Sample records for power factor condition

  1. Power conversion process in magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Zhuang, X.; Leung, C. M.; Li, J.; Viehland, D.

    2017-09-01

    We have investigated the power conversion and loss processes in magnetoelectric gyrators. Two types of loss mechanisms were identified by using a transformer-gyrator structure, which transfers power between magnetic and magnetomechanical forms. A missing portion of the power in a gyrator was then identified to be a returned power from the load resistor under low drive conditions. Under high drive conditions, decreases in both the magnetostriction and mechanical quality factor resulted in additional inefficiencies. Power transfer efficiencies of greater than 70% and 50% were achieved for magnetoelectric (ME) gyrators based on Metglas/Pb(Zr,Ti)O3 laminated composites under low power drive and high power density drive (60 W/in.3) conditions, respectively.

  2. Comparative evaluation of power factor impovement techniques for squirrel cage induction motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spee, R.; Wallace, A.K.

    1992-04-01

    This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less

  3. Crises and Turbulence: Sources, Assessments, Management

    DTIC Science & Technology

    1981-02-01

    Uses of the Military ......... .. 262 14. Correlational Power of Fundamental Factors for Soviet Behavior ..... ............... ... 263 15. US...Coercive Uses of the Military ........... ... 265 16. Correlational Power of Fundamental Factors for US Behavior ...... ................. ... 267 17...analytic power has been available to predict and prescribe the behavior of states in response to security threats has followed from the scope condition

  4. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  5. Unity Power Factor Operated PFC Converter Based Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, Shikha; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2017-11-01

    Power Supplies (PSs) employed in personal computers pollute the single phase ac mains by drawing distorted current at a substandard Power Factor (PF). The harmonic distortion of the supply current in these personal computers are observed 75% to 90% with the Crest Factor (CF) being very high which escalates losses in the distribution system. To find a tangible solution to these issues, a non-isolated PFC converter is employed at the input of isolated converter that is capable of improving the input power quality apart from regulating the dc voltage at its output. This is given to the isolated stage that yields completely isolated and stiffly regulated multiple output voltages which is the prime requirement of computer PS. The operation of the proposed PS is evaluated under various operating conditions and the results show improved performance depicting nearly unity PF and low input current harmonics. The prototype of this PS is developed in laboratory environment and test results are recorded which corroborate the power quality improvement observed in simulation results under various operating conditions.

  6. [Occupational hygiene at solar-energy electric power plants].

    PubMed

    Lipkina, L I; Kolesnikova, A V; Tsirkova, N L

    1991-01-01

    The labour conditions of the personnel engaged in servicing an experimental solar electric power station in warm seasons of the year were characterized by the unfavourable environmental factors peculiar of working out-doors (heliostat sites) and in the station's shops (solar radiation, heating microclimate, noise). Combinations and activity of those factors were professionally determined. Established was the role of the labour conditions and respective occupational peculiarities in the individual response formation to work overload. A set of health-related preventive measures was also proposed.

  7. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  8. 75 FR 10229 - Application for Presidential Permit; Champlain Hudson Power Express, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    .... electric power supply system under normal and contingency conditions, and any other factors that DOE may... Power Express, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Champlain Hudson Power Express, Inc. (CHPEI) has applied for a Presidential...

  9. Research on the Test of Transmission Line Galloping

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Li, Qing; lv, Zhongbin; Ji, Kunpeng; Liu, Bin

    2018-03-01

    The load of iced transmission line and the load generated by galloping after the conductor are covered by ice all may cause severe circuit faults, such as tripping, conductor breaking, armor clamp damage and even tower collapse, thus severely threatening running safety of power system. The generation and development processes of galloping of power transmission line is very complicated, and numerous factors may influence the galloping excitation, such as environmental factors, terrain factors and structural parameters of power transmission line; in which, the ice covering of conductor is one of necessary factors causing galloping. Therefore, researches on ice covering increasing test of different types of conductors under different meteorological conditions have been conducted in large-sized multi-functional phytotron, thus obtaining the relation curve of ice covering increasing of conductor along with time under different conditions, and analyzing factors influencing increasing of ice covering. The research result shows that under the same ice covering conditions, the increasing of ice covering of conductor with small diameter is relatively rapid; both environmental temperature and wind speed have obvious influence on increasing of ice covering of conductor, and the environmental temperature will decide the type of ice covering of conductor surface. Meanwhile, after wind tunnel tests targeting conductors with different ice covering shapes, pneumatic stability loss characteristics of conductors with different ice shapes have been obtained. Research results have important scientific reference value for revealing the mechanism of galloping of iced power transmission line, and have relatively high engineering practicability value for promoting realization of early warning system for galloping of iced power transmission line.

  10. A retrospective likelihood approach for efficient integration of multiple omics factors in case-control association studies.

    PubMed

    Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine

    2015-03-01

    Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.

  11. Women in Educational Administration: Moving from a Paradigm of Power and Control to Empowerment and Equality.

    ERIC Educational Resources Information Center

    Smith, Francie

    Factors in the development of empowerment through ethical leadership are discussed in this paper, which draws on feminist and humanist theories. A review of literature describes the conditions in patriarchal societies that lead to and lessen the exaltation of power and control; conditions of temporary and permanent inequality; ways in which…

  12. Explicit analytical expression for the condition number of polynomials in power form

    NASA Astrophysics Data System (ADS)

    Rack, Heinz-Joachim

    2017-07-01

    In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.

  13. A Study on the Optimal Generation Mix Based on Portfolio Theory with Considering the Basic Condition for Power Supply

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.

  14. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  15. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  16. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  17. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  18. Probabilistic Physics-Based Risk Tools Used to Analyze the International Space Station Electrical Power System Output

    NASA Technical Reports Server (NTRS)

    Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2004-01-01

    This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.

  19. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  20. Analyzing the development of Indonesia shrimp industry

    NASA Astrophysics Data System (ADS)

    Wati, L. A.

    2018-04-01

    This research aimed to analyze the development of shrimp industry in Indonesia. Porter’s Diamond Theory was used for analysis. The Porter’s Diamond theory is one of framework for industry analysis and business strategy development. The Porter’s Diamond theory has five forces that determine the competitive intensity in an industry, namely (1) the threat of substitute products, (2) the threat of competition, (3) the threat of new entrants, (4) bargaining power of suppliers, and (5) bargaining power of consumers. The development of Indonesian shrimp industry pretty good, explained by Porter Diamond Theory analysis. Analysis of Porter Diamond Theory through four main components namely factor conditions; demand condition; related and supporting industries; and firm strategy, structure and rivalry coupled with a two-component supporting (regulatory the government and the factor of chance). Based on the result of this research show that two-component supporting (regulatory the government and the factor of chance) have positive. Related and supporting industries have negative, firm and structure strategy have negative, rivalry has positive, factor condition have positive (except science and technology resources).

  1. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  2. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.

    PubMed

    Tang, Wei-Qiang; Li, Di-Cai; Lv, Yang-Xiao; Jiang, Jian-Guo

    2010-05-01

    Low-caffeine or caffeine-removed tea and its products are widely welcomed on market in recent years. In the present study, we adopt ultrasonic-enhanced supercritical fluid extraction process to remove caffeine from green tea. An orthogonal experiment (L16 (4(5))) was applied to optimize the best removal conditions. Extraction pressure, extraction time, power of ultrasound, moisture content, and temperature were the main factors to influence the removal rate of caffeine from green tea. The 5 factors chosen for the present investigation were based on the results of a single-factor test. The optimum removal conditions were determined as follows: extraction pressure of 30 MPa, temperature at 55 degrees C, time of 4 h, 30% moisture content, and ultrasound power of 100 W. Chromatogram and ultraviolet analysis of raw material and decaffeinates suggests that under optimized conditions, the caffeine of green tea was effectively removed and minished without damaging the structure of active ingredients in green tea.

  3. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  4. Low-level laser therapy equipment needs calibration before clinical use

    NASA Astrophysics Data System (ADS)

    Machado de Senna, André; Machado-de-sena, Rosa Maria; Facundes, Arseni Lázaro; Barros Nepomuceno, Patrícia; Sávya Florentino, Wanilza; Olegário de Araújo, Ronyere

    2018-04-01

    Many factors can influence the radiant power delivered by the low-level laser therapy (LLLT) equipment, such as its cleaning and condition, as well as the use of plastic films for protecting the laser or even its time of use. Radiant power is an important factor to consider because it affects the amount of energy delivered to the target tissue. The difference between real radiant power (RRP) and nominal radiant power (NRP) may interfere in the expected results, because the delivered energy is different from the desired energy. Purpose: The objective of this study was to compare the NRP with the RRP offered by LLLT devices under clinical conditions of use. Material and Methods: For data collection to this study, 61 LLLT devices used in private and public dental practices in the state of Tocantins, Brazil, were evaluated. Three consecutive power measurements were performed at one-minute intervals and then the average of the measured power was calculated. The RRP was compared to the NRP. Results: The equipment presented NRP from 30 to 500mW while RRP ranged from 17.3 to 107.0mW. Discussion and Conclusion: The mean power measured in clinical conditions of use of the laser equipment was different from the nominal power reported by the manufacturers of the devices (p<0,01). The RRP ranged between 12.92% and 107% of NRP. This fact is worrisome, since one of the most important parameters for the success of the treatment of an injury using LLLT is the energy (power x time) delivered. These findings reinforce the need of calibrating the equipment before each laser application in order to avoid failures in the therapeutic conduct.

  5. Space shuttle engineering and operations support. Orbiter to spacelab electrical power interface. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Emmons, T. E.

    1976-01-01

    The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.

  6. Factors influencing equipment selection in electron beam processing

    NASA Astrophysics Data System (ADS)

    Barnard, J. W.

    2003-08-01

    During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.

  7. Power Controller

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.

  8. Inclusive Adult Learning Environments. ERIC Digest No. 162.

    ERIC Educational Resources Information Center

    Imel, Susan

    Adult educators are recognizing that factors in the learning environment related to psychological, social, and cultural conditions exert a powerful influence on learners' growth and development. Current discussions on learning environments have broadened to include the need to confront issues of sexism and racism, interlocking systems of power and…

  9. Highly efficient solid state magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.

    2017-09-01

    An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.

  10. [Condition optimization experiment of microwave extaction of flavonoids in rhizome of Drynaria fortunei].

    PubMed

    Yang, Bin; Hu, Fu-chao; Chen, Gong-xi; Jiang, Dao-song

    2009-12-01

    The experiment extracted flavonoids in rhizome of Drynaria fortunei by microwave extraction, and determined the extraction rate through colorimetry. Through the single factor experiment and orthogonal method, the optimum extraction conditions were as follows: ethanol concentration was 40%, solid-liquid ratio was 1:20 (g/mL), microwave power was 325 W, extraction time was 40 s. Under these conditions, the extraction rate reached 1.73%. In all condtions, microwave power has the most significant effect on extraction rate. Microwave extraction has obvious advantages in comparison with traditional sovent refluxing method.

  11. Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    NASA Astrophysics Data System (ADS)

    Razavi, Rouzbeh; Fleury, Martin; Ghanbari, Mohammed

    2008-12-01

    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality.

  12. Performance Evaluation of UPQC under Nonlinear Unbalanced Load Conditions Using Synchronous Reference Frame Based Control

    NASA Astrophysics Data System (ADS)

    Kota, Venkata Reddy; Vinnakoti, Sudheer

    2017-12-01

    Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.

  13. The relationship between wind power, electricity demand and winter weather patterns in Great Britain

    NASA Astrophysics Data System (ADS)

    Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.

    2017-06-01

    Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.

  14. From Smart Metering to Smart Grid

    NASA Astrophysics Data System (ADS)

    Kukuča, Peter; Chrapčiak, Igor

    2016-06-01

    The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.

  15. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  16. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  17. Simulation evaluation of capacitor bank impact on increasing supply current for alumunium production

    NASA Astrophysics Data System (ADS)

    Hasan, S.; Badra, K.; Dinzi, R.; Suherman

    2018-03-01

    DC current supply to power the electrolysis process in producing aluminium at PT Indonesia Asahan Aluminium (Persero) is about 193 kA. At this condition, the load voltage regulator (LVR) transformer generates 0.89 lagging power factor. By adding the capacitor bank to reduce the harmonic distortion, it is expected that the supply current will increase. This paper evaluates capacitor bank installation impact on the system by using ETAP 12.0 simulation. It has been obtained that by installing 90 MVAR capacitor bank in the secondary part of LVR, the power factor is corrected about 8% and DC current increases about 13.5%.

  18. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  19. Alternative Energy for Defense Conference

    DTIC Science & Technology

    2011-10-26

    Actuated Cooling and Cogeneration Systems Beginning TRL 3/4; End Goal TRL 5 METRICS: COP 0.7, 45 kg/ton US Army CERDEC Applications Portable Power NOW...Provided Power – Not Gov’t owned/operated, commercial grade, capacities vary • Rules of thumb: – 3 kW/person/day (bases with 5 to 3,500 population) – 4 kW...provide CONTINUOUS RATED POWER at these conditions: – 0.8 power factor (pf), lagging – Ambient temperatures up to 52°C (125°F) [-3% for each

  20. Enhanced stability of magnetoelectric gyrators under high power conditions

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Gao, Min; Tang, Xiao; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2017-10-01

    In this study, three different coil-based magnetoelectric (ME) gyrators of different geometries, including gyrators with high power output, have been designed and characterized. These included two magnetostrictive/piezoelectric/magnetostrictive (M-P-M) and one piezoelectric/magnetostrictive/piezoelectric (P-M-P) type ME gyrators, which consisted of nickel zinc ferrite (NZFO) and lead zirconate titanate (PZT) ceramic plates. Compared with M-P-M ME gyrators, the P-M-P ones exhibited a higher power efficiency (η) of 85% when operated at resonance under an optimal magnetic bias field (HBias) of 40 Oe at low power conditions. It retained a relatively high efficiency of η = 79% under a high input power density of 2.87 W/cm3. A low reduction in the magnetomechanical coupling and mechanical quality (k33,m and Qm) factors of the NZFO ferrite layer in the ME gyrator explains the resilience of the P-M-P type structure with increasing power drive. The findings open the possibility of using ME gyrators in high power applications.

  1. Compilation of 1993 Annual Reports of the Navy ELF Communications System Ecological Monitoring Program

    DTIC Science & Technology

    1994-04-01

    variation in non-treatment factors that may affect growth or health such as soil, stand conditions and background and treatment EM field levels. The time...diameter growth residuals were much greater than expected given existing climatic conditions . In 1992, when the antenna returned to full power operation...growing seasons. If an enviromental factor which is not accounted for in the growth model significantly impacts seasonal height growth , then the observed

  2. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  3. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  4. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    NASA Astrophysics Data System (ADS)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  5. Modeling analysis on germination and seedling growth using ultrasound seed pretreatment in switchgrass.

    PubMed

    Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing

    2012-01-01

    Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds.

  6. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  7. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    PubMed

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  8. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    NASA Astrophysics Data System (ADS)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  9. Money and age in schools: Bullying and power imbalances.

    PubMed

    Chaux, Enrique; Castellanos, Melisa

    2015-05-01

    School bullying continues to be a serious problem around the world. Thus, it seems crucial to clearly identify the risk factors associated with being a victim or a bully. The current study focused in particular on the role that age and socio-economic differences between classmates could play on bullying. Logistic and multilevel analyses were conducted using data from 53,316 5th and 9th grade students from a representative sample of public and private Colombian schools. Higher age and better family socio-economic conditions than classmates were risk factors associated with being a bully, while younger age and poorer socio-economic conditions than classmates were associated with being a victim of bullying. Coming from authoritarian families or violent neighborhoods, and supporting beliefs legitimizing aggression, were also associated with bullying and victimization. Empathy was negatively associated with being a bully, and in some cases positively associated with being a victim. The results highlight the need to take into account possible sources of power imbalances, such as age and socio-economic differences among classmates, when seeking to prevent bullying. In particular, interventions focused on peer group dynamics might contribute to avoid power imbalances or to prevent power imbalances from becoming power abuse. Aggr. Behav. 41:280-293, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  10. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers

    NASA Astrophysics Data System (ADS)

    Hawkes, Adam; Leach, Matthew

    The ability of combined heat and power (CHP) to meet residential heat and power demands efficiently offers potentially significant financial and environmental advantages over centralised power generation and heat-provision through natural-gas fired boilers. A solid oxide fuel cell (SOFC) can operate at high overall efficiencies (heat and power) of 80-90%, offering an improvement over centralised generation, which is often unable to utilise waste heat. This paper applies an equivalent annual cost (EAC) minimisation model to a residential solid oxide fuel cell CHP system to determine what the driving factors are behind investment in this technology. We explore the performance of a hypothetical SOFC system—representing expectations of near to medium term technology development—under present UK market conditions. We find that households with small to average energy demands do not benefit from installation of a SOFC micro-CHP system, but larger energy demands do benefit under these conditions. However, this result is sensitive to a number of factors including stack capital cost, energy import and export prices, and plant lifetime. The results for small and average dwellings are shown to reverse under an observed change in energy import prices, an increase in electricity export price, a decrease in stack capital costs, or an improvement in stack lifetime.

  11. An investigation on rapeseed oil as potential insulating liquid

    NASA Astrophysics Data System (ADS)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  12. A hybrid filter to mitigate harmonics caused by nonlinear load and resonance caused by power factor correction capacitor

    NASA Astrophysics Data System (ADS)

    Adan, N. F.; Soomro, D. M.

    2017-01-01

    Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.

  13. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    PubMed

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching betweenmore » mode structures with various Q-factors are considered.« less

  15. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    PubMed Central

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943

  16. Electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type transducer in a small sonoreactor at different excitation levels and loading conditions.

    PubMed

    Petošić, Antonio; Horvat, Marko; Režek Jambrak, Anet

    2017-11-01

    The paper reports and compares the results of the electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type ultrasonic device inside a small sonoreactor, immersed in three different loading media, namely, water, juice and milk, excited at different excitation levels, both below and above the cavitation threshold. The electroacoustic efficiency factor determined at system resonance through electromechanical characterization in degassed water as the reference medium is 88.7% for the device in question. This efficiency can be reduced up to three times due to the existence of a complex sound field in the reactor in linear driving conditions below the cavitation threshold. The behaviour of the system is more stable at higher excitation levels than in linear operating conditions. During acoustical characterization, acoustic pressure is spatially averaged, both below and above the cavitation threshold. The standing wave patterns inside the sonoreactor have a stronger influence on the variation of the spatially distributed RMS pressure in linear operating conditions. For these conditions, the variation of ±1.7dB was obtained, compared to ±1.4dB obtained in highly nonlinear regime. The acoustic power in the sonoreactor was estimated from the magnitude of the averaged RMS pressure, and from the reverberation time of the sonoreactor as the representation of the losses. The electroacoustic efficiency factors obtained through acoustical and electromechanical characterization are in a very good agreement at low excitation levels. The irradiated acoustic power estimated in nonlinear conditions differs from the dissipated acoustic power determined with the calorimetric method by several orders of magnitude. The number of negative pressure peaks that represent transient cavitation decreases over time during longer treatments of a medium with high-power ultrasound. The number of negative peaks decreases faster when the medium and the vessel are allowed to heat up. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Solar Array Power Conditioning for a Spinning Satellite

    NASA Astrophysics Data System (ADS)

    De Luca, Antonio; Chirulli, Giovanni

    2008-09-01

    The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.

  18. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  19. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    NASA Astrophysics Data System (ADS)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  20. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  1. A Simulation Study on the Performance of the Simple Difference and Covariance-Adjusted Scores in Randomized Experimental Designs.

    PubMed

    Petscher, Yaacov; Schatschneider, Christopher

    2011-01-01

    Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the simple difference and covariance-adjusted scores were more or less powerful to detect treatment effects when relaxing certain assumptions made by Huck and McLean (1975). Four factors were manipulated in the design including sample size, normality of the pretest and posttest distributions, the correlation between pretest and posttest, and posttest variance. A 5 × 5 × 4 × 3 mostly crossed design was run with 1,000 replications per condition, resulting in 226,000 unique samples. The gain score was nearly as powerful as the covariance-adjusted score when pretest and posttest variances were equal, and as powerful in fan-spread growth conditions; thus, under certain circumstances the gain score could be used in two-wave randomized experimental designs.

  2. A Simulation Study on the Performance of the Simple Difference and Covariance-Adjusted Scores in Randomized Experimental Designs

    PubMed Central

    Petscher, Yaacov; Schatschneider, Christopher

    2015-01-01

    Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the simple difference and covariance-adjusted scores were more or less powerful to detect treatment effects when relaxing certain assumptions made by Huck and McLean (1975). Four factors were manipulated in the design including sample size, normality of the pretest and posttest distributions, the correlation between pretest and posttest, and posttest variance. A 5 × 5 × 4 × 3 mostly crossed design was run with 1,000 replications per condition, resulting in 226,000 unique samples. The gain score was nearly as powerful as the covariance-adjusted score when pretest and posttest variances were equal, and as powerful in fan-spread growth conditions; thus, under certain circumstances the gain score could be used in two-wave randomized experimental designs. PMID:26379310

  3. Perceived exercise benefits and barriers among power wheelchair soccer players.

    PubMed

    Barfield, J P; Malone, Laurie A

    2013-01-01

    Lack of exercise is a major risk factor for secondary conditions among persons dependent upon motorized wheelchairs. Power wheelchair soccer is a unique exercise opportunity for this population, and understanding factors that influence exercise decision-making is necessary for clinicians to help those in motorized chairs reduce their secondary risk. Therefore, this study examined differences in perceived benefits and barriers to exercise among power wheelchair soccer players using a mixed-methods analysis. The most common perceived benefit to exercise was "Exercising lets me have contact with friends and persons I enjoy." Post hoc comparisons of quantitative data indicated that persons with muscular dystrophy perceived exercise to be significantly less important than did other disability groups (p < 0.05). "Exercise is hard work for me," "Exercise tires me," and "There are too few places for me to exercise" were the most common perceived barriers. These findings can assist with development of exercise opportunities for power wheelchair users.

  4. Near-field three-terminal thermoelectric heat engine

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2018-03-01

    We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.

  5. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    PubMed

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  6. Caring Cooperators and Powerful Punishers: Differential Effects of Induced Care and Power Motivation on Different Types of Economic Decision Making.

    PubMed

    Chierchia, G; Lesemann, F H Parianen; Snower, D; Vogel, M; Singer, T

    2017-09-11

    Standard economic theory postulates that decisions are driven by stable context-insensitive preferences, while motivation psychology suggests they are driven by distinct context-sensitive motives with distinct evolutionary goals and characteristic psycho-physiological and behavioral patterns. To link these fields and test how distinct motives could differentially predict different types of economic decisions, we experimentally induced participants with either a Care or a Power motive, before having them take part in a suite of classic game theoretical paradigms involving monetary exchange. We show that the Care induction alone raised scores on a latent factor of cooperation-related behaviors, relative to a control condition, while, relative to Care, Power raised scores on a punishment-related factor. These findings argue against context-insensitive stable preferences and theories of strong reciprocity and in favor of a motive-based approach to economic decision making: Care and Power motivation have a dissociable fingerprint in shaping either cooperative or punishment behaviors.

  7. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    PubMed

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  8. Kinetic studies on hydrolysis of urea in a semi-batch reactor at atmospheric pressure for safe use of ammonia in a power plant for flue gas conditioning.

    PubMed

    Mahalik, K; Sahu, J N; Patwardhan, Anand V; Meikap, B C

    2010-03-15

    With growing industrialization in power sector, air is being polluted with a host of substances-most conspicuously with suspended particulate matter emanating from coal-fired thermal power plants. Flue gas conditioning, especially in such power plants, requires in situ generation of ammonia. In the present paper, experiments for kinetic study of hydrolysis of urea have been conducted using a borosil glass reactor, first without stirring followed by with stirring. The study reveals that conversion increases exponentially with an increase in temperature and feed concentration. Furthermore, the effect of stirring speed, temperature and concentration on conversion has been studied. Using collision theory, temperature dependency of forward rate constant has been developed from which activation energy of the reaction and the frequency factors have been calculated. It has been observed that the forward rate constant increases with an increase in temperature. The activation energy and frequency factor with stirring has been found to be 59.85 kJ/mol and 3.9 x 10(6)min(-1) respectively with correlation co-efficient and standard deviation being 0.98% and +/-0.1% in that order. (c) 2009 Elsevier B.V. All rights reserved.

  9. Heavy quarkonium production at collider energies: Factorization and evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George

    2014-08-01

    We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  10. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    PubMed

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mothers' reading skills and child survival in Nigeria: examining the relevance of mothers' decision-making power.

    PubMed

    Smith-Greenaway, Emily

    2013-11-01

    Mothers' literacy skills are emerging as a key determinant of children's health and survival in low-income contexts, with emphasis on the cognitive and psychological agency that literacy skills provide. This work has clearly established a strong association between mothers' reading skills--a key subcomponent of broader literacy and language skills--and child mortality. However, this relatively nascent literature has not yet considered how broader social structures condition the process. In Nigeria and in sub-Saharan Africa more broadly, gender-based social inequality constrains many mothers' decision-making power over children's health matters; this structural feature may condition the association between mothers' reading skills and child mortality. This paper uses data from the 2003 Nigerian Demographic and Health Survey (N = 12,076) to test the conditionality of the relationship between mothers' reading skills and child survival on mothers' decision-making power, highlighting how structural realities should factor more heavily into this individual-action-oriented literature. Among Nigerian children whose mothers have decision-making power, mothers' reading skills convey a 27 percent lower risk of child mortality; however, for children whose mothers lack decision-making power, mothers' reading skills do not yield a significant survival advantage. Overall, these findings support the need for future work to further analyze how broader social structures condition the benefits of mothers' reading skills for children's health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mothers’ Reading Skills and Child Survival in Nigeria: Examining the Relevance of Mothers’ Decision-Making Power

    PubMed Central

    Smith-Greenaway, Emily

    2013-01-01

    Mothers’ literacy skills are emerging as a key determinant of children’s health and survival in low-income contexts, with emphasis on the cognitive and psychological agency that literacy skills provide. This work has clearly established a strong association between mothers’ reading skills—a key subcomponent of broader literacy and language skills—and child mortality. However, this relatively nascent literature has not yet considered how broader social structures condition the process. In Nigeria and in sub-Saharan Africa more broadly, gender-based social inequality constrains many mothers’ decision-making power over children’s health matters; this structural feature may condition the association between mothers’ reading skills and child mortality. This paper uses data from the 2003 Nigerian Demographic and Health Survey (N = 12,076) to test the conditionality of the relationship between mothers’ reading skills and child survival on mothers’ decision-making power, highlighting how structural realities should factor more heavily into this individual-action-oriented literature. Among Nigerian children whose mothers have decision-making power, mothers’ reading skills convey a 27 percent lower risk of child mortality; however, for children whose mothers lack decision-making power, mothers’ reading skills do not yield a significant survival advantage. Overall, these findings support the need for future work to further analyze how broader social structures condition the benefits of mothers’ reading skills for children’s health. PMID:24161100

  13. Research on Potential Induced Degradation (PID) of PV Modules in Different Typical Climate Regions

    NASA Astrophysics Data System (ADS)

    Daoren, Gong; Yingnan, Chen; Gang, Sun; Wenjing, Wang; Zhenshuang, Ji

    2018-03-01

    Potential Induced Degradation (PID) is one of the most important factors effecting the performances of Photovoltaic (PV) modules and PV systems in recent years. In this paper the PID phenomena of the PV power plant in different typical climate regions were studied and some experimental PID simulations were carried out in order to find out the factors effecting the performance by PID. The results show that the typical PID phenomena are easy to occur in cells close to the border of the PV module. PID phenomena can appear in PV power plants under different climate conditions, but the effecting degrees on module performance are different depending on temperature, humidity and other parameters. We also find the maximum power would recover in some degree after positive-bias voltage duration.

  14. Relationship between strength, power and balance performance in seniors.

    PubMed

    Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs

    2012-01-01

    Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.

  15. Manufacturing of diamond windows for synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schildkamp, W.; Nikitina, L.

    2012-09-15

    A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

  16. The radio power reflected from rough and undulating ionospheric surfaces

    NASA Astrophysics Data System (ADS)

    Whitehead, J. D.; From, W. R.; Smith, L. G.

    1984-08-01

    It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.

  17. A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.

    PubMed

    St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R

    2017-05-03

    Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role of EEG recording context and design conditions that are clearly social or nonsocial.

  18. On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.

    PubMed

    Bai, Shun; Skafidas, Stan

    2014-01-01

    Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.

