isolator and waveguide detector. The polarization of the horn antennas as well as the look angle can be changed in the set-up. The backscattering coefficients were calculated by applying a radar equation for the measured values at incident angles between 30° and 60° for full polarization (HH, VV, HV, VH), respectively, and compared with vegetation cover over soil for each scatterometer measurement simultaneously. The VH polarization and 60° look angle are found to be the most suitable combination of configuration of an X-band scatterometer for distinguishing the land cover targets such as bare soil and vegetation covered soil. From the analysis of the results, polarimetric scatterometer data appear to be promising to distinguish the land cover types such as bare soil and soil completely covered by vegetation. The results of this study will help the scientists working in the field of active microwave remote sensing.
NASA Astrophysics Data System (ADS)
Iwamatsu, Masao
2017-10-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids on a flat and a spherical rough and textured substrate is theoretically studied in the capillary-controlled spreading regime. A droplet whose scale is much larger than that of the roughness of substrate is considered. The equilibrium contact angle on a rough substrate is modeled by the Wenzel and the Cassie-Baxter model. Only the viscous energy dissipation within the droplet volume is considered, and that within the texture of substrate by imbibition is neglected. Then, the energy balance approach is adopted to derive the evolution equation of the contact angle. When the equilibrium contact angle vanishes, the relaxation of dynamic contact angle θ of a droplet obeys a power-law decay θ ˜t-α except for the Newtonian and the non-Newtonian shear-thinning liquid of the Wenzel model on a spherical substrate. The spreading exponent α of the non-Newtonian shear-thickening liquid of the Wenzel model on a spherical substrate is larger than others. The relaxation of the Newtonian liquid of the Wenzel model on a spherical substrate is even faster showing the exponential relaxation. The relaxation of the non-Newtonian shear-thinning liquid of Wenzel model on a spherical substrate is fastest and finishes within a finite time. Thus, the topography (roughness) and the topology (flat to spherical) of substrate accelerate the spreading of droplet.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...
Peripheral Defocus of the Monkey Crystalline Lens With Accommodation in a Lens Stretcher
Maceo Heilman, Bianca; Manns, Fabrice; Ruggeri, Marco; Ho, Arthur; Gonzalez, Alex; Rowaan, Cor; Bernal, Andres; Arrieta, Esdras; Parel, Jean-Marie
2018-01-01
Purpose To characterize the peripheral defocus of the monkey crystalline lens and its changes with accommodation. Methods Experiments were performed on 15 lenses from 11 cynomolgus monkey eyes (age: 3.8–12.4 years, postmortem time: 33.5 ± 15.3 hours). The tissue was mounted in a motorized lens stretcher to allow for measurements of the lens in the accommodated (unstretched) and unaccommodated (stretched) states. A custom-built combined laser ray tracing and optical coherence tomography system was used to measure the paraxial on-axis and off-axis lens power for delivery angles ranging from −20° to +20° (in air). For each delivery angle, peripheral defocus was quantified as the difference between paraxial off-axis and on-axis power. The peripheral defocus of the lens was compared in the unstretched and stretched states. Results On average, the paraxial on-axis lens power was 52.0 ± 3.4 D in the unstretched state and 32.5 ± 5.1 D in the stretched state. In both states, the lens power increased with increasing delivery angle. From 0° to +20°, the relative peripheral lens power increased by 10.7 ± 1.4 D in the unstretched state and 7.5 ± 1.6 D in the stretched state. The change in field curvature with accommodation was statistically significant (P < 0.001), indicating that the unstretched (accommodated) lens has greater curvature or relative peripheral power. Conclusions The cynomolgus monkey lens has significant accommodation-dependent curvature of field, which suggests that the lens asserts a significant contribution to the peripheral optical performance of the eye that also varies with the state of accommodation.
NASA Astrophysics Data System (ADS)
Morikawa, Satoshi; Satake, Yuji; Takashiri, Masayuki
2018-06-01
The effects of crystal orientation and grain size on the thermoelectric properties of Bi2Te3 thin films were investigated by conducting experimental and theoretical analyses. To vary the crystal orientation and grain size, we performed oblique deposition, followed by thermal annealing treatment. The crystal orientation decreased as the oblique angle was increased, while the grain size was not changed significantly. The thermoelectric properties were measured at room temperature. A theoretical analysis was performed using a first principles method based on density functional theory. Then the semi-classical Boltzmann transport equation was used in the relaxation time approximation, with the effect of grain size included. Furthermore, the effect of crystal orientation was included in the calculation based on a simple semi-experimental model. A maximum power factor of 11.6 µW/(cm·K2) was obtained at an oblique angle of 40°. The calculated thermoelectric properties were in very good agreement with the experimentally measured values.
Relationship of individual scapular anatomy and degenerative rotator cuff tears.
Moor, Beat K; Wieser, Karl; Slankamenac, Ksenija; Gerber, Christian; Bouaicha, Samy
2014-04-01
The etiology of rotator cuff disease is age related, as documented by prevalence data. Despite conflicting results, growing evidence suggests that distinct scapular morphologies may accelerate the underlying degenerative process. The purpose of the present study was to evaluate the predictive power of 5 commonly used radiologic parameters of scapular morphology to discriminate between patients with intact rotator cuff tendons and those with torn rotator cuff tendons. A pre hoc power analysis was performed to determine the sample size. Two independent readers measured the acromion index, lateral acromion angle, and critical shoulder angle on standardized anteroposterior radiographs. In addition, the acromial morphology according to Bigliani and the acromial slope were determined on true outlet views. Measurements were performed in 51 consecutive patients with documented degenerative rotator cuff tears and in an age- and sex-matched control group of 51 patients with intact rotator cuff tendons. Receiver operating characteristic analyses were performed to determine cutoff values and to assess the sensitivity and specificity of each parameter. Patients with degenerative rotator cuff tears demonstrated significantly higher acromion indices, smaller lateral acromion angles, and larger critical shoulder angles than patients with intact rotator cuffs. However, no difference was found between the acromial morphology according to Bigliani and the acromial slope. With an area under the receiver operating characteristic curve of 0.855 and an odds ratio of 10.8, the critical shoulder angle represented the strongest predictor for the presence of a rotator cuff tear. The acromion index, lateral acromion angle, and critical shoulder angle accurately predict the presence of degenerative rotator cuff tears. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
On the Skill of Balancing While Riding a Bicycle
Cain, Stephen M.; Ashton-Miller, James A.; Perkins, Noel C.
2016-01-01
Humans have ridden bicycles for over 200 years, yet there are no continuous measures of how skill differs between novice and expert. To address this knowledge gap, we measured the dynamics of human bicycle riding in 14 subjects, half of whom were skilled and half were novice. Each subject rode an instrumented bicycle on training rollers at speeds ranging from 1 to 7 m/s. Steer angle and rate, steer torque, bicycle speed, and bicycle roll angle and rate were measured and steering power calculated. A force platform beneath the roller assembly measured the net force and moment that the bicycle, rider and rollers exerted on the floor, enabling calculations of the lateral positions of the system centers of mass and pressure. Balance performance was quantified by cross-correlating the lateral positions of the centers of mass and pressure. The results show that all riders exhibited similar balance performance at the slowest speed. However at higher speeds, the skilled riders achieved superior balance performance by employing more rider lean control (quantified by cross-correlating rider lean angle and bicycle roll angle) and less steer control (quantified by cross-correlating steer rate and bicycle roll rate) than did novice riders. Skilled riders also used smaller steering control input with less variation (measured by average positive steering power and standard deviations of steer angle and rate) and less rider lean angle variation (measured by the standard deviation of the rider lean angle) independent of speed. We conclude that the reduction in balance control input by skilled riders is not due to reduced balance demands but rather to more effective use of lean control to guide the center of mass via center of pressure movements. PMID:26910774
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
Interplanetary scintillation at large elongation angles: Response to solar wind density structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erskine, F.T.; Cronyn, W.M.; Shawhan, S.D.
1978-09-01
Synoptic interplanetary scintillation (IPS) index measurements were taken at 34.3 MHz during May-December 1974 using the University of Iowa Coca Cross radiotelescope on a 'grid' of 150 selected radio sources covering solar elongation angles up to 180/sup 0/. Over 80 of these sources displayed definite IPS. The solar elongation dependence of the 34.3-MHz IPS index is consistent with the elongation angle dependence measured at higher frequencies. Large enhancements (factors of> or approx. =2) of the IPS index are found to coincide with the solar wind (proton density increases greater than 10 cm/sup -3/ as measured by Imp 7 and 8more » for nearly all observed IPS sources throughout the sky. These 'all-sky' IPS enhancements appear to be caused by incresed contributions to the scintillation power by turbulent plasma in regions close to the earth (< or approx. =0.3AU) in all directions. Correlation analysis confirms the IPS response to solar wind density and indicates that the events are due primarily to the corotating solar wind turbulent plasma structures which dominated the interplanetary medium during 1974. The expected IPS space-time signature for a simple model of an approaching corotating turbulent structure is not apparent in our observations. In some cases, the enhancement variatons can be attributed to structural differences in the solar wind density turbulence in and out of the ecliptic.« less
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Painter, T. H.; Richardson, M.; Wallach, A.; Deems, J. S.; Bormann, K. J.
2017-12-01
The Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) uses an airborne laser scanner to map snow depth, and imaging spectroscopy to map snow albedo in order to estimate snow water equivalent and melt rate over mountainous, hydrologic basin-scale areas. Optimization of planned flight lines requires the balancing of many competing factors, including flying altitude and speed, bank angle limitation, laser pulse rate and power level, flightline orientation relative to terrain, surface optical properties, and data output requirements. These variables generally distill down to cost vs. higher resolution data. The large terrain elevation variation encountered in mountainous terrain introduces the challenge of narrow swath widths over the ridgetops, which drive tight flightline spacing and possible dropouts over the valleys due to maximum laser range. Many of the basins flown by ASO exceed 3,000m of elevation relief, exacerbating this problem. Additionally, sun angle may drive flightline orientations for higher-quality spectrometer data, which may change depending on time of day. Here we present data from several ASO missions, both operational and experimental, showing the lidar performance and accuracy limitations for a variety of operating parameters. We also discuss flightline planning strategies to maximize data density return per dollar, and a brief analysis on the effect of short turn times/steep bank angles on GPS position accuracy.
Structure of gamma-ray burst jets: intrinsic versus apparent properties
NASA Astrophysics Data System (ADS)
Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.
2015-07-01
With this paper we introduce the concept of apparent structure of a gamma-ray burst (GRB) jet, as opposed to its intrinsic structure. The latter is customarily defined specifying the functions ɛ(θ) (the energy emitted per jet unit solid angle) and Γ(θ) (the Lorentz factor of the emitting material); the apparent structure is instead defined by us as the isotropic equivalent energy Eiso(θv) as a function of the viewing angle θv. We show how to predict the apparent structure of a jet given its intrinsic structure. We find that a Gaussian intrinsic structure yields a power-law apparent structure: this opens a new viewpoint on the Gaussian (which can be understood as a proxy for a realistic narrow, well-collimated jet structure) as a possible candidate for a quasi-universal GRB jet structure. We show that such a model (a) is consistent with recent constraints on the observed luminosity function of GRBs; (b) implies fewer orphan afterglows with respect to the standard uniform model; (c) can break out the progenitor star (in the collapsar scenario) without wasting an unreasonable amount of energy; (d) is compatible with the explanation of the Amati correlation as a viewing angle effect; (e) can be very standard in energy content, and still yield a very wide range of observed isotropic equivalent energies.
Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V
2011-02-28
We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
On a third-order shear deformation theory for laminated composite shells
NASA Technical Reports Server (NTRS)
Liu, C. F.; Reddy, J. N.
1986-01-01
A higher-order theory based on an assumed displacement field in which the surface displacements are expanded in powers of the thickness coordinate up to the third order is presented. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for small strains but moderately large displacements (i.e., von Karman strains). A finite-element model based on independent approximations of the displacements and bending moments (i.e., mixed formulation) is developed. The element is used to analyze cross-ply and angle-ply laminated shells for bending.
Eigenmode multiplexing with SLM for volume holographic data storage
NASA Astrophysics Data System (ADS)
Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru
2017-08-01
The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.
Engineering studies related to Skylab program. [assessment of automatic gain control data
NASA Technical Reports Server (NTRS)
Hayne, G. S.
1973-01-01
The relationship between the S-193 Automatic Gain Control data and the magnitude of received signal power was studied in order to characterize performance parameters for Skylab equipment. The r-factor was used for the assessment and is defined to be less than unity, and a function of off-nadir angle, ocean surface roughness, and receiver signal to noise ratio. A digital computer simulation was also used to assess to additive receiver, or white noise. The system model for the digital simulation is described, along with intermediate frequency and video impulse response functions used, details of the input waveforms, and results to date. Specific discussion of the digital computer programs used is also provided.
Bhattacharya, Kaushik; Mohanty, Subhendra; Rangarajan, Raghavan
2006-03-31
If the initial state of the inflaton field is taken to have a thermal distribution instead of the conventional zero particle vacuum state then the curvature power spectrum gets modified by a temperature dependent factor such that the fluctuation spectrum of the microwave background radiation is enhanced at larger angles. We compare this modified cosmic microwave background spectrum with Wilkinson microwave anisotropy probe data to obtain an upper bound on the temperature of the inflaton at the time our current horizon crossed the horizon during inflation. We further conclude that there must be additional -foldings of inflation beyond what is needed to solve the horizon problem.
Performance and durability tests of smart icephobic coatings to reduce ice adhesion
NASA Astrophysics Data System (ADS)
Janjua, Zaid A.; Turnbull, Barbara; Choy, Kwang-Leong; Pandis, Christos; Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So
2017-06-01
The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.
Distributed Bragg reflector tapered diode lasers emitting more than 10 W at 1154 nm
NASA Astrophysics Data System (ADS)
Feise, D.; Bugge, F.; Matalla, M.; Thies, A.; Ressel, P.; Blume, G.; Hofmann, J.; Paschke, K.
2018-02-01
Distributed Bragg reflector tapered diode lasers (DBR-TPL) emitting at 1154 nm are ideal light sources to be implemented into medical devices and hand-held tools for treatment in dermatology and ophthalmology at 577 nm due to their high spectral radiance enabling second harmonic generation from near infrared to yellow. In this work, we present DBR-TPLs which are able to emit more than 10 W in continuous-wave operation with a narrow spectral emission at 1154 nm and a very good beam quality providing excellent spectral radiance. The investigated DBRTPLs are based on three different epitaxial structures with varying vertical far field angles of 35°, 26°, and 17°. To optimize the coupling efficiency into non-linear crystals we studied DBR-TPL with a vertical far field angle of approx. 17° based on an asymmetrical super large optical cavity epitaxial structure. At a pump current of 18 A these devices are able to emit more than 9 W at 25°C and nearly 11 W at 10°C. The spectral emission is very narrow (ΔλFWHM = 18 pm) and single mode over the entire current range. While the beam quality factor M2 according to the 1/e2-level remains 1.1, the M2 according to second order moments deteriorates when the laser is pumped with higher currents. Therefore, the power content in the central lobe increases somewhat less rapidly than the total power.
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy
Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.
2015-01-01
Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700–950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. PMID:26537060
NASA Astrophysics Data System (ADS)
Ahmed, Ali
2017-03-01
Finite element (FE) analyses were performed to explore the prying influence on moment-rotation behaviour and to locate yielding zones of top- and seat-angle connections in author's past research studies. The results of those FE analyses with experimental failure strategies of the connections were used to develop failure mechanisms of top- and seat-angle connections in the present study. Then a formulation was developed based on three simple failure mechanisms considering bending and shear deformations, effects of prying action on the top angle and stiffness of the tension bolts to estimate rationally the ultimate moment M u of the connection, which is a vital parameter of the proposed four-parameter power model. Applicability of the proposed formulation is assessed by comparing moment-rotation ( M- θ r ) curves and ultimate moment capacities with those measured by experiments and estimated by FE analyses and three-parameter power model. This study shows that proposed formulation and Kishi-Chen's method both achieved close approximation driving M- θ r curves of all given connections except a few cases of Kishi-Chen model, and M u estimated by the proposed formulation is more rational than that predicted by Kishi-Chen's method.
Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng
2018-03-01
Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-06-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
Dumas, R; Cheze, L
2008-08-01
Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.
NASA Astrophysics Data System (ADS)
Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.
2018-02-01
Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.
2016-10-01
This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Kinematic properties of the helicopter in coordinated turns
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Jeske, J. A.
1981-01-01
A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.
Walker, Peter S; Yildirim, Gokce; Sussman-Fort, Jon; Roth, Jonathan; White, Brian; Klein, Gregg R
2007-08-01
Maximum flexion-or impingement angle-is defined as the angle of flexion when the posterior femoral cortex impacts the posterior edge of the tibial insert. We examined the effects of femoral component placement on the femur, the slope angle of the tibial component, the location of the femoral-tibial contact point, and the amount of internal or external rotation. Posterior and proximal femoral placement, a more posterior femoral-tibial contact point, and a more tibial slope all increased maximum flexion, whereas rotation reduced it. A mobile-bearing knee gave results similar to those of the fixed-bearing knee, but there was no loss of flexion in internal or external rotation if the mobile bearing moved with the femur. In the absence of negative factors, a flexion angle of 150 degrees can be reached before impingement.
Measurement of first ray of foot with reference to hallux valgus.
Howale, Deepak S; Iyer, Kanaklata V; Shah, Jigesh V
2012-06-01
A study was carried out on 58 healthy volunteers. None of the volunteeres had any foot complaints. This was done to study Indian feet, as foot is an important part of human anatomy and its certain deformities eg, hallux valgus, can be very disabling. We have studied anatomical angles between 1st and 2nd rays of foot eg, angle of hallux valgus and angle of slant of distal facet of medial cuneiform and have shown significant correlation between them and development of hallux valgus. The coefficient of correlation (r) calculated between these two angles is significant, showing that this angle influences the angle of hallux valgus and hence development of hallux valgus. These are anatomical angles and indicate shapes of medial cuneiform and 1st metatarsal. Hence these seem to be inherited, making the feet anatomically predisposed to develop hallux valgus. This view is supported by Gray's Anatomy. The extrinsic factors such as narrow toes, closed, footwear worn for an extended period do increase the angle of hallux valgus. So, in predisposed feet, this is one of the extrinsic factor which can lead to development of hallux valgus. On studying these two angles, orthopaedicians should be on alert and should advise such individuals on wearing foot- friendly foot-wear.
Park, Jaeyong; Lee, Sang Gil; Bae, Jongjin; Lee, Jung Chul
2015-12-01
[Purpose] This study aimed to provide a predictable evaluation method for the progression of scoliosis in adolescents based on quick and reliable measurements using the naked eye, such as the calcaneal valgus angle of the foot, which can be performed at public facilities such as schools. [Subjects and Methods] Idiopathic scoliosis patients with a Cobb's angle of 10° or more (96 females, 22 males) were included in this study. To identify relationships between factors, Pearson's product-moment correlation coefficient was computed. The degree of scoliosis was set as a dependent variable to predict thoracic and lumbar scoliosis using ankle angle and physique factors. Height, weight, and left and right calcaneal valgus angles were set as independent variables; thereafter, multiple regression analysis was performed. This study extracted variables at a significance level (α) of 0.05 by applying a stepwise method, and calculated a regression equation. [Results] Negative correlation (R=-0.266) was shown between lumbar lordosis and asymmetrical lumbar rotation angles. A correlation (R=0.281) was also demonstrated between left calcaneal valgus angles and asymmetrical thoracic rotation angles. [Conclusion] Prediction of scoliosis progress was revealed to be possible through ocular inspection of the calcaneus and Adams forward bending test and the use of a scoliometer.
NASA Astrophysics Data System (ADS)
Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy
2016-01-01
We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between observer direction and incident light rays; this regime is relevant for the study of AGN blazars in JAB simulations.
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
NASA Technical Reports Server (NTRS)
Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
Factors leading to the computer vision syndrome: an issue at the contemporary workplace.
Izquierdo, Juan C; García, Maribel; Buxó, Carmen; Izquierdo, Natalio J
2007-01-01
Vision and eye related problems are common among computer users, and have been collectively called the Computer Vision Syndrome (CVS). An observational study in order to identify the risk factors leading to the CVS was done. Twenty-eight participants answered a validated questionnaire, and had their workstations examined. The questionnaire evaluated personal, environmental, ergonomic factors, and physiologic response of computer users. The distance from the eye to the computers' monitor (A), the computers' monitor height (B), and visual axis height (C) were measured. The difference between B and C was calculated and labeled as D. Angles of gaze to the computer monitor were calculated using the formula: angle=tan-1(D/A). Angles were divided into two groups: participants with angles of gaze ranging from 0 degree to 13.9 degrees were included in Group 1; and participants gazing at angles larger than 14 degrees were included in Group 2. Statistical analysis of the evaluated variables was made. Computer users in both groups used more tear supplements (as part of the syndrome) than expected. This association was statistically significant (p < 0.10). Participants in Group 1 reported more pain than participants in Group 2. Associations between the CVS and other personal or ergonomic variables were not statistically significant. Our findings show that the most important factor leading to the syndrome is the angle of gaze at the computer monitor. Pain in computer users is diminished when gazing downwards at angles of 14 degrees or more. The CVS remains an under estimated and poorly understood issue at the workplace. The general public, health professionals, the government, and private industries need to be educated about the CVS.
Factors leading to the Computer Vision Syndrome: an issue at the contemporary workplace.