  19. Overview of critical risk factors in Power-Two-Wheeler safety.

    PubMed

    Vlahogianni, Eleni I; Yannis, George; Golias, John C

    2012-11-01

    Power-Two-Wheelers (PTWs) constitute a vulnerable class of road users with increased frequency and severity of accidents. The present paper focuses of the PTW accident risk factors and reviews existing literature with regard to the PTW drivers' interactions with the automobile drivers, as well as interactions with infrastructure elements and weather conditions. Several critical risk factors are revealed with different levels of influence to PTW accident likelihood and severity. A broad classification based on the magnitude and the need for further research for each risk factor is proposed. The paper concludes by discussing the importance of dealing with accident configurations, the data quality and availability, methods implemented to model risk and exposure and risk identification which are critical for a thorough understanding of the determinants of PTW safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    NASA Astrophysics Data System (ADS)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram

    Manufacturing capacity for lithium-ion batteries (LIBs) — which power many consumer electronics and are increasingly used to power electric vehicles — is heavily concentrated in East Asia. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimum sustainable price, and examines development of LIB supply chains and current LIB market conditions. The study shows that factors driving the cost competitiveness of LIB manufacturing locations are mostly built—supply chain developments and competition, access to materials, and production expertise. Some regional costs — including cost of capital, labor, and materials —more » are significant and should be considered.« less

  2. Modeling of a resonant heat engine

    NASA Astrophysics Data System (ADS)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2012-12-01

    A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.

  3. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  4. Power Enhancement in High Dimensional Cross-Sectional Tests

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Yao, Jiawei

    2016-01-01

    We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846

  5. Pulsed-DC selfsputtering of copper

    NASA Astrophysics Data System (ADS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  6. Analysis instrument test on mathematical power the material geometry of space flat side for grade 8

    NASA Astrophysics Data System (ADS)

    Kusmaryono, Imam; Suyitno, Hardi; Dwijanto, Karomah, Nur

    2017-08-01

    The main problem of research to determine the quality of test items on the material side of flat geometry to assess students' mathematical power. The method used is quantitative descriptive. The subjects were students of class 8 as many as 20 students. The object of research is the quality of test items in terms of the power of mathematics: validity, reliability, level of difficulty and power differentiator. Instrument mathematical power ratings are tested include: written tests and questionnaires about the disposition of mathematical power. Data were obtained from the field, in the form of test data on the material geometry of space flat side and questionnaires. The results of the test instrument to the reliability of the test item is influenced by many factors. Factors affecting the reliability of the instrument is the number of items, homogeneity test questions, the time required, the uniformity of conditions of the test taker, the homogeneity of the group, the variability problem, and motivation of the individual (person taking the test). Overall, the evaluation results of this study stated that the test instrument can be used as a tool to measure students' mathematical power.

  7. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  8. 49 CFR 1180.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION RULES OF PRACTICE RAILROAD ACQUISITION, CONTROL, MERGER, CONSOLIDATION PROJECT, TRACKAGE RIGHTS... approve, applicant carriers are subject to the full range of our conditioning power. Carriers that are... service capabilities (speed is not the only factor); (3) entering an interchange or market generating more...

  9. Teacher ratings of DSM-III-R symptoms for the disruptive behavior disorders.

    PubMed

    Pelham, W E; Gnagy, E M; Greenslade, K E; Milich, R

    1992-03-01

    Ratings were collected on a rating scale comprised of the DSM-III-R diagnostic criteria for disruptive behavior disorders. Teacher ratings were obtained for 931 boys in regular classrooms in grades K through 8 from around North America. Means and standard deviations for attention-deficit hyperactivity disorder (ADHD), oppositional-defiant disorder (ODD), and conduct disorder (CD) scales are reported by age. Frequencies of DSM-III-R symptoms are reported by age, and suggested diagnostic cutoffs are discussed. A factor analysis revealed three factors: one reflecting ODD and several CD symptoms, one on which ADHD symptoms of inattention loaded, and one comprised of ADHD impulsivity/overactivity symptoms. Conditional probability analyses revealed that several hallmark symptoms of ADHD had very poor predictive power, whereas combinations of symptoms from the two ADHD factors had good predictive power. Combinations of ODD symptoms also had very high predictive power. The limited utility of teacher ratings in assessing symptoms of conduct disorder in this age range is discussed.

  10. New heterogeneous test statistics for the unbalanced fixed-effect nested design.

    PubMed

    Guo, Jiin-Huarng; Billard, L; Luh, Wei-Ming

    2011-05-01

    When the underlying variances are unknown or/and unequal, using the conventional F test is problematic in the two-factor hierarchical data structure. Prompted by the approximate test statistics (Welch and Alexander-Govern methods), the authors develop four new heterogeneous test statistics to test factor A and factor B nested within A for the unbalanced fixed-effect two-stage nested design under variance heterogeneity. The actual significance levels and statistical power of the test statistics were compared in a simulation study. The results show that the proposed procedures maintain better Type I error rate control and have greater statistical power than those obtained by the conventional F test in various conditions. Therefore, the proposed test statistics are recommended in terms of robustness and easy implementation. ©2010 The British Psychological Society.

  11. Recent sheath physics studies on DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.

    2015-08-01

    A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.

  12. Three Factors Are Critical in Order to Synthesize Intelligible Noise-Vocoded Japanese Speech

    PubMed Central

    Kishida, Takuya; Nakajima, Yoshitaka; Ueda, Kazuo; Remijn, Gerard B.

    2016-01-01

    Factor analysis (principal component analysis followed by varimax rotation) had shown that 3 common factors appear across 20 critical-band power fluctuations derived from spoken sentences of eight different languages [Ueda et al. (2010). Fechner Day 2010, Padua]. The present study investigated the contributions of such power-fluctuation factors to speech intelligibility. The method of factor analysis was modified to obtain factors suitable for resynthesizing speech sounds as 20-critical-band noise-vocoded speech. The resynthesized speech sounds were used for an intelligibility test. The modification of factor analysis ensured that the resynthesized speech sounds were not accompanied by a steady background noise caused by the data reduction procedure. Spoken sentences of British English, Japanese, and Mandarin Chinese were subjected to this modified analysis. Confirming the earlier analysis, indeed 3–4 factors were common to these languages. The number of power-fluctuation factors needed to make noise-vocoded speech intelligible was then examined. Critical-band power fluctuations of the Japanese spoken sentences were resynthesized from the obtained factors, resulting in noise-vocoded-speech stimuli, and the intelligibility of these speech stimuli was tested by 12 native Japanese speakers. Japanese mora (syllable-like phonological unit) identification performances were measured when the number of factors was 1–9. Statistically significant improvement in intelligibility was observed when the number of factors was increased stepwise up to 6. The 12 listeners identified 92.1% of the morae correctly on average in the 6-factor condition. The intelligibility improved sharply when the number of factors changed from 2 to 3. In this step, the cumulative contribution ratio of factors improved only by 10.6%, from 37.3 to 47.9%, but the average mora identification leaped from 6.9 to 69.2%. The results indicated that, if the number of factors is 3 or more, elementary linguistic information is preserved in such noise-vocoded speech. PMID:27199790

  13. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  14. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  15. Maximum power point tracking algorithm based on sliding mode and fuzzy logic for photovoltaic sources under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.

    2017-02-01

    Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.

  16. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahimpour, Alireza; Qi, Hairong; Fugate, David L

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumptionmore » of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.« less

  17. Effect of Several Factors on the Cooling of a Radial Engine in Flight

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin

    1936-01-01

    Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.

  18. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  19. Benefit-cost methodology study with example application of the use of wind generators

    NASA Technical Reports Server (NTRS)

    Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.

    1975-01-01

    An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.

  20. Surface hardening of steels with a strip-shaped beam of a high-power CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovskii, P.E.; Kovsh, I.B.; Strekalova, M.S.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO{sub 2} laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section. 6 refs., 5 figs.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Surface hardening of steels with a strip-shaped beam of a high-power CO2 laser

    NASA Astrophysics Data System (ADS)

    Dubovskii, P. E.; Kovsh, Ivan B.; Strekalova, M. S.; Sisakyan, I. N.

    1994-12-01

    A comparative analysis was made of the surface hardening of steel 45 by high-power CO2 laser beams with a rectangular strip-like cross section and a traditional circular cross section. This was done under various conditions. The treatment with the strip-like beam ensured a higher homogeneity of the hardened layer and made it possible to increase the productivity by a factor of 2-4 compared with the treatment by a beam of the same power but with a circular cross section.

  2. Power and affordances: when the situation has more power over powerful than powerless individuals.

    PubMed

    Guinote, Ana

    2008-08-01

    Six studies examined how power affects responses to situational affordances. Participants were assigned to a powerful or a powerless condition and were exposed to various situations that afford different classes of behavior. Study 1 examined behavior intentions for weekdays and weekends. Studies 2 and 3 focused on responses to imaginary social and work situations. Study 4 examined planned behavior for winter and summer days. Finally, Studies 5 and 6 examined behavior and attention in the presence of situation-relevant and irrelevant information. Consistently across these studies, powerful individuals acted more in situation-consistent ways, and less in situation-inconsistent ways, compared with powerless individuals. These findings are interpreted as a result of the greater tendency for powerful individuals to process information selectively in line with the primary factors that drive cognition, such as affordances. One consequence of these findings is that powerful individuals change behavior across situations more than powerless individuals.

  3. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  4. A Comparative Study of Discovery Learning Scientific Community Laboratories and Traditional Laboratories in Physics at an Independent University, Florida, U. S

    NASA Astrophysics Data System (ADS)

    Reinhard, Karl E.

    Electric power is fully interwoven into the fabric of American life. Its loss for extended periods has profound impacts upon public safety, health and welfare. The power system has been termed the most complex machine built by man. Not surprisingly, the measures to address the range of power system downtime causes are as diverse as the causes themselves. One important arc of effort is providing power system operators with full knowledge of the system's operating state, timely warning when changing conditions threaten system stability, and tools guiding control actions to maintain stable operations. This research is motivated, in part, by the need to explore opportunities for leveraging nascent synchrophasor data streams against known power system stability challenges. Over the past half-decade, power system operators have aggressively installed large networks of phasor measurement units (PMUs) and phasor data concentrators (PDCs) across the United States and Canada. Today, the synchrophasor data network has reached a state of maturity that opens the door to useful application. This dissertation investigates power system stability along three lines of effort. The first two efforts address steady-state power system stability--specifically methods for assessing system vulnerabilities arising from the phase angle difference between two buses connected by a transmission line. The third effort investigates the information that can be gleaned from synchrophasor measurements during a system's dynamic system response to changing system conditions. The first line of investigation extends steady-state distribution factor theory. Distribution factors are computed from a known non-linear power system load flow solution. They provide a computationally light method for estimating new system conditions under different operating circumstances. Distribution factors are extremely useful for very rapidly screening the impact of unexpected changes in power system configuration--e.g. a transmission line dropping out of service due to environmental conditions. The Line Outage Angle Factor (LOAF) developed herein provides a method for fast computation of bus voltage angle changes after a line outage. The Line Outage Generator Factor (LOGF) modifies the simulated circuit topology to include synchronous machine transient reactances, enabling rapid screening of operating states in which line opening (or re-closure) risks damaging equipment. The LOAF and LOGF provide promising results in MATLAB simulation of the Western System Coordinating Council 3-Machine, 9-Bus System. The second investigative line seeks to develop a Thevenin equivalent model to be used in tandem with synchrophasor data streams to provide real-time bus angle difference information for buses connected by a transmission line. The appeal is that real-time bus angle difference information could be computed on-site and very rapidly--and significantly, independent of other network bus measurements. The results show that developing a Thevenin equivalent that provides a useful angle difference measure often works well on paper, but is challenging using actual synchrophasor data. Efforts to develop a Thevenin equivalent using Monte Carlo methods show promise, but require further investigation. The third line of effort shifts to investigate the useful information that a PMU can produce during a power system disturbance event. A synchrophasor is defined at a specific frequency, i.e. the system steady-state operating frequency. Thus a PMU produces a data stream recording power system changes progressing slower than the nominal system frequency; consequently, this is an "off-label" synchrophasor data application. The test system is a generator with electrical and mechanical controls connected by a pair of identical transmission lines to an infinite bus. The synchronous generator is modeled as a three-damper-winding synchronous machine. A MATLAB simulation was written to simulate both the full 14 dynamic state and the reduced order 11 dynamic state system models. A Real-Time Digital Simulator (RTDS) simulation emulating the test system provides the capability to produce real-time analog generator terminal waveforms to be sampled by a commercial off-the-shelf PMU to produce synchrophasor data. We find that the RTDS generated synchrophasor data stream is similar to the MATLAB reduced order model voltage and current generator terminal data in the dqo reference frame--reflecting parallel, but distinct, filtering processes.

  5. Reliability and economy -- Hydro electricity for Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahromi-Shirazi, M.J.; Zarbakhsh, M.H.

    1998-12-31

    Reliability is the probability that a device or system will perform its function adequately, for the period of time intended, under the operating conditions intended. Reliability and economy are two important factors in operating any system, especially in power generation. Due to the high rate in population growth in Iran, the experts have estimated that the demand for electricity will be about 63,000 MW in the next 25 years, the installed power is now about 26,000 MW. Therefore, the energy policy decision made in Iran is to go to power generation by hydroelectric plants because of reliability, availability of watermore » resources and the economics of hydroelectric power.« less

  6. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2009-12-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are responsible for 97% of mobile source emissions of CO, 22% of NOx, 95-97% of aromatics, 72-85% of carbonyls, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction. Nevertheless, the fuel-based inventory suggests that mobile source emissions of CO and NOx are overstated in the official inventory while emissions of VOCs may be understated. For NOx, the fuel-based inventory is lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory.

  7. Resting-state sensorimotor rhythm (SMR) power predicts the ability to up-regulate SMR in an EEG-instrumental conditioning paradigm.

    PubMed

    Reichert, Johanna Louise; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-11-01

    Instrumental conditioning of EEG activity (EEG-IC) is a promising method for improvement and rehabilitation of cognitive functions. However, it has been found that even healthy adults are not always able to learn how to regulate their brain activity during EEG-IC. In the present study, the role of a neurophysiological predictor of EEG-IC learning performance, the resting-state power of sensorimotor rhythm (rs-SMR, 12-15Hz), was investigated. Eyes-open and eyes-closed rs-SMR power was assessed before N=28 healthy adults underwent 10 training sessions of instrumental SMR conditioning (ISC), in which participants should learn to voluntarily increase their SMR power by means of audio-visual feedback. A control group of N=19 participants received gamma (40-43Hz) or sham EEG-IC. N=19 of the ISC participants could be classified as "responders" as they were able to increase SMR power during training sessions, while N=9 participants ("non-responders") were not able to increase SMR power. Rs-SMR power in responders before start of ISC was higher in widespread parieto-occipital areas than in non-responders. A discriminant analysis indicated that eyes-open rs-SMR power in a central brain region specifically predicted later ISC performance, but not an increase of SMR in the control group. Together, these findings indicate that rs-SMR power is a specific and easy-to-measure predictor of later ISC learning performance. The assessment of factors that influence the ability to regulate brain activity is of high relevance, as it could be used to avoid potentially frustrating and expensive EEG-IC training sessions for participants who have a low chance of success. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Adaptation to high throughput batch chromatography enhances multivariate screening.

    PubMed

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Boronization in textor

    NASA Astrophysics Data System (ADS)

    Winter, J.; Esser, H. G.; Könen, L.; Philipps, V.; Reimer, H.; Seggern, J. v.; Schlüter, J.; Vietzke, E.; Waelbroeck, F.; Wienhold, P.; Banno, T.; Ringer, D.; Vepřek, S.

    1989-04-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2H 6 +0.1 CH 4. The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power (< 0.3) even during high power ICRF heating (2.6 MW, 1.6 s). A concomitant strong increase of the convective power loading of the limiters is observed. Values of Z eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/ n¯e of the OVI intensity normalized to the averaged plasma density overlinene decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/ overlinene of the CII line and via the ratio of the C fluxes and deuterium fluxes measured at the limiter (CI/D α). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels > 2 MW.

  10. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  11. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  12. Accuracy of indirect estimation of power output from uphill performance in cycling.

    PubMed

    Millet, Grégoire P; Tronche, Cyrille; Grappe, Frédéric

    2014-09-01

    To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.

  13. Reduced heart rate variability and vagal tone in anxiety: trait versus state, and the effects of autogenic training.

    PubMed

    Miu, Andrei C; Heilman, Renata M; Miclea, Mircea

    2009-01-28

    This study investigated heart rate variability (HRV) in healthy volunteers that were selected for extreme scores of trait anxiety (TA), during two opposite psychophysiological conditions of mental stress, and relaxation induced by autogenic training. R-R intervals, HF and LF powers, and LF/HF ratios were derived from short-term electrocardiographic recordings made during mental stress and relaxation by autogenic training, with respiratory rate and skin conductance being controlled for in all the analyses. The main finding was that high TA was associated with reduced R-R intervals and HF power across conditions. In comparison to mental stress, autogenic training increased HRV and facilitated the vagal control of the heart. There were no significant effects of TA or the psychophysiological conditions on LF power, or LF/HF ratio. These results support the view that TA, which is an important risk factor for anxiety disorders and predictor of cardiovascular morbidity and mortality, is associated with autonomic dysfunction that seems likely to play a pathogenetic role in the long term.

  14. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  15. Effect size and statistical power in the rodent fear conditioning literature - A systematic review.

    PubMed

    Carneiro, Clarissa F D; Moulin, Thiago C; Macleod, Malcolm R; Amaral, Olavo B

    2018-01-01

    Proposals to increase research reproducibility frequently call for focusing on effect sizes instead of p values, as well as for increasing the statistical power of experiments. However, it is unclear to what extent these two concepts are indeed taken into account in basic biomedical science. To study this in a real-case scenario, we performed a systematic review of effect sizes and statistical power in studies on learning of rodent fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria yielded 410 experiments comparing control and treated groups in 122 articles. Interventions had a mean effect size of 29.5%, and amnesia caused by memory-impairing interventions was nearly always partial. Mean statistical power to detect the average effect size observed in well-powered experiments with significant differences (37.2%) was 65%, and was lower among studies with non-significant results. Only one article reported a sample size calculation, and our estimated sample size to achieve 80% power considering typical effect sizes and variances (15 animals per group) was reached in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences made by readers on the basis of textual descriptions of results only when findings were non-significant, and neither effect size nor power correlated with study quality indicators, number of citations or impact factor of the publishing journal. In summary, effect sizes and statistical power have a wide distribution in the rodent fear conditioning literature, but do not seem to have a large influence on how results are described or cited. Failure to take these concepts into consideration might limit attempts to improve reproducibility in this field of science.

  16. Effect size and statistical power in the rodent fear conditioning literature – A systematic review

    PubMed Central

    Macleod, Malcolm R.

    2018-01-01

    Proposals to increase research reproducibility frequently call for focusing on effect sizes instead of p values, as well as for increasing the statistical power of experiments. However, it is unclear to what extent these two concepts are indeed taken into account in basic biomedical science. To study this in a real-case scenario, we performed a systematic review of effect sizes and statistical power in studies on learning of rodent fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria yielded 410 experiments comparing control and treated groups in 122 articles. Interventions had a mean effect size of 29.5%, and amnesia caused by memory-impairing interventions was nearly always partial. Mean statistical power to detect the average effect size observed in well-powered experiments with significant differences (37.2%) was 65%, and was lower among studies with non-significant results. Only one article reported a sample size calculation, and our estimated sample size to achieve 80% power considering typical effect sizes and variances (15 animals per group) was reached in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences made by readers on the basis of textual descriptions of results only when findings were non-significant, and neither effect size nor power correlated with study quality indicators, number of citations or impact factor of the publishing journal. In summary, effect sizes and statistical power have a wide distribution in the rodent fear conditioning literature, but do not seem to have a large influence on how results are described or cited. Failure to take these concepts into consideration might limit attempts to improve reproducibility in this field of science. PMID:29698451

  17. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examinemore » the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.« less

  18. Beam Conditioning for FELs: Consequences and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matchingmore » conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.« less

  19. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  20. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  1. Beta function quintessence cosmological parameters and fundamental constants - I. Power and inverse power law dark energy potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-07-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.

  2. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  3. Assessing the impact of thermal acclimation on physiological condition in the zebrafish model.

    PubMed

    Vergauwen, Lucia; Knapen, Dries; Hagenaars, An; De Boeck, Gudrun; Blust, Ronny

    2013-01-01

    The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 °C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 °C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish.

  4. Resonant UPS topologies for the emerging hybrid fiber-coaxial networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Humberto

    Uninterruptible power supply (UPS) systems have been extensively applied to feed critical loads in many areas. Typical examples of critical loads include life-support equipment, computers and telecommunication systems. Although all UPS systems have a common purpose to provide continuous power-to critical loads, the emerging hybrid fiber-coaxial networks have created the need for specific types of UPS topologies. For example, galvanic isolation for the load and the battery, small size, high input power factor, and trapezoidal output voltage waveforms are among the required features of UPS topologies for hybrid fiber-coaxial networks. None of the conventional UPS topologies meet all these requirements. Consequently. this thesis is directed towards the design and analysis of UPS topologies for this new application. Novel UPS topologies are proposed and control techniques are developed to allow operation at high switching frequencies without penalizing the converter efficiency. By the use of resonant converters in the proposed UPS topologies. a high input power factor is achieved without requiring a dedicated power factor correction stage. In addition, a self-sustained oscillation control method is proposed to ensure soft switching under all operating conditions. A detailed analytical treatment of the resonant converters in the proposed UPS topologies is presented and design procedures illustrated. Simulation and experimental results are presented to validate the analyses and to demonstrate the feasibility of the proposed schemes.

  5. Optimization of Driving Styles for Fuel Economy Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas; Aguilar, Juan P.

    2012-01-01

    Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of themore » driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.« less

  6. Efficiency of laser beam utilization in gas laser cutting of materials

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  7. The Impact of Perceived Social Power and Dangerous Context on Social Attention

    PubMed Central

    Cui, Gege; Zhang, Shen; Geng, Haiyan

    2014-01-01

    Past research has shown that position in a social hierarchy modulates one's social attention, as in the gaze cueing effect. While studies have manipulated the social status of others with whom the participants interact, we believe that a sense of one's own social power is also a crucial factor affecting gaze following. In two experiments, we primed the social power of participants, using different approaches, to investigate the participants' performance in a subsequent gaze cueing task. The results of Experiment 1 showed a stronger gaze cueing effect among participants who were primed with low social power, compared to those primed with high social power. Our predicted gender difference (i.e., women showing a stronger gaze cueing effect than men) was confirmed and this effect was found to be dominated by the lower social power condition. Experiment 2 manipulated the level of danger in the context and replicated the joint impact of gender and one's perceived social power on gaze cueing effect, especially in the low danger context, in comparison to the high danger context. These findings demonstrate that one's perceived social power has a concerted effect on social attention evoked by gaze, along with other factors such as gender and characteristics of the environment, and suggest the importance of further research on the complex relationship between an individual's position in the social hierarchy and social attention. PMID:25464385

  8. Dynamics of the precessing vortex rope and its interaction with the system at Francis turbines part load operating conditions

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Gomes, J.; Yamamoto, K.; Avellan, F.

    2017-04-01

    At part load conditions, Francis turbines experience the formation of a cavitation vortex rope at the runner outlet whose precession acts as a pressure excitation source for the hydraulic circuit. This can lead to hydro-acoustic resonances characterized by high pressure pulsations, as well as torque and output power fluctuations. This study highlights the influence of the discharge factor on both the vortex parameters and the pressure excitation source by performing Particle Image Velocimetry (PIV) and pressure measurements. Moreover, it is shown that the occurrence of hydro-acoustic resonances in cavitation conditions mainly depend on the swirl degree of the flow independently of the speed factor. Empirical laws linking both natural and precession frequencies with the operating parameters of the machine are, then, derived, enabling the prediction of resonance conditions on the complete part load operating range of the turbine.

  9. Challenging Circumstances Moderate the Links Between Mothers’ Personality Traits and Their Parenting in Low-Income Families With Young Children

    PubMed Central

    Kochanska, Grazyna; Kim, Sanghag; Nordling, Jamie Koenig

    2013-01-01

    The need for research on potential moderators of personality–parenting links has been repeatedly emphasized, yet few studies have examined how varying stressful or challenging circumstances may influence such links. We studied 186 diverse, low-income mother–toddler dyads. Mothers described themselves in terms of Big Five traits, were observed in lengthy interactions with their children, and provided parenting reports. Ecological adversity, assessed as a cumulative index of known risk factors, and the child’s difficulty observed as negative affect and defiance in interactions with mothers were posited as sources of parenting challenge. Mothers high in Neuroticism reported more power assertion. Some personality–parenting relations emerged only under challenging conditions. For mothers raising difficult children, higher Extraversion was linked to increased observed power assertion, but higher Conscientiousness was linked to decreased reported power assertion. There were no such relations for mothers of easy children. By contrast, some relations emerged only in the absence of challenge. Agreeableness was associated with more positive parenting for mothers who lived under conditions of low ecological adversity, and with less reported power for those who had easy children, and Openness was linked to more positive parenting for mothers of easy children. Those traits were unrelated to parenting under challenging conditions. PMID:23066882

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques

    The software application is called "HFE-Trace". This is an integrated method and tool for the management of Human Factors Engineering analyses and related data. Its primary purpose is to support the coherent and consistent application of the nuclear industry's best practices for human factors engineering work. The software is a custom Microsoft® Access® application. The application is used (in conjunction with other tools such as spreadsheets, checklists and normal documents where necessary) to collect data on the design of a new nuclear power plant from subject matter experts and other sources. This information is then used to identify potential systemmore » and functional breakdowns of the intended power plant design. This information is expanded by developing extensive descriptions of all functions, as well as system performance parameters, operating limits and constraints, and operational conditions. Once these have been verified, the human factors elements are added to each function, including intended operator role, function allocation considerations, prohibited actions, primary task categories, and primary work station. In addition, the application includes a computational method to assess a number of factors such as system and process complexity, workload, environmental conditions, procedures, regulations, etc.) that may shape operator performance. This is a unique methodology based upon principles described in NUREG/CR-3331 ("A methodology for allocating nuclear power plant control functions to human or automatic control") and it results in a semi-quantified allocation of functions to three or more levels of automation for a conceptual automation system. The aggregate of all this information is then linked to the Task Analysis section of the application where the existing information on all operator functions is transformed into task information and ultimately into design requirements for Human-System Interfaces and Control Rooms. This final step includes assessment of methods to prevent potential operator errors.« less

  11. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  12. Performance and properties of the first plasmas of Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Klinger, T.; Alonso, A.; Bozhenkov, S.; Burhenn, R.; Dinklage, A.; Fuchert, G.; Geiger, J.; Grulke, O.; Langenberg, A.; Hirsch, M.; Kocsis, G.; Knauer, J.; Krämer-Flecken, A.; Laqua, H.; Lazerson, S.; Landreman, M.; Maaßberg, H.; Marsen, S.; Otte, M.; Pablant, N.; Pasch, E.; Rahbarnia, K.; Stange, T.; Szepesi, T.; Thomsen, H.; Traverso, P.; Velasco, J. L.; Wauters, T.; Weir, G.; Windisch, T.; The Wendelstein 7-X Team

    2017-01-01

    The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values of {{T}\\text{e}}>8 keV, {{T}\\text{i}}>2 keV at line-integrated densities n≈ 3\\centerdot {{10}19}~{{\\text{m}}-2} were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. The fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.

  13. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less

  14. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  15. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  16. Complex amine-based reagents

    NASA Astrophysics Data System (ADS)

    Suslov, S. Yu.; Kirilina, A. V.; Sergeev, I. A.; Zezyulya, T. V.; Sokolova, E. A.; Eremina, E. V.; Timofeev, N. V.

    2017-03-01

    Amines for a long time have been applied to maintaining water chemistry conditions (WCC) at power plants. However, making use of complex reagents that are the mixture of neutralizing and the filmforming amines, which may also contain other organic components, causes many disputes. This is mainly due to lack of reliable information about these components. The protective properties of any amine with regard to metal surfaces depend on several factors, which are considered in this article. The results of applying complex reagents to the protection of heating surfaces in industrial conditions and estimated behavior forecasts for various reagents under maintaining WCC on heat-recovery boilers with different thermal circuits are presented. The case of a two-drum heat-recovery boiler with in-line drums was used as an example, for which we present the calculated pH values for various brands of reagents under the same conditions. Work with different reagent brands and its analysis enabled us to derive a composition best suitable for the conditions of their practical applications in heat-recovery boilers at different pressures. Testing the new amine reagent performed at a CCPP power unit shows that this reagent is an adequate base for further development of reagents based on amine compounds. An example of testing a complex reagent is shown created with the participation of the authors within the framework the program of import substitution and its possible use is demonstrated for maintaining WCC of power-generating units of combined-cycle power plants (CCPP) and TPP. The compliance of the employed reagents with the standards of water chemistry conditions and protection of heating surfaces were assessed. The application of amine-containing reagents at power-generating units of TPP makes it possible to solve complex problems aimed at ensuring the sparing cleaning of heating surfaces from deposits and the implementation of conservation and management of water chemistry condition on the TPP equipment.