Izquierdo, Juan C; García, Maribel; Buxó, Carmen; Izquierdo, Natalio J
2004-01-01
Vision and eye related problems are common among computer users, and have been collectively called the Computer Vision Syndrome (CVS). An observational study in order to identify the risk factors leading to the CVS was done. Twenty-eight participants answered a validated questionnaire, and had their workstations examined. The questionnaire evaluated personal, environmental, ergonomic factors, and physiologic response of computer users. The distance from the eye to the computers' monitor (A), the computers' monitor height (B), and visual axis height (C) were measured. The difference between B and C was calculated and labeled as D. Angles of gaze to the computer monitor were calculated using the formula: angle=tan(-1)(D/ A). Angles were divided into two groups: participants with angles of gaze ranging from 0 degrees to 13.9 degrees were included in Group 1; and participants gazing at angles larger than 14 degrees were included in Group 2. Statistical analysis of the evaluated variables was made. Computer users in both groups used more tear supplements (as part of the syndrome) than expected. This association was statistically significant (p<0.10). Participants in Group 1 reported more pain than participants in Group 2. Associations between the CVS and other personal or ergonomic variables were not statistically significant. Our findings show that most important factor leading to the syndrome is the angle of gaze at the computer monitor. Pain in computer users is diminished when gazing downwards at angles of 14 degrees or more. The CVS remains an under estimated and poorly understood issue at the workplace. The general public, health professionals, the government, and private industries need to be educated about the CVS.
14 CFR 125.226 - Digital flight data recorders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this section, no person may operate under this part a turbine-engine-powered transport category... selection; (37) Drift angle (when an information source is installed); (38) Wind speed and direction (when... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on or...
14 CFR 125.226 - Digital flight data recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section, no person may operate under this part a turbine-engine-powered transport category... selection; (37) Drift angle (when an information source is installed); (38) Wind speed and direction (when... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on or...
14 CFR 125.226 - Digital flight data recorders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... this section, no person may operate under this part a turbine-engine-powered transport category... selection; (37) Drift angle (when an information source is installed); (38) Wind speed and direction (when... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on or...
14 CFR 125.226 - Digital flight data recorders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... this section, no person may operate under this part a turbine-engine-powered transport category... selection; (37) Drift angle (when an information source is installed); (38) Wind speed and direction (when... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on or...
14 CFR 125.226 - Digital flight data recorders.
Code of Federal Regulations, 2011 CFR
2011-01-01
... this section, no person may operate under this part a turbine-engine-powered transport category... selection; (37) Drift angle (when an information source is installed); (38) Wind speed and direction (when... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on or...
Pull out strength calculator for pedicle screws using a surrogate ensemble approach.
Varghese, Vicky; Ramu, Palaniappan; Krishnan, Venkatesh; Saravana Kumar, Gurunathan
2016-12-01
Pedicle screw instrumentation is widely used in the treatment of spinal disorders and deformities. Currently, the surgeon decides the holding power of instrumentation based on the perioperative feeling which is subjective in nature. The objective of the paper is to develop a surrogate model which will predict the pullout strength of pedicle screw based on density, insertion angle, insertion depth and reinsertion. A Taguchi's orthogonal array was used to design an experiment to find the factors effecting pullout strength of pedicle screw. The pullout studies were carried using polyaxial pedicle screw on rigid polyurethane foam block according to American society for testing of materials (ASTM F543). Analysis of variance (ANOVA) and Tukey's honestly significant difference multiple comparison tests were done to find factor effect. Based on the experimental results, surrogate models based on Krigging, polynomial response surface and radial basis function were developed for predicting the pullout strength for different combination of factors. An ensemble of these surrogates based on weighted average surrogate model was also evaluated for prediction. Density, insertion depth, insertion angle and reinsertion have a significant effect (p <0.05) on pullout strength of pedicle screw. Weighted average surrogate performed the best in predicting the pull out strength amongst the surrogate models considered in this study and acted as insurance against bad prediction. A predictive model for pullout strength of pedicle screw was developed using experimental values and surrogate models. This can be used in pre-surgical planning and decision support system for spine surgeon. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/
NASA Technical Reports Server (NTRS)
Singh, N.; Raitt, W. J.; Yasuhara, F.
1982-01-01
Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.
Been, Ella; Kalichman, Leonid
2014-01-01
Lumbar lordosis is a key postural component that has interested both clinicians and researchers for many years. Despite its wide use in assessing postural abnormalities, there remain many unanswered questions regarding lumbar lordosis measurements. Therefore, in this article we reviewed different factors associated with the lordosis angle based on existing literature and determined normal values of lordosis. We reviewed more than 120 articles that measure and describe the different factors associated with the lumbar lordosis angle. Because of a variety of factors influencing the evaluation of lumbar lordosis such as how to position the patient and the number of vertebrae included in the calculation, we recommend establishing a uniform method of evaluating the lordosis angle. Based on our review, it seems that the optimal position for radiologic measurement of lordosis is standing with arms supported while shoulders are flexed at a 30° angle. There is evidence that many factors, such as age, gender, body mass index, ethnicity, and sport, may affect the lordosis angle, making it difficult to determine uniform normal values. Normal lordosis should be determined based on the specific characteristics of each individual; we therefore presented normal lordosis values for different groups/populations. There is also evidence that the lumbar lordosis angle is positively and significantly associated with spondylolysis and isthmic spondylolisthesis. However, no association has been found with other spinal degenerative features. Inconclusive evidence exists for association between lordosis and low back pain. Additional studies are needed to evaluate these associations. The optimal lordotic range remains unknown and may be related to a variety of individual factors such as weight, activity, muscular strength, and flexibility of the spine and lower extremities. Copyright © 2014 Elsevier Inc. All rights reserved.
Drexler, Michael; Abolghasemian, Mansour; Barbuto, Richard; Naini, Mohsen S; Voshmeh, Neda; Rutenberg, Tal F; Schwarzkopf, Ran; Backstein, David J
2017-05-01
Valgus cut angle (VCA), defined as the angle between the anatomical and the mechanical axes of femur, is an important parameter upon which a critical step of knee arthroplasty is based. Some variables have been proposed to affect the magnitude of this cut. However, little information is available regarding whether a generic value can be used, or if a patient-specific value from a long leg X-ray, or factors that can be determined preoperatively, is necessary to accurately set the VCA. Standard standing 3-joint views were used to measure a number of anatomical measurements in 358 limbs, 202 patients (116 women, 86 men). Neck-shaft angle, medial offset, femoral length (FL), distal femoral articular angle, and VCA were measured. Demographic data including gender and height were extracted from hospital charts. The correlation of VCA with each of the other factors was evaluated using linear regression and t-test and finally multivariate analysis. The average VCA was 5.76° (range 4-8). Gender and distal femoral articular angle were not related to VCA (P = .343 and .995). FL was found to be a function of height with similar effects on multivariate analysis. Only the height (or FL) and femoral offset were identified as independent factors, with a negative correlation for the former (P < .001) and a positive correlation for the latter (P < .001). Femoral offset and height are the 2 independent factors determining VCA. Other parameters are indirectly related to these 2 factors. Tall patients with a small femoral offset have smaller VCA and short patients with a large offset have larger VCA. The wide variety of VCA values does not support using a generic value for all patients during knee arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
NASA Astrophysics Data System (ADS)
Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo
2016-09-01
Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.
Parametric Blade Study Test Report Rotor Configuration. Number 2
1988-11-01
Incidence Angle (100% N) .............. 51 9 Rotor Relative Inlet Mach Number (100% N) ... 51 1G Rotor Loss Coefficient (100% N) ............. 52 11 Rotor...Diffusion Factor (100% N) ............. 52 12 Rotor Deviation Angle (100% N) .............. 53 13 Stator Incidence Angle (100% N) ............. 53 14...78 50 Stator Deviation Angle (90% N) .............. 79 51 Stator Loss Coefficient (90% N) ............. 79 52 Static Pressure Distribution
Control scheme for power modulation of a free piston Stirling engine
Dhar, Manmohan
1989-01-01
The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.
NASA Technical Reports Server (NTRS)
Paulson, J. W., Jr.; Thomas, J. L.
1979-01-01
Investigations of the low speed longitudinal characteristics of two powered close coupled wing-canard fighter configurations are discussed. Data obtained at angles of attack from -2 deg to 42 deg, Mach numbers from 0.12 to 0.20, nozzle and flap deflections from 0 deg to 40 deg, and thrust coefficients from 0 to 2.0, to represent both high angle of attack subsonic maneuvering characteristics and conventional takeoff and landing characteristics are examined. Data obtained with the nozzles deflected either 60 deg or 90 deg and the flaps deflected 60 deg to represent vertical or short takeoff and landing characteristics are discussed.
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Wolhart, Walter D.; Fletcher, H. S.
1953-01-01
An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
Relation between self-organized criticality and grain aspect ratio in granular piles
NASA Astrophysics Data System (ADS)
Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.
2012-05-01
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
Medium power hydrogen arcjet performance
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.
1991-01-01
An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.
Terrain-analysis procedures for modeling radar backscatter
Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis
1978-01-01
The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.
NASA Technical Reports Server (NTRS)
Garrison, Charlie C.
1949-01-01
A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.
Risk factors for degenerative spondylolisthesis: a systematic review
DeVine, John G.; Schenk-Kisser, Jeannette M.; Skelly, Andrea C.
2012-01-01
Study design: Systematic literature review. Rationale: Many authors have postulated on various risk factors associated with the pathogenesis of degenerative spondylolisthesis (DS), yet controversies regarding those risk factors still exist. Objective: To critically appraise and summarize evidence on risk factors for DS. Methods: Articles published before October 15, 2011, were systematically reviewed using PubMed and bibliographies of key articles. Each article was subject to quality rating and was analyzed by two independent reviewers. Results: From 382 citations, 30 underwent full-text review. Fourteen studies met inclusion criteria. All but two were considered poor quality. Female gender and higher facet joint angle were consistently associated with an increased risk of DS across multiple studies. Multiple studies also consistently reported no association between back pain and prolonged occupational sitting. Associations between age, parity, lumbosacral angle, lumbar lordosis, facet joint tropism, and pelvic inclination angles were inconsistent. Conclusions: There appears to be consistent evidence to suggest that the risk of DS increases with increasing age and is greater for females and people with a greater facet joint angle. PMID:23230415
Tentative civil airworthiness flight criteria for powered-lift transports
NASA Technical Reports Server (NTRS)
Hynes, C. S.; Scott, B. C.
1976-01-01
Representatives of the U.S., British, French, and Canadian airworthiness authorities participated in a NASA/FAA program to formulate tentative civil airworthiness flight criteria for powered-lift transports. The ultimate limits of the flight envelope are defined by boundaries in the airspeed/path-angle plane. Angle of attack and airspeed margins applied to these ultimate limits provide protection against both atmospheric disturbances and disturbances resulting from pilot actions or system variability, but do not ensure maneuvering capability directly, as the 30% speed margin does for conventional transports. Separate criteria provide for direct demonstration of adequate capability for approach path control, flare and landing, and for go-around. Demonstration maneuvers are proposed, and appropriate abuses and failures are suggested. Taken together, these criteria should permit selection of appropriate operating points within the flight envelopes for the approach, landing, and go-around flight phases which are likely to be most critical for powered-lift aircraft.
Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon
2017-09-28
See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Ambiguities in the retrieval of rain rates from radar returns at attenuating wavelengths
NASA Technical Reports Server (NTRS)
Haddad, Z. S.; Im, E.; Durden, S. L.
1993-01-01
It is well-known that there are significant deterministic ambiguities inherent in trying to determine the particular rain rate profile which produced some given sequence of air- or space-borne radar echo powers at a single attenuating frequency. We quantify these ambiguities mathematically, and examine their effect on various proposed rain-rate profile retrieval algorithms. When the given data consist of a single radiometer measurement together with a single-look-angle single-frequency set of range-compressed echo powers, we show that several substantially different rain profiles can realistically be considered solutions. On the other hand, if the data consist of a single-look-angle two-frequency set of echo powers, the inversion problem generically has a unique solution. We note that traditional 'back-of-the-envelope' arguments can be quite misleading in assessing the extent of the ambiguity, even in the simplest cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovsky, V. V., E-mail: vkochar@physics.tamu.edu; Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242; Kocharovsky, VI. V.
Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals ofmore » observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions.« less
A new parameterization of an empirical model for wind/ocean scatterometry
NASA Technical Reports Server (NTRS)
Woiceshyn, P. M.; Wurtele, M. G.; Boggs, D. H.; Mcgoldrick, L. F.; Peteherych, S.
1984-01-01
The power law form of the SEASAT A Scatterometer System (SASS) empirical backscatter-to-wind model function does not uniformly meet the instrument performance over the range 4 to 24 /ms. Analysis indicates that the horizontal polarization (H-Pol) and vertical polarization (V-Pol) components of the benchmark SASS1 model function yield self-consistent results only for a small mid-range of speeds at larger incidence angles, and for a somewhat larger range of speeds at smaller incidence angles. Comparison of SASS1 to in situ data over the Gulf of Alaska region further underscores the shortcomings of the power law form. Finally, a physically based empirical SASS model is proposed which corrects some of the deficiencies of power law models like SASS1. The new model allows the mutual determination of sea surface wind stress and wind speed in a consistent manner from SASS backscatter measurements.
Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion
NASA Astrophysics Data System (ADS)
Razak, N. A.; Dimitriadis, G.; Razaami, A. F.
2017-07-01
Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.
Power and Empowerment in the Classroom
ERIC Educational Resources Information Center
Kissen, Rita M.
2004-01-01
Maughn Rollins Gregory's essay raises questions about power and authority that are at the heart of the teaching enterprise. Each of Gregory's four episodes illuminates this essential conundrum from a different angle: the disempowerment of a teacher by an administrator responding to student homophobia; the effort to normalize difference through…
Yang, Song-Ling; Chen, Shih-Ming; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan
2013-02-01
CuO is doped into (Na(0.5)K(0.5))NbO(3) (NKN) ceramics to improve the piezoelectric properties and thus obtain a piezoelectric transformer (PT) with high output power. In X-ray diffraction patterns, the diffraction angles of the CuO-doped NKN ceramics shift to lower values because of an expansion of the lattice volume, thus inducing oxygen vacancies and enhancing the mechanical quality factor. A homogeneous microstructure is obtained when NKN is subjected to CuO doping, leading to improved electrical properties. PTs with different electrode areas are fabricated using the CuO-doped NKN ceramics. Considering the efficiency, voltage gain, and temperature rise of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm are combined with the circuit design for driving a 13-W T5 fluorescent lamp. A temperature rise of 6°C and a total efficiency of 82.4% (PT and circuit) are obtained using the present PTs.
Two-dimensional infrared spectroscopy of supercooled water.
Perakis, Fivos; Hamm, Peter
2011-05-12
We present two-dimensional infrared (2D IR) spectra of the OD stretch vibration of isotope diluted water (HOD/H(2)O) from ambient conditions (293 K) down to the metastable supercooled regime (260 K). We observe that spectral diffusion slows down from 700 fs to 2.6 ps as we lower the temperature. A comparison between measurements performed at the magic angle with those at parallel polarization shows that the 2D IR line shape is affected by the frequency-dependent anisotropy decay in the case of parallel polarization, altering the extracted correlation decay. A fit within the framework of an Arrhenius law reveals an activation energy of E(a) = 6.2 ± 0.2 kcal/mol and a pre-exponential factor of 1/A = 0.02 ± 0.01 fs. Alternatively, a power law fit results in an exponent γ = 2.2 and a singularity temperature T(s) = 221 K. We tentatively conclude that the power law provides the better physical picture to describe the dynamics of liquid water around the freezing point.
Cavity enhanced eigenmode multiplexing for volume holographic data storage
NASA Astrophysics Data System (ADS)
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.
Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June
2017-10-03
This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.
A new diffusion matrix for whistler mode chorus waves
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen
2013-10-01
Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.
The influence of patient factors on femoral rotation after total hip arthroplasty.
Tezuka, Taro; Inaba, Yutaka; Kobayashi, Naomi; Choe, Hyonmin; Higashihira, Syota; Saito, Tomoyuki
2018-06-09
A postoperative change in femoral rotation following total hip arthroplasty (THA) might be the cause of dislocation due to the change in combined anteversion. However, very few studies have evaluated the femoral rotation angle following THA, or the factors that influence femoral rotation. We aimed to evaluate changes in femoral rotation after THA, and to investigate preoperative patient factors that influence femoral rotation after THA. This study involved 211 hips treated with primary THA. We used computed tomography to measure the femoral rotation angle before and one week after THA. In addition, multiple regression analysis was performed to evaluate preoperative patient factors that could influence femoral rotation after THA. The femoral rotation angle was 0.2 ± 14° externally before surgery and 4.4 ± 12° internally after surgery (p < 0.001). Multiple regression analysis revealed that sex (β = 0.19; p = 0.003), age (β = 0.15; p = 0.017), preoperative anatomical femoral anteversion (β = - 0.25; p = 0.002), and preoperative femoral rotation angle (β = 0.36; p < 0.001) were significantly associated with the postoperative femoral rotation angle. The final model of the regression formula was described by the following equation: [postoperative femoral rotation angle = 5.41 × sex (female: 0, male: 1) + 0.15 × age - 0.22 × preoperative anatomical femoral anteversion + 0.33 × preoperative femoral rotation angle - 10.1]. The current study showed the mean internal change of 4.6° in the femoral rotation angle one week after THA. Sex, age, preoperative anatomical femoral anteversion and preoperative femoral rotation were associated with postoperative femoral rotation. The patients who were male, older, and who exhibited lesser preoperative anatomical femoral anteversion or greater preoperative femoral rotation angles, tended to demonstrate an externally rotated femur after THA. Conversely, patients who were female, younger, and who exhibited greater preoperative anatomical femoral anteversion or lesser preoperative femoral rotation angles, tended to demonstrate an internal rotation of the femur after THA.
Influence of laser beam incidence angle on laser lap welding quality of galvanized steels
NASA Astrophysics Data System (ADS)
Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan
2017-11-01
Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.
NASA Technical Reports Server (NTRS)
Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.
1991-01-01
Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.
Large angle nonmechanical laser beam steering at 4.6 μm using a digital micromirror device
NASA Astrophysics Data System (ADS)
Lindle, James Ryan; Watnik, Abbie T.
2018-02-01
Large angle, nonmechanical beam steering is demonstrated at 4.62 μm using the digital light processing technology. A 42-deg steering range is demonstrated, limited by the field-of-view of the recollimating lens. The measured diffraction efficiency is 8.1% on-axis and falls-off with a sin2 dependence with the steering angle. However, within the 42-deg steering range, the power varied less than 25%. The profile of the steered laser beam is Gaussian with a divergence of 5.2 mrad. Multibeam, randomly addressable beam steering, is also demonstrated.
Brewster's angle silicon wafer terahertz linear polarizer.
Wojdyla, Antoine; Gallot, Guilhem
2011-07-18
We present a new cost-effective terahertz linear polarizer made from a stack of silicon wafers at Brewster's angle, andevaluate its performances. We show that this polarizer is wide-band, has a high extinction ratio (> 6 × 10(3)) and very small insertion losses (< 1%). We provide measurements of the temporal waveforms after linearly polarizing the THz beam and show that there is no distortion of the pulse. We compare its performances with a commercial wire-grid polarizer, and show that the Brewster's angle polarizer can conveniently be used to control the power of a terahertz beam.
Array Of Sensors Measures Broadband Radiation
NASA Technical Reports Server (NTRS)
Hoffman, James W.; Grush, Ronald G.
1994-01-01
Multiple broadband radiation sensors aimed at various portions of total field of view. All sensors mounted in supporting frame, serving as common heat sink and temperature reference. Each sensor includes heater winding and differential-temperature-sensing bridge circuit. Power in heater winding adjusted repeatedly in effort to balance bridge circuit. Intended to be used aboard satellite in orbit around Earth to measure total radiation emitted, at various viewing angles, by mosaic of "footprint" areas (each defined by its viewing angle) on surface of Earth. Modified versions of array useful for angle-resolved measurements of broadband radiation in laboratory and field settings on Earth.
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
Marion, Bill
2017-03-27
Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.;
2001-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.
Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI
NASA Astrophysics Data System (ADS)
Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.
2017-06-01
Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.
Light Scattered from Polished Optical Surfaces: Wings of the Point Spread Function
NASA Technical Reports Server (NTRS)
Kenknight, C. E.
1984-01-01
Random figure errors from the polishing process plus particles on the main mirrors in a telescope cause an extended point spread function (PSF) declining approximately as the inverse square of the sine of the angle from a star from about 100 micro-rad to a right angle. The decline in at least one case, and probably in general, proceeds as the inverse cube at smaller angles where the usual focal plane aperture radius is chosen. The photometric error due to misalignment by one Airy ring spacing with an aperture of n rings depends on the net variance in the figure. It is approximately 60/(n+1)(3) when using the data of Kormendy (1973). A typical value is 6 x 10 to the -5th power per ring of misalignment with n = 100 rings. The encircled power may be modulated on a time scale of hours by parts per thousand in a wavelength dependent manner due to relative humidity effects on mirror dust. The scattering according to an inverse power law is due to a random walk in aberration height caused by a multitude of facets and slope errors left by the polishing process. A deviation from such a law at grazing emergence may permit monitoring the dust effects.
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
Sensorless optimal sinusoidal brushless direct current for hard disk drives
NASA Astrophysics Data System (ADS)
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
Presenting Your Best Self(ie): The Influence of Gender on Vertical Orientation of Selfies on Tinder
Sedgewick, Jennifer R.; Flath, Meghan E.; Elias, Lorin J.
2017-01-01
When taking a self-portrait or “selfie” to display in an online dating profile, individuals may intuitively manipulate the vertical camera angle to embody how they want to be perceived by the opposite sex. Concepts from evolutionary psychology and grounded cognition suggest that this manipulation can provide cues of physical height and impressions of power to the viewer which are qualities found to influence mate-selection. We predicted that men would orient selfies more often from below to appear taller (i.e., more powerful) than the viewer, and women, from an above perspective to appear shorter (i.e., less powerful). A content analysis was conducted which coded the vertical orientation of 557 selfies from profile pictures on the popular mobile dating application, Tinder. In general, selfies were commonly used by both men (54%) and women (90%). Consistent with our predictions, a gender difference emerged; men's selfies were angled significantly more often from below, whereas women's were angled more often from above. Our findings suggest that selfies presented in a mate-attraction context are intuitively or perhaps consciously selected to adhere to ideal mate qualities. Further discussion proposes that biological or individual differences may also facilitate vertical compositions of selfies. PMID:28484408
Control strategies for wind farm power optimization: LES study
NASA Astrophysics Data System (ADS)
Ciri, Umberto; Rotea, Mario; Leonardi, Stefano
2017-11-01
Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.
sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K
2014-11-25
Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.