  17. [Assessment of the impact of socio-economic factors on the health state of the population of the Sverdlovsk region in the system of social-hygienic monitoring].

    PubMed

    Derstuganova, T M; VelichkovskiĬ, B T; Varaksin, A N; Gurvich, V B; Malykh, O L; Kochneva, N I; Iarushin, S V

    2013-01-01

    There was investigated the impact of socioeconomic factors on medical and demographic processes in working age population. For the assessment of the impact of living conditions and environmental factors on mortality rate in a population of the Sverdlovsk region factor-typological, correlation and regression analyzes were applied There was shown an availability of statistically significant correlation relationships between mortality of the population of working age and socio-economic characteristics (degree of home improvement, quality of medical care, the level of social tension, the level of the demographic load), as well as between their increments with taking into account the time shifts. The effect of the value of the purchasing power on the mortality rate of the working population has been established The purchasing power was shown to be connected with a mortality rate of working population from external causes more stronger than death from all causes.

  18. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  19. Integration of concentrated solar power (CSP) and circulating fluidized bed (CFB) power plants - final results of the COMBO-CFB project

    NASA Astrophysics Data System (ADS)

    Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti

    2017-06-01

    Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.

  20. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  1. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    NASA Astrophysics Data System (ADS)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than those tested in August, which suggested that mileage was the key criterion of car performance on the basis of elemental emission factors.

  2. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE PAGES

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew; ...

    2018-04-05

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  3. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  4. Geographical aspects of a territory and the velocity of liquidation natural-technical emergency situations' consequences (the case of Leningradskaya oblast in Russia)

    NASA Astrophysics Data System (ADS)

    Vashalova, Tatiana; Gavrilova, Sofia

    2013-04-01

    The velocity of liquidation of consequences of emergency situation or natural hazards is on of two main components of nonmonetized evaluation of their graveness. Besides the level of technical and economical securance of repair works the big role in their differentiation plays macro and mesolocation of the repaire object in phisical- and economicalgeographical space. The enlistment of theses factors differs very much for the accidents of various origin and for various territories with their own combination of phisical- and economicalgeographical conditions. In this work the first attempt of analysis of influence of the phisical- and economicalgeographical conditions on the duration of repair the electricity supplies, broken down by the hazardous hydrometeorological phenomena in Leneigradskaya oblast in Russia was made. This region, situated on north-west of the country, outstands with variety of phisical- and economicalgeographical conditions. In this project the data of Laboratory of snow avalanches and mudflows (geographical faculty, MSU), open-sourced map data and the archive of newspapers of Leningradskaya oblast were used. It is very important to understand, that the transportation of the electricity by electric power lines is the main way of transportation energy in Russia. The interruption of power supply, caused by dangerous phenomena, happens in majority cases because of kinking or break of the cable. The break takes places during the strong winds and fall of the trees on the cable or icing and their break during the strong winds. The frequency of strong winds in the terms of one sinoptical cicle (5-7 days) appears as an independent factor of elongation of terms of repairing the power supply. Such phisicogeographical singularities of landscape of Leningradkaya oblast as the grade of loiss soil and swampiness of different districts apears as a factor, wgich modulate the dependence of the velocity of repairing the power supply from the characteristics of economical geographical space. Economical-geograhical characteristics of the space according to concered tipes of accidents should be estimate in macro and meso scale. In macro scale the social-economical status of Saint-Petersburg and accumbens cities and districts is essential. This city determins the creation of technical conditious, providing the protection of these objects from natural hazards. In meso scale the significant factors are the rank of the village, the presence of objects of life necessities and social-significant objects, the number of population, the distance to the closest "central place" and the quality of the transport arteria. In some cases the size of "the zone of responsobilitiy" plays a role. The investigation allowes to determine the principals of estimation geographical structure of the territory as a factor of differentation the velocity if liquadation the consequence of accidents and natural hazards. The analysis of causes and conditions, that influence the velocity of liquadation the consequence of accidents on a power supply make possible the zoning of Leningradskaya oblast. The conformation of achieved connections on other regions will make possible the development of methods of evaluation the value of appreciation the maintaining the life in regions of Russia on a certain level of life.

  5. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  6. Performance of FSO Links using CSRZ, RZ, and NRZ and Effects of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Nadeem, Lubna; Saadullah Qazi, M.; Hassam, Ammar

    2018-04-01

    Free space optical (FSO) communication is a wireless communication technology in which data is transferred from one point to another through highly directed beam of light. The main factors that limit the FSO link availability is the local weather conditions. It guarantees the potential of high bandwidth capacity over unlicensed optical wavelengths. The transmission medium of FSO is atmosphere and is significantly affected by the various weather conditions such as rain, fog, snow, wind, etc. In this paper, the modulation techniques under consideration are RZ, NRZ and CSRZ. Analysis is carried out regarding Q-factor with respect to varying distance, bit rates and input laser power.

  7. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.

    2010-04-01

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx and higher for VOCs. For NOx, the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.

  8. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  9. An Optimization Framework for Driver Feedback Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas; Aguilar, Juan P.

    2013-01-01

    Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less

  10. Closing the Gap--Information Systems Curriculum and Changing Global Market

    ERIC Educational Resources Information Center

    Henson, Kerry; Kamal, Mustafa

    2010-01-01

    The power of outsourcing basic computing technology such as computer programming, database design, customer service operations and system development, to mention a few have changed the conditions of employment in IT. Many of the projects that went off-shore did not perform well due to failure to consider important factors in business dimensions.

  11. Lessons from Rental Cars: The Struggle to Create Seeing Communities

    ERIC Educational Resources Information Center

    Hicks, Mark A.

    2005-01-01

    This article takes the ordinary workings of colorblindness--overlooking distinguishing factors and characteristics that mark what it is to be--and problematizes the impact of being blind to the human conditions students and families of color bring to the educational setting. Hicks argues that, even among actors committed to lessening its power,…

  12. Conditional Covariance-Based Subtest Selection for DIMTEST

    ERIC Educational Resources Information Center

    Froelich, Amy G.; Habing, Brian

    2008-01-01

    DIMTEST is a nonparametric hypothesis-testing procedure designed to test the assumptions of a unidimensional and locally independent item response theory model. Several previous Monte Carlo studies have found that using linear factor analysis to select the assessment subtest for DIMTEST results in a moderate to severe loss of power when the exam…

  13. The change of radial power factor distribution due to RCCA insertion at the first cycle core of AP1000

    NASA Astrophysics Data System (ADS)

    Susilo, J.; Suparlina, L.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The using of a computer program for the PWR type core neutronic design parameters analysis has been carried out in some previous studies. These studies included a computer code validation on the neutronic parameters data values resulted from measurements and benchmarking calculation. In this study, the AP1000 first cycle core radial power peaking factor validation and analysis were performed using CITATION module of the SRAC2006 computer code. The computer code has been also validated with a good result to the criticality values of VERA benchmark core. The AP1000 core power distribution calculation has been done in two-dimensional X-Y geometry through ¼ section modeling. The purpose of this research is to determine the accuracy of the SRAC2006 code, and also the safety performance of the AP1000 core first cycle operating. The core calculations were carried out with the several conditions, those are without Rod Cluster Control Assembly (RCCA), by insertion of a single RCCA (AO, M1, M2, MA, MB, MC, MD) and multiple insertion RCCA (MA + MB, MA + MB + MC, MA + MB + MC + MD, and MA + MB + MC + MD + M1). The maximum power factor of the fuel rods value in the fuel assembly assumedapproximately 1.406. The calculation results analysis showed that the 2-dimensional CITATION module of SRAC2006 code is accurate in AP1000 power distribution calculation without RCCA and with MA+MB RCCA insertion.The power peaking factor on the first operating cycle of the AP1000 core without RCCA, as well as with single and multiple RCCA are still below in the safety limit values (less then about 1.798). So in terms of thermal power generated by the fuel assembly, then it can be considered that the AP100 core at the first operating cycle is safe.

  14. Magnetic separation of coal fly ash from Bulgarian power plants.

    PubMed

    Shoumkova, Annie S

    2011-10-01

    Fly ash from three coal-burning power plants in Bulgaria: 'Maritza 3', 'Republika' and 'Rousse East' were subjected to wet low-intensity magnetic separation. The tests were performed at different combinations of magnetic field intensity, flow velocity and diameter of matrix elements. It was found that all parameters investigated affected the separation efficiency, but their influence was interlinked and was determined by the properties of the material and the combination of other conditions. Among the fly ash characteristics, the most important parameters, determining the magnetic separation applicability, were mineralogical composition and distribution of minerals in particles. The main factors limiting the process were the presence of paramagnetic Fe-containing mineral and amorphous matter, and the existence of poly-mineral particles and aggregates of magnetic and non-magnetic particles. It was demonstrated that the negative effect of both factors could be considerably limited by the selection of a proper set of separation conditions. The dependences between concentration of ferromagnetic iron in the ash, their magnetic properties and magnetic fraction yields were studied. It was experimentally proved that, for a certain set of separation conditions, the yields of magnetic fractions were directly proportional to the saturation magnetization of the ferromagnetic components of the ash. The main properties of typical magnetic and non-magnetic fractions were studied.

  15. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  16. Review of stand-alone photovoltaic application projects sponsored by US DOE and US AID

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1981-01-01

    Experience with dc photovoltaic systems (without backup power) and ranging in output from 23 to 3,500 peak watts, in a wide range of environmental conditions and with a wide range of insolation, is described. Cooperation of NASA with other government agencies resulted in the installation of an air pollution monitor in New Jersey, a seismic sensor in Hawaii, power for lookout towers in national forests in California, an electric power system for a Papago Indian village in Arizona, and a power system for a grain mill and water pump in Tangaye, Upper Volta. Significant operational results are discussed and system reliability is assessed for the 20 experimental systems installed since 1976. Additional systems to be installed overseas are highlighted, and economic factors are considered.

  17. NASA Lewis Stirling engine computer code evaluation

    NASA Technical Reports Server (NTRS)

    Sullivan, Timothy J.

    1989-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was -11 percent for the P-40 and 12 percent for the Re-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvements to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions.

  18. The effect of the coupling between the top plate and the fingerboard on the acoustic power radiated by a classical guitar (L).

    PubMed

    García-Mayén, Héctor; Santillán, Arturo

    2011-03-01

    An experimental investigation on the coupling between the fingerboard and the top plate of a classical guitar at low frequencies is presented. The study was carried out using a finished top plate under fixed boundary conditions and a commercial guitar. Radiated sound power was determined in one-third octave bands up to the band of 1 kHz based on measurements of sound intensity. The results provide evidence that the way in which the fingerboard and top plate are coupled is not a relevant factor in the radiated acoustic power of the classical guitar in the studied frequency range. © 2011 Acoustical Society of America

  19. Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces.

    PubMed

    Kim, S; Zoschke, K; Klein, M; Black, D; Buschick, K; Toepper, M; Tathireddy, P; Harrison, R; Solzbacher, F

    2007-05-01

    Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro batteries as well as biological micro fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.

  20. Vibroacoustic optimization using a statistical energy analysis model

    NASA Astrophysics Data System (ADS)

    Culla, Antonio; D`Ambrogio, Walter; Fregolent, Annalisa; Milana, Silvia

    2016-08-01

    In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A preliminary sensitivity analysis of subsystem energy to CLF's is performed to select CLF's that are most effective on subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization procedure, where approximate relationships between CLF's, injected power and physical parameters are derived. The approach is applied on a typical aeronautical structure: the cabin of a helicopter.

  1. Experiments with Geometric Non-Linear Coupling for Analytical Validation

    DTIC Science & Technology

    2010-03-01

    maintaining a high safety factor. This is the primary constraint and is very important in keeping the end conditions of the experiment known. 3.1.4...the maximum load case while maintaining a safety factor of at least 2. Figure 3.14: Cable and Winch. The load is measured using a 3,000 lbf...the class and power of this laser, laser eyewear is required for safe use of the system. The Photon 80 can scan at various levels of detail. For

  2. Large-scale terrestrial solar cell power generation cost: A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Shure, L. I.

    1972-01-01

    A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.

  3. Heat Transfer Study for HTS Power Transfer Cables

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  4. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  5. Study on load forecasting to data centers of high power density based on power usage effectiveness

    NASA Astrophysics Data System (ADS)

    Zhou, C. C.; Zhang, F.; Yuan, Z.; Zhou, L. M.; Wang, F. M.; Li, W.; Yang, J. H.

    2016-08-01

    There is usually considerable energy consumption in data centers. Load forecasting to data centers is in favor of formulating regional load density indexes and of great benefit to getting regional spatial load forecasting more accurately. The building structure and the other influential factors, i.e. equipment, geographic and climatic conditions, are considered for the data centers, and a method to forecast the load of the data centers based on power usage effectiveness is proposed. The cooling capacity of a data center and the index of the power usage effectiveness are used to forecast the power load of the data center in the method. The cooling capacity is obtained by calculating the heat load of the data center. The index is estimated using the group decision-making method of mixed language information. An example is given to prove the applicability and accuracy of this method.

  6. Power conditioning techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.

    1989-01-01

    The technological developments required to reduce the electrical power system component weights from the state-of-the-art 2.0 kg/kW to the range of 0.1 to 0.2 kg/kW are discussed. Power level requirements and their trends in aerospace applications are identified and presented. The projected weight and launch costs for a 1MW power converter built using state-of-the-art technology are established to illustrate the need for reliable, ultralightweight advanced power components. The key factors affecting converter weight are given and some of the tradeoffs between component ratings and circuit topology are identified. The weight and launch costs for a 1MW converter using 0.1 kg/kW technology are presented. Finally, the objectives and goals of the Multi-Megawatt Program at the NASA Lewis Research Center, which is funded by the SDIO through the Air Force, are given.

  7. Index extraction for electromagnetic field evaluation of high power wireless charging system.

    PubMed

    Park, SangWook

    2017-01-01

    This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario.

  8. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  9. Performance and properties of the first plasmas of Wendelstein 7-X

    DOE PAGES

    Klinger, Thomas; Alonso, A.; Bozhenkov, S.; ...

    2016-10-18

    The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values ofmore » $${{T}_{\\text{e}}}>8$$ keV, $${{T}_{\\text{i}}}>2$$ keV at line-integrated densities $$n\\approx 3\\centerdot {{10}^{19}}~{{\\text{m}}^{-2}}$$ were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. Lastly, the fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.« less

  10. Beam conditioning for FELs: Consequences and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, A.; Penn, G.; Sessler, A.

    2004-06-29

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of two or more. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided inmore » each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.« less

  11. Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities.

    PubMed

    Tian, Suyang; Hao, Changchun; Xu, Guangkuan; Yang, Juanjuan; Sun, Runguang

    2017-10-01

    In this study, polysaccharides from Angelica sinensis were extracted using the ultrasound-assisted extraction method. Based on the results of single factor experiments and orthogonal tests, three independent variables-water/raw material ratio, ultrasound time, and ultrasound power-were selected for investigation. Then, we used response surface methodology to optimize the extraction conditions. The experimental data were fitted to a quadratic equation using multiple regression analysis, and the optimal conditions were as follows: water/raw material ratio, 43.31 mL/g; ultrasonic time, 28.06 minutes; power, 396.83 W. Under such conditions, the polysaccharide yield was 21.89±0.21%, which was well matched with the predicted yield. In vitro assays, scavenging activity of superoxide anion radicals, hydroxyl radicals, and 2,2-diphenyl-1-picry-hydrazyl radical showed that polysaccharides had certain antioxidant activities and that hydroxyl radicals have a remarkable scavenging capability. Therefore, these studies provide reference for further research and rational development of A. sinensis polysaccharide. Copyright © 2016. Published by Elsevier B.V.

  12. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    NASA Astrophysics Data System (ADS)

    Malla, S. G.; Bhende, C. N.

    2014-10-01

    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  13. Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Yacovitch, Tara I.; Fortner, Edward C.; Roscioli, Joseph R.; Floerchinger, Cody; Herndon, Scott C.; Kolb, Charles E.; Knighton, Walter B.; Paramo, Victor Hugo; Zirath, Sergio; Mejía, José Antonio; Jazcilevich, Aron

    2017-12-01

    Diesel-powered vehicles are intensively used in urban areas for transporting goods and people but can substantially contribute to high emissions of black carbon (BC), organic carbon (OC), and other gaseous pollutants. Strategies aimed at controlling mobile emissions sources thus have the potential to improve air quality and help mitigate the impacts of air pollutants on climate, ecosystems, and human health. However, in developing countries there are limited data on the BC and OC emission characteristics of diesel-powered vehicles, and thus there are large uncertainties in the estimation of the emission contributions from these sources. We measured BC, OC, and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and C2-benzenes under real-world driving conditions for 20 diesel-powered vehicles encompassing multiple emission level technologies in Mexico City with the chasing technique using the Aerodyne mobile laboratory. Average BC emission factors ranged from 0.41-2.48 g kg-1 of fuel depending on vehicle type. The vehicles were also simultaneously measured using the cross-road remote sensing technique to obtain the emission factors of nitrogen oxide (NO), CO, total hydrocarbons, and fine PM, thus allowing for the intercomparison of the results from the two techniques. There is overall good agreement between the two techniques and both can identify high and low emitters, but substantial differences were found in some of the vehicles, probably due to the ability of the chasing technique to capture a larger diversity of driving conditions in comparison to the remote sensing technique. A comparison of the results with the US EPA MOVES2014b model showed that the model underestimates CO, OC, and selected VOC species, whereas there is better agreement for NOx and BC. Larger OC / BC ratios were found in comparison to ratios measured in California using the same technique, further demonstrating the need for using locally obtained diesel-powered vehicle emission factor database in developing countries in order to reduce the uncertainty in the emissions estimates and to improve the evaluation of the effectiveness of emissions reduction measures.

  14. 14 CFR Appendix E to Part 121 - Flight Training Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Authority or by the person conducting the training B AT BU (d) Pretakeoff checks that include power-plant... conditions, wind direction and velocity, brake heat energy, and any other pertinent factors that may... sequence from an ILS instrument approach B AT AT BU (d) Cross wind landing B AT BU (e) Maneuvering to a...

  15. 14 CFR Appendix E to Part 121 - Flight Training Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Authority or by the person conducting the training B AT BU (d) Pretakeoff checks that include power-plant... conditions, wind direction and velocity, brake heat energy, and any other pertinent factors that may... sequence from an ILS instrument approach B AT AT BU (d) Cross wind landing B AT BU (e) Maneuvering to a...

  16. Feedback Both Helps and Hinders Learning: The Causal Role of Prior Knowledge

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; Rittle-Johnson, Bethany

    2016-01-01

    Feedback can be a powerful learning tool, but its effects vary widely. Research has suggested that learners' prior knowledge may moderate the effects of feedback; however, no causal link has been established. In Experiment 1, we randomly assigned elementary school children (N = 108) to a condition based on a crossing of 2 factors: induced strategy…

  17. Drawing ellipses in water: evidence for dynamic constraints in the relation between velocity and path curvature.

    PubMed

    Catavitello, Giovanna; Ivanenko, Yuri P; Lacquaniti, Francesco; Viviani, Paolo

    2016-06-01

    Several types of continuous human movements comply with the so-called Two-Thirds Power Law (2/3-PL) stating that velocity (V) is a power function of the radius of curvature (R) of the endpoint trajectory. The origin of the 2/3-PL has been the object of much debate. An experiment investigated further this issue by comparing two-dimensional drawing movements performed in air and water. In both conditions, participants traced continuously quasi-elliptic trajectories (period T = 1.5 s). Other experimental factors were the movement plane (horizontal/vertical), and whether the movement was performed free-hand, or by following the edge of a template. In all cases a power function provided a good approximation to the V-R relation. The main result was that the exponent of the power function in water was significantly smaller than in air. This appears incompatible with the idea that the power relationship depends only on kinematic constraints and suggests a significant contribution of dynamic factors. We argue that a satisfactory explanation of the observed behavior must take into account the interplay between the properties of the central motor commands and the visco-elastic nature of the mechanical plant that implements the commands.

  18. Analysis of Weibull Grading Test for Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  19. Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  20. Power factor improvement in three-phase networks with unbalanced inductive loads using the Roederstein ESTAmat RPR power factor controller

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.

    2018-01-01

    The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).

  1. Factors affecting the photoproduction of ammonia from dinitrogen and water by the cyanobacterium Anabaena sp. strain ATCC 33047.

    PubMed

    Ramos, J L; Guerrero, M G; Losada, M

    1987-04-01

    Synthesis of ammonia from dinitrogen and water by suspensions of Anabaena sp. Strain ATCC 33047 treated with the glutamine synthetase inhibitor L-methionine-D,L-sulfoximine is strictly dependent on light. Under otherwise optimal conditions, the yield of ammonia production is influenced by irradiance, as well as by the density, depth, and turbulence of the cell suspension. The interaction among these factors seems to determine the actual amount of light available to each single cell or filament in the suspension for the photoproduction process. Under convenient illumination, the limiting factor in the synthesis of ammonia seems to be the cellular nitrogenase activity level, but under limiting light conditions the limiting factor could, however, be the assimilatory power required for nitrogen fixation. Photosynthetic ammonia production from atmospheric nitrogen and water can operate with an efficiency of ca. 10% of its theoretical maximum, representing a remarkable process for the conversion of light energy into chemical energy.

  2. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds.

    PubMed

    Al-Dhabi, Naif Abdullah; Ponmurugan, Karuppiah; Maran Jeganathan, Prakash

    2017-01-01

    In this current work, Box-Behnken statistical experimental design (BBD) was adopted to evaluate and optimize USLE (ultrasound-assisted solid-liquid extraction) of phytochemicals from spent coffee grounds. Factors employed in this study are ultrasonic power, temperature, time and solid-liquid (SL) ratio. Individual and interactive effect of independent variables over the extraction yield was depicted through mathematical models, which are generated from the experimental data. Determined optimum process conditions are 244W of ultrasonic power, 40°C of temperature, 34min of time and 1:17g/ml of SL ratio. The predicted values were in correlation with experimental values with 95% confidence level, under the determined optimal conditions. This indicates the significance of selected method for USLE of phytochemicals from SCG. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  4. Leg extension power is a pre-disaster modifiable risk factor for post-traumatic stress disorder among survivors of the Great East Japan Earthquake: a retrospective cohort study.

    PubMed

    Momma, Haruki; Niu, Kaijun; Kobayashi, Yoritoshi; Huang, Cong; Otomo, Atsushi; Chujo, Masahiko; Tadaura, Hiroko; Nagatomi, Ryoichi

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a common psychological problem following natural disasters. Although pre-disaster risk factors are important for early detection and proactive support, the examination of such has been limited to sociodemographic factors, which were largely unaffected by the disasters. We examined the association between pre-disaster physical functioning and lifestyle and PTSD symptoms five months after the earthquake in the Great East Japan Earthquake survivors who were participating in a pre-existing cohort study. We designed a retrospective cohort study of a cooperative association in Sendai from August 2010 to August 2011. In 2010, lifestyle, physical condition, and sociodemographic factors were examined by self-reported questionnaires completed by 522 employees of this organization. We also measured the leg extension power of all the participants. PTSD symptoms were evaluated by the Japanese version of the Impact of Event Scale-Revised (IES-R-J) following the earthquake of 2011. In multivariate linear regression analysis, leg extension power (β = -0.128, P = 0.025), daily drinking (β  = 0.203, P = 0.006), and depressive symptoms (β  = 0.139, P = 0.008) were associated with total score of the IES-R-J among men. Moreover, for the IES-R-J subscale, leg extension power was also negatively associated with Intrusion (β = -0.114, P = 0.045) and Hyperarousal (β = -0.163, P = 0.004) after adjusting for all other significant variables. For women, hypertension (β  = 0.226, P = 0.032) and depressive symptoms (β  = 0.205, P = 0.046) were associated with the total score of the IES-R-J. Leg extension power is a potentially modifiable pre-disaster risk factor among men for attenuating the severity of PTSD symptoms associated with great disasters such as the Great East Japan Earthquake among men.

  5. Comparative evaluation of distributed-collector solar thermal electric power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.

    1978-01-01

    Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.

  6. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  7. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  8. High temperature, high intensity solar array. [for Venus Radar Mapper mission

    NASA Technical Reports Server (NTRS)

    Smith, B. S.; Brooks, G. R.; Pinkerton, R.

    1985-01-01

    The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.

  9. FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS

    PubMed Central

    Bessonova, O.V.; Khokhlova, V.A.; Bailey, M.R.; Canney, M.S.; Crum, L.A.

    2009-01-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions. PMID:20161349

  10. FOCUSING OF HIGH POWER ULTRASOUND BEAMS AND LIMITING VALUES OF SHOCK WAVE PARAMETERS.

    PubMed

    Bessonova, O V; Khokhlova, V A; Bailey, M R; Canney, M S; Crum, L A

    2009-07-21

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  11. Focusing of high power ultrasound beams and limiting values of shock wave parameters

    NASA Astrophysics Data System (ADS)

    Bessonova, O. V.; Khokhlova, V. A.; Bailey, M. R.; Canney, M. S.; Crum, L. A.

    2009-10-01

    In this work, the influence of nonlinear and diffraction effects on amplification factors of focused ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were obtained at output levels corresponding to both pre- and post-shock formation conditions in the focal area of the beam in a weakly dissipative medium. Numerical solutions were compared with experimental data as well as with known analytic predictions.

  12. An Investigation of the Overlap Between the Statistical Discrete Gust and the Power Spectral Density Analysis Methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    The results of a NASA investigation of a claimed Overlap between two gust response analysis methods: the Statistical Discrete Gust (SDG) Method and the Power Spectral Density (PSD) Method are presented. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented for several different airplanes at several different flight conditions indicate that such an Overlap does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  13. A study of the vibrational energies of two coupled beams by finite element and green function (receptance) methods

    NASA Astrophysics Data System (ADS)

    Shankar, K.; Keane, A. J.

    1995-04-01

    The behaviour of two hinged-hinged beams, point coupled by springs (translational, rotary and a combination of both) with weak to strong coupling is studied from the point of view of vibrational energies, input power and power transferred through the coupling. Two configurations are studied: in the first case the beams are placed parallel to each other and only the transverse, Euler-Bernoulli modes are considered; the second configuration is more complicated with the beams placed perpendicular to each other, executing axial as well as transverse vibrations. These models are studied by using a finite element analysis (FEA) package and, alternatively, via the modally derived Green functions of the uncoupled subsystems. In both cases the beams are given proportional damping and one of the beams is driven by a point harmonic force. The effects of coupling stiffness and modal summation bandwidth are studied. It is shown that there is good agreement between the FEA and the Green function approach over a range of coupling strengths, but that at higher strengths the number of uncoupled modes used significantly affects the accuracy of the Green function method used here. The beams in the second configuration are then further studied from the point of view of SEA coupling loss factors. The frequency averaged coupling loss factors are calculated for weak and strong coupling, first by using a power injection method, where the power balance equations are formed on the assumption of only direct coupling loss factors. Then, the entire matrix of direct and indirect coupling loss factors is derived by using a deterministic modal approach. These are compared and the indirect coupling loss factors are found to be significant in magnitude in respect to the direct coupling loss factors. Several cases are studied in which the coupling powers and energy levels are predicted by using only the direct coupling loss factors and compared with the exact results obtained by using both direct and indirect factors. These agree only under certain conditions for weak coupling and show rather poorer agreement in the case of strong coupling. This behaviour demonstrates the importance of taking into account indirect coupling loss factors in SEA models having several subsystems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, A.; Penn, G.; Sessler, A.

    The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioningmore » provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.« less

  15. Effect of ambient temperature and humidity on emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.

    1977-01-01

    The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.

  16. Transient Thermoelectric Solution Employing Green's Functions

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    The study works to formulate convenient solutions to the problem of a thermoelectric couple operating under a time varying condition. Transient operation of a thermoelectric will become increasingly common as thermoelectric technology permits applications in an increasing number of uses. A number of terrestrial applications, in contrast to steady-state space applications, can subject devices to time varying conditions. For instance thermoelectrics can be exposed to transient conditions in the automotive industry depending on engine system dynamics along with factors like driving style. In an effort to generalize the thermoelectric solution a Greens function method is used, so that arbitrary time varying boundary and initial conditions may be applied to the system without reformulation. The solution demonstrates that in thermoelectric applications of a transient nature additional factors must be taken into account and optimized. For instance, the materials specific heat and density become critical parameters in addition to the thermal mass of a heat sink or the details of the thermal profile, such as oscillating frequency. The calculations can yield the optimum operating conditions to maximize power output andor efficiency for a given type of device.