Thermophysical Properties of Selected Aerospace Materials. Part 1. Thermal Radiative Properties
1976-01-01
discusses the available data and information, the theoretical guidelines and other factors on which the critical evaluation, analysis, and synthesis of...text and a specification table. The former reviews and discusses the available data and information, the theoretical guidelines and other factors on...conditions 6’ Zenith angle for viewing conditions A6 Half angle of acceptance of optical system K Loss value factor X Wavelength p Reflectance p
Measurements of the reflection factor of flat ground surfaces
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Myles, M. M.; Ver, I. L.
1977-01-01
Measurements are made of the reflection factors of asphalt, concrete, and sod at oblique angles of incidence. Initial measurements were carried out in an anechoic chamber to eliminate the effects of wind and temperature gradients. These were followed by measurements made outdoors over a wider frequency range. Data are presented for the magnitudes of the reflection factors of asphalt, concrete, and sod at angles of incidence of 38 deg and 45 deg.
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.
Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan
2017-01-01
The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between the initial and terminal swing phases. The outcome of this cyclogram adoption approach proposed an insight into the method of determining the causal effect of manipulating a particular joint's mechanical properties toward the joint behavior in an amputee's gait by determining the curve closeness, C, of the modified cyclogram curve to the normal conventional curve, to enable quantitative judgment of the effect of changing a particular parameter in the prosthetic leg gait.
NASA Astrophysics Data System (ADS)
Kankipati, Venkata Varun
This thesis presents a method to determine the angular orientation of a projectile in flight, by mechanically scanning a linearly polarized, microwave reference source. In particular, the research focuses on real time measurement of the roll angle. A 10 GHz, linearly polarized electromagnetic wave is radiated toward the projectile by means of a 10 dB horn antenna. The projectile is equipped with a backward facing 10 dB horn antenna, which has orientation, namely roll angle, sensitivity. The response of the received signal follows a cosine law, producing a maximum when the receiver orientation is aligned with the transmitting polarization. As expected, the peak response shifts in response to the roll-angle, however, unambiguous recovery of the angle requires synchronization with the polarization orientation of the source. This has been achieved through the use of a unique transmitter power sequence, which includes a start-of-scan and end-of-scan time stamp. Based on the above concept, a complete system comprising a polarization scanning reference source, the receiving antenna mounted on a vehicle, and pertinent electronic components, has been tested for both line of sight and non-line of sight applications. The transmitter antenna, mounted on a computer controlled stepper motor allowed source polarization to be scanned from -90° to 90° in 0.3 seconds. The receiving antenna continuously samples the received electromagnetic background at the source frequency and uses a RF detector and a data acquisition system to record the subsequent time-varying voltage signal, which is processed to recover the roll-angle. Measurements in an anechoic chamber were used to confirm the efficacy of the system and field trials, using a transmitter power of 2 W, were successfully demonstrated over a distance of 0.15 miles. The distance limit can be extended by increasing the transmitter power, receiver sensitivity and increase source frequency.
Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su
2015-02-04
We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.
Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.
2005-12-01
Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.
NASA Astrophysics Data System (ADS)
Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir
2018-03-01
This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
Comfort, Paul; Jones, Paul A; McMahon, John J; Newton, Robert
2015-01-01
The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666-.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
NASA Astrophysics Data System (ADS)
Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge
2018-01-01
Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.
Reactor-pumped laser facility at DOE's Nevada Test Site
NASA Astrophysics Data System (ADS)
Lipinski, Ronald J.
1994-05-01
The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the U.S., is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly skilled technical team with extensive engineering and research capabilities from underground testing of our nation's nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of +/- 60 degree(s) from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high- power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a rector pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.
Stanaćević, Milutin; Li, Shuo; Cauwenberghs, Gert
2016-07-01
A parallel micro-power mixed-signal VLSI implementation of independent component analysis (ICA) with reconfigurable outer-product learning rules is presented. With the gradient sensing of the acoustic field over a miniature microphone array as a pre-processing method, the proposed ICA implementation can separate and localize up to 3 sources in mild reverberant environment. The ICA processor is implemented in 0.5 µm CMOS technology and occupies 3 mm × 3 mm area. At 16 kHz sampling rate, ASIC consumes 195 µW power from a 3 V supply. The outer-product implementation of natural gradient and Herault-Jutten ICA update rules demonstrates comparable performance to benchmark FastICA algorithm in ideal conditions and more robust performance in noisy and reverberant environment. Experiments demonstrate perceptually clear separation and precise localization over wide range of separation angles of two speech sources presented through speakers positioned at 1.5 m from the array on a conference room table. The presented ASIC leads to a extreme small form factor and low power consumption microsystem for source separation and localization required in applications like intelligent hearing aids and wireless distributed acoustic sensor arrays.
1998-01-01
equipped with a constant- pressure switch or control: drills; tappers; fastener drivers; horizontal, vertical, and angle grinders with wheels more than...hand-held power tools must be equipped with either a positive “on-off” control switch, a constant pressure switch , or a “lock-on” control: disc sanders...percussion tools with no means of holding accessories securely, must be equipped with a constant- pressure switch that will shut off the power when the
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...
Optically powered and interrogated rotary position sensor for aircraft engine control applications
NASA Astrophysics Data System (ADS)
Spillman, W. B.; Crowne, D. H.; Woodward, D. W.
A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.
The Calibration of the Corneal Light Reflex to Estimate the Degree of an Angle of Deviation.
Tengtrisorn, Supaporn; Tangkijwongpaisarn, Sitthi; Burachokvivat, Somporn
2015-12-01
To measure the conversion factor for the size of an angle of deviation from the clinical photographs of the corneal light reflex. In this cross-sectional study, 19 normal subjects with 20/20 visual acuity were photographed with a digital camera while staring at targets placed five prism diopters (PD) apart from one another on a screen. The subjects were tested at a distance of 1 meter (m) and 4 m from a screen. Measurement of the corneal light reflex displacement for each fixed target was obtained from the photographs. The calibration of the corneal light reflex displacement in millimeters (mm) against the angle of deviation in PD was then analyzed with repeated measure linear regression analysis. At 1 m, the values of 0.047 mm/PD and 0.058 mm/PD were obtained as the conversion factor from reflex displacement to deviated angle for the nasal side and temporal side respectively. At 4 m, the values were 0.050 mm/PD and 0.064 mm/PD for the nasal side and the temporal side respectively. There were significant differences between the values obtained at the different distances, regardless of nasal or temporal side. Conversion factors were presented for estimating the strabismic angle at different distances and gazes. For clinical practice, the use of photographs to estimate the strabismic angle should use different values for different distances and strabismic types.
Franzoni, Linda P; Elliott, Christopher M
2003-10-01
Experiments were performed on an elongated rectangular acoustic enclosure with different levels of absorptive material placed on side walls and an end wall. The acoustic source was a broadband high-frequency sound from a loudspeaker flush-mounted to an end wall of the enclosure. Measurements of sound-pressure levels were averaged in cross sections of the enclosure and then compared to theoretical results. Discrepancies between the experimental results and theoretical predictions that treated all incidence angles as equally probable led to the development of an angle-by-angle approach. The new approach agrees well with the experimentally obtained values. In addition, treating the absorptive material as bulk reacting rather than point reacting was found to significantly change the theoretical value for the absorption coefficient and to improve agreement with experiment. The new theory refines an earlier theory based on power conservation and locally diffuse assumptions. Furthermore, the new theory includes both the angle of incidence effects on the resistive and reactive properties of the absorptive material, and the effects of angle filtering, i.e., that reflecting waves associated with shallow angles become relatively stronger than those associated with steep angles as a function of distance from the source.
NASA Technical Reports Server (NTRS)
Flegel, Ashlie B.
2014-01-01
The purpose of this thesis is to document the impact of incidence angle and Reynolds number variations on the three-dimensional flow field and midspan loss and turning of a two-dimensional section of a variable-speed power-turbine (VSPT) rotor blade. Aerodynamic measurements were obtained in a transonic linear cascade at NASA Glenn Research Center in Cleveland, Ohio. Steady-state data were obtained for 10 incidence angles ranging from +15.8deg to -51.0deg. At each angle, data were acquired at five flow conditions with the exit Reynolds number (based on axial chord) varying over an order-of-magnitude from 2.12×105 to 2.12×106. Data were obtained at the design exit Mach number of 0.72 and at a reduced exit Mach number of 0.35 as required to achieve the lowest Reynolds number. Midspan tota lpressure and exit flow angle data were acquired using a five-hole pitch/yaw probe surveyed on a plane located 7.0 percent axial-chord downstream of the blade trailing edge plane. The survey spanned three blade passages. Additionally, three-dimensional half-span flow fields were examined with additional probe survey data acquired at 26 span locations for two key incidence angles of +5.8deg and -36.7deg. Survey data near the endwall were acquired with a three-hole boundary-layer probe. The data were integrated to determine average exit total-pressure and flow angle as functions of incidence and flow conditions. The data set also includes blade static pressures measured on four spanwise planes and endwall static pressures.
Wireless Orbiter Hang-Angle Inclinometer System
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman
2011-01-01
A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.
NASA Technical Reports Server (NTRS)
Foley, Robert J.; Pendergraft, Odis C., Jr.
1991-01-01
A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.
SOIMUMPs micromirror scanner and its application in laser line generator
NASA Astrophysics Data System (ADS)
Zuo, Hui; Nia, Farzad Hossein; He, Siyuan
2017-01-01
A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Bare, E. Ann
1987-01-01
The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.
Thrust Vector Control for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Ensworth, Clinton B. F.
2013-01-01
Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.
Low-dimensional thermoelectricity in graphene: The case of gated graphene superlattices
NASA Astrophysics Data System (ADS)
Molina-Valdovinos, S.; Martínez-Rivera, J.; Moreno-Cabrera, N. E.; Rodríguez-Vargas, I.
2018-07-01
Low-dimensional thermoelectricity is a key concept in modern thermoelectricity. This concept refers to the possibility to improve thermoelectric performance through redistribution of the density of states by reducing the dimensionality of thermoelectric devices. Among the most successful low-dimensional structures we can find superlattices of quantum wells, wires and dots. In this work, we show that this concept can be extended to cutting-edge materials like graphene. In specific, we carry out a systematic assessment of the thermoelectric properties of quantum well gated graphene superlattices. In particular, we find giant values for the Seebeck coefficient and the power factor by redistributing the density of states through the modulation of the fundamental parameters of the graphene superlattice. Even more important, these giant values can be further improved by choosing appropriately the angle of incidence of Dirac electrons, the number of superlattice periods, the width of the superlattice unit cell as well as the height of the barriers. We also find that the power factor presents a series of giant peaks, clustered in twin fashion, associated to the oscillating nature of the conductance. Finally, we consider that low-dimensional thermoelectricity in graphene and related 2D materials is promising and constitutes a possible route to push forward this exciting field.
Variable-Displacement Hydraulic Drive Unit
NASA Technical Reports Server (NTRS)
Lang, D. J.; Linton, D. J.; Markunas, A.
1986-01-01
Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
Effect of spanwise variations in gust intensity on the lift due to atmospheric turbulence
NASA Technical Reports Server (NTRS)
Diederich, Franklin W; Drischler, Joseph A
1957-01-01
The effect of spanwise variations in gust intensity on the power spectrum directly due to atmospheric turbulence is calculated for several analytic approximations to the correlation function or power spectra of atmospheric turbulence, for several spanwise weighing functions (span loadings), and for various angles of sweepback.
Influence of refractive index and solar concentration on optical power absorption in slabs
NASA Technical Reports Server (NTRS)
Williams, M. D.
1988-01-01
The optical power absorbed by a slab at the focus of a parabolic dish concentrator is calculated. The calculations are plotted versus maximum angle of incidence of irradiation (which corresponds to solar concentration) with absorption coefficient as a parameter for several different indices of refraction that represent real materials.
Wettability and impact dynamics of water droplets on rice ( Oryza sativa L.) leaves
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon
2014-03-01
We investigated the wettability and impact dynamics of water droplets on rice leaves at various leaf inclination angles and orientations. Contact angle, contact angle hysteresis (CAH), and roll-off angle ( α roll) of water droplets were measured quantitatively. Results showed that droplet motion exhibited less resistance along the longitudinal direction. Impact dynamic parameters, such as impact behaviors, maximum spreading factor, contact distance, and contact time were also investigated. Three different impact behaviors were categorized based on the normal component of Weber number irrespective of the inclination angle of the rice leaf. The asymmetric impact behavior induced by the tangential Weber number was also identified. Variation in the maximum spreading factor according to the normal Weber number was measured and compared with theoretical value obtained according to scaling law to show the wettability of the rice leaves. The contact distance of the impacting droplets depended on the inclination angle of the leaves. Along the longitudinal direction of rice leaves, contact distance was farther than that along the transverse direction. This result is consistent with the smaller values of CAH and α roll along the longitudinal direction.
A powered prosthetic ankle joint for walking and running.
Grimmer, Martin; Holgate, Matthew; Holgate, Robert; Boehler, Alexander; Ward, Jeffrey; Hollander, Kevin; Sugar, Thomas; Seyfarth, André
2016-12-19
Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet. To perform the experiments a controller capable of transitions between standing, walking, and running with speed adaptations was developed. In the first case study the system was mounted on an ankle bypass in parallel with the foot of a non-amputee subject. By this method the functionality of hardware and controller was proven. The Walk-Run ankle was capable of mimicking desired torque and angle trajectories in walking and running up to 2.6 m/s. At 4 m/s running, ankle angle could be matched while ankle torque could not. Limited ankle output power resulting from a suboptimal spring stiffness value was identified as a main reason. Further studies have to show to what extent the findings can be transferred to amputees.
Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging
NASA Astrophysics Data System (ADS)
Arena, Francesca; Irrera, Pietro; Consolino, Lorena; Colombo Serra, Sonia; Zaiss, Moritz; Longo, Dario Livio
2018-02-01
Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.
NASA Astrophysics Data System (ADS)
Mikšová, R.; Macková, A.; Malinský, P.
2017-09-01
We have measured the electronic stopping powers of helium and lithium ions in the channelling direction of the Si〈1 0 0〉 crystal. The energy range used (2.0-8.0 MeV) was changed by 200 and 400-keV steps. The ratio α between the channelling and random stopping powers was determined as a function of the angle for 2, 3 and 4 MeV 4He+ ions and for 3 and 6 MeV 7Li+,2+ ions. The measurements were carried out using the Rutherford backscattering spectrometry in the channelling mode (RBS-C) in a silicon-on-insulator material. The experimental channelling stopping-power values measured in the channelling direction were then discussed in the frame of the random energy stopping predictions calculated using SRIM-2013 code and the theoretical unitary convolution approximation (UCA) model. The experimental channelling stopping-power values decrease with increasing ion energy. The stopping-power difference between channelled and randomly moving ions increases with the enhanced initial ion energy. The ratio between the channelling and random ion stopping powers α as a function of the ion beam incoming angle for 2, 3 and 4 MeV He+ ions and for 3 and 6 MeV Li+,2+ ions was observed in the range 0.5-1.
Minich, L L; Tani, L Y; Pantalos, G M
1997-01-01
To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.
Heel and toe driving on fuel cell vehicle
Choi, Tayoung; Chen, Dongmei
2012-12-11
A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.
Numerical simulation of flow field in umbrella wind turbine
NASA Astrophysics Data System (ADS)
Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu; Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu
2018-05-01
Umbrella wind turbine can control the swept area by adjusting the shrinking angle of the rotor so as to ensure that output power is near the rated value. This is very helpful for the utilization of wind energy in sandstorms and typhoon-prone areas of our country. In this paper, Fluent software is used to simulate the velocity field and pressure field of 5kW Umbrella Wind Turbine at 0° 45°and 60°angle of contraction. The results provide a theoretical basis for further improving the power adjustment mechanism of Umbrella Wind Turbines, At the same time, it also provide a reference for our country to perfect the wind energy utilization system about the typhoon environment in the coastal areas.
Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1
NASA Technical Reports Server (NTRS)
Demers, W. J.; Nelson, D. J.; Wainauski, H. S.
1975-01-01
Tests of a full scale variable pitch fan engine to obtain data on the structural characteristics, response times, and fan/core engine compatibility during transient changes in blade angle, fan rpm, and engine power is reported. Steady state reverse thrust tests with a take off nozzle configuration were also conducted. The 1.4 meter diameter, 13 bladed controllable pitch fan was driven by a T55 L 11A engine with power and blade angle coordinated by a digital computer. The tests demonstrated an ability to change from full forward thrust to reverse thrust in less than one (1) second. Reverse thrust was effected through feather and through flat pitch; structural characteristics and engine/fan compatibility were within satisfactory limits.
Optical device for sensing the index of refraction of liquids with high turbidity
NASA Astrophysics Data System (ADS)
Pena-Gomar, M.; Fajardo-Lira, C.; Rosete-Aguilar, Martha; Garcia-Valenzuela, Augusto
2000-12-01
We discuss the use of photo-reflectance near the critical angle (PRCA) to monitor small changes of the RI of highly turbid liquids. The theory of the reflectance of a laser beam near the critical angle for an external medium with a complex RI is summarized. The applicability of PRCA to sense highly turbid media is demonstrated experimentally on bovine milk samples. We give experimental results showing the temporal variation of the refractive index (RI) during three different processes in bovine milk: (1) Mechanical stirring, (2) temperature changes, and (3) pH variations around the isoelectric point of the casein micelles (micelle aggregation). RI changes in the order of a few times 1 X 10-3 are observed during the experiments. The experimental results show that the RI of milk can be used to track physico-chemical changes in time allowing one to measure the time constant of the different process. The design of a compact RI probe for in situ applications is discussed. The miniaturization of such a probe will probably limited by factors other than the loss of sensitivity. A novel angle-of-incidence control which requires only linear displacements of some of the optical components (no rotation) is proposed and shown to be feasible. Such an optical probe may be used in the dairy industry and in general in the food industry or food science research laboratories. It could give additional analytical power to the food scientist, engineer, or technician.
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
Huang, Wei; Ravikumar, Krishnakumar M; Parisien, Marc; Yang, Sichun
2016-12-01
Structural determination of protein-protein complexes such as multidomain nuclear receptors has been challenging for high-resolution structural techniques. Here, we present a combined use of multiple biophysical methods, termed iSPOT, an integration of shape information from small-angle X-ray scattering (SAXS), protection factors probed by hydroxyl radical footprinting, and a large series of computationally docked conformations from rigid-body or molecular dynamics (MD) simulations. Specifically tested on two model systems, the power of iSPOT is demonstrated to accurately predict the structures of a large protein-protein complex (TGFβ-FKBP12) and a multidomain nuclear receptor homodimer (HNF-4α), based on the structures of individual components of the complexes. Although neither SAXS nor footprinting alone can yield an unambiguous picture for each complex, the combination of both, seamlessly integrated in iSPOT, narrows down the best-fit structures that are about 3.2Å and 4.2Å in RMSD from their corresponding crystal structures, respectively. Furthermore, this proof-of-principle study based on the data synthetically derived from available crystal structures shows that the iSPOT-using either rigid-body or MD-based flexible docking-is capable of overcoming the shortcomings of standalone computational methods, especially for HNF-4α. By taking advantage of the integration of SAXS-based shape information and footprinting-based protection/accessibility as well as computational docking, this iSPOT platform is set to be a powerful approach towards accurate integrated modeling of many challenging multiprotein complexes. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias
2013-11-01
By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.
Cosmological CPT violation and CMB polarization measurements
NASA Astrophysics Data System (ADS)
Xia, Jun-Qing
2012-01-01
In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = -2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes -1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter epsilon can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and epsilon. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain epsilon very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on epsilon.
Core shifts, magnetic fields and magnetization of extragalactic jets
NASA Astrophysics Data System (ADS)
Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander
2015-07-01
We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ≃0.1-0.2 divided by the bulk Lorentz factor, Γj. Larger values, e.g. 1/Γj, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ≪1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.