  17. Power factor regulation for household usage

    NASA Astrophysics Data System (ADS)

    Daud, Nik Ghazali Nik; Hashim, Fakroul Ridzuan; Tarmizi, Muhammad Haziq Ahmad

    2018-02-01

    Power factor regulator technology has recently drawn attention to the consumer and to power generation company in order for consumers to use electricity efficiently. Controlling of power factor for efficient usage can reduce the production of power in fulfilment demands hence reducing the greenhouse effect. This paper presents the design method of power factor controller for household usage. There are several methods to improve the power factor. The power factor controller used by this method is by using capacitors. Total harmonic distortion also has become a major problem for the reliability of the electrical appliances and techniques to control it will be discussed.

  18. Using Conversation Topics for Predicting Therapy Outcomes in Schizophrenia

    PubMed Central

    Howes, Christine; Purver, Matthew; McCabe, Rose

    2013-01-01

    Previous research shows that aspects of doctor-patient communication in therapy can predict patient symptoms, satisfaction and future adherence to treatment (a significant problem with conditions such as schizophrenia). However, automatic prediction has so far shown success only when based on low-level lexical features, and it is unclear how well these can generalize to new data, or whether their effectiveness is due to their capturing aspects of style, structure or content. Here, we examine the use of topic as a higher-level measure of content, more likely to generalize and to have more explanatory power. Investigations show that while topics predict some important factors such as patient satisfaction and ratings of therapy quality, they lack the full predictive power of lower-level features. For some factors, unsupervised methods produce models comparable to manual annotation. PMID:23943658

  19. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland

    PubMed Central

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas. PMID:26565700

  20. Urban Power Line Corridors as Novel Habitats for Grassland and Alien Plant Species in South-Western Finland.

    PubMed

    Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka

    2015-01-01

    Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.

  1. Cost of enlarged operating zone for an existing Francis runner

    NASA Astrophysics Data System (ADS)

    Monette, Christine; Marmont, Hugues; Chamberland-Lauzon, Joël; Skagerstrand, Anders; Coutu, André; Carlevi, Jens

    2016-11-01

    Traditionally, hydro power plants have been operated close to best efficiency point, the more stable operating condition for which they have been designed. However, because of changes in the electricity market, many hydro power plants operators wish to operate their machines differently to fulfil those new market needs. New operating conditions can include whole range operation, many start/stops, extensive low load operation, synchronous condenser mode and power/frequency regulation. Many of these new operating conditions may impose more severe fatigue damage than the traditional base load operation close to best efficiency point. Under these conditions, the fatigue life of the runner may be significantly reduced and reparation or replacement cost might occur sooner than expected. In order to design reliable Francis runners for those new challenging operating scenarios, Andritz Hydro has developed various proprietary tools and design rules. These are used within Andritz Hydro to design mechanically robust Francis runners for the operating scenarios fulfilling customer's specifications. To estimate residual life under different operating scenarios of an existing runner designed years ago for best efficiency base load operation, Andritz Hydro's design rules and tools would necessarily lead to conservative results. While the geometry of a new runner can be modified to fulfil all conservative mechanical design rules, the predicted fatigue life of an existing runner under off-design operating conditions may appear rather short because of the conservative safety factor included in the calculations. The most precise and reliable way to calculate residual life of an existing runner under different operating scenarios is to perform a strain gauge measurement campaign on the runner. This paper presents the runner strain gage measurement campaign of a mid-head Francis turbine over all the operating conditions available during the test, the analysis of the measurement signals and the runner residual life assessment under different operating scenarios. With these results, the maintenance cost of the change in operating mode can then be calculated and foreseen by the power plant owner.

  2. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia.

    PubMed

    Góralczyk, Krzysztof; Szymańska, Justyna; Szot, Katarzyna; Fisz, Jacek; Rość, Danuta

    2016-07-01

    Diabetes mellitus is considered to be a very serious lifestyle disease leading to cardiovascular complications and impaired wound healing observed in the diabetic foot syndrome. Chronic hyperglycemia is the source of the endothelial activation. The inflammatory process in diabetes is associated with the secretion of inflammatory cytokines by endothelial cells, e.g., tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). The method of phototherapy using laser beam of low power (LLLT-low-level laser therapy) effectively supports the conventional treatment of diabetic vascular complications such as diabetic foot syndrome. The aim of our study was to evaluate the effect of low-power laser irradiation at two wavelengths (635 and 830 nm) on the secretion of inflammatory factors (TNF-α and IL-6) by the endothelial cell culture-HUVEC line (human umbilical vein endothelial cell)-under conditions of hyperglycemia. It is considered that adverse effects of hyperglycemia on vascular endothelial cells may be corrected by the action of LLLT, especially with the wavelength of 830 nm. It leads to the reduction of TNF-α concentration in the supernatant and enhancement of cell proliferation. Endothelial cells play an important role in the pathogenesis of diabetes; however, a small number of studies evaluate an impact of LLLT on these cells under conditions of hyperglycemia. Further work on this subject is warranted.

  3. Analysis and design of continuous class-E power amplifier at sub-nominal condition

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Kai; Zhang, Tianliang

    2017-12-01

    The continuous class-E power amplifier at sub-nominal condition is proposed in this paper. The class-E power amplifier at continuous mode means it can be high efficient on a series matching networks while at sub-nominal condition means it only requires the zero-voltage-switching condition. Comparing with the classical class-E power amplifier, the proposed design method releases two additional design freedoms, which increase the class-E power amplifier's design flexibility. Also, the proposed continuous class-E power amplifier at sub-nominal condition can perform high efficiency over a broad bandwidth. The performance study of the continuous class-E power amplifier at sub-nominal condition is derived and the design procedure is summarised. The normalised switch voltage and current waveforms are investigated. Furthermore, the influences of different sub-nominal conditions on the power losses of the switch-on resistor and the output power capability are also discussed. A broadband continuous class-E power amplifier based on a Gallium Nitride (GaN) transistor is designed and testified to verify the proposed design methodology. The measurement results show, it can deliver 10-15 W output power with 64-73% power-added efficiency over 1.4-2.8 GHz.

  4. The past, present, and future of the U.S. electric power sector: Examining regulatory changes using multivariate time series approaches

    NASA Astrophysics Data System (ADS)

    Binder, Kyle Edwin

    The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are developed from a factor-augmented vector autoregressive model for a large dataset. Unconditional and conditional forecasts are compared for U.S. industrial production, real personal income, and estimated factors. Results suggest that economic growth will be slower under the Clean Power Plan than it would otherwise; however, CO2 emissions reductions and economic growth can be achieved simultaneously.

  5. Carpal tunnel syndrome: the role of occupational factors.

    PubMed

    Palmer, Keith T

    2011-02-01

    Carpal tunnel syndrome (CTS) is a fairly common condition in working-aged people, sometimes caused by physical occupational activities, such as repeated and forceful movements of the hand and wrist or use of hand-held, powered, vibratory tools. Symptoms may be prevented or alleviated by primary control measures at work, and some cases of disease are compensable. Following a general description of the disorder, its epidemiology and some of the difficulties surrounding diagnosis, this review focusses on the role of occupational factors in causation of CTS and factors that can mitigate risk. Areas of uncertainty, debate and research interest are emphasised where relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani

    2017-03-01

    A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.

  7. Social motivation in Qatari schools and their relation to school achievement.

    PubMed

    Nasser, Ramzi

    2014-10-01

    This study assessed the relation between school-social motivation and student academic achievement. A factor analysis was performed on a set of school-social items selected a priori from three measures of school motivation: the Inventory of School Motivation, the General Achievement Goals Orientation Scale, and the Facilitating Conditions Scale. Three factors with fewer items represented Global Motivation, Peer Help, and Social Power. Hierarchical regression analysis showed social motivation measures were weak predictors of achievement scores in the various content areas. Findings are discussed in the context of Qatari education and culture.

  8. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  9. Hierarchical, parallel computing strategies using component object model for process modelling responses of forest plantations to interacting multiple stresses

    Treesearch

    J. G. Isebrands; G. E. Host; K. Lenz; G. Wu; H. W. Stech

    2000-01-01

    Process models are powerful research tools for assessing the effects of multiple environmental stresses on forest plantations. These models are driven by interacting environmental variables and often include genetic factors necessary for assessing forest plantation growth over a range of different site, climate, and silvicultural conditions. However, process models are...

  10. A program for the calculation of paraboloidal-dish solar thermal power plant performance

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M., Jr.

    1985-01-01

    A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.

  11. Susceptibility of Legionella Strains to the Chlorinated Biocide, Monochloramine

    PubMed Central

    Jakubek, Delphine; Guillaume, Carole; Binet, Marie; Leblon, Gérard; DuBow, Michael; Le Brun, Matthieu

    2013-01-01

    Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased. PMID:24005820

  12. Susceptibility of Legionella strains to the chlorinated biocide, monochloramine.

    PubMed

    Jakubek, Delphine; Guillaume, Carole; Binet, Marie; Leblon, Gérard; DuBow, Michael; Le Brun, Matthieu

    2013-01-01

    Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased.

  13. Energy Neutral Wireless Bolt for Safety Critical Fastening

    PubMed Central

    Seyoum, Biruk B.

    2017-01-01

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace. PMID:28954432

  14. Energy Neutral Wireless Bolt for Safety Critical Fastening.

    PubMed

    Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide

    2017-09-26

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  15. Resonant AC power system proof-of-concept test program

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.

    1986-01-01

    Proof-of-concept testing was performed on a 20-kHz, resonant power system breadboard from 1981 through 1985. The testing began with the evaluation of a single, 1.0-kW resonant inverter and progressed to the testing of breadboard systems with higher power levels and more capability. The final breadboard configuration tested was a 25.0-kW breadboard with six inverters providing power to three user-interface modules over a 50-meter, 20-kHz bus. The breadboard demonstrated the ability to synchronize multiple resonant inverters to power a common bus. Single-phase and three-phase 20-kHz power distribution was demonstrated. Simple conversion of 20-kHz to dc and variable-frequency ac was demonstrated as was bidirectional power flow between 20-kHz and dc. Steady state measurements of efficiency, power-factor tolerance, and conducted emissions and conducted susceptibility were made. In addition, transient responses were recorded for such conditions as start up, shut down, load changes. The results showed the 20-kHz resonant system to be a desirable technology for a spacecraft power management and distribution system with multiple users and a utility-type bus.

  16. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    PubMed

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  17. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    PubMed Central

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  18. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  19. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  20. Fatigue during maximal sprint cycling: unique role of cumulative contraction cycles.

    PubMed

    Tomas, Aleksandar; Ross, Emma Z; Martin, James C

    2010-07-01

    Maximal cycling power has been reported to decrease more rapidly when performed with increased pedaling rates. Increasing pedaling rate imposes two constraints on the neuromuscular system: 1) decreased time for muscle excitation and relaxation and 2) increased muscle shortening velocity. Using two crank lengths allows the effects of time and shortening velocity to be evaluated separately. We conducted this investigation to determine whether the time available for excitation and relaxation or the muscle shortening velocity was mainly responsible for the increased rate of fatigue previously observed with increased pedaling rates and to evaluate the influence of other possible fatiguing constraints. Seven trained cyclists performed 30-s maximal isokinetic cycling trials using two crank lengths: 120 and 220 mm. Pedaling rate was optimized for maximum power for each crank length: 135 rpm for the 120-mm cranks (1.7 m x s(-1) pedal speed) and 109 rpm for the 220-mm cranks (2.5 m x s(-1) pedal speed). Power was recorded with an SRM power meter. Crank length did not affect peak power: 999 +/- 276 W for the 120-mm crank versus 1001 +/- 289 W for the 220-mm crank. Fatigue index was greater (58.6% +/- 3.7% vs 52.4% +/- 4.8%, P < 0.01), and total work was less (20.0 +/- 1.8 vs 21.4 +/- 2.0 kJ, P < 0.01) with the higher pedaling rate-shorter crank condition. Regression analyses indicated that the power for the two conditions was most highly related to cumulative work (r2 = 0.94) and to cumulative cycles (r2 = 0.99). These results support previous findings and confirm that pedaling rate, rather than pedal speed, was the main factor influencing fatigue. Our novel result was that power decreased by a similar increment with each crank revolution for the two conditions, indicating that each maximal muscular contraction induced a similar amount of fatigue.

  1. Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System

    NASA Astrophysics Data System (ADS)

    Bhende, C. N.; Kalam, A.; Malla, S. G.

    2016-04-01

    Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.

  2. Managing nurses through disciplinary power: a Foucauldian analysis of workplace violence.

    PubMed

    St-Pierre, Isabelle; Holmes, Dave

    2008-04-01

    This paper describes discipline as a specific technique of power which constitutes, in our view, a form of institutional violence. The need to create and maintain safe and healthy work environments for healthcare professionals is well documented. Foucault's concept of disciplinary power was used to explore institutional violence from a critical perspective. Violence is identified as an important factor in the recruitment and retention of healthcare professionals. Given the shortage of such professionals, there is an urgent need to take a fresh look at their working environments and working conditions. Power, surveillance and disciplinary techniques are used at all levels of hospital management to control and contain both human resources and costs. By associating common workplace practices with institutional violence, employers who have a policy of zero tolerance toward workplace violence will need to re-examine their current ways of operating.

  3. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  4. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  5. Accurate initial conditions in mixed dark matter-baryon simulations

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Villaescusa-Navarro, Francisco

    2017-06-01

    We quantify the error in the results of mixed baryon-dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations is of the order of few to 10 per cent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using a mix of general-relativistic gauges so as to approximate Newtonian gravity, namely longitudinal-gauge velocities with synchronous-gauge densities and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity that are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using gadget-III.

  6. Thermoelectric properties of an interacting quantum dot based heat engine

    NASA Astrophysics Data System (ADS)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  7. Pediatric Spinal Epidural Lymphoma Presenting with Compressive Myelopathy: A Distinct Pattern of Disease Presentation.

    PubMed

    Dho, Yun-Sik; Kim, Hyoungmin; Wang, Kyu-Chang; Kim, Seung-Ki; Lee, Ji Yeoun; Shin, Hee Young; Park, Kyung Duk; Kang, Hyoung Jin; Kim, Il Han; Park, Sung-Hye; Phi, Ji Hoon

    2018-06-01

    Spinal epidural lymphoma with compressive myelopathy is a rarely found condition. The aims of this study are to describe the clinical features and to analyze its treatment outcome and prognostic factors. We searched for all pediatric patients with newly diagnosed spinal epidural lymphoma from 1999 to 2014 in our institution. We evaluated the clinical features, including neurologic status, time interval to treatment, treatment modality, and outcomes. Twelve of 302 pediatric patients with lymphoma (4.0%) presented with compressive myelopathy, and they were all found to have spinal epidural lymphoma. In 11 patients, epidural space was the only site of lymphoma involvement. The median age was 9 years (range, 5-15 years). Common initial symptoms were back pain and low extremity weakness. Surgery was performed on 9 patients, biopsy on 2 patients, and radiation therapy on 1 patient. In 9 patients who received surgery, 6 patients with preoperative motor power grade ≥II attained improvement in weakness. Three patients with preoperative motor power grade

  8. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property

    PubMed Central

    Fukumaru, Takahiro; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Direct conversion from heat to electricity is one of the important technologies for a sustainable society since large quantities of energy are wasted as heat. We report the development of a single-walled carbon nanotube (SWNT)-based high conversion efficiency, air-stable and flexible thermoelectric material. We prepared cobaltocene-encapsulated SWNTs (denoted CoCp2@SWNTs) and revealed that the material showed a negative-type (n-type) semiconducting behaviour (Seebeck coefficient: −41.8 μV K−1 at 320 K). The CoCp2@SWNT film was found to show a high electrical conductivity (43,200 S m−1 at 320 K) and large power factor (75.4 μW m−1 K−2) and the performance was remarkably stable under atmospheric conditions over a wide range of temperatures. The thermoelectric figure of merit (ZT) value of the CoCp2@SWNT film (0.157 at 320 K) was highest among the reported n-type organic thermoelectric materials due to the large power factor and low thermal conductivity (0.15 W m−1 K−1). These characteristics of the n-type CoCp2@SWNTs allowed us to fabricate a p-n type thermoelectric device by combination with an empty SWNT-based p-type film. The fabricated device exhibited a highly efficient power generation close to the calculated values even without any air-protective coating due to the high stability of the SWNT-based materials under atmospheric conditions. PMID:25608478

  9. Index extraction for electromagnetic field evaluation of high power wireless charging system

    PubMed Central

    2017-01-01

    This paper presents the precise dosimetry for highly resonant wireless power transfer (HR-WPT) system using an anatomically realistic human voxel model. The dosimetry for the HR-WPT system designed to operate at 13.56 MHz frequency, which one of the ISM band frequency band, is conducted in the various distances between the human model and the system, and in the condition of alignment and misalignment between transmitting and receiving circuits. The specific absorption rates in the human body are computed by the two-step approach; in the first step, the field generated by the HR-WPT system is calculated and in the second step the specific absorption rates are computed with the scattered field finite-difference time-domain method regarding the fields obtained in the first step as the incident fields. The safety compliance for non-uniform field exposure from the HR-WPT system is discussed with the international safety guidelines. Furthermore, the coupling factor concept is employed to relax the maximum allowable transmitting power. Coupling factors derived from the dosimetry results are presented. In this calculation, the external magnetic field from the HR-WPT system can be relaxed by approximately four times using coupling factor in the worst exposure scenario. PMID:28708840

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram

    Manufacturing capacity for lithium-ion batteries (LIBs)--which power many consumer electronics and are increasingly used to power electric vehicles--is heavily concentrated in east Asia. Currently, China, Japan, and Korea collectively host 88% of all LIB cell and 79% of automotive LIB cell manufacturing capacity. Mature supply chains and strong cumulative production experience suggest that most LIB cell production will remain concentrated in Asia. However, other regions--including North America--could be competitive in the growing automotive LIB cell market under certain conditions. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimummore » sustainable price, and examines development of LIB supply chains and current LIB market conditions. Modeled costs are for large format, 20-Ah stacked pouch cells with lithium-nickel-manganese-cobalt-oxide (NMC) cathodes and graphite anodes suitable for automotive application. Production volume is assumed to be at commercial scale, 600 MWh per year.« less

  11. Conditions where random phase approximation becomes exact in the high-density limit

    NASA Astrophysics Data System (ADS)

    Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain

    2018-04-01

    It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.

  12. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC.

    PubMed

    Mohammed, Nazmi A; Elkarim, Mohammed Abd

    2015-08-10

    This work explores and evaluates the effect of diffuse light reflection on the accuracy of indoor localization systems based on visible light communication (VLC) in a high reflectivity environment using a received signal strength indication (RSSI) technique. The effect of the essential receiver (Rx) and transmitter (Tx) parameters on the localization error with different transmitted LED power and wall reflectivity factors is investigated at the worst Rx coordinates for a directed/overall link. Since this work assumes harsh operating conditions (i.e., a multipath model, high reflectivity surfaces, worst Rx position), an error of ≥ 1.46 m is found. To achieve a localization error in the range of 30 cm under these conditions with moderate LED power (i.e., P = 0.45 W), low reflectivity walls (i.e., ρ = 0.1) should be used, which would enable a localization error of approximately 7 mm at the room's center.

  13. Performance and Operational Characteristics of a Python Turbine-propeller Engine at Simulated Altitude Conditions / Carl L. Meyer and Lavern A. Johnson

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L; Johnson, Lavern A

    1952-01-01

    The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.

  14. multiDE: a dimension reduced model based statistical method for differential expression analysis using RNA-sequencing data with multiple treatment conditions.

    PubMed

    Kang, Guangliang; Du, Li; Zhang, Hong

    2016-06-22

    The growing complexity of biological experiment design based on high-throughput RNA sequencing (RNA-seq) is calling for more accommodative statistical tools. We focus on differential expression (DE) analysis using RNA-seq data in the presence of multiple treatment conditions. We propose a novel method, multiDE, for facilitating DE analysis using RNA-seq read count data with multiple treatment conditions. The read count is assumed to follow a log-linear model incorporating two factors (i.e., condition and gene), where an interaction term is used to quantify the association between gene and condition. The number of the degrees of freedom is reduced to one through the first order decomposition of the interaction, leading to a dramatically power improvement in testing DE genes when the number of conditions is greater than two. In our simulation situations, multiDE outperformed the benchmark methods (i.e. edgeR and DESeq2) even if the underlying model was severely misspecified, and the power gain was increasing in the number of conditions. In the application to two real datasets, multiDE identified more biologically meaningful DE genes than the benchmark methods. An R package implementing multiDE is available publicly at http://homepage.fudan.edu.cn/zhangh/softwares/multiDE . When the number of conditions is two, multiDE performs comparably with the benchmark methods. When the number of conditions is greater than two, multiDE outperforms the benchmark methods.

  15. Assessment of destabilizing factor for automatic control systems in propulsion systems of mechatronic and maritime transport objects

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Kapitonov, A. A.

    2017-10-01

    It is known that many of today’s ships and vessels have a shaft generator as a part of their power plants. Modern automatic control systems used in the world’s fleet do not enable their shaft generators to operate in parallel with the main diesel generators for long-term sustenance of the total load of the ship network. On the other hand, according to our calculations and experiments, a shaft generator operated in parallel with the main power plant helps save at least 10% of fuel while making the power system of the ship more efficient, reliable, and eco-friendly. The fouling and corrosion of the propeller as well as the weather conditions of navigation affect its modulus of resistance. It changes the free component of the transient process of shaft generator stress frequency changes in transient processes. While the shaft generator and the diesel generator of the ship power plant are paralleled, there emerges an angle between their EMF. This results in equalizing currents generated between them. The altering torque in the drive-shaft line—propeller system causes torsional fluctuations of the ship shaft line. To compensate for the effect of destabilizing factors and torsional fluctuations of the shaft line on the dynamic characteristics of the transient process that alters the RPM of the main engine, sliding mode controls can be used. To synthesize such a control, one has to evaluate the effect of destabilizing factors.

  16. Using the power balance model to simulate cross-country skiing on varying terrain.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  17. Control of wind turbine generators connected to power systems

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.

    1978-01-01

    A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.

  18. Do therapists address gender and power in infidelity? A feminist analysis of the treatment literature.

    PubMed

    Williams, Kirstee; Knudson-Martin, Carmen

    2013-07-01

    Sociocontextual factors such as gender and power play an important role in the etiology of affairs and in recovery from them, yet it is unclear how current treatment models address these issues. Drawing on feminist epistemology, this study utilized a grounded theory analysis of 29 scholarly articles and books on infidelity treatment published between 2000 and 2010 to identify the circumstances under which gender and power issues were or were not part of treatment. We found five conditions that limit attention to gender and power: (a) speaking (or assuming) as though partners are equal, (b) reframing infidelity as a relationship problem, (c) limiting discussion of societal context to background, (d) not considering how societal gender and power patterns impact relationship dynamics, and (e) limiting discussion of ethics on how to position around infidelity. Analysis explored how each occurred across three phases of couple therapy. The findings provide a useful foundation for a sociocontextual framework for infidelity treatment. © 2012 American Association for Marriage and Family Therapy.

  19. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    PubMed Central

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  20. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    PubMed

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  1. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  2. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  3. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  4. Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Picot, D.; Metkemeijer, R.; Bezian, J. J.; Rouveyre, L.

    In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW e prototype using Nafion® 117, a 5 and a 10 kW e module using Nafion® 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification.

  5. The influence of the built environment on adverse birth outcomes.

    PubMed

    Woods, N; Gilliland, J; Seabrook, J A

    2017-01-01

    Adverse birth outcomes are associated with neonatal morbidity and mortality, and higher risk for coronary heart disease, non-insulin-dependent diabetes and hypertension in adulthood. Although there has been considerable research investigating the association between maternal and environmental factors on adverse birth outcomes, one risk factor, not fully understood, is the influence of the built environment. A search of MEDLINE, Scopus, and Cochrane was conducted to find articles assessing the influence of the built environment on preterm birth (PTB), low birth weight (LBW), and small-for-gestational-age (SGA). In total, 41 studies met our inclusion criteria, and were organized into nine categories: Roadways, Greenness, Power Plants, Gas Stations/Wells, Waste Management, Power Lines, Neighborhood Conditions, Food Environment, and Industry. The most common built environmental variable was roads/traffic, encompassing 17/41 (41%) of the articles reviewed, of which 12/17 (71%) found a significant small to moderate association between high traffic exposure and adverse birth outcomes.

  6. [Hygienic problems in the location of modern wind electric power stations in their design].

    PubMed

    Kireeva, I S; Makhniuk, V M; Akimenko, V Ia; Dumanskiĭ, Iu D; Semashko, P V

    2013-01-01

    Hygienic aspects of the placement of wind power plants (WPP) in connection with the intensive development of wind power and the lack of systematic information on their effects of the environment and living conditions of the population are becoming more actual. In the article there are considered results of the sanitary-epidemiological expertise of the construction project of three modern large wind farm (the South - Ukrainian, Tiligulskaya and Pokrovskaya) with a total capacity offrom 180 to 500 MW of wind farms with 2.3 MW power generators of wind turbines. It is shown that in the process of wind farm construction a contamination of the environment (air soil, ground water) may take place due to the working of construction equipment and vehicle, excavation, welding and other operations, in the exploitation of wind farm there can be created elevated levels of acoustic and electromagnetic pollution in the neighborhood and emergencies with the destruction of WPP in adverse weather conditions. Based on the calculations presented in the projects, and the analysis of data on the impact offoreign windfarm on the environment it was found that the limiting factor of the influence is the wind farm noise pollution in the audio frequency range that extends beyond the territory of wind fields, electromagnetic radiation is recorded within the hygienic standards and below only in the immediate vicinity of its sources (electrical equipment and power lines). For considered modern wind farms there was grounded sanitary protective zone with dimensions of 700 mfrom the outermost wind turbines by the noise and it was recommended compliance distance of200 mfrom the wind turbine to limit any activity and people staying in times of possible emergency situations in adverse weather conditions.

  7. 325 Watts from 1-cm wide 9xx laser bars for DPSSL and FL applications

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Norbert; Manz, Yvonne; Mauron, Pascal; Fily, Arnaud; Schmidt, Berthold E.; Mueller, Juergen; Arlt, Sebastian; Weiss, Stefan; Thies, Achim; Troger, Joerg; Harder, Christoph S.

    2005-03-01

    Reliable power scaling by stretching the cavity length of the laser bars ranging from 1.2 mm to 3.6 mm at constant filling factor of 50% is demonstrated. While a relatively short cavity length of 1.2 mm allows for thermally limited CW output powers in excess of 180 W, extremely high 325 W at 420 A (CW, 16°C) have been achieved by leveraging the enhanced thermal properties of a 3.6 mm cavity length on standard micro-channel coolers. A high electro-optical conversion efficiency of 62% and 51% respectively is attributed to the low internal losses from an optimized waveguide design and the excellent properties of the AlGaAs-material system accounting for low thermal and electrical resistance. Multi-cell lifetest data at various operation conditions show extremely low wear-out rates even at harsh intermittent operation conditions (1-Hz type, 50% duty-cycle, 100% modulation). At 100 W output power 300 Mshots corresponding to 64000 h mean-time-to-failure (MTTF) have been extrapolated for 20% power drop from initial 2000 h and 4000 h lifetest readouts of a 1.2 mm cavity design. Similar results have been obtained for our next generation of ultra high power laser bars enabling reliable operation at 120 W output power and beyond. From 2.4 mm cavity length bars we have obtained 250 W of CW output power at 25°C while extrapolated reliability data at 120 W and 140 W power levels of up to 2000 h duration indicates that such devices are able to fulfill the requirements for lifetimes in the 20 - 30 kh range.

  8. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  9. Assessing access to MRI of patients with magnetic resonance-conditional pacemaker and implantable cardioverter defibrillator systems: the Really ProMRI study design.

    PubMed

    Maglia, Giampiero; Curnis, Antonio; Brieda, Marco; Anaclerio, Matteo; Caccavo, Vincenzo; Bonfanti, Paolo; Melissano, Donato; Caravati, Fabrizio; Giovene, Lisa; Gargaro, Alessio

    2015-10-01

    Despite the fact that magnetic resonance (MR)-conditional pacemaker and lead systems have been introduced more than 5 years ago, it is still not clear whether they have actually facilitated the access of pacemaker patients to this important diagnostic tool. Factors limiting MR scans in daily practice in patients with MR-conditional cardiac implantable electronic device (CIED) systems may be related to organizational, cultural and sometimes legal aspects. The Really ProMRI registry is an ongoing survey designed to assess the annual rate of MR examinations in patients with MR-conditional implants, with either pacemakers or implantable cardioverter defibrillators, and to detect the main factors limiting MRI. The primary endpoint of the Really ProMRI registry is to assess the current access to MRI of patients with MR-conditional pacemaker or implantable cardioverter defibrillator systems during normal practice. Data in the literature reported a 17% annual incidence of medical conditions requiring MRI in CIED patients. The Really ProMRI registry has been designed to detect 4.5% absolute difference with an 80% statistical power, by recruiting 600 patients already implanted with MR-conditional CIED implant. Patients will be followed up for 1 year, during which they will be asked to refer any prescription, execution or denial of an MR examination by patient questionnaires and original source documents. The ongoing Really ProMRI registry will assess the actual rate of and factors limiting the access to MRI for patients with MR-conditional CIEDs.

  10. Self-consistent asset pricing models

    NASA Astrophysics Data System (ADS)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the self-consistency condition derives a risk-factor decomposition in the multi-factor case which is identical to the principal component analysis (PCA), thus providing a direct link between model-driven and data-driven constructions of risk factors. This correspondence shows that PCA will therefore suffer from the same limitations as the CAPM and its multi-factor generalization, namely lack of out-of-sample explanatory power and predictability. In the multi-period context, the self-consistency conditions force the betas to be time-dependent with specific constraints.

  11. An investigation of the 'Overlap' between the Statistical-Discrete-Gust and the Power-Spectral-Density analysis methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    This paper presents the results of a NASA investigation of a claimed 'Overlap' between two gust response analysis methods: the Statistical Discrete Gust (SDG) method and the Power Spectral Density (PSD) method. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented in this paper for several different airplanes at several different flight conditions indicate that such an 'Overlap' does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  12. Effects of Harmonics on EMI/RFI Filters Operating Under Nonlinear Loading Conditions

    DTIC Science & Technology

    1993-05-01

    and used a form factor of 1.1 1), the correct rms current is really 19 Arm, (1.9 times 10 Aav ) For many distorted waveforms encountered in power...112) ATTN DET 0I1 79906 ATTN SDSSE-HE An. E~gioer. AEDC Arm. Off-. Aberdeen Proving Ground Ariold A. Forv Staton. TN 37389 US Army HSC US A..v Engr

  13. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles in low-carbon transport.

  14. The Social Determinants of Refugee Mental Health in the Post-Migration Context: A Critical Review.

    PubMed

    Hynie, Michaela

    2018-05-01

    With the global increase in the number of refugees and asylum seekers, mental health professionals have become more aware of the need to understand and respond to the mental health needs of forced migrants. This critical review summarizes the findings of recent systematic reviews and primary research on the impact of post-migration conditions on mental disorders and PTSD among refugees and asylum seekers. Historically, the focus of mental health research and interventions with these populations has been on the impact of pre-migration trauma. Pre-migration trauma does predict mental disorders and PTSD, but the post-migration context can be an equally powerful determinant of mental health. Moreover, post-migration factors may moderate the ability of refugees to recover from pre-migration trauma. The importance of post-migration stressors to refugee mental health suggests the need for therapeutic interventions with psychosocial elements that address the broader conditions of refugee and asylum seekers' lives. However, there are few studies of multimodal interventions with refugees, and even fewer with control conditions that allow for conclusions about their effectiveness. These findings are interpreted using a social determinants of health framework that connects the risk and protective factors in the material and social conditions of refugees' post-migration lives to broader social, economic and political factors.

  15. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  16. [Predictive power of working memory task for reading comprehension: an investigation using reading span test].

    PubMed

    Morishita, Masanao; Kondo, Hirohito; Ashida, Kayo; Otsuka, Yuki; Osaka, Naoyuki

    2007-02-01

    This study investigated the crucial factor mediating a correlation between performance of reading span test (RST) and reading comprehension. In the research literature on this issue, one of the remaining controversial points is whether the similarity of sentence processing between RST and comprehension contributes to the correlation. In this study, four RST conditions were created by the combination of two factors: relatedness of stimulus sentences (related or unrelated with each other) and focus of target words (focus or non-focus with respect to sentence meaning). If the correlation is mediated by the similarity of sentence processing, RST performance of related and focus condition, which was most akin to comprehension, would have higher correlation with reading comprehension than other conditions. However, as a result of correlation analysis based on data from ninety-six participants, no such evidence was obtained. On the other hand, RST performance of unrelated conditions that were supposed to strongly require attention control showed significant correlation with reading comprehension. These findings are discussed in terms of the contribution of attention control and short-term memory to performing RST and reading comprehension.

  17. A mechanism producing power law etc. distributions

    NASA Astrophysics Data System (ADS)

    Li, Heling; Shen, Hongjun; Yang, Bin

    2017-07-01

    Power law distribution is playing an increasingly important role in the complex system study. Based on the insolvability of complex systems, the idea of incomplete statistics is utilized and expanded, three different exponential factors are introduced in equations about the normalization condition, statistical average and Shannon entropy, with probability distribution function deduced about exponential function, power function and the product form between power function and exponential function derived from Shannon entropy and maximal entropy principle. So it is shown that maximum entropy principle can totally replace equal probability hypothesis. Owing to the fact that power and probability distribution in the product form between power function and exponential function, which cannot be derived via equal probability hypothesis, can be derived by the aid of maximal entropy principle, it also can be concluded that maximal entropy principle is a basic principle which embodies concepts more extensively and reveals basic principles on motion laws of objects more fundamentally. At the same time, this principle also reveals the intrinsic link between Nature and different objects in human society and principles complied by all.

  18. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  19. A model for field toxicity tests

    USGS Publications Warehouse

    Kaiser, Mark S.; Finger, Susan E.

    1996-01-01

    Toxicity tests conducted under field conditions present an interesting challenge for statistical modelling. In contrast to laboratory tests, the concentrations of potential toxicants are not held constant over the test. In addition, the number and identity of toxicants that belong in a model as explanatory factors are not known and must be determined through a model selection process. We present one model to deal with these needs. This model takes the record of mortalities to form a multinomial distribution in which parameters are modelled as products of conditional daily survival probabilities. These conditional probabilities are in turn modelled as logistic functions of the explanatory factors. The model incorporates lagged values of the explanatory factors to deal with changes in the pattern of mortalities over time. The issue of model selection and assessment is approached through the use of generalized information criteria and power divergence goodness-of-fit tests. These model selection criteria are applied in a cross-validation scheme designed to assess the ability of a model to both fit data used in estimation and predict data deleted from the estimation data set. The example presented demonstrates the need for inclusion of lagged values of the explanatory factors and suggests that penalized likelihood criteria may not provide adequate protection against overparameterized models in model selection.

  20. Dynamic modeling of porous heterogeneous micro/nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Jafari, Ali; Reza Barati, Mohammad

    2017-12-01

    In the present paper, the thermo-mechanical vibration characteristics of a functionally graded (FG) porous microbeam subjected to various types of thermal loadings are investigated based on modified couple stress theory and exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which the shear deformation effect is verified without the shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of the FG micro/nanobeam. The temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

  1. Cluster-cluster clustering

    NASA Technical Reports Server (NTRS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  2. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  3. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher prediction errors.

  4. How Turbulence Enables Core-collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Mabanta, Quintin A.; Murphy, Jeremiah W.

    2018-03-01

    An important result in core-collapse supernova (CCSN) theory is that spherically symmetric, one-dimensional simulations routinely fail to explode, yet multidimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how it does it is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multidimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, with ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multidimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Although we find that TD is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multidimensional simulations.

  5. Deep inductively coupled plasma etching of ELO-GaN grown with high fill factor

    NASA Astrophysics Data System (ADS)

    Gao, Haiyong; Lee, Jaesoong; Ni, Xianfeng; Leach, Jacob; Özgür, Ümit; Morkoç, Hadis

    2011-02-01

    The epitaxial lateral overgrowth (ELO) gallium nitride (GaN) was grown with high fill factor using metal organic chemical vapor deposition (MOCVD). The inductively coupled plasma (ICP) etching of ELO-GaN based on Cl2/Ar/SiCl4 gas mixture was performed. Surface properties of ELO-GaN subjected to ICP etching have been investigated and optimized etching condition in ELO-GaN with ICP etching is presented. Radiofrequency (RF) power and the flow rate of Cl2 gas were modified during the experiments. The window region, wing region and the edge region of ELO-GaN pattern present different etching characteristics. Different etching conditions were studied to get the minimized plasma-induced damage, relatively high etching rates, and excellent surface profiles. Etch depths of the etched ELO-GaN with smooth surface up to about 19 μm were achieved. The most suitable three-step etching condition is discussed with the assessment based on the morphology observation of the etched surface of ELO-GaN patterns.

  6. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  7. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    NASA Astrophysics Data System (ADS)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  8. Characterization of particulate matter and gaseous emissions of a C-130H aircraft.

    PubMed

    Corporan, Edwin; Quick, Adam; DeWitt, Matthew J

    2008-04-01

    The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.

  9. An Illumination Modeling System for Human Factors Analyses

    NASA Technical Reports Server (NTRS)

    Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)

    2002-01-01

    Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.

  10. Philosophy of ATHEANA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bley, D.C.; Cooper, S.E.; Forester, J.A.

    ATHEANA, a second-generation Human Reliability Analysis (HRA) method integrates advances in psychology with engineering, human factors, and Probabilistic Risk Analysis (PRA) disciplines to provide an HRA quantification process and PRA modeling interface that can accommodate and represent human performance in real nuclear power plant events. The method uses the characteristics of serious accidents identified through retrospective analysis of serious operational events to set priorities in a search process for significant human failure events, unsafe acts, and error-forcing context (unfavorable plant conditions combined with negative performance-shaping factors). ATHEANA has been tested in a demonstration project at an operating pressurized water reactor.

  11. A rapid and low energy consumption method to decolorize the high concentration triphenylmethane dye wastewater: operational parameters optimization for the ultrasonic-assisted ozone oxidation process.

    PubMed

    Zhou, Xian-Jiao; Guo, Wan-Qian; Yang, Shan-Shan; Ren, Nan-Qi

    2012-02-01

    This research set up an ultrasonic-assisted ozone oxidation process (UAOOP) to decolorize the triphenylmethane dyes wastewater. Five factors - temperature, initial pH, reaction time, ultrasonic power (low frequency 20 kHz), and ozone concentration - were investigated. Response surface methodology was used to find out the major factors influencing color removal rate and the interactions between these factors, and optimized the operating parameters as well. Under the experimental conditions: reaction temperature 39.81 °C, initial pH 5.29, ultrasonic power 60 W and ozone concentration 0.17 g/L, the highest color removals were achieved with 10 min reaction time and the initial concentration of the MG solution was 1000 mg/L. The optimal results indicated that the UAOOP was a rapid, efficient and low energy consumption technique to decolorize the high concentration MG wastewater. The predicted model was approximately in accordance with the experimental cases with correlation coefficients R(2) and R(adj)(2) of 0.9103 and 0.8386. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability

    DOE PAGES

    Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...

    2014-07-24

    Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less

  13. Wind Power Utilization Guide.

    DTIC Science & Technology

    1981-09-01

    The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to

  14. [The epidemiological characteristics and correlated factors of daily hassles for thermal power plant workers].

    PubMed

    Wu, Hui; Yu, Shan-fa; Zhou, Wen-hui; Gu, Gui-zhen

    2012-07-01

    This study aimed to investigate the epidemiological characteristics and correlated factors of daily hassles among thermal power plant workers. A mass screening of daily hassles and correlated factors was conducted on 498 workers from a thermal power plant in Zhengzhou in July, 2008. The questionnaires included Daily Hassles Questionnaires, Work Roles Questionnaires, Job Content Questionnaires (Chinese version), Effort-Reward Imbalance (Chinese version), Work Locus of Control Scale and Type A Behavior Scale, with content covering demographic characters and occupational stress correlated factors among subjects. The daily hassles was divided into lower level and higher level according to scores, and the epidemiological characteristics and correlated factors of daily hassles were analyzed. A total of 446 qualified questionnaires were obtained, effective response rate was 89.6% (446/498). For respondents, the age was (36.96 ± 6.49) years old, working length of the current job was (12.05 ± 7.54) years, the daily hassles scores was (9.01 ± 2.50), and the prevalence rate of the higher level of daily hassles was 34.1% (152/446). The multiple non-conditional logistic regression analysis showed 5-14 years' working length of current job (OR = 0.451, 95%CI: 0.225 - 0.904), average income > 3000 yuan(OR = 0.372, 95%CI: 0.202 - 0.684), reward (OR = 0.557, 95%CI: 0.325 - 0.954) and coping strategy (OR = 0.552, 95%CI: 0.330 - 0.925) were negatively correlated with daily hassles, and shift-work (OR = 1.887, 95%CI: 1.108 - 3.215), effort (OR = 2.053, 95%CI: 1.198 - 3.519), psychological demand (OR = 1.797, 95%CI: 1.049 - 3.078), negative affectivity (OR = 3.421, 95%CI: 2.065 - 5.668) were positively correlated with daily hassles. The prevalence rate of the higher level of daily hassles was considerable high for thermal power plant workers. Its negative correlated factors included 5 - 14 years' working length of the current job, average income > 3000 yuan, reward and coping strategy and its positive corelated factors included shift-work, effort, psychological demand and negative affectivity.

  15. PCDD/F emissions from light-duty diesel vehicles operated under highway conditions and a diesel-engine based power generator.

    PubMed

    Rey, M D; Font, R; Aracil, I

    2014-08-15

    PCDD/F emissions from three light-duty diesel vehicles--two vans and a passenger car--have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23 A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 min and the following 60 min of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm(3) for a 2004 model year van and 490-580 pg I-TEQ/Nm(3) for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm(3)) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm(3). All the results are discussed and compared with literature. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Analysis of Factors Affecting the Performance of RLV Thrust Cell Liners

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Technical Monitor); Butler, Daniel T., Jr.; Pinders, Marek-Jerzy

    2004-01-01

    The reusable launch vehicle (RLV) thrust cell liner, or thrust chamber, is a critical component of the Space Shuttle Main Engine (SSME). It is designed to operate in some of the most severe conditions seen in engineering practice. This requirement, in conjunction with experimentally observed 'dog-house' failure modes characterized by bulging and thinning of the cooling channel wall, provides the motivation to study the factors that influence RLV thrust cell liner performance. Factors or parameters believed to be directly related to the observed characteristic deformation modes leading to failure under in-service loading conditions are identified, and subsequently investigated using the cylindrical version of the higher-order theory for functionally graded materials in conjunction with the Robinson's unified viscoplasticity theory and the power-law creep model for modeling the response of the liner s constituents. Configurations are analyzed in which specific modifications in cooling channel wall thickness or constituent materials are made to determine the influence of these parameters on the deformations resulting in the observed failure modes in the outer walls of the cooling channel. The application of thermal barrier coatings and functional grading are also investigated within this context. Comparison of the higher-order theory results based on the Robinson and power-law creep model predictions has demonstrated that, using the available material parameters, the power-law creep model predicts more precisely the experimentally observed deformation leading to the 'dog-house' failure mode for multiple short cycles, while also providing much improved computational efficiency. However, for a single long cycle, both models predict virtually identical deformations. Increasing the power-law creep model coefficients produces appreciable deformations after just one long cycle that would normally be obtained after multiple cycles, thereby enhancing the efficiency of the analysis. This provides a basis for the development of an accelerated modeling procedure to further characterize dog-house deformation modes in RLV thrust cell liners. Additionally, the results presented herein have demonstrated that the mechanism responsible for deformation leading to 'dog-house' failure modes is driven by pressure, creep/relaxation and geometric effects.

  17. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running.

    PubMed

    Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian

    2012-10-01

    Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.

  18. CHANGES IN LOWER EXTREMITY MOVEMENT AND POWER ABSORPTION DURING FOREFOOT STRIKING AND BAREFOOT RUNNING

    PubMed Central

    Green, Douglas H.; Wurzinger, Brian

    2012-01-01

    Purpose/Background: Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. Methods: The study included 10 male and 10 female RFS runners who completed 3‐dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Results: Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. Conclusions: BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Clinical Relevance: Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee. PMID:23091785

  19. A power propulsion system based on a second-generation thermionic NPS of the ``Topaz'' type

    NASA Astrophysics Data System (ADS)

    Gryaznov, Georgi M.; Zhabotinski, Eugene E.; Andreev, Pavel V.; Zaritski, Gennadie a.; Koroteev, Anatoly S.; Martishin, Viktor M.; Akimov, Vladimir N.; Ponomarev-Stepnoi, Nikolai N.; Usov, Veniamin A.; Britt, Edward J.

    1992-01-01

    The paper considers the concept of power propulsion systems-universal space platforms (USPs) on the basis of second-generation thermionic nuclear power system (NPSs) and stationary plasma electric thrusters (SPETs). The composition and the principles of layout of such a system, based on a thermionic NPS with a continuous power of up to 30 kWe allowing power augmentation by a factor of 2-2.5 as long as during a year, as well as SPETs with a specific impulse of at least 20 km/s and a propulsion efficiency of 0.6-0.7 are discussed. The layouts and the basic parameters are presented for a power propulsion system ensuring cargo transportation from an initial radiation-safe 800 km high orbit into a geostationary one using the ``Zenit'' and ``Proton'' launch systems for injection into an initial orbit. It is shown that the mass of mission-oriented equipment in the geostationary orbit in the cases under consideration ranges from 2500 to 5500 kg on condition that the flight time is not longer than a year. The power propulsion system can be applied to autonomous power supply of various spacecraft including remote power delivery. It can be also used for deep space exploration.

  20. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne; Ordonez-Sanchez, Stephanie; Porter, Kate E.

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towingmore » tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.« less

  1. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    PubMed

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  2. Comparison of spring measures of length, weight, and condition factor for predicting metamorphosis in two populations of sea lampreys (Petromyzon marinus) larvae

    USGS Publications Warehouse

    Henson, Mary P.; Bergstedt, Roger A.; Adams, Jean V.

    2003-01-01

    The ability to predict when sea lampreys (Petromyzon marinus) will metamorphose from the larval phase to the parasitic phase is essential to the operation of the sea lamprey control program. During the spring of 1994, two populations of sea lamprey larvae from two rivers were captured, measured, weighed, implanted with coded wire tags, and returned to the same sites in the streams from which they were taken. Sea lampreys were recovered in the fall, after metamorphosis would have occurred, and checked for the presence of a tag. When the spring data were compared to the fall data it was found that the minimum requirements (length ≥ 120 mm, weight ≥ 3 g, and condition factor ≥ 1.50) suggested for metamorphosis did define a pool of larvae capable of metamorphosing. However, logistic regressions that relate the probability of metamorphosis to size are necessary to predict metamorphosis in a population. The data indicated, based on cross-validation, that weight measurements alone predicted metamorphosis with greater precision than length or condition factor in both the Marengo and Amnicon rivers. Based on the Akaike Information Criterion, weight alone was a better predictor in the Amnicon River, but length and condition factor combined predicted metamorphosis better in the Marengo River. There would be no additional cost if weight alone were used instead of length. However, if length and weight were measured the gain in predictive power would not be enough to justify the additional cost.

  3. Naval Classical Thinkers and Operational Art

    DTIC Science & Technology

    2009-01-01

    Principles and Practice of Military Operations on Land, published in 1911, did not attract as much attention as his previous two major works...thinker. He failed, for example, to consider factors such as social and cultural conditions in the rise of sea power; the rise of the English middle...three key ideas: the inherent value of a strategic central or interior position, the principle of concentration, and the close relationship between

  4. Physical protection philosophy and techniques in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufva, B.

    1988-01-01

    The circumstances for the protection of nuclear power plants are special in Sweden. A very important factor is that armed guards at the facilities are alien to the Swedish society. They do not use them. The Swedish concept of physical protection accepts that the aggressor will get into the facility. With this in mind, the Swedish Nuclear Power Inspectorate (SKI) has established the policy that administrative, technical, and organizational measures will be directed toward preventing an aggressor from damaging the reactor, even if he has occupied the facility. In addition, the best conditions possible shall be established for the operatormore » and the police to reoccupy the plant. The author believes this policy is different from that of many other countries. Therefore, he focusses on the Swedish philosophy and techniques for the physical protection of nuclear power plants.« less

  5. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  6. Characteristics of Turbulent Transfer during Episodes of Heavy Haze Pollution in Beijing in Winter 2016/17

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Zheng, Shuwen; Wei, Wei; Wu, Bingui; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-02-01

    We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University's atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/ L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /| θ *| was related to z/ L, roughly following a -1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a -2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.

  7. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study.

    PubMed

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2017-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State-Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson's correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18-22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AIC model1  = 63.403 > AIC model2  = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed.

  8. An Integrated Model of Emotional Problems, Beta Power of Electroencephalography, and Low Frequency of Heart Rate Variability after Childhood Trauma in a Non-Clinical Sample: A Path Analysis Study

    PubMed Central

    Jin, Min Jin; Kim, Ji Sun; Kim, Sungkean; Hyun, Myoung Ho; Lee, Seung-Hwan

    2018-01-01

    Childhood trauma is known to be related to emotional problems, quantitative electroencephalography (EEG) indices, and heart rate variability (HRV) indices in adulthood, whereas directions among these factors have not been reported yet. This study aimed to evaluate pathway models in young and healthy adults: (1) one with physiological factors first and emotional problems later in adulthood as results of childhood trauma and (2) one with emotional problems first and physiological factors later. A total of 103 non-clinical volunteers were included. Self-reported psychological scales, including the Childhood Trauma Questionnaire (CTQ), State–Trait Anxiety Inventory, Beck Depression Inventory, and Affective Lability Scale were administered. For physiological evaluation, EEG record was performed during resting eyes closed condition in addition to the resting-state HRV, and the quantitative power analyses of eight EEG bands and three HRV components were calculated in the frequency domain. After a normality test, Pearson’s correlation analysis to make path models and path analyses to examine them were conducted. The CTQ score was significantly correlated with depression, state and trait anxiety, affective lability, and HRV low-frequency (LF) power. LF power was associated with beta2 (18–22 Hz) power that was related to affective lability. Affective lability was associated with state anxiety, trait anxiety, and depression. Based on the correlation and the hypothesis, two models were composed: a model with pathways from CTQ score to affective lability, and a model with pathways from CTQ score to LF power. The second model showed significantly better fit than the first model (AICmodel1 = 63.403 > AICmodel2 = 46.003), which revealed that child trauma could affect emotion, and then physiology. The specific directions of relationships among emotions, the EEG, and HRV in adulthood after childhood trauma was discussed. PMID:29403401

  9. Higher Efficiency HVAC Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Charles Joseph

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less

  10. An ammonium sulfate/ethanol aqueous two-phase system combined with ultrasonication for the separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge.

    PubMed

    Guo, Y X; Han, J; Zhang, D Y; Wang, L H; Zhou, L L

    2012-07-01

    We studied the effect of ultrasonication extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS) for the separation of lithospermic acid B (LAB) from Salvia miltiorrhiza Bunge. According to the literature and preliminary studies, ammonium sulfate concentration, ethanol concentration, pH, ultrasonication power, ultrasonication time and the ratio of solvent-to-solid were investigated using a single factor design to identify the factors affecting separation. Taking into consideration a simultaneous increase in LAB recovery (R (%)) and partition coefficient (K), the best performance of the ATPS was obtained at 25°C and pH 2 using ammonium sulfate 22% (w/w) and ethanol 30% (w/w). To keep the solvent-to-solid ratio at 10, response surface methodology was used to find the optimal ultrasonication power and ultrasonication time. Quadratic models were predicted for LAB yield in the upper phase. Optimal conditions of 572.1 W ultrasonication power and 42.2 min produced a maximum yield of LAB of 42.16 mg g(-1) sample. There was no obvious degradation of LAB with ultrasound under the applied conditions, and the experimental yield of LAB was 42.49 mg g(-1) sample and the purity was 55.28% (w/w), which was much higher than that obtained using conventional extraction. The present study demonstrated that ultrasound coupled with aqueous two-phase systems is very efficient tool for the extraction and purification of LAB from Salvia miltiorrhiza Bunge. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Brief Self-Report Scales Assessing Life History Dimensions of Mating and Parenting Effort.

    PubMed

    Kruger, Daniel J

    2017-01-01

    Life history theory (LHT) is a powerful evolutionary framework for understanding physiological, psychological, and behavioral variation both between and within species. Researchers and theorists are increasingly integrating LHT into evolutionary psychology, as it provides a strong foundation for research across many topical areas. Human life history variation has been represented in psychological and behavioral research in several ways, including indicators of conditions in the developmental environment, indicators of conditions in the current environment, and indicators of maturation and life milestones (e.g., menarche, initial sexual activity, first pregnancy), and in self-report survey scale measures. Survey scale measures have included constructs such as time perspective and future discounting, although the most widely used index is a constellation of indicators assessing the K-factor, thought to index general life history speed (from fast to slow). The current project examined the utility of two brief self-report survey measures assessing the life history dimensions of mating effort and parenting effort with a large undergraduate sample in the United States. Consistent with the theory, items reflected two inversely related dimensions. In regressions including the K-factor, the Mating Effort Scale proved to be a powerful predictor of other constructs and indicators related to life history variation. The Parenting Effort Scale had less predictive power overall, although it explained unique variance across several constructs and was the only unique predictor of the number of long-term (serious and committed) relationships. These scales may be valuable additions to self-report survey research projects examining life history variation.

  12. Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds.

    PubMed

    Yamada, Tomomi; Kuwano, Sonoko; Ebisu, Shigeyuki; Hayashi, Mikako

    2016-01-01

    The sound produced by a dental air turbine handpiece (dental drill) can markedly influence the sound environment in a dental clinic. Indeed, many patients report that the sound of a dental drill elicits an unpleasant feeling. Although several manufacturers have attempted to reduce the sound pressure levels produced by dental drills during idling based on ISO 14457, the sound emitted by such drills under active drilling conditions may negatively influence the dental clinic sound environment. The physical metrics related to the unpleasant impressions associated with dental drill sounds have not been determined. In the present study, psychological measurements of dental drill sounds were conducted with the aim of facilitating improvement of the sound environment at dental clinics. Specifically, we examined the impressions elicited by the sounds of 12 types of dental drills in idling and drilling conditions using a semantic differential. The analysis revealed that the impressions of dental drill sounds varied considerably between idling and drilling conditions and among the examined drills. This finding suggests that measuring the sound of a dental drill in idling conditions alone may be insufficient for evaluating the effects of the sound. We related the results of the psychological evaluations to those of measurements of the physical metrics of equivalent continuous A-weighted sound pressure levels (LAeq) and sharpness. Factor analysis indicated that impressions of the dental drill sounds consisted of two factors: "metallic and unpleasant" and "powerful". LAeq had a strong relationship with "powerful impression", calculated sharpness was positively related to "metallic impression", and "unpleasant impression" was predicted by the combination of both LAeq and calculated sharpness. The present analyses indicate that, in addition to a reduction in sound pressure level, refining the frequency components of dental drill sounds is important for creating a comfortable sound environment in dental clinics.

  13. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    NASA Astrophysics Data System (ADS)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  14. Operational experience with intermediate flat-plate photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Risser, V. V.; Zwibel, H. S.

    Operating features, data acquisition, and fault isolation and maintenance procedures at 20 kWp and 100 kWp photovoltaic (PV) installations in Texas and New Mexico are discussed. Weather and system performance are sensed each minute, averages are calculated for each ten readings, and data is stored on magnetic tape. A total of 84 parameters, including 64 string currents, are recorded at the 20 kWp array and 84 parameters, with 42 string currents, are traced in New Mexico. The 20 kW array is coupled to a 197 MW utility power plant, which determines the voltage of the array. It produced 12 MWh in one yr of operation, functioning at 24 pct overall efficiency. The 100 kWp system is coupled to a 60 kW power conditioning unit and feeds a shopping center, producing 8 pct of the annual load with a cap factor of 25 pct and 192 MWh of dc current produced in one year. It was found that under normal conditions washing the panels is not economically justified in terms of the small power lost if washing does not occur. It is concluded that the PV arrays can be successfully used in an automated operation mode.

  15. System-state and operating condition sensitive control method and apparatus for electric power delivery systems

    NASA Technical Reports Server (NTRS)

    Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)

    1978-01-01

    This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.

  16. Method and apparatus for lead-unity-lag electric power generation system

    NASA Technical Reports Server (NTRS)

    Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)

    2013-01-01

    A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.

  17. Study of CFB Simulation Model with Coincidence at Multi-Working Condition

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.

    A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.

  18. A folded waveguide ICRF antenna for PBX-M and TFTR

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Carter, M. D.; Fogelman, C. H.; Yugo, J. J.; Baity, F. W.; Bell, G. L.; Gardner, W. L.; Goulding, R. H.; Hoffman, D. J.; Ryan, P. M.; Swain, D. W.; Taylor, D. J.; Wilson, R.; Bernabei, S.; Kugel, H.; Ono, M.