Kaewpornsawan, Kamolporn; Tangsataporn, Suksan; Jatunarapit, Ratiporn
2005-10-01
To find the effectiveness of the early surgery (2-3 years of age)as a very important prognostic factor affecting the outcomes in Thai children with infantile tibia vara and all the prognostic factors including the usefulness of arthrographic study in correcting the deformity. From 1994 to 2004, sixteen children aged average 3.61 years old (2.08-7.0) were treated in Siriraj Hospital and diagnosed as infantile tibia vara by Langenskiold radiographic staging were included in the present study and retrospectively reviewed with an average of 6.4 years follow up (range 6 month - 11.1 years). All cases were initially treated by surgery because of low compliance for brace or brace failure. They consisted of 3 boys and 13 girls. There were 24 legs including the bilateral involvement in 8 cases (2 boy and 6 girls). After arihrography, the midshaft fibular osteotomy was performed then the proximal tibial dome-shaped valgus osteotomy was done and fixed with 2 pins. The desired position was 12 degree knee valgus . The patients were divided in two groups, 1)group A,the successful group with the knee becoming normal without any deformity after single osteotomy, 2)group B,the recurrent group with recurrence of the varus deformity required further corrective osteotomies to make normal axis of the knee. All variables were analyzed and compared between group A and group B. The general characteristics and radiographic findings were recorded in 1)age, 2)sex, 3)side, 4)weight in kilogram and in percentage of normal or overweight(obesity) compared with the standard Thai weight chart, 5)tibiofemoral angle (TFA) pre and postoperative treatment, 6) metaphyseal diaphyseal angle (MDA), 7)the medial physeal slope angle (MPS, 8)The preoperative arthrographic articulo-diaphyseal angle (ADA), 9.arthrographic articulo-medial physeal angle (AMPA). There were 14 legs in group A and the remaining 10 legs were in group B (average 2.4 operations). All cases healed in good alignment of the legs without major complication. All patients who were operated on early before 3 years old were 100% cured by single osteotomy in group A(11 legs). Arthrography was useful in evaluating the knee joint and drawing the angle. Considering the prognostic factors affecting the outcomes after surgery, there were 6 prognostic factors . First, the age less than 3 years old (P<0.001). Second, the normal weight (P<0.047). Third, the Langenskiold stage 1-2 (P=0.002). Fourth, the MPS angle equal or less than 59 degree (P < 0.001). Fifth, the ADA preperative angle equal or less than 18 degrees (P<0.001). Sixth and the last factor, the TFA angle postoperative treatment, equal or more than 10 degrees valgus (mean 13 degrees valgus) (P=0.009).In multivariate analysis with stepwise logistic regression of these 6 prosnostic factors, the MPS angle had the most important significance. The proximal tibial valgus osteotomy was a very important factor(P < 0.001). The 6 prognostic factors and usefulness of arthrography were identified. The authors suggest that surgery should be performed early in Thai children who have met these criterias 1)age of the patients more than 2 years old, 2)Langenskiold roentgenographic characteristics of infantile tibia vara stage 2 or more at the time of diagnosis, 3)Low compliance for brace treatment.or brace failure but not more than 3 years old. The surgery should not be delayed more than 3 years of age by waiting for effectiveness of brace treatment in Thai children with infantile tibia vara. The early proximal valgus dome- shaped osteotomy was a very important controllable prognostic factor by surgeon decision.
NASA Astrophysics Data System (ADS)
Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed
2014-07-01
Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).
Power Management System Design for Solar-Powered UAS
2015-12-01
PV cells would have their own MPPT modules, which would enable two major advantages. The first can be considered more important to land-based solar ...The efficiency of the PV array is represented by ηpv. R represents the solar irradiance, and θ represents the angle between the array and the sun...SYSTEM DESIGN FOR SOLAR -POWERED UAS by Robert T. Fauci III December 2015 Thesis Advisor: Alejandro Hernandez Co-Advisor: Kevin Jones
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.
1989-01-01
A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2017-10-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
2009-09-24
flexion angle, decreased vertical ground-reaction force , and increased hip internal rotation angle during the jump -landing task. Additionally, decreased...was to determine the biomechanical risk factors for PFPS. The specific factors examined were lower extremity kinematics and kinetics during a jump ...ACL Injury [ JUMP -ACL] study) in which baseline data are collected for participants at all 3 service academies (USNA, United States Air Force Academy
Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station
NASA Technical Reports Server (NTRS)
Kamine, Tovy Haber; Bendrick, Gregg A.
2008-01-01
Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement
Henderson, Richard; Chen, Shaoxia; Chen, James Z.; Grigorieff, Nikolaus; Passmore, Lori A.; Ciccarelli, Luciano; Rubinstein, John L.; Crowther, R. Anthony; Stewart, Phoebe L.; Rosenthal, Peter B.
2011-01-01
The comparison of a pair of electron microscope images recorded at different specimen tilt angles provides a powerful approach for evaluating the quality of images, image-processing procedures, or three-dimensional structures. Here, we analyze tilt-pair images recorded from a range of specimens with different symmetries and molecular masses and show how the analysis can produce valuable information not easily obtained otherwise. We show that the accuracy of orientation determination of individual single particles depends on molecular mass, as expected theoretically since the information in each particle image increases with molecular mass. The angular uncertainty is less than 1° for particles of high molecular mass (∼ 50 MDa), several degrees for particles in the range 1–5 MDa, and tens of degrees for particles below 1 MDa. Orientational uncertainty may be the major contributor to the effective temperature factor (B-factor) describing contrast loss and therefore the maximum resolution of a structure determination. We also made two unexpected observations. Single particles that are known to be flexible showed a wider spread in orientation accuracy, and the orientations of the largest particles examined changed by several degrees during typical low-dose exposures. Smaller particles presumably also reorient during the exposure; hence, specimen movement is a second major factor that limits resolution. Tilt pairs thus enable assessment of orientation accuracy, map quality, specimen motion, and conformational heterogeneity. A convincing tilt-pair parameter plot, where 60% of the particles show a single cluster around the expected tilt axis and tilt angle, provides confidence in a structure determined using electron cryomicroscopy. PMID:21939668
Modelling knee flexion effects on joint power absorption and adduction moment.
Nagano, Hanatsu; Tatsumi, Ichiroh; Sarashina, Eri; Sparrow, W A; Begg, Rezaul K
2015-12-01
Knee osteoarthritis is commonly associated with ageing and long-term walking. In this study the effects of flexing motions on knee kinetics during stance were simulated. Extended knees do not facilitate efficient loading. It was therefore, hypothesised that knee flexion would promote power absorption and negative work, while possibly reducing knee adduction moment. Three-dimensional (3D) position and ground reaction forces were collected from the right lower limb stance phase of one healthy young male subject. 3D position was sampled at 100 Hz using three Optotrak Certus (Northern Digital Inc.) motion analysis camera units, set up around an eight metre walkway. Force plates (AMTI) recorded ground reaction forces for inverse dynamics calculations. The Visual 3D (C-motion) 'Landmark' function was used to change knee joint positions to simulate three knee flexion angles during static standing. Effects of the flexion angles on joint kinetics during the stance phase were then modelled. The static modelling showed that each 2.7° increment in knee flexion angle produced 2.74°-2.76° increments in knee flexion during stance. Increased peak extension moment was 6.61 Nm per 2.7° of increased knee flexion. Knee flexion enhanced peak power absorption and negative work, while decreasing adduction moment. Excessive knee extension impairs quadriceps' power absorption and reduces eccentric muscle activity, potentially leading to knee osteoarthritis. A more flexed knee is accompanied by reduced adduction moment. Research is required to determine the optimum knee flexion to prevent further damage to knee-joint structures affected by osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.
Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
Gao, M; Huang, X; Yang, P; Kattawar, G W
2013-08-20
The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.
Czjzek, Mirjam; Ficko-Blean, Elizabeth
2017-01-01
The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.
The balance and harmony of control power for a combat aircraft in tactical maneuvering
NASA Technical Reports Server (NTRS)
Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.
1992-01-01
An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.
Foltyn, Stephen R.
1988-01-01
The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.
Neutron Reflectivity and Grazing Angle Diffraction
Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.
1993-01-01
Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457
Mars Color Imager (MARCI) on the Mars Climate Orbiter
Malin, M.C.; Bell, J.F.; Calvin, W.; Clancy, R.T.; Haberle, R.M.; James, P.B.; Lee, S.W.; Thomas, P.C.; Caplinger, M.A.
2001-01-01
The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (???6 x 6 x 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 1/3 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6?? FOV, which covers ???40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals. Copyright 2001 by the American Geophysical Union.
The Mars Color Imager (MARCI) on the Mars Climate Orbiter
NASA Astrophysics Data System (ADS)
Malin, M. C.; Calvin, W.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S. W.; Thomas, P. C.; Caplinger, M. A.
2001-08-01
The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (~6 × 6 × 12 cm, including baffle; <500 g), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 × 1000 pixel, low noise). The Wide Angle (WA) camera will have the capability to map Mars in five visible and two ultraviolet spectral bands at a resolution of better than 8 km/pixel under the worst case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at
A gallery approach for off-angle iris recognition
NASA Astrophysics Data System (ADS)
Karakaya, Mahmut; Yoldash, Rashiduddin; Boehnen, Christopher
2015-05-01
It has been proven that hamming distance score between frontal and off-angle iris images of same eye differs in iris recognition system. The distinction of hamming distance score is caused by many factors such as image acquisition angle, occlusion, pupil dilation, and limbus effect. In this paper, we first study the effect of the angle variations between iris plane and the image acquisition systems. We present how hamming distance changes for different off-angle iris images even if they are coming from the same iris. We observe that increment in acquisition angle of compared iris images causes the increment in hamming distance. Second, we propose a new technique in off-angle iris recognition system that includes creating a gallery of different off-angle iris images (such as, 0, 10, 20, 30, 40, and 50 degrees) and comparing each probe image with these gallery images. We will show the accuracy of the gallery approach for off-angle iris recognition.
The Relative Contribution of Ankle Moment and Trailing Limb Angle to Propulsive Force during Gait
Hsiao, HaoYuan; Knarr, Brian A.; Higginson, Jill S.; Binder-Macleod, Stuart A.
2014-01-01
A major factor for increasing walking speed is the ability to increase propulsive force. Although propulsive force has been shown to be related to ankle moment and trailing limb angle, the relative contribution of each factor to propulsive force has never been determined. The primary purpose of this study was to quantify the relative contribution of ankle moment and trailing limb angle to propulsive force for able-bodied individuals walking at different speeds. Twenty able-bodied individuals walked at their self-selected and 120% of self-selected walking speed on the treadmill. Kinematic data were collected using an 8-camera motion-capture system. A model describing the relationship between ankle moment, trailing limb angle and propulsive force was obtained through quasi-static analysis. Our main findings were that ankle moment and trailing limb angle each contributes linearly to propulsive force, and that the change in trailing limb angle contributes almost as twice as much as the change in ankle moment to the increase in propulsive force during speed modulation for able-bodied individuals. Able-bodied individuals preferentially modulate trailing limb angle more than ankle moment to increase propulsive force. Future work will determine if this control strategy can be applied to individuals poststroke. PMID:25498289
Experiments with linear compressors for phase shifting in pulse tube crycoolers
NASA Astrophysics Data System (ADS)
Lewis, Michael; Bradley, Peter; Radebaugh, Ray
2012-06-01
For the past year NIST has been investigating the use of mechanical phase shifters as warm expanders for pulse tube cryocoolers. Unlike inertance tubes, which have a limited phase shifting ability at low acoustic powers, mechanical phase shifters have the ability to provide nearly any phase angle between the mass flow and the pressure. We discuss our results with experiments and modeling on a commercially available miniature linear compressor operating as an expander on the warm-end of a 4 K pulse tube, whose temperature is nominally about 35 K. We also present results on experiments with a linear compressor operating at room temperature but coupled to the 4 K stage through secondary regenerators and secondary pulse tubes. Experiments on a small pulse tube test apparatus with both 4He and 3He showed improved efficiency when using the mechanical expander over that of inertance tubes. Phase locking techniques using function generators and power amplifiers for control of phase angle are detailed. The use of expanders demonstrates flexible control in optimizing phase angles for improved cryocooler performance.
Microelectrofluidic lens for variable curvature
NASA Astrophysics Data System (ADS)
Chang, Jong-hyeon; Lee, Eunsung; Jung, Kyu-Dong; Lee, Seungwan; Choi, Minseog; Kim, Woonbae
2012-10-01
This paper presents a tunable liquid lens based on microelectrofluidic technology which integrates electrowetting and microfluidics. In the novel microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. The previous electrowetting lens in which the contact angle changes at the side wall has a certain limitation of the curvature variation because of the contact angle saturation. Although the contact angle saturation also appears in the surface channel of the MEFL, the low surface channel increases the Laplace pressure and it makes the MEFL to have full variation of the optical power possible. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL as well as the electrowetting lens. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. It is expected that the proposed MEFL is able to be widely used because of its full variation of the optical power without the use of oil and digital operation with fast response.