    1996-02-01

    The folded waveguide (FWG) antenna is an advanced ICRF launcher under development at ORNL that offers many significant advantages over current-strap type antennas. These features are particularly beneficial for reactor-relevant applications such as ITER and TPX. Previous tests of a development folded waveguide with a low density plasma load have shown a factor of 5 increase in power capability over loop antennas into similar plasma conditions. The performance and reliability of a FWG with an actual tokamak plasma load must now be verified for further acceptance of this concept. A 58 MHz, 4 MW folded waveguide is being designed and built for the PBX-M and TFTR tokamaks at Princeton Plasma Physics Laboratory. This design has a square cross-section that can be installed as either a fast wave (FW) or ion-Bernstein wave (IBW) launcher by 90° rotation. Two new features of the design are: a shorter quarter-wavelength resonator configuration and a rear-feed input power coupling loop. Loading calculations with a standard shorting plate indicate that a launched power level of 4 MW is possible on either machine. Mechanical and disruption force analysis indicates that bolted construction will withstand the disruption loads. An experimental program is planned to characterize the plasma loading, heating effectiveness, power capability, impurity generation and other factors for both FW and IBW cases. High power tests of the new configuration are being performed with a development FWG unit on RFTF at ORNL.

  19. Effect of brewing conditions on antioxidant properties of rosehip tea beverage: study by response surface methodology.

    PubMed

    İlyasoğlu, Huri; Arpa, Tuba Eda

    2017-10-01

    The aim of this study was to investigate the effects of brewing conditions (infusion time and temperature) on the antioxidant properties of rosehip tea beverage. The ascorbic acid content, total phenolic content (TPC), and ferric reducing antioxidant power (FRAP) of rosehip tea beverage were analysed. A two-factor and three-level central composite design was applied to evaluate the effects of the variables on the responses. The best quadratic models were obtained for all responses. The generated models were validated under the optimal conditions. At the optimal conditions, the rosehip tea beverage had 3.15 mg 100 mL -1 of ascorbic acid, 61.44 mg 100 mL -1 of TPC, and 2591 µmol of FRAP. The best brewing conditions for the rosehip tea beverage were found to be an infusion time of 6-8 min at temperatures of 84-86 °C.

  20. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  1. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  2. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  3. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  4. Scripting Module for the Satellite Orbit Analysis Program (SOAP)

    NASA Technical Reports Server (NTRS)

    Carnright, Robert; Paget, Jim; Coggi, John; Stodden, David

    2008-01-01

    This add-on module to the SOAP software can perform changes to simulation objects based on the occurrence of specific conditions. This allows the software to encompass simulation response of scheduled or physical events. Users can manipulate objects in the simulation environment under programmatic control. Inputs to the scripting module are Actions, Conditions, and the Script. Actions are arbitrary modifications to constructs such as Platform Objects (i.e. satellites), Sensor Objects (representing instruments or communication links), or Analysis Objects (user-defined logical or numeric variables). Examples of actions include changes to a satellite orbit ( v), changing a sensor-pointing direction, and the manipulation of a numerical expression. Conditions represent the circumstances under which Actions are performed and can be couched in If-Then-Else logic, like performing v at specific times or adding to the spacecraft power only when it is being illuminated by the Sun. The SOAP script represents the entire set of conditions being considered over a specific time interval. The output of the scripting module is a series of events, which are changes to objects at specific times. As the SOAP simulation clock runs forward, the scheduled events are performed. If the user sets the clock back in time, the events within that interval are automatically undone. This script offers an interface for defining scripts where the user does not have to remember the vocabulary of various keywords. Actions can be captured by employing the same user interface that is used to define the objects themselves. Conditions can be set to invoke Actions by selecting them from pull-down lists. Users define the script by selecting from the pool of defined conditions. Many space systems have to react to arbitrary events that can occur from scheduling or from the environment. For example, an instrument may cease to draw power when the area that it is tasked to observe is not in view. The contingency of the planetary body blocking the line of sight is a condition upon which the power being drawn is set to zero. It remains at zero until the observation objective is again in view. Computing the total power drawn by the instrument over a period of days or weeks can now take such factors into consideration. What makes the architecture especially powerful is that the scripting module can look ahead and behind in simulation time, and this temporal versatility can be leveraged in displays such as x-y plots. For example, a plot of a satellite s altitude as a function of time can take changes to the orbit into account.

  5. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  6. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touati, Said; Chennai, Salim; Souli, Aissa

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how wellmore » a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)« less

  8. New approaches for moving upstream: how state and local health departments can transform practice to reduce health inequalities.

    PubMed

    Freudenberg, Nicholas; Franzosa, Emily; Chisholm, Janice; Libman, Kimberly

    2015-04-01

    Growing evidence shows that unequal distribution of wealth and power across race, class, and gender produces the differences in living conditions that are "upstream" drivers of health inequalities. Health educators and other public health professionals, however, still develop interventions that focus mainly on "downstream" behavioral risks. Three factors explain the difficulty in translating this knowledge into practice. First, in their allegiance to the status quo, powerful elites often resist upstream policies and programs that redistribute wealth and power. Second, public health practice is often grounded in dominant biomedical and behavioral paradigms, and health departments also face legal and political limits on expanding their scope of activities. Finally, the evidence for the impact of upstream interventions is limited, in part because methodologies for evaluating upstream interventions are less developed. To illustrate strategies to overcome these obstacles, we profile recent campaigns in the United States to enact living wages, prevent mortgage foreclosures, and reduce exposure to air pollution. We then examine how health educators working in state and local health departments can transform their practice to contribute to campaigns that reallocate the wealth and power that shape the living conditions that determine health and health inequalities. We also consider health educators' role in producing the evidence that can guide transformative expansion of upstream interventions to reduce health inequalities. © 2015 Society for Public Health Education.

  9. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    PubMed

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  10. General analysis of slab lasers using geometrical optics.

    PubMed

    Chung, Te-yuan; Bass, Michael

    2007-02-01

    A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less

  12. Muscle power output properties using the stretch-shortening cycle of the upper limb and their relationships with a one-repetition maximum bench press.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinichi

    2006-05-01

    The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.

  13. The spontaneous emission factor for lasers with gain induced waveguiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newstein, M.

    1984-11-01

    The expression for the spontaneous emission factor for lasers with gain induced waveguiding has a factor K, called by Petermann ''the astigmatism parameter.'' This factor has been invoked to explain spectral and dynamic characteristics of this class of lasers. We contend that the widely accepted form of the K factor is based on a derivation which is not appropriate for the typical laser situation where the spontaneous emission factor is much smaller than unity. An alternative derivation is presented which leads to a different form for the K factor. The new expression predicts much smaller values under conditions where themore » previous theory gave values large compared to unity. Petermann's form for the K factor is shown to be relevant to large gain linear amplifiers where the power is amplified spontaneous emission noise. The expression for the power output has Petermann's value of K as a factor. The difference in the two situations is that in the laser oscillator the typical atom of interest couples a small portion of its incoherent spontaneous emission into the dominant mode, whereas in the amplifier only the atoms at the input end are important as sources and their output is converted to a greater degree into the dominant mode through the propagation process. In this analysis the authors use a classical model of radiating point dipoles in a continuous medium characterized by a complex permittivity. Since uncritical use of this model will lead to infinite radiation resistance they address the problem of its self-consistency.« less

  14. Low back pain predict sickness absence among power plant workers

    PubMed Central

    Murtezani, Ardiana; Hundozi, Hajrije; Orovcanec, Nikola; Berisha, Merita; Meka, Vjollca

    2010-01-01

    Background: Low back pain (LBP) remains the predominant occupational health problem in most industrialized countries and low-income countries. Both work characteristics and individual factors have been identified as risk factors. More knowledge about the predictors of sickness absence from LBP in the industry will be valuable in determining strategies for prevention. Objectives: The aim of this longitudinal study was to investigate whether individual, work-related physical risk factors were involved in the occurrence of LBP sickness absence. Methods: A follow-up study was conducted among 489 workers, aged 18–65 years, at Kosovo Energetic Corporation in Kosovo. This cross-sectional study used a self-administered questionnaire to collect data on individual and work-related risk factors and the occurrence of LBP sickness absence. Logistic regression models were used to determine associations between risk factors and the occurrence of sickness absence due to LBP. Results: Individual factors did not influence sickness absence, whereas work-related physical factors showed strong associations with sickness absence. The main risk factors for sickness absence due to LBP among production workers were extreme trunk flexion (OR = 1.71, 95% CI = 1.05–2.78) as well as very extreme trunk flexion (OR = 6.04, 95% CI = 1.12–32.49) and exposure to whole-body vibration (OR = 1.75, 95% CI = 1.04–2.95). Conclusion: Reducing sickness absence from LBP among power plant workers requires focusing on the working conditions of blue-collar workers and risk factors for LBP. Increasing social support in the work environment may have effects in reducing sickness absence from LBP. PMID:21120081

  15. Wireless and Low-Weight Technologies: Advanced Medical Assistance During a Cave Rescue: A Case Report.

    PubMed

    Petrucci, Emiliano; Pizzi, Barbara; Scimia, Paolo; Conti, Giuseppe; Di Carlo, Stefano; Santini, Antonella; Fusco, Pierfrancesco

    2018-06-01

    Trauma care in cave rescue is a unique situation that requires an advanced and organized approach with medical and technical assistance because of the extreme environmental conditions and logistical factors. In caving accidents, the most common injuries involve lower limbs. We describe an advanced medical rescue performed by the Italian Corpo Nazionale del Soccorso Alpino e Speleologico, in which extended focused assessment with sonography for trauma and an ultrasound-guided adductor canal block were performed on a patient with a knee distortion directly in the cave. The rescue team inside the cave shared data on patient monitoring and the ultrasound scanning in real time with rescuers at the entrance, using a video conference powered by the new Ermes system. The use of handheld, battery-powered, low-weight, multiparametric monitors, ultrasound machines, and digital data transmission systems could ensure complete medical assistance in harsh environmental conditions such as those found in a cave. Copyright © 2018 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  16. A CTE matched hard solder passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation

    NASA Astrophysics Data System (ADS)

    Hodges, Aaron; Wang, Jun; DeFranza, Mark; Liu, Xingsheng; Vivian, Bill; Johnson, Curt; Crump, Paul; Leisher, Paul; DeVito, Mark; Martinsen, Robert; Bell, Jacob

    2007-04-01

    A conductively cooled laser diode package design with hard AuSn solder and CTE matched sub mount is presented. We discuss how this platform eliminates the failure mechanisms associated with indium solder. We present the problem of catastrophic optical mirror damage (COMD) and show that nLight's nXLT TM facet passivation technology effectively eliminates facet defect initiated COMD as a failure mechanism for both single emitter and bar format laser diodes. By combining these technologies we have developed a product that has high reliability at high powers, even at increased operation temperatures. We present early results from on-going accelerated life testing of this configuration that suggests an 808nm, 30% fill factor device will have a MTTF of more than 21khrs at 60W CW, 25°C operating conditions and a MTTF of more than 6.4khrs when operated under hard pulsed (1 second on, 1 second off) conditions.

  17. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  18. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  19. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis

    NASA Astrophysics Data System (ADS)

    Ando, Keisuke; Matsuda, Tomoyuki; Imamura, Daichi

    2018-06-01

    Understanding the degradation factors (cathode and anode degradation and solid electrolyte interface (SEI) formation) of lithium-ion batteries (LIBs) with a blended cathode is necessary to improve their durability because battery drive vehicles often use LIBs with a blended cathode due to advantages of power and cost. We developed a dV/dQ curve analysis adapted for through a dQ/dV curve analysis to elucidate the relations between cycle test conditions and degradation factors. To compare said factors, cycle tests were conducted under different conditions: one charge/discharge rate (C/3), two state-of-charge (SoC) ranges (100%-0% and 100%-70%), and three temperatures (0 °C, 25 °C, and 45 °C). We confirmed that there are clear differences in the degree of contribution of each degradation factor depending on conditions. For instance, at 0 °C, although the capacity reduction rate was almost the same regardless of the SoC range, the degradation mechanisms were different, i.e., the cathode degradation and the SEI formation occurred at the same time, resulting in the reduced capacity for the 100%-0% SoC range, while capacity reduction was mainly due to SEI formation for the 100%-70% SoC range.

  20. A theoretical study of microwave beam absorption by a rectenna, introduction. [solar power satellites

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The conditions required for a large rectenna array (i.e., reference design) to absorb nearly 100% of transmitted energy were studied. Design parameters including element spacing, and the manner in which these affect scatter were formulated. Amplitudes and directions of scatter and development of strategies for mitigation were also investigated. The effects on rectenna behavior of external factors such as weather and aircraft overflights were determined.

  1. Wintertime Overnight NOx Removal in a Southeastern United States Coal-Fired Power Plant Plume: A Model for Understanding Winter NOx Processing and Its Implications

    NASA Technical Reports Server (NTRS)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; hide

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  2. Efficient heart beat detection using embedded system electronics

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.

    2014-04-01

    The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.

  3. Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications

    NASA Astrophysics Data System (ADS)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  4. External and internal factors influencing happiness in elite collegiate athletes.

    PubMed

    Denny, Katherine G; Steiner, Hans

    2009-03-01

    When under conditions of high demand and allostatic load, are happiness and satisfaction in four domains (family, friends, academics, recreation) influenced more by external or internal factors? Do student-athletes who lead exceedingly complicated lives report happiness as a function of athletic achievement or internal disposition? Stanford student-athletes (N=140) were studied with a standardized questionnaire which examined internal factors ((1) locus of control, (2) mindfulness, (3) self-restraint, and (4) self-esteem) to see whether they better account for happiness than external factors (playing time, scholarship). As predicted, internal factors were more powerful correlates of happiness when holding constant demographics. Regression models differed for different aspects of happiness, but the main postulated result of internal versus external was maintained throughout. These findings have implications for how well athletes cope with adversity which, in turn, could shed light on the development of traits that may provide a buffer against adversity and build resilience.

  5. Familial aggregation and linkage analysis with covariates for metabolic syndrome risk factors.

    PubMed

    Naseri, Parisa; Khodakarim, Soheila; Guity, Kamran; Daneshpour, Maryam S

    2018-06-15

    Mechanisms of metabolic syndrome (MetS) causation are complex, genetic and environmental factors are important factors for the pathogenesis of MetS In this study, we aimed to evaluate familial and genetic influences on metabolic syndrome risk factor and also assess association between FTO (rs1558902 and rs7202116) and CETP(rs1864163) genes' single nucleotide polymorphisms (SNP) with low HDL_C in the Tehran Lipid and Glucose Study (TLGS). The design was a cross-sectional study of 1776 members of 227 randomly-ascertained families. Selected families contained at least one affected metabolic syndrome and at least two members of the family had suffered a loss of HDL_C according to ATP III criteria. In this study, after confirming the familial aggregation with intra-trait correlation coefficients (ICC) of Metabolic syndrome (MetS) and the quantitative lipid traits, the genetic linkage analysis of HDL_C was performed using conditional logistic method with adjusted sex and age. The results of the aggregation analysis revealed a higher correlation between siblings than between parent-offspring pairs representing the role of genetic factors in MetS. In addition, the conditional logistic model with covariates showed that the linkage results between HDL_C and three marker, rs1558902, rs7202116 and rs1864163 were significant. In summary, a high risk of MetS was found in siblings confirming the genetic influences of metabolic syndrome risk factor. Moreover, the power to detect linkage increases in the one parameter conditional logistic model regarding the use of age and sex as covariates. Copyright © 2018. Published by Elsevier B.V.

  6. Moball-Buoy Network: A Near-Real-Time Ground-Truth Distributed Monitoring System to Map Ice, Weather, Chemical Species, and Radiations, in the Arctic

    NASA Astrophysics Data System (ADS)

    Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.

    2014-12-01

    The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global control system. This control system will ensure arctic-wide coverage, will optimize Moball-buoys monitoring efforts according to their available resources and the priority of local areas of high scientific value within the Arctic region. Moball-buoy Network is expected to be the first robust and persistent Arctic-wide environment monitoring system capable of providing reliable readings in near real time

  7. An in-depth review of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. R.

    1984-01-01

    The features, strong points and shortcomings of 10 numerical models commonly applied to assessing photovoltaic performance are discussed. The models range in capabilities from first-order approximations to full circuit level descriptions. Account is taken, at times, of the cell and module characteristics, the orientation and geometry, array-level factors, the power-conditioning equipment, the overall plant performance, O and M effects, and site-specific factors. Areas of improvement and/or necessary extensions are identified for several of the models. Although the simplicity of a model was found not necessarily to affect the accuracy of the data generated, the use of any one model was dependent on the application.

  8. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  9. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verificationmore » of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.« less

  10. Influence of beam-loaded effects on phase-locking in the high power microwave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenghong; Zhou, Zhigang; Qiu, Rong

    2014-06-15

    Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistentmore » analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.« less

  11. Research on uncertainty evaluation measure and method of voltage sag severity

    NASA Astrophysics Data System (ADS)

    Liu, X. N.; Wei, J.; Ye, S. Y.; Chen, B.; Long, C.

    2018-01-01

    Voltage sag is an inevitable serious problem of power quality in power system. This paper focuses on a general summarization and reviews on the concepts, indices and evaluation methods about voltage sag severity. Considering the complexity and uncertainty of influencing factors, damage degree, the characteristics and requirements of voltage sag severity in the power source-network-load sides, the measure concepts and their existing conditions, evaluation indices and methods of voltage sag severity have been analyzed. Current evaluation techniques, such as stochastic theory, fuzzy logic, as well as their fusion, are reviewed in detail. An index system about voltage sag severity is provided for comprehensive study. The main aim of this paper is to propose thought and method of severity research based on advanced uncertainty theory and uncertainty measure. This study may be considered as a valuable guide for researchers who are interested in the domain of voltage sag severity.

  12. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.

  13. Turkish nurses' assessments of their power and the factors that affect it.

    PubMed

    Basaran, Seher; Duygulu, Sergul

    2015-11-01

    To explore nurses' self-assessments of power and their opinions regarding factors affecting power in Turkey using a cross-sectional, descriptive study. In order to safely and cost-effectively care for patients, nurses must perceive themselves as powerful and have the use and control of power resources. The study sample consisted of 297 nurses in six hospitals: two government hospitals, two university hospitals and two private hospitals. Data were collected using the Demographic Data Form and Power Question Form. Nurses regarded themselves as 'quite powerful' regarding persuasion (53.2%) and referent power (43.4%). Many nurses also regarded themselves as having positional power and 'quite powerful' regarding, reward (44.1%) and legitimate power (34.7%). Nurses saw themselves as least powerful in resource power (48.1%). Individual, educational and organisational factors were the main factors affecting personal and positional power sources. Turkish nurses regarded themselves as above average on being powerful in both the personal and positional power base but not in resource power. We recommend that nurses, educators and managers develop strategies to support nurses' power as a way to enhance the patient care outcomes. © 2014 John Wiley & Sons Ltd.

  14. A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer

    PubMed Central

    Cobo, Angelica; Sheybani, Roya; Tu, Heidi; Meng, Ellis

    2016-01-01

    We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications. PMID:26855476

  15. Clinical and treatment-related risk factors for nosocomial colonisation with extensively drug-resistant Pseudomonas aeruginosa in a haematological patient population: a matched case control study.

    PubMed

    Willmann, Matthias; Klimek, Anna M; Vogel, Wichard; Liese, Jan; Marschal, Matthias; Autenrieth, Ingo B; Peter, Silke; Buhl, Michael

    2014-12-10

    This study aimed to investigate risk factors for colonisation with extensively drug-resistant P. aeruginosa (XDR-PA) in immunocompromised patients and to build a clinical risk score (CRS) based on these results. We conducted a matched case-control study with 31 cases and 93 controls (1:3). Cases were colonised with XDR-PA during hospitalisation. Independent risk factors were determined using a three step conditional logistic regression procedure. A CRS was built with respect to the corresponding risk fraction of each risk factor, and its discriminatory power was estimated by receiver operating characteristic (ROC) analysis. The presence of a central venous catheter (OR 7.41, P = 0.0008), the presence of a urinary catheter (OR 21.04, P < 0.0001), CRP > 10 mg/dl (OR 7.36, P = 0.0015), and ciprofloxacin administration (OR 5.53, P = 0.025) were independent risk factors. The CRS exhibited a high discriminatory power, defining a high risk population with an approximately fourteen times greater risk for XDR-PA colonisation. Unnecessary use of antibiotics, particularly ciprofloxacin should be avoided, and a high standard of infection control measures must be achieved when using medical devices. A CRS can be used for adaptation of the active screening culture policy to the local setting.

  16. Development of a method for reliable power input measurements in conventional and single‐use stirred bioreactors at laboratory scale

    PubMed Central

    Werner, Sören; Jossen, Valentin; Kraume, Matthias; Eibl, Dieter

    2016-01-01

    Power input is an important engineering and scale‐up/down criterion in stirred bioreactors. However, reliably measuring power input in laboratory‐scale systems is still challenging. Even though torque measurements have proven to be suitable in pilot scale systems, sensor accuracy, resolution, and errors from relatively high levels of friction inside bearings can become limiting factors at smaller scales. An experimental setup for power input measurements was developed in this study by focusing on stainless steel and single‐use bioreactors in the single‐digit volume range. The friction losses inside the air bearings were effectively reduced to less than 0.5% of the measurement range of the torque meter. A comparison of dimensionless power numbers determined for a reference Rushton turbine stirrer (N P = 4.17 ± 0.14 for fully turbulent conditions) revealed good agreement with literature data. Hence, the power numbers of several reusable and single‐use bioreactors could be determined over a wide range of Reynolds numbers between 100 and >104. Power numbers of between 0.3 and 4.5 (for Re = 104) were determined for the different systems. The rigid plastic vessels showed similar power characteristics to their reusable counterparts. Thus, it was demonstrated that the torque‐based technique can be used to reliably measure power input in stirred reusable and single‐use bioreactors at the laboratory scale. PMID:28579937

  17. 47 CFR 80.915 - Main power supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Main power supply. 80.915 Section 80.915... supply. (a) There must be readily available for use under normal load conditions a main power supply... required receiver. Under this load condition the potential of the main power supply at the power input...

  18. 47 CFR 80.915 - Main power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Main power supply. 80.915 Section 80.915... supply. (a) There must be readily available for use under normal load conditions a main power supply... required receiver. Under this load condition the potential of the main power supply at the power input...

  19. The psychometric properties of the Chinese version of the Conditions of Work Effectiveness Questionnaire-II.

    PubMed

    Sun, Ning; Li, Qiu-Jie; Lv, Dong-Mei; Lu, Gui-Zhi; Lin, Ping; An, Xue-Mei

    2014-10-01

    The present study was conducted to evaluate the psychometric properties of a newly adapted Chinese version of an instrument designed to measure structural empowerment among staff nurses. Structural empowerment has been shown to be important to nurses in Western cultures, but its importance in China is unknown. A convenience sample of 650 staff nurses was selected from six hospitals in Harbin, China. After linguistic adaptation using the forward-backward translation method, the 19-item Conditions of Work Effectiveness Questionnaire-II (CWEQ-II-CV) was answered by participants. Content validity, Cronbach's alpha, item-to-total correlation and exploratory factor analysis were used to assess the reliability and validity of the translated instrument. In the factor analysis, a six-factor solution was found to be reasonable with the sub-dimensions of structural empowerment that included support (three items), resources (three items), information (three items), opportunity (three items), formal power (three items) and informal power (four items). Cronbach's alpha coefficient for the total instrument was 0.92 and ranged from 0.68 to 0.86 in the six subscales. The item-to-total correlation coefficients ranged from 0.48 to 0.80. The findings also gave support for content validity. Evidence was found to support the reliability and validity of the CWEQ-II-CV scale that measures the quality of the work environment for nurses from a structural empowerment perspective. The translated version of CWEQ-II-CV can provide an effective evaluation tool for structural empowerment in the Chinese nursing workplace. © 2013 John Wiley & Sons Ltd.

  20. Evaluation of Landslide Mapping Techniques and LiDAR-based Conditioning Factors

    NASA Astrophysics Data System (ADS)

    Mahalingam, R.; Olsen, M. J.

    2014-12-01

    Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities to plan and prepare for these damaging events. Mapping landslide susceptible locations using GIS and remote sensing techniques is gaining popularity in the past three decades. These efforts use a wide variety of procedures and consider a wide range of factors. Unfortunately, each study is often completed differently and independently of others. Further, the quality of the datasets used varies in terms of source, data collection, and generation, which can propagate errors or inconsistencies into the resulting output maps. Light detection and ranging (LiDAR) has proved to have higher accuracy in representing the continuous topographic surface, which can help minimize this uncertainty. The primary objectives of this paper are to investigate the applicability and performance of terrain factors in landslide hazard mapping, determine if LiDAR-derived datasets (slope, slope roughness, terrain roughness, stream power index and compound topographic index) can be used for predictive mapping without data representing other common landslide conditioning factors, and evaluate the differences in landslide susceptibility mapping using widely-used statistical approaches. The aforementioned factors were used to produce landslide susceptibility maps for a 140 km2 study area in northwest Oregon using six representative techniques: frequency ratio, weights of evidence, logistic regression, discriminant analysis, artificial neural network, and support vector machine. Most notably, the research showed an advantage in selecting fewer critical conditioning factors. The most reliable factors all could be derived from a single LiDAR DEM, reducing the need for laborious and costly data gathering. Most of the six techniques showed similar statistical results; however, ANN showed less accuracy for predictive mapping. Keywords : LiDAR, Landslides, Oregon, Inventory, Hazard

  1. Thermoelectric Power Factor Limit of a 1D Nanowire

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-01

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  2. Thermoelectric Power Factor Limit of a 1D Nanowire.

    PubMed

    Chen, I-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes

    2018-04-27

    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW/m K^{2}) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.

  3. Micro/Nano Fabricated Solid-State Thermoelectric Generator Devices for Integrated High Voltage Power Sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Ryan, M. A.; Snyder, G. J.; Huang, C.-K.; Whitacre, J. F.; Patel, J.; Lim, J.; Borshchevsky, A.

    2002-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Conventional power generators devices become inefficient in extreme environments (such as encountered in Mars, Venus or outer planet missions) and rechargeable energy storage devices can only be operated in a narrow temperature range thereby limiting mission duration. The planned development of much smaller spacecrafts incorporating a variety of micro/nanodevices and miniature vehicles will require novel, reliable power technologies. It is also expected that such micro power sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Advanced solid-state thermoelectric combined with radioisotope or waste heat sources and low profile energy storage devices are ideally suited for these applications. The Jet Propulsion Laboratory has been actively pursuing the development of thermoelectric micro/nanodevices that can be fabricated using a combination of electrochemical deposition and integrated circuit processing techniques. Some of the technical challenges associated with these micro/nanodevice concepts, their expected level of performance and experimental fabrication and testing results to date are presented and discussed.

  4. Design of Conditionally Active STATs: Insights into STAT Activation and Gene Regulatory Function

    PubMed Central

    Milocco, Lawrence H.; Haslam, Jennifer A.; Rosen, Jonathan; Seidel, H. Martin

    1999-01-01

    The STAT (signal transducer and activator of transcription) signaling pathway is activated by a large number of cytokines and growth factors. We sought to design a conditionally active STAT that could not only provide insight into basic questions about STAT function but also serve as a powerful tool to determine the precise biological role of STATs. To this end, we have developed a conditionally active STAT by fusing STATs with the ligand-binding domain of the estrogen receptor (ER). We have demonstrated that the resulting STAT-ER chimeras are estrogen-inducible transcription factors that retain the functional and biochemical characteristics of the cognate wild-type STATs. In addition, these tools have allowed us to evaluate separately the contribution of tyrosine phosphorylation and dimerization to STAT function. We have for the first time provided experimental data supporting the model that the only apparent role of STAT tyrosine phosphorylation is to drive dimerization, as dimerization alone is sufficient to unmask a latent STAT nuclear localization sequence and induce nuclear translocation, sequence-specific DNA binding, and transcriptional activity. PMID:10082558

  5. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.

    PubMed

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-11-29

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

  6. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb

    PubMed Central

    He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng

    2016-01-01

    Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743

  7. Evaluation of FSO System Availability in Haze Condition

    NASA Astrophysics Data System (ADS)

    Anis, A. A.; Rashidi, C. B. M.; Aljunid, S. A.; Rahman, A. K.

    2018-03-01

    In this paper, we proposed the evaluation of FSO system availability in haze condition. The atmospheric attenuation by weather conditions in the atmosphere as the most challenging problem of FSO system as the system performance is severely degraded and causing the signal optic to be transmitted poorly. The effects of haze condition on the performance of FSO system is stressed out and focused in this paper. From the evaluation of the analysis, designs of FSO system are proposed to obtain a system with improved link performance in haze conditions. The scattering coefficient and the atmospheric attenuation are determined using Beer’s Lambert equation. From the research, the link performance of the system is greatly improved using Design 2 with minimum BER of 10-127127 and maximu m Q Factor of 23.98. The FSO system using Design 2 has better performance compared to Design 1 in haze condition as the optical signals could penetrate the dense haze better without losing much optical power during the transmission to the scattering.

  8. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  9. Effects of shoe cleat position on physiology and performance of competitive cyclists.

    PubMed

    Paton, Carl D

    2009-12-01

    Aerobic economy is an important factor that affects the performance of competitive cyclists. It has been suggested that placing the foot more anteriorly on the bicycle pedals may improve economy over the traditional foot position by improving pedaling efficiency. The current study examines the effects of changing the anterior-posterior pedal foot position on the physiology and performance of well-trained cyclists. In a crossover study, 10 competitive cyclists completed two maximal incremental and two submaximal tests in either their preferred (control) or a forward (arch) foot position. Maximum oxygen consumption and peak power output were determined from the incremental tests for both foot positions. On two further occasions, cyclists also completed a two-part 60-min submaximal test that required them to maintain a constant power output (equivalent to 60% of their incremental peak power) for 30 min, during which respiratory and blood lactate samples were taken at predetermined intervals. Thereafter, subjects completed a 30-min self-paced maximal effort time trial. Relative to the control, the mean changes (+/-90% confidence limits) in the arch condition were as follows: maximum oxygen consumption, -0.5% (+/-2.0%); incremental peak power output, -0.8% (+/-1.3%); steady-state oxygen consumption at 60%, -2.4% (+/-1.1%); steady-state heart rate 60%, 0.4% (+/-1.7%); lactate concentration 60%, 8.7% (+/-14.4%); and mean time trial power, -1.5% (+/-2.9%). We conclude that there was no substantial physiological or performance advantage in this group using an arch-cleat shoe position in comparison with a cyclist's normal preferred condition.

  10. [Application of microwave technology in extraction process of Guizhi Fuling capsule].

    PubMed

    Wang, Zheng-kuan; Zhou, Mao; Liu, Yuan; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    In this paper, optimization of the conditions of microwave technique in extraction process of Guizhi Fuling capsule in the condition of a pilot scale was carried out. First of all, through the single factor experiment investigation of various factors, the overall impact tendency and range of each factor were determined. Secondly, L9 (3(4)) orthogonal test optimization was used, and the contents of gallic acid in liquid, paeoniflorin, benzoic acid, cinnamic acid, benzoyl paeoniflorin, amygdalin of the liquid medicine were detected. The extraction rate and comprehensive evaluation were calculated with the extraction effect, as the judgment basis. Theoptimum extraction process of Guizhi Fuling capsule by microwave technology was as follows: the ratio of liquid to solid was 6: 1 added to drinking water, the microwave power was 6 kW, extraction time was 20 min for 3 times. The process of the three batch of amplification through verification, the results are stable, and compared with conventional water extraction has the advantages of energy saving, time saving, high efficiency advantages. The above results show the optimum extracting technology of high efficiency, stable and feasible.

  11. The crowding factor method applied to parafoveal vision

    PubMed Central

    Ghahghaei, Saeideh; Walker, Laura

    2016-01-01

    Crowding increases with eccentricity and is most readily observed in the periphery. During natural, active vision, however, central vision plays an important role. Measures of critical distance to estimate crowding are difficult in central vision, as these distances are small. Any overlap of flankers with the target may create an overlay masking confound. The crowding factor method avoids this issue by simultaneously modulating target size and flanker distance and using a ratio to compare crowded to uncrowded conditions. This method was developed and applied in the periphery (Petrov & Meleshkevich, 2011b). In this work, we apply the method to characterize crowding in parafoveal vision (<3.5 visual degrees) with spatial uncertainty. We find that eccentricity and hemifield have less impact on crowding than in the periphery, yet radial/tangential asymmetries are clearly preserved. There are considerable idiosyncratic differences observed between participants. The crowding factor method provides a powerful tool for examining crowding in central and peripheral vision, which will be useful in future studies that seek to understand visual processing under natural, active viewing conditions. PMID:27690170

  12. Design of Experiments with Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs

    PubMed Central

    Collins, Linda M.; Dziak, John J.; Li, Runze

    2009-01-01

    An investigator who plans to conduct experiments with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article four design options are compared: complete factorial, individual experiments, single factor, and fractional factorial designs. Complete and fractional factorial designs and single factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility. PMID:19719358

  13. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    NASA Astrophysics Data System (ADS)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  14. Exceptional thermoelectric performance of a "star-like" SnSe nanotube with ultra-low thermal conductivity and a high power factor.

    PubMed

    Lin, Chensheng; Cheng, Wendan; Guo, Zhengxiao; Chai, Guoliang; Zhang, Hao

    2017-08-30

    Efficient thermoelectric energy conversion is both crucial and challenging, and requires new material candidates by design. From first principles simulations, we identify that a "star-like" SnSe nanotube - with alternating dense and loose rings along the tube direction - gives rise to an ultra-low lattice thermal conductivity, 0.18 W m -1 K -1 at 750 K, and a large Seebeck coefficient, compared with single crystal SnSe. The power factor of the p-type SnSe nanotube reaches its maximum value of 235 μW cm -1 K -2 at a moderate doping level of around 10 20 -10 21 cm -3 . The p-type nanotube shows better thermoelectric properties than the n-type one. The phonon anharmonic scattering rate of the SnSe nanotube is larger than that of the SnSe crystal. All of these factors lead to an exceptional figure-of-merit (ZT) value of 3.5-4.6 under the optimal conditions, compared to 0.6-2.6 for crystalline SnSe. Such a large ZT value should lead to a six-fold increase in the energy conversion efficiency to about 30%.

  15. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  16. Margin and sensitivity methods for security analysis of electric power systems

    NASA Astrophysics Data System (ADS)

    Greene, Scott L.

    Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. Security margins measure the amount by which system loads or power transfers can change before a security violation, such as an overloaded transmission line, is encountered. This thesis shows how to efficiently compute security margins defined by limiting events and instabilities, and the sensitivity of those margins with respect to assumptions, system parameters, operating policy, and transactions. Security margins to voltage collapse blackouts, oscillatory instability, generator limits, voltage constraints and line overloads are considered. The usefulness of computing the sensitivities of these margins with respect to interarea transfers, loading parameters, generator dispatch, transmission line parameters, and VAR support is established for networks as large as 1500 buses. The sensitivity formulas presented apply to a range of power system models. Conventional sensitivity formulas such as line distribution factors, outage distribution factors, participation factors and penalty factors are shown to be special cases of the general sensitivity formulas derived in this thesis. The sensitivity formulas readily accommodate sparse matrix techniques. Margin sensitivity methods are shown to work effectively for avoiding voltage collapse blackouts caused by either saddle node bifurcation of equilibria or immediate instability due to generator reactive power limits. Extremely fast contingency analysis for voltage collapse can be implemented with margin sensitivity based rankings. Interarea transfer can be limited by voltage limits, line limits, or voltage stability. The sensitivity formulas presented in this thesis apply to security margins defined by any limit criteria. A method to compute transfer margins by directly locating intermediate events reduces the total number of loadflow iterations required by each margin computation and provides sensitivity information at minimal additional cost. Estimates of the effect of simultaneous transfers on the transfer margins agree well with the exact computations for a network model derived from a portion of the U.S grid. The accuracy of the estimates over a useful range of conditions and the ease of obtaining the estimates suggest that the sensitivity computations will be of practical value.

  17. Comparing Performance During Morning vs. Afternoon Training Sessions in Intercollegiate Basketball Players.

    PubMed

    Heishman, Aaron D; Curtis, Michael A; Saliba, Ethan N; Hornett, Robert J; Malin, Steven K; Weltman, Arthur L

    2017-06-01

    Time of day is a key factor that influences the optimization of athletic performance. Intercollegiate coaches oftentimes hold early morning strength training sessions for a variety of factors including convenience. However, few studies have specifically investigated the effect of early morning vs. late afternoon strength training on performance indices of fatigue. This is athletically important because circadian and/or ultradian rhythms and alterations in sleep patterns can affect training ability. Therefore, the purpose of the present study was to examine the effects of morning vs. afternoon strength training on an acute performance index of fatigue (countermovement jump height, CMJ), player readiness (Omegawave), and self-reported sleep quantity. We hypothesized that afternoon training sessions would be associated with increased levels of performance, readiness, and self-reported sleep. A retrospective analysis was performed on data collected over the course of the preseason on 10 elite National Collegiate Athletic Association Division 1 male basketball players. All basketball-related activities were performed in the afternoon with strength and conditioning activities performed either in the morning or in the afternoon. The average values for CMJ, power output (Power), self-reported sleep quantity (sleep), and player readiness were examined. When player load and duration were matched, CMJ (58.8 ± 1.3 vs. 61.9 ± 1.6 cm, p = 0.009), Power (6,378.0 ± 131.2 vs. 6,622.1 ± 172.0 W, p = 0.009), and self-reported sleep duration (6.6 ± 0.4 vs. 7.4 ± 0.25 p = 0.016) were significantly higher with afternoon strength and conditioning training, with no differences observed in player readiness values. We conclude that performance is suppressed with morning training and is associated with a decrease in self-reported quantity of sleep.

  18. Generation of scale invariant magnetic fields in bouncing universes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar, E-mail: sriram@physics.iitm.ac.in, E-mail: katmjeet@physics.du.ac.in, E-mail: jain@cp3.dias.sdu.dk

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for themore » Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.« less

  19. Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 1

    NASA Technical Reports Server (NTRS)

    Andrews, R. E. (Editor)

    1972-01-01

    Equipment was designed to receive power from a radioisotope thermoelectric generator source, condition, distribute, and control this power for the spacecraft loads. The TOPS mission, aimed at a representative tour of the outer planets, would operate for an estimated 12 year period. Unique design characteristics required for the power conditioning equipment results from the long mission time and the need for autonomous on-board operations due to large communications distances and the associated time delays of ground initiated actions. The salient features of the selected power subsystem configuration are: (1) The PCE regulates the power from the radioisotope thermoelectric generator power source at 30 vdc by means of a quad-redundant shunt regulator; (2) 30 vdc power is used by certain loads, but is more generally inverted and distributed as square-wave ac power; (3) a protected bus is used to assure that power is always available to the control computer subsystem to permit corrective action to be initiated in response to fault conditions; and (4) various levels of redundancy are employed to provide high subsystem reliability.

  20. Commercialization of the power factor controller

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of the Motor Power Controller, also known as the Power Factor Controller, is to improve power factor and reduce power dissipation in induction motors operating below full load. These purposes were studied and tested in detail. The Motor Power Controller is capable of raising power factors from 0.2 to 0.8 and results in energy savings. It was found that many motors, in their present operating applications, are classified as unstable. The electronic nature of the controller vs. the electrical nature of the motor, compound this problem due to the differences in response time of the two devices. Many tests were successfully completed, the most indicating greater savings than anticipated. Also, there was an effect on efficiency which was not included in the calculations.

  1. Near-Field Based Communication and Electrical Systems

    NASA Astrophysics Data System (ADS)

    Azad, Umar

    A near-field power transfer equation for an inductively coupled near-field system is derived based on the equivalent circuit model of the coupled resonant loops. Experimental results show that the proposed near-field coupling equation is trustworthy as it correctly predicts the transferred power versus distance relationship for different values of loaded quality factors at the transmitter and the receiver. Capacity performance of near-field communication (NFC) links is analyzed for noise limited and interference limited scenarios based on information theory. The analytical results provide guidelines for design of inductively coupled antenna systems as the power and capacity budget of the link is carried out. Examples of inductively coupled VLF NFC links are evaluated for different operating scenarios, demonstrating the efficacy and importance of the proposed near-field link budget. However, in a conventional setup of inductively coupled NFC link, the power coupled through and the bandwidth must be traded off. Direct Antenna Modulation (DAM) is a feasible scheme to break this dilemma. With DAM utilized in NFC link, the power and bandwidth product limit in a high Q system can be circumvented because the non-linear/time-varying nature of the operation allows high speed modulations decoupled from the charging and discharging process of the high-Q resonator. In this work, the theory of NFC link with DAM on the transmitter is presented and validated with an experimental setup. Improvement in reception of the high-speed modulation information is observed in the experiment, implying that a superior capacity performance of a NFC link is achieved through DAM versus the traditional scheme. The resonant coupling efficiency is limited by the product of the quality factors Q, of the transmitter and receiver and the coupling coefficient k. We observe that in order to achieve maximum efficiency, the ratio of the load-to-loss impedances at both the source and load should be equal to a prescribed value. This is the same condition that yields simultaneous impedance matching at source and load. The efficiency limit is then calculated for single transmitter and two uncoupled receivers. In that case, optimal efficiency is obtained when the load-to-loss impedance ratio is equal to the same prescribed value for all devices simultaneously. However, this condition does not provide for simultaneous matching at the source and loads, which turns out to be impossible. The analysis is then generalized for a single transmitter and N uncoupled receivers and we find that as the number of receivers increases, the total efficiency limit also increases. Finally, we present the efficiency limits and optimal conditions for a system consisting of single and multiple repeaters between transmitter and receiver, which have been shown previously to relay power to larger distances.

  2. Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via stromal cell-derived factor 1/C-X-C chemokine receptor type 4.

    PubMed

    Wu, Chia-Ching; Chen, Yi-Chi; Chang, Ying-Chao; Wang, Lan-Wan; Lin, Yung-Chieh; Chiang, Yi-Lun; Ho, Chien-Jung; Huang, Chao-Ching

    2013-05-01

    Agents that protect against neurovascular damage provide a powerful neuroprotective strategy. Human umbilical vein endothelial cells (HUVECs) may be used to treat neonates with hypoxic-ischemia (HI) because of its autologous capability. We hypothesized that peripherally injected HUVECs entered the brain after HI, protected against neurovascular damage, and provided protection via stromal cell-derived factor 1/C-X-C chemokine receptor type 4 pathway in neonatal brain. Postpartum day 7 rat pups received intraperitoneal injections of low-passage HUVEC-P4, high-passage HUVEC-P8, or conditioned medium before and immediately after HI. HUVECs were transfected with adenovirus-green fluorescent protein for cell tracing. Oxygen-glucose deprivation was established by coculturing HUVEC-P4 with mouse neuroblastoma neuronal cells (Neuro-2a) and with mouse immortalized cerebral vascular endothelial cells (b.End3). HUVEC-P4-treated group had more blood levels of green fluorescent protein-positive cells than HUVEC-P8-treated group 3 hours postinjection. Intraperitoneally injected HUVEC-P4, but not HUVEC-P8, entered the cortex after HI and positioned closed to the neurons and microvessels. Compared with the condition medium-treated group, the HUVEC-P4-treated but not the HUVEC-P8-treated group showed significantly less neuronal apoptosis and blood-brain barrier damage and more preservation of microvessels in the cortex 24 hours after HI. On postpartum day 14, the HUVEC-P4-treated group showed significant neuroprotection compared with the condition medium-treated group. Stromal cell-derived factor 1 was upregulated in the ipsilateral cortex 3 hours after HI, and inhibiting the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 reduced the protective effect of HUVEC-P4. In vitro transwell coculturing of HUVEC-P4 also significantly protected against oxygen-glucose deprivation cell death in neurons and endothelial cells. Cell therapy using HUVECs may provide a powerful therapeutic strategy in treating neonates with HI.

  3. Plasma-wall interactions in ITER

    NASA Astrophysics Data System (ADS)

    Parker, R.; Janeschitz, G.; Pacher, H. D.; Post, D.; Chiocchio, S.; Federici, G.; Ladd, P.; Iter Joint Central Team; Home Teams

    1997-02-01

    This paper reviews the status of the design of the divertor and first-wall/shield, the main in-vessel components for ITER. Under nominal ignited conditions, 300 MW of alpha power will be produced and must be removed from the divertor and first-wall. Additional power from auxiliary sources up to the level of 100 MW must also be removed in the case of driven burns. In the ignited case, about 100 MW will be radiated to the first wall as bremsstrahlung. Allowing the remaining power to be conducted to the divertor target plates would result in excessive heat fluxes. The power handling strategy is to radiate an additional 100-150 MW in the SOL and the divertor channel via a combination of radiation from hydrogen, and intrinsic and seeded impurities. Vertical targets have been adopted for the baseline divertor configuration. This geometry promotes partial detachment, as found in present experiments and in the results of modelling runs for ITER conditions, and power densities on the target plates can be ≤ 5 MW/ m2. Such regimes promote relatively high pressure (> 1 Pa) in the divertor and even with a low helium enrichment factor of 0.2, the required pumping speed to pump helium is ≤ 50 m3/ s. An important physics question is the quality of core confinement in these attractive divertor regimes. In addition to power and particle handling issues, the effects of disruptions play a major role in the design and performance of in-vessel components. Both centered disruptions and VDE's produce stresses in the first-wall/shield modules, backplate and the divertor wings and cassettes that are near or even somewhat in excess of allowables for normal operation. Also plasma-wall contact from disruptions, including at the divertor target, together with material properties are major factors determining component lifetime. Considering the potential for impurity contamination and minimizing tritium inventory as well as thermomechanical performance, the present material selection calls for carbon divertor targets near the strike point, tungsten on the rest of the target and on the baffle where the charge-exchange flux could be high, and beryllium elsewhere. All three materials and relevant joining techniques are being developed in the R&D program and the final selection for the first assembly will be made at the end of the EDA.

  4. Advanced Grid Support Functionality Testing for Florida Power and Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are beingmore » required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis between the four test inverters. Inverters were mostly able to meet the requirements of their stated GSF capabilities, with deviations from expected results discussed throughout the report. There were mixed results across the range of abnormal tests, and results were often dependent on the capability of each test inverter to deploy the GSFs of interest. Detailed test data has been provided to FPL to support future decision making with respect to inverter selection and GSF deployment in the field.« less

  5. A Power Conditioning Stage Based on Analog-Circuit MPPT Control and a Superbuck Converter for Thermoelectric Generators in Spacecraft Power Systems

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan

    2014-06-01

    A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.

  6. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  7. On-chip temperature-based digital signal processing for customized wireless microcontroller

    NASA Astrophysics Data System (ADS)

    Farhah Razanah Faezal, Siti; Isa, Mohd Nazrin Md; Harun, Azizi; Nizam Mohyar, Shaiful; Bahari Jambek, Asral

    2017-11-01

    Increases in die size and power density inside system-on-chip (SoC) design have brought thermal issue inside the system. Uneven heat-up and increasing in temperature offset on-chip has become a major factor that can limits the system performance. This paper presents the design and simulation of a temperature-based digital signal processing for modern system-on-chip design using the Verilog HDL. This design yields continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Altera Quartus Software v. 14. With system above, microcontroller can achieve nominal power dissipation and operation is within the temperature range due to the incorporate of an interrupt-based system.

  8. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.

    PubMed

    Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M

    2000-01-15

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.

  9. Representative Atmospheric Plume Development for Elevated Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a(×t)^(-b) for time t after the release event, then the equation has the form Df=e^(-λt)×a×t^(-b) for a radioactive isotope, where λ is the decay constant for the isotope.« less

  10. Evaluating the impact of different exogenous factors on silk textiles deterioration with use of size exclusion chromatography

    NASA Astrophysics Data System (ADS)

    Pawcenis, Dominika; Smoleń, Mariusz; Aksamit-Koperska, Monika A.; Łojewski, Tomasz; Łojewska, Joanna

    2016-06-01

    Size exclusion chromatography (SEC), especially coupled with multiple angle laser light scattering detector (MALLS) is a powerful tool in diagnostics of deterioration of historic and art objects to evaluate their condition. In this paper, SEC-UV-MALLS-DRI technique was applied to study degradation of silk fibroin samples ( Bombyx mori) artificially aged under various conditions: in the presence of oxygen, in different amount of water vapour and in volatile organic products (VOCs), all at temperature of 90 °C. Conditions were chosen in such a way that it mimicked real conditions of textiles' storing during exhibitions and in show cases. The influence of temperature, moisture and VOCs content on the state of silk textiles was examined with the use of size exclusion chromatography. Pseudo-zero-order Ekenstam equation was applied to study degradation rates of fibroin with use of the approximated values of DP of fibroin.

  11. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narducci, Dario, E-mail: dario.narducci@unimib.it; Consorzio DeltaTi Research; Selezneva, Ekaterina

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of themore » actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.« less

  12. Plasma wall interaction and its implication in an all tungsten divertor tokamak

    NASA Astrophysics Data System (ADS)

    Neu, R.; Balden, M.; Bobkov, V.; Dux, R.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Maggi, C. F.; Maier, H.; Müller, H. W.; Pütterich, T.; Pugno, R.; Rohde, V.; Sips, A. C. C.; Stober, J.; Suttrop, W.; Angioni, C.; Atanasiu, C. V.; Becker, W.; Behler, K.; Behringer, K.; Bergmann, A.; Bertoncelli, T.; Bilato, R.; Bottino, A.; Brambilla, M.; Braun, F.; Buhler, A.; Chankin, A.; Conway, G.; Coster, D. P.; de Marné, P.; Dietrich, S.; Dimova, K.; Drube, R.; Eich, T.; Engelhardt, K.; Fahrbach, H.-U.; Fantz, U.; Fattorini, L.; Fink, J.; Fischer, R.; Flaws, A.; Franzen, P.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Gemisic-Adamov, M.; Giannone, L.; Gori, S.; da Graca, S.; Greuner, H.; Gude, A.; Günter, S.; Haas, G.; Harhausen, J.; Heinemann, B.; Hicks, N.; Hobirk, J.; Holtum, D.; Hopf, C.; Horton, L.; Huart, M.; Igochine, V.; Kálvin, S.; Kardaun, O.; Kick, M.; Kocsis, G.; Kollotzek, H.; Konz, C.; Krieger, K.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Likonen, J.; Liu, L.; Lohs, A.; Mank, K.; Manini, A.; Manso, M.-E.; Maraschek, M.; Martin, P.; Martin, Y.; Mayer, M.; McCarthy, P.; McCormick, K.; Meister, H.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Meyer, H.; Mlynek, M.; Monaco, F.; Murmann, H.; Neu, G.; Neuhauser, J.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Poli, E.; Püschel, M.; Raupp, G.; Reich, M.; Reiter, B.; Ribeiro, T.; Riedl, R.; Roth, J.; Rott, M.; Ryter, F.; Sandmann, W.; Santos, J.; Sassenberg, K.; Scarabosio, A.; Schall, G.; Schirmer, J.; Schmid, A.; Schneider, W.; Schramm, G.; Schrittwieser, R.; Schustereder, W.; Schweinzer, J.; Schweizer, S.; Scott, B.; Seidel, U.; Serra, F.; Sertoli, M.; Sigalov, A.; Silva, A.; Speth, E.; Stäbler, A.; Steuer, K.-H.; Strumberger, E.; Tardini, G.; Tichmann, C.; Treutterer, W.; Tröster, C.; Urso, L.; Vainonen-Ahlgren, E.; Varela, P.; Vermare, L.; Wagner, D.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yadikin, D.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zilker, M.; Zohm, H.

    2007-12-01

    ASDEX Upgrade has recently finished its transition towards an all-W divertor tokamak, by the exchange of the last remaining graphite tiles to W-coated ones. The plasma start-up was performed without prior boronization. It was found that the large He content in the plasma, resulting from DC glow discharges for conditioning, leads to a confinement reduction. After the change to D glow for inter-shot conditioning, the He content quickly dropped and, in parallel, the usual H-Mode confinement with H factors close to one was achieved. After the initial conditioning phase, oxygen concentrations similar to that in previous campaigns with boronizations could be achieved. Despite the removal of all macroscopic carbon sources, no strong change in C influxes and C content could be observed so far. The W concentrations are similar to the ones measured previously in discharges with old boronization and only partial coverage of the surfaces with W. Concomitantly it is found that although the W erosion flux in the divertor is larger than the W sources in the main chamber in most of the scenarios, it plays only a minor role for the W content in the main plasma. For large antenna distances and strong gas puffing, ICRH power coupling could be optimized to reduce the W influxes. This allowed a similar increase of stored energy as yielded with comparable beam power. However, a strong increase of radiated power and a loss of H-Mode was observed for conditions with high temperature edge plasma close to the antennas. The use of ECRH allowed keeping the central peaking of the W concentration low and even phases of improved H-modes have already been achieved.

  13. Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 2

    NASA Technical Reports Server (NTRS)

    Andrews, R. E. (Editor)

    1972-01-01

    The design and development of power conditioning equipment for the thermoelectric outer planet spacecraft program are considered. One major aspect of the program included the design, assembly and test of various breadboard power conditioning elements. Among others these included a quad-redundant shunt regulator, a high voltage traveling wave tube dc-to-dc converter, two-phase gyro inverters and numerous solid state switching circuits. Many of these elements were arranged in a typical subsystem configuration and tests were conducted which demonstrated basic element compatibility. In parallel with the development of the basic power conditioning elements, system studies were continued. The salient features of the selected power subsystem configuration are presented.

  14. Power and Precision in Confirmatory Factor Analytic Tests of Measurement Invariance

    ERIC Educational Resources Information Center

    Meade, Adam W.; Bauer, Daniel J.

    2007-01-01

    This study investigates the effects of sample size, factor overdetermination, and communality on the precision of factor loading estimates and the power of the likelihood ratio test of factorial invariance in multigroup confirmatory factor analysis. Although sample sizes are typically thought to be the primary determinant of precision and power,…

  15. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  16. Issues concerning centralized versus decentralized power deployment

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.; Harty, Richard B.; Robin, James F.

    1991-01-01

    The results of a study of proposed lunar base architectures to identify issues concerning centralized and decentralized power system deployment options are presented. The power system consists of the energy producing system (power plant), the power conditioning components used to convert the generated power into the form desired for transmission, the transmission lines that conduct this power from the power sources to the loads, and the primary power conditioning hardware located at the user end. Three power system architectures, centralized, hybrid, and decentralized, were evaluated during the course of this study. Candidate power sources were characterized with respect to mass and radiator area. Two electrical models were created for each architecture to identify the preferred method of power transmission, dc or ac. Each model allowed the transmission voltage level to be varied at assess the impact on power system mass. The ac power system models also permitted the transmission line configurations and placements to determine the best conductor construction and installation location. Key parameters used to evaluate each configuration were power source and power conditioning component efficiencies, masses, and radiator areas; transmission line masses and operating temperatures; and total system mass.

  17. Conditional power and predictive power based on right censored data with supplementary auxiliary information.

    PubMed

    Sun, Libo; Wan, Ying

    2018-04-22

    Conditional power and predictive power provide estimates of the probability of success at the end of the trial based on the information from the interim analysis. The observed value of the time to event endpoint at the interim analysis could be biased for the true treatment effect due to early censoring, leading to a biased estimate of conditional power and predictive power. In such cases, the estimates and inference for this right censored primary endpoint are enhanced by incorporating a fully observed auxiliary variable. We assume a bivariate normal distribution of the transformed primary variable and a correlated auxiliary variable. Simulation studies are conducted that not only shows enhanced conditional power and predictive power but also can provide the framework for a more efficient futility interim analysis in terms of an improved accuracy in estimator, a smaller inflation in type II error and an optimal timing for such analysis. We also illustrated the new approach by a real clinical trial example. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Power output and carrier dynamics studies of perovskite solar cells under working conditions.

    PubMed

    Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng

    2017-08-02

    Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

  19. Criteria for Neoclassical Tearing Modes Suppression in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Hwang, Y. S.

    2007-11-01

    In KSTAR, neoclassical tearing modes(NTMs) will be suppressed by using 170GHz electron cyclotron current drive(ECCD) system with steering mirrors that align the current deposition to NTM locations. As an initial stage of NTM suppression study, 1 MW ECCD power will be used to suppress m/n = 3/2 and 2/1 NTMs. To confirm the feasibility of successful suppression of the modes under the proposed KSTAR environment, modified Rutherford equation(MRE) which encapsulates stability of NTMs is constructed for the target equilibrium of KSTAR. The geometric coefficients in MRE are obtained by comparing saturated sizes of NTMs from ISLAND code [1] with the amounts of local bootstrap currents from ONETWO. Parameters related to the operation of ECCD are analyzed by TORAY-GA linear ray-tracing code. Due to the small ECCD power available at the initial stage of KSTAR, condition of the optimum ECCD modulation is considered in the analysis to maximize suppression performance. From the analyses, criteria such as the minimum ECCD power required for complete suppression of the modes and the optimum conditions of EC wave launch angle and modulation duty factor are derived for the successful NTM suppression in KSTAR. [1] C.N. Nguyen, G. Bateman and A.H. Kritz, Phys. Plasmas 11 3460 (2004)

  20. Normal and Extreme Wind Conditions for Power at Coastal Locations in China

    PubMed Central

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China’s coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40–62 years are statistically analyzed. The East Asian Monsoon that affects almost China’s entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov–Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters. PMID:26313256

  1. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    NASA Astrophysics Data System (ADS)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  2. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    PubMed

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  3. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    PubMed

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Broad distribution spectrum from Gaussian to power law appears in stochastic variations in RNA-seq data.

    PubMed

    Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J

    2018-05-29

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.