Effect of a rotating propeller on the separation angle of attack
NASA Technical Reports Server (NTRS)
Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.
1993-01-01
The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propellar removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.
NASA Astrophysics Data System (ADS)
Casali, Livia; Covele, Brent; Guo, Houyang
2017-10-01
The new Small Angle Slot (SAS) divertor in DIII-D is characterized by a shallow-angle target enclosed by a slot structure about the strike point (SP). SOLPS modelling results of SAS have demonstrated divertor closure's utility in widening the range of acceptable densities for adequate heat handling. An extensive database of runs has been built to study the detachment dependence on SP location in SAS. Density scans show that lower Te at lower upstream density occur when the SP is at the critical location in the slot. The cooling front spreads across the entire target at higher densities, in agreement with experimental Langmuir probe measurements. A localized increase of the atomic and molecular density takes place near the SP, which reduces the target incident power density and facilitates detachment at lower upstream density. Systematic scans of variables such as power, transport, and viscosity have been carried out to assess the detachment sensitivity. Therein, a positive role of the viscosity is found. This work supported by DOE Contract Number DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Gardner, William N.
1951-01-01
A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.
Hydrophobic interactions between dissimilar surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.
1997-01-15
An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less
Powerful Electromechanical Linear Actuator
NASA Technical Reports Server (NTRS)
Cowan, John R.; Myers, William N.
1994-01-01
Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.
Modeling the full-bridge series-resonant power converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1982-01-01
A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.
Three-Phase and Six-Phase AC at the Lab Bench
ERIC Educational Resources Information Center
Caplan, George M.
2009-01-01
Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…
Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power
linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat
Digital Play as a Means to Develop Children's Literacy and Power in the Swedish Preschool
ERIC Educational Resources Information Center
Marklund, Leif; Dunkels, Elza
2016-01-01
This paper presents different angles on the subject of digital play as a means to develop children's literacy and power, using an online ethnographical study of Swedish preschool teachers' discussions in informal online forums. Question posts (n = 239) were analysed using the Technological Pedagogical Knowledge framework and the Caring, Nurturing…
A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion
NASA Astrophysics Data System (ADS)
Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.
2010-10-01
The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.
Three-dimensional kinematic analysis and power output of elite flat-water kayakers.
Bjerkefors, Anna; Tarassova, Olga; Rosén, Johanna S; Zakaria, Pascal; Arndt, Anton
2017-09-20
The purpose was to examine power output and three-dimensional (3D) kinematic variables in the upper limbs, lower limbs and trunk in elite flat-water kayakers during kayak ergometer paddling. An additional purpose was to analyse possible changes in kinematics with increased intensity and differences between body sides. Six male and four female international level flat-water kayakers participated. Kinematic and kinetic data were collected during three tasks; low (Int L ), high (Int H ) and maximal (Int M ) intensities. No differences were observed in any joint angles between body sides, except for shoulder abduction. Significantly greater range of motion (RoM) values were observed for Int H compared to Int L and for Int M compared to Int L in trunk and pelvis rotation, and in hip, knee and ankle flexion. The mean maximal power output was 610 ± 65 and 359 ± 33 W for the male and female athletes, respectively. The stroke frequencies were significantly different between all intensities (Int L 59.3 ± 6.3; Int H 108.0 ± 6.8; Int M 141.7 ± 18.4 strokes/min). The results showed that after a certain intensity level, the power output must be increased by other factors than increasing the joint angular RoM. This information may assist coaches and athletes to understand the relationship between the movement of the kayaker and the paddling power output.
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi
2018-01-01
Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746
Unerupted lower third molar extractions and their risks for mandibular fracture.
Corrêa, Ana Paula Simões; Faverani, Leonardo Perez; Ramalho-Ferreira, Gabriel; Ferreira, Sabrina; Ávila Souza, Francisley; de Oliveira Puttini, Igor; Rangel Garcia-Júnior, Idelmo
2014-05-01
As every surgical procedure extraction of third molars can result in several complications, among them the mandibular angle fracture. Predisposing factors for fracture should be analyzed during and after the surgery. This paper aims to discuss the predisposing factors to the occurrence of mandibular angle fractures during and after the procedure for third molars extraction, as well as surgical principles to avoid this complication.
Noise of the SR-6 propeller model at 2 deg and 4 deg angles of attack
NASA Technical Reports Server (NTRS)
Dittmar, J. H.; Stefko, G. L.
1983-01-01
The noise generated by supersonic-tip-speed propellers creates a cabin noise problem for future airplanes powered by these propellers. Noise of a number of propeller models were measured in the NASA Lewis 8- by 6-Foot Wind Tunnel with flow parallel to the propeller axis. In flight, as a result of the induced upwash from the airplane wing, the propeller is at an angle of attack with respect to the incoming flow. Therefore, the 10-blade SR-6 propeller was operated at angle of attack to determine its noise behavior. Higher blade passage tones were observed for the propeller operating at angle of attack in a 0.6 axial Mach number flow. The noise increase was not symmetrical, with one wall of the wind tunnel showing a larger noise increase than the other wall. No noise increase was observed at angle of attack in a 0.8 axial Mach number flow. For this propeller the dominance of thickness noise, which does not increase with angle of attack, explains the lack of noise increase at the higher 0.8 Mach number.
Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.
This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less
Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC
NASA Astrophysics Data System (ADS)
Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.
2015-06-01
Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters
Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.; ...
2017-12-22
This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less
Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M
2017-06-01
Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.
NASA Technical Reports Server (NTRS)
Kofskey, M. G.; Nusbaum, W. J.
1978-01-01
A cold air experimental investigation of a free power turbine designed for a 112-kW automotive gas-turbine was made over a range of speeds from 0 to 130 percent of design equivalent speeds and over a range of pressure ratio from 1.11 to 2.45. Results are presented in terms of equivalent power, torque, mass flow, and efficiency for the design power point setting of the variable stator.
Scenarios for Ultrafast Gamma-Ray Variability in AGN
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Barkov, M. V.; Khangulyan, D.
2017-05-01
We analyze three scenarios to address the challenge of ultrafast gamma-ray variability reported from active galactic nuclei. We focus on the energy requirements imposed by these scenarios: (I) external cloud in the jet, (II) relativistic blob propagating through the jet material, and (III) production of high-energy gamma-rays in the magnetosphere gaps. We show that while the first two scenarios are not constrained by the flare luminosity, there is a robust upper limit on the luminosity of flares generated in the black hole magnetosphere. This limit depends weakly on the mass of the central black hole and is determined by the accretion disk magnetization, viewing angle, and the pair multiplicity. For the most favorable values of these parameters, the luminosity for 5-minute flares is limited by 2× {10}43 {erg} {{{s}}}-1, which excludes a black hole magnetosphere origin of the flare detected from IC 310. In the scopes of scenarios (I) and (II), the jet power, which is required to explain the IC 310 flare, exceeds the jet power estimated based on the radio data. To resolve this discrepancy in the framework of scenario (II), it is sufficient to assume that the relativistic blobs are not distributed isotropically in the jet reference frame. A realization of scenario (I) demands that the jet power during the flare exceeds by a factor 102 the power of the radio jet relevant to a timescale of 108 years.
Primary angle closure glaucoma in a myopic kinship.
Hagan, J C; Lederer, C M
1985-03-01
Three related myopic individuals with primary angle closure glaucoma are reported. They had true myopia and not pseudomyopia secondary to increased lenticular index of refraction. We believe one of these individuals (-8.62 spherical equivalent) to have the most myopic case of primary angle closure glaucoma reported in the literature. Although myopia is associated with anatomical factors that offer considerable protection from primary angle closure glaucoma, its presence does not eliminate the possibility of this disease. Laser iridectomy was effective in the treatment of these patients.
Effects of setting angle on performance of fish-bionic wind wheel
NASA Astrophysics Data System (ADS)
Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.
2016-08-01
With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.
Multi-angle VECSEL cavities for dispersion control and multi-color operation
NASA Astrophysics Data System (ADS)
Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.
2017-02-01
We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.
Variable gain for a wind turbine pitch control
NASA Technical Reports Server (NTRS)
Seidel, R. C.; Birchenough, A. G.
1981-01-01
The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.
Cerenkov Maser and Cerenkov Laser Devices.
1982-12-01
The principle goal of the work was the development of high power Cerenkov sources in the lower mm wavelength range. It was demonstrated that a...it is • Subject catecory name: approximately one kw. At the present-time the-beam i-s High Power icr ave collected on a mirror set at a 450 angle to...differences in the boundary-scat- This process shows potential as a tunable source of fared phonon conductivity are predicted along the prim- highs power
Electrophoretic display technologies for e-book readers: system integration aspects
NASA Astrophysics Data System (ADS)
Gentric, Philippe
2011-03-01
Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.
Huang, Guofu; Gonzalez, Eduardo; Lee, Roland; Chen, Yi-Chun; He, Mingguang; Lin, Shan C
2012-01-01
To evaluate anterior chamber biometric factors associated with the degree of angle widening and intraocular pressure (IOP) reduction after phacoemulsification. University of California, San Francisco, California, USA. Case series. Anterior chamber parameters obtained by anterior segment coherence tomography were compared preoperatively and 3 months postoperatively. Measurements included the angle opening distance 500 μm anterior to the scleral spur (AOD500), trabecular-iris space area 500 μm from the scleral spur (TISA500), iris curvature (I-Curv), anterior chamber angle (ACA), trabecular-iris space area, anterior chamber volume, anterior chamber width, and lens vault (LV). The study enrolled 73 eyes. The mean patient age was 77.45 years ± 7.84 (SD); 65.75% of patients were women. From preoperatively to 3 months postoperatively, the mean AOD500 increased significantly (0.254 ± 0.105 to 0.433 ± 0.108 mm) and the mean IOP decreased significantly (14.97 ± 3.35 to 12.62 ± 3.37 mm Hg) (P<.001). The reduction in IOP was correlated with the increase in AOD500 (r = 0.240, P=.041) and preoperative LV (r = 0.235, P=.045). After adjusting for related factors, AOD500 widening was positively correlated with LV (β = 0.458, P=.044) and I-Curv (β = 0.235, P=.043) and negatively correlated with preoperative TISA500 (β = -0.269, P=.025) and ACA (β = -0.919, P=.027). Surgically induced AOD widening was significantly correlated with anterior chamber biometric factors. Preoperative LV appears to be a significant factor in angle widening and IOP reduction after phacoemulsification. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Vaknin, David; Bu, Wei; Travesset, Alex
2008-07-28
We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.
Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy
Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...
2015-11-05
Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys bymore » illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.« less
NASA Astrophysics Data System (ADS)
Alexander, LYSENKO; Iurii, VOLK
2018-03-01
We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
NASA Astrophysics Data System (ADS)
Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei
2018-04-01
Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.