  5. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells

    PubMed Central

    Bartesaghi, Davide; Pérez, Irene del Carmen; Kniepert, Juliane; Roland, Steffen; Turbiez, Mathieu; Neher, Dieter; Koster, L. Jan Anton

    2015-01-01

    Among the parameters that characterize a solar cell and define its power-conversion efficiency, the fill factor is the least well understood, making targeted improvements difficult. Here we quantify the competition between charge extraction and recombination by using a single parameter θ, and we demonstrate that this parameter is directly related to the fill factor of many different bulk-heterojunction solar cells. Our finding is supported by experimental measurements on 15 different donor:acceptor combinations, as well as by drift-diffusion simulations of organic solar cells in which charge-carrier mobilities, recombination rate, light intensity, energy levels and active-layer thickness are all varied over wide ranges to reproduce typical experimental conditions. The results unify the fill factors of several very different donor:acceptor combinations and give insight into why fill factors change so much with thickness, light intensity and materials properties. To achieve fill factors larger than 0.8 requires further improvements in charge transport while reducing recombination. PMID:25947637

  6. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomeng; Zhang, Shaojun; Wu, Ye; Li, Zhenhua; Zhou, Yu; Fu, Lixin; Hao, Jiming

    2015-11-01

    A total of 13 diesel buses and 12 diesel trucks in Macao were tested using portable emission measurement systems (PEMS) including a SEMTECH-DS for gaseous emissions and a SEMTECH-PPMD for PM2.5. The average emission rates of gaseous pollutants and CO2 are developed with the operating mode defined by the instantaneous vehicle specific power (VSP) and vehicle speed. Both distance-based and fuel mass-based emission factors for gaseous pollutants (e.g., CO, THC and NOX) are further estimated under typical driving conditions. The average distance-based NOX emission of heavy-duty buses (HDBs) is higher than 13 g km-1. Considering the unfavorable conditions for selective reductions catalyst (SCR) systems, such as low-speed driving conditions, more effective technology options (e.g., dedicated natural gas buses and electric buses) should be considered by policy makers in Macao. We identified strong effects of the vehicle size, engine displacement and driving conditions on real-world CO2 emission factors and fuel consumption for diesel vehicles. Therefore, detailed profiles regarding vehicle specifications can reduce the uncertainty in their fleet-average on-road fuel consumption. In addition, strong correlations between relative emission factors and driving conditions indicated by the average speed of generated micro-trips are identified based on a micro-trip method. For example, distance-based emission factors of HDBs will increase by 39% for CO, 29% for THC, 43% for NOX and 26% for CO2 when the average speed decreases from 30 km h-1 to 20 km h-1. The mitigation of on-road emissions from diesel buses and trucks by improving traffic conditions through effective traffic and economic management measures is therefore required. This study demonstrates the important role of PEMS in understanding vehicle emissions and mitigation strategies from science to policy perspectives.

  7. Factors influencing U.S. canine heartworm (Dirofilaria immitis) prevalence.

    PubMed

    Wang, Dongmei; Bowman, Dwight D; Brown, Heidi E; Harrington, Laura C; Kaufman, Phillip E; McKay, Tanja; Nelson, Charles Thomas; Sharp, Julia L; Lund, Robert

    2014-06-06

    This paper examines the individual factors that influence prevalence rates of canine heartworm in the contiguous United States. A data set provided by the Companion Animal Parasite Council, which contains county-by-county results of over nine million heartworm tests conducted during 2011 and 2012, is analyzed for predictive structure. The goal is to identify the factors that are important in predicting high canine heartworm prevalence rates. The factors considered in this study are those envisioned to impact whether a dog is likely to have heartworm. The factors include climate conditions (annual temperature, precipitation, and relative humidity), socio-economic conditions (population density, household income), local topography (surface water and forestation coverage, elevation), and vector presence (several mosquito species). A baseline heartworm prevalence map is constructed using estimated proportions of positive tests in each county of the United States. A smoothing algorithm is employed to remove localized small-scale variation and highlight large-scale structures of the prevalence rates. Logistic regression is used to identify significant factors for predicting heartworm prevalence. All of the examined factors have power in predicting heartworm prevalence, including median household income, annual temperature, county elevation, and presence of the mosquitoes Aedes trivittatus, Aedes sierrensis and Culex quinquefasciatus. Interactions among factors also exist. The factors identified are significant in predicting heartworm prevalence. The factor list is likely incomplete due to data deficiencies. For example, coyotes and feral dogs are known reservoirs of heartworm infection. Unfortunately, no complete data of their populations were available. The regression model considered is currently being explored to forecast future values of heartworm prevalence.

  8. Factors influencing U.S. canine heartworm (Dirofilaria immitis) prevalence

    PubMed Central

    2014-01-01

    Background This paper examines the individual factors that influence prevalence rates of canine heartworm in the contiguous United States. A data set provided by the Companion Animal Parasite Council, which contains county-by-county results of over nine million heartworm tests conducted during 2011 and 2012, is analyzed for predictive structure. The goal is to identify the factors that are important in predicting high canine heartworm prevalence rates. Methods The factors considered in this study are those envisioned to impact whether a dog is likely to have heartworm. The factors include climate conditions (annual temperature, precipitation, and relative humidity), socio-economic conditions (population density, household income), local topography (surface water and forestation coverage, elevation), and vector presence (several mosquito species). A baseline heartworm prevalence map is constructed using estimated proportions of positive tests in each county of the United States. A smoothing algorithm is employed to remove localized small-scale variation and highlight large-scale structures of the prevalence rates. Logistic regression is used to identify significant factors for predicting heartworm prevalence. Results All of the examined factors have power in predicting heartworm prevalence, including median household income, annual temperature, county elevation, and presence of the mosquitoes Aedes trivittatus, Aedes sierrensis and Culex quinquefasciatus. Interactions among factors also exist. Conclusions The factors identified are significant in predicting heartworm prevalence. The factor list is likely incomplete due to data deficiencies. For example, coyotes and feral dogs are known reservoirs of heartworm infection. Unfortunately, no complete data of their populations were available. The regression model considered is currently being explored to forecast future values of heartworm prevalence. PMID:24906567

  9. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.

    PubMed

    Busch, Martin H J; Vollmann, Wolfgang; Grönemeyer, Dietrich H W

    2006-05-26

    Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach (1/4) of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q V(ind) < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q V(ind) > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.

  10. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots

    PubMed Central

    Busch, Martin HJ; Vollmann, Wolfgang; Grönemeyer, Dietrich HW

    2006-01-01

    Background Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. Methods First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. Results The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. Conclusion The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for. PMID:16729878

  11. 78 FR 76605 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...-000. Applicants: Idaho Power Company. Description: Idaho Power Company submits BPA Conditional Firm.... Comments Due: 5 p.m. ET 12/31/13. Description: Idaho Power Company submits BPA Conditional Firm Service...

  12. Risk and preventive factors for heat illness in radiation decontamination workers after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Kakamu, Takeyasu; Hidaka, Tomoo; Hayakawa, Takehito; Kumagai, Tomohiro; Jinnouchi, Takanobu; Tsuji, Masayoshi; Nakano, Shinichi; Koyama, Kikuo; Fukushima, Tetsuhito

    2015-01-01

    The aim of this study was to reveal factors related to heat illness in radiation decontamination workers and determine effective preventive measures. A self-administered questionnaire was sent to 1,505 radiation decontamination workers. The questionnaire included age, sex, duration of decontamination work, previous occupation, education provided by employers regarding heat illness, preventive action against heat illness, and subjective symptoms of heat illness during work. We included 528 men, who replied and answered all questions, in the statistical analysis. Subjective symptoms of heat illness were categorized as "no symptoms", "Grade I" and "Grade II" according to severity. A multiple linear regression model was used to determine the factors associated with the severity of heat illness. The mean age of the subjects was 47.6 years old (standard deviation: 13.4). Of the 528 workers, 316 (59.8%) experienced heat illness symptoms (213 at Grade I and 103 at Grade II). The results of the stepwise selection revealed that age, outdoor manual labor, adequate sleep, use of a cool vest, and salt intake were selected as preventive factors, whereas living in a company dormitory or temporary housing, wearing light clothing, and consuming breakfast were selected as risk factors for heat illness. Both working conditions and living environment are associated with heat illness in radiation decontamination workers. Type of housing and sleep are also strongly related to heat illness during work. Employers should consider not only the working conditions of the employee but also the employee's daily living conditions, in order to prevent heat illness.

  13. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  14. Phase transition phenomenon: A compound measure analysis

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  16. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells

    PubMed Central

    Porciani, David; Tedeschi, Lorena; Marchetti, Laura; Citti, Lorenzo; Piazza, Vincenzo; Beltram, Fabio; Signore, Giovanni

    2015-01-01

    Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells. PMID:25919089

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Mandelli, Diego; Prescott, Steven

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools.more » This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.« less

  18. Sound Power Minimization of Circular Plates Through Damping Layer Placement

    NASA Astrophysics Data System (ADS)

    Wodtke, H.-W.; Lamancusa, J. S.

    1998-09-01

    Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.

  19. A new topology and control method for electromagnetic transmitter power supplies

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming; Zhang, Jialin; Yuan, Dakang

    2017-04-01

    As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.

  20. Perception of recovery of households affected by 2008 Wenchuan earthquake: A structural equation model

    PubMed Central

    Lin, Le; Wang, Ying; Liu, Tianxue

    2017-01-01

    Much of the literature on recovery focuses on the economy, the physical environment and infrastructure at a macro level, which may ignore the personal experiences of affected individuals during recovery. This paper combines internal factors at a micro level and external factors at a macro level to model for understanding perception of recovery (PoR). This study focuses on areas devastated by the 2008 Wenchuan earthquake in China. With respect to three recovery-related aspects (house recovery condition (HRC), family recovery power (FRP) and reconstruction investment (RI)), structural equation modeling (SEM) was applied. It was found that the three aspects (FRP, HRC and RI) effectively explain how earthquake affected households perceive recovery. Internal factors associated with FRP contributed the most to favourable PoR, followed by external factors associated with HRC. Findings identified that for PoR the importance of active recovery within households outweighed an advantageous house recovery condition. At the same time, households trapped in unfavourable external conditions would invest more in housing recovery, which result in wealth accumulation and improved quality of life leading to a high level of PoR. In addition, schooling in households showed a negative effect on improving PoR. This research contributes to current debates around post-disaster permanent housing policy. It is implied that a one-size-fits-all policy in disaster recovery may not be effective and more specific assistance should be provided to those people in need. PMID:28854217

  1. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less

  2. Onboard power line conditioning system for an electric or hybrid vehicle

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  3. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  4. Pilot-scale treatment of atrazine production wastewater by UV/O3/ultrasound: Factor effects and system optimization.

    PubMed

    Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu

    2017-12-01

    This study shed light on removing atrazine from pesticide production wastewater using a pilot-scale UV/O 3 /ultrasound flow-through system. A significant quadratic polynomial prediction model with an adjusted R 2 of 0.90 was obtained from central composite design with response surface methodology. The optimal atrazine removal rate (97.68%) was obtained at the conditions of 75 W UV power, 10.75 g h -1 O 3 flow rate and 142.5 W ultrasound power. A Monte Carlo simulation aided artificial neural networks model was further developed to quantify the importance of O 3 flow rate (40%), UV power (30%) and ultrasound power (30%). Their individual and interaction effects were also discussed in terms of reaction kinetics. UV and ultrasound could both enhance the decomposition of O 3 and promote hydroxyl radical (OH·) formation. Nonetheless, the dose of O 3 was the dominant factor and must be optimized because excess O 3 can react with OH·, thereby reducing the rate of atrazine degradation. The presence of other organic compounds in the background matrix appreciably inhibited the degradation of atrazine, while the effects of Cl - , CO 3 2- and HCO 3 - were comparatively negligible. It was concluded that the optimization of system performance using response surface methodology and neural networks would be beneficial for scaling up the treatment by UV/O 3 /ultrasound at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Genericness of inflation in isotropic loop quantum cosmology.

    PubMed

    Date, Ghanashyam; Hossain, Golam Mortuza

    2005-01-14

    Nonperturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector are already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semidefinite potentials it is always possible to choose, without fine-tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with the generic occurrence of bounce at small volumes, particle horizon is absent, thus eliminating the horizon problem of the standard big bang model.

  6. Subcritical fracturing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2016-12-01

    Growth of opening-mode fractures under chemically reactive subsurface conditions is potentially relevant for seal integrity in subsurface CO2 storage and hazardous waste disposal. Using double-torsion load relaxation tests we determine mode-I fracture toughness (KIC), subcritical index (SCI), and the stress-intensity factor vs fracture velocity (K-V) behavior of Marcellus, Woodford, and Mancos shales. Samples are tested under ambient air and aqueous conditions with variable NaCl and KCl concentrations, variable pH, and temperatures of up to 70. Under ambient air condition, KIC determined from double torsion tests is 1.3, 0.6, and 1.1 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. SCI under ambient air condition is between 55 and 90 for the shales tested. Tests in aqueous solutions show a significant drop of KIC compared to ambient air condition. For tests in deionized water, KIC reduction is 18.5% for Marcellus and 47.0% for Woodford. The presence of aqueous fluids also results in a reduction of the SCI up to 85% compared to ambient condition. K-V curves generally obey a power-law relation throughout the load-relaxation period. However, aqueous-based tests on samples result in K-V curves deviating from the power-law relation, with the SCI values gradually decreasing with time during the relaxation period. This non-power-law behavior is obvious in Woodford and Mancos, but negligible in Marcellus. We find that the shales interact with the aqueous solution both at the fracture tip and within the rock matrix during subcritical fracturing. For Marcellus shale, water mainly interacts with the fracture tip on both tests due to low matrix permeability and less reactive mineral composition. However, Woodford and Mancos react strongly with water causing significant sample degradation. The competition between degradation and fracture growth results in the time-dependent SCI: at lower fracture velocities, the tip interacts longer with the chemically altered area around the tip; at higher fracture velocities, the fracture propagates through the altered area before significant degradation. Our results display strong weakening effects of chemically reactive fluids on subcritical fracture properties with implications on subsurface storage seal performance.

  7. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE PAGES

    Mandelli, D.; Smith, C.; Riley, T.; ...

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less

  8. Optimization of intermittent microwave–convective drying using response surface methodology

    PubMed Central

    Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid

    2015-01-01

    In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706

  9. Discriminative Dissolution Method for Benzoyl Metronidazole Oral Suspension.

    PubMed

    da Silva, Aline Santos; da Rosa Silva, Carlos Eduardo; Paula, Fávero Reisdorfer; da Silva, Fabiana Ernestina Barcellos

    2016-06-01

    A dissolution method for benzoyl metronidazole (BMZ) oral suspensions was developed and validated using a high-performance liquid chromatography (HPLC) method. After determination of sink conditions, dissolution profiles were evaluated using different dissolution media and agitation speeds. The sample insertion mode in dissolution media was also evaluated. The best conditions were obtained using a paddle, 50 rpm stirring speed, simulated gastric fluid (without pepsin) as the dissolution medium, and sample insertion by a syringe. These conditions were suitable for providing sink conditions and discriminatory power between different formulations. Through the tested conditions, the results can be considered specific, linear, precise, accurate, and robust. The dissolution profiles of five samples were compared using the similarity factor (f 2) and dissolution efficiency. The dissolution kinetics were evaluated and described by the Weibull model. Whereas there is no monograph for this pharmaceutical formulation, the dissolution method proposed can be considered suitable for quality control and dissolution profile comparison of different commercial formulations.

  10. Analysis of Roll Steering for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.

    2012-01-01

    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned in the velocity direction. Roll steering is particularly attractive for a recently proposed mission that involves a spiral trajectory from low Earth orbit (LEO) to the Earth-Moon Lagrange Point 1 (E-M L1). During the spiral, the spacecraft will spend over 300 days experiencing the full spectrum of near-earth environments and solar array pointing conditions. An extensive study of the application of SEP (and roll steering) to this spiral mission is included, highlighting the ultimate goal of reduced vehicle cost and mass. Tools used for this analysis include the Systems Power Analysis for Capability Evaluation (Refs. 1 and 2) (SPACE) electrical power systems code, and SEP trajectory simulation tools developed at NASA Glenn Research Center.

  11. Integration of Wind Turbines with Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.

    2009-08-01

    Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.

  12. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie; Mishra, Anurag; Yeom, Geun Y.

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHzmore » power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.« less

  13. The Design and Analysis of Transposon-Insertion Sequencing Experiments

    PubMed Central

    Chao, Michael C.; Abel, Sören; Davis, Brigid M.; Waldor, Matthew K.

    2016-01-01

    Preface Transposon-insertion sequencing (TIS) is a powerful approach that can be widely applied to genome-wide definition of loci that are required for growth in diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. Here, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to computational analysis of TIS data. PMID:26775926

  14. Compilation of 1986 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 3. TABS H-J.

    DTIC Science & Technology

    1987-07-01

    yearly trends, and the effect of population size and abiotic factors on growth will be completed when the 1984-1986 scales are completed. Fish condition...settling of suspended particles on substrates in its absence. The pumps were powered by a heavy duty marine battery which had to be exchanged and...computer using procedures available in SPSS (Hull and Nie 1981) and programs available in the BIOM statistical package (Rohlf). Sokal and Rohlf (1981

  15. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  16. Factors that determin color appearance and color classification.

    PubMed

    Janelidze, D

    2011-11-01

    The purpose of this work was to consider the objective and subjective factors involved in color perception and on their basis offer a color classification that would allow for determining which of these factors are significant for each particular class of colors. In the first part of the article it is considered that physical correlates of subjective sensation of color have mainly a dual nature and sometimes correlate with spectral-power content of light coming from a given area of visual scene to retina, and sometimes with surface reflectance of the given area. Other objective and subjective factors which participate in the formation of color appearance are also considered. According to the characteristics of the visual stimulus, viewing conditions and functional state of visual system, composition of objective and subjective factors participating in the formation of color appearance, as well as the share of each factor in this process are changeable. In the second part of the article one of the possible version of color classification according to which it is possible to distinguish nine different classes of colors is proposed. Among differences between these classes, the most noticeable is that in the case of all classes of color except constant colors, the physical parameter that determines the color category of a given area is the spectral-power distribution of the light coming from this area to the retina. However, in the case of constant colors, the physical parameter that determines the color category of a given area is its reflectance. In the case of considered different classes of colors, composition of objective and subjective factors participating in the formation of color appearance is different. The proposed classification allows determining which of these factors are significant in the case of each specific class of color.

  17. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  18. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  19. Fatigue analyses of the prototype Francis runners based on site measurements and simulations

    NASA Astrophysics Data System (ADS)

    Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N.

    2014-03-01

    With the increasing development of solar power and wind power which give an unstable output to the electrical grid, hydropower is required to give a rapid and flexible compensation, and the hydraulic turbines have to operate at off-design conditions frequently. Prototype Francis runners suffer from strong vibrations induced by high pressure pulsations at part load, low part load, speed-no-load and during start-stops and load rejections. Fatigue and damage may be caused by the alternating stress on the runner blades. Therefore, it becomes increasingly important to carry out fatigue analysis and life time assessment of the prototype Francis runners, especially at off-design conditions. This paper presents the fatigue analyses of the prototype Francis runners based on the strain gauge site measurements and numerical simulations. In the case of low part load, speed-no-load and transient events, since the Francis runners are subjected to complex hydraulic loading, which shows a stochastic characteristic, the rainflow counting method is used to obtain the number of cycles for various dynamic amplitude ranges. From middle load to full load, pressure pulsations caused by Rotor-stator- Interaction become the dominant hydraulic excitation of the runners. Forced response analysis is performed to calculate the maximum dynamic stress. The agreement between numerical and experimental stresses is evaluated using linear regression method. Taking into account the effect of the static stress on the S-N curve, the Miner's rule, a linear cumulative fatigue damage theory, is employed to calculate the damage factors of the prototype Francis runners at various operating conditions. The relative damage factors of the runners at different operating points are compared and discussed in detail.

  20. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  1. Predictors of health-related quality of life in patients with epilepsy and psychogenic nonepileptic seizures.

    PubMed

    Rawlings, Gregg H; Brown, Ian; Reuber, Markus

    2017-03-01

    Epilepsy and psychogenic nonepileptic seizures (PNES) are associated with reduced health-related quality of life (HRQoL). The present study investigated the profile, relationship, and predictive power of illness perceptions, psychological distress (depression and anxiety), seizure activity, and demographic factors on HRQoL in these patient groups. Patients with epilepsy (n=62) and PNES (n=45) were recruited from a United Kingdom hospital and from membership-led organizations for individuals living with seizures. Patients completed a series of self-report questionnaires assessing: anxiety (GAD-7), depression (NDDI-E), illness perceptions (B-IPQ), HRQoL (NEWQOL-6D), and seizure frequency and severity (LSSS-3). Correlational and hierarchical multiple regression analyses were conducted. Patients with epilepsy reported higher HRQoL and scored lower on measures of depression and anxiety. Patients with PNES perceived their condition as more threatening overall. In both conditions, HRQoL was negatively correlated with more severe illness perceptions and psychological distress. In epilepsy and PNES, psychological distress (epilepsy: 27%; PNES: 24.8%) and illness perceptions (epilepsy: 23.1%; PNES: 23.3%) accounted for the largest amount of variance in HRQoL. Clinical factors were found not to be significant predictors, while demographic factors predicted HRQoL in epilepsy (12.6%), but not in PNES. Our findings support the notion that psychological factors are a stronger predictor of HRQoL in epilepsy and PNES than condition-related and demographic variables. Prior research suggests that anxiety and depression are key predictors of HRQoL; this study demonstrates that the relationship between illness perceptions and HRQoL is similarly close. These findings highlight the importance of addressing patients' beliefs about their condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Optimization of extraction technics of total saponins from Pulsatilla cernua].

    PubMed

    Li, Hai-Yan; Hao, Ning; Xu, Yong-Nan; Piao, Zhong-Yun

    2010-04-01

    The extraction condition of total saponins from Pulsatilla cenua by ultrasonic wave was optimized by single factor and orthogonal experiments. The largest absorbency of saponin was intended to be 470 nm by wavelength scan method with the pulchinenoside B4 as control sample, the linear relationship was observed between the absorbency and the content of saponin in the range of 0 - 0.040 mg/mL. The optimal conditions of extraction was as following: 80% of alcohol concentration, 40 min of ultrasonic time, 1: 20 of solid to liquid ratio, 80 W of ultrasonic power and one time for extraction. Among them, alcohol had the most significant effect on the extraction of total saponins. The content of total saponins in Pulsatilla cernua was 4. 32% under the optimal condition. The method developed here is efficient, stable, accurate and repeatable.

  3. Conditional Random Fields for Fast, Large-Scale Genome-Wide Association Studies

    PubMed Central

    Huang, Jim C.; Meek, Christopher; Kadie, Carl; Heckerman, David

    2011-01-01

    Understanding the role of genetic variation in human diseases remains an important problem to be solved in genomics. An important component of such variation consist of variations at single sites in DNA, or single nucleotide polymorphisms (SNPs). Typically, the problem of associating particular SNPs to phenotypes has been confounded by hidden factors such as the presence of population structure, family structure or cryptic relatedness in the sample of individuals being analyzed. Such confounding factors lead to a large number of spurious associations and missed associations. Various statistical methods have been proposed to account for such confounding factors such as linear mixed-effect models (LMMs) or methods that adjust data based on a principal components analysis (PCA), but these methods either suffer from low power or cease to be tractable for larger numbers of individuals in the sample. Here we present a statistical model for conducting genome-wide association studies (GWAS) that accounts for such confounding factors. Our method scales in runtime quadratic in the number of individuals being studied with only a modest loss in statistical power as compared to LMM-based and PCA-based methods when testing on synthetic data that was generated from a generalized LMM. Applying our method to both real and synthetic human genotype/phenotype data, we demonstrate the ability of our model to correct for confounding factors while requiring significantly less runtime relative to LMMs. We have implemented methods for fitting these models, which are available at http://www.microsoft.com/science. PMID:21765897

  4. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  5. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  6. Ultrasound-assisted three-phase partitioning of polyphenol oxidase from potato peel (Solanum tuberosum).

    PubMed

    Niphadkar, Sonali S; Rathod, Virendra K

    2015-01-01

    Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.

  7. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  8. Iterative initial condition reconstruction

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  9. Task Context Influences Brain Activation during Music Listening

    PubMed Central

    Markovic, Andjela; Kühnis, Jürg; Jäncke, Lutz

    2017-01-01

    In this paper, we examined brain activation in subjects during two music listening conditions: listening while simultaneously rating the musical piece being played [Listening and Rating (LR)] and listening to the musical pieces unconstrained [Listening (L)]. Using these two conditions, we tested whether the sequence in which the two conditions were fulfilled influenced the brain activation observable during the L condition (LR → L or L → LR). We recorded high-density EEG during the playing of four well-known positively experienced soundtracks in two subject groups. One group started with the L condition and continued with the LR condition (L → LR); the second group performed this experiment in reversed order (LR → L). We computed from the recorded EEG the power for different frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). Statistical analysis revealed that the power in all examined frequency bands increased during the L condition but only when the subjects had not had previous experience with the LR condition (i.e., L → LR). For the subjects who began with the LR condition, there were no power increases during the L condition. Thus, the previous experience with the LR condition prevented subjects from developing the particular mental state associated with the typical power increase in all frequency bands. The subjects without previous experience of the LR condition listened to the musical pieces in an unconstrained and undisturbed manner and showed a general power increase in all frequency bands. We interpret the fact that unconstrained music listening was associated with increased power in all examined frequency bands as a neural indicator of a mental state that can best be described as a mind-wandering state during which the subjects are “drawn into” the music. PMID:28706480

  10. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  11. Distribution and winter survival health of Asian clams, Corbicula fluminea, in the St. Clair River, Michigan

    USGS Publications Warehouse

    French, John R. P.; Schloesser, Don W.

    1996-01-01

    We studied the distribution and winter survival of the Asian clam, Corbicula fluminea, in the St. Clair River from the fall of 1988 to the spring of 1990. Between fall of 1988 and spring of 1989, distribution of Corbicula was extended from 5.5 to 11.5 km downstream from an electric power plant. However, total abundance of clams decreased during the winter. By fall of 1989, Corbicula was found 14.5 km from the power plant, and the mean density of clams was 27 individuals/m2. Between fall of 1989 and spring of 1990, distribution was reduced to 7.5 km from the power plant and abundance decreased 97%. During the winter of 1988-1989, we collected clams monthly from one station 2.2 km from the power plant, and we observed that clams survived the harsh winter for two months after the water temperature dropped about 1.5°C below the reported lethal level for Corbicula in midwinter. During the winer of 1989-1990, we held clams at the sediment-water interface in enclosures, and we observed that condition indices (dry body weight; dry shell weight) of clams remained stable (mean = 0.05 ± 0.01) in December and January and then declined significantly (p < 0.05) to 0.04 ± 0.01 in February. All clams perished by late March. The deteriorating physiological state of clams, as indicated by declining condition index, seemingly is a factor in late winter mortalities of Corbicula in the St. Clair River. In contrast to the rapid geographic spread and population increases in the southern United States, Corbicula likely will not spread rapidly throughout the Great Lakes beyond shoreline thermal refugia of heated-water discharge plumes from power plants.

  12. Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2016-01-01

    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.

  13. Inflammatory Mechanisms Associated with Skeletal Muscle Sequelae after Stroke: Role of Physical Exercise

    PubMed Central

    Coelho Junior, Hélio José; Gambassi, Bruno Bavaresco; Diniz, Tiego Aparecido; Fernandes, Isabela Maia da Cruz; Caperuto, Érico Chagas; Uchida, Marco Carlos; Lira, Fabio Santos

    2016-01-01

    Inflammatory markers are increased systematically and locally (e.g., skeletal muscle) in stroke patients. Besides being associated with cardiovascular risk factors, proinflammatory cytokines seem to play a key role in muscle atrophy by regulating the pathways involved in this condition. As such, they may cause severe decrease in muscle strength and power, as well as impairment in cardiorespiratory fitness. On the other hand, physical exercise (PE) has been widely suggested as a powerful tool for treating stroke patients, since PE is able to regenerate, even if partially, physical and cognitive functions. However, the mechanisms underlying the beneficial effects of physical exercise in poststroke patients remain poorly understood. Thus, in this study we analyze the candidate mechanisms associated with muscle atrophy in stroke patients, as well as the modulatory effect of inflammation in this condition. Later, we suggest the two strongest anti-inflammatory candidate mechanisms, myokines and the cholinergic anti-inflammatory pathway, which may be activated by physical exercise and may contribute to a decrease in proinflammatory markers of poststroke patients. PMID:27647951

  14. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.

  15. Noncircular Chainrings Do Not Influence Maximum Cycling Power.

    PubMed

    Leong, Chee-Hoi; Elmer, Steven J; Martin, James C

    2017-12-01

    Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc  = 1.13; HIGH ecc  = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGH ecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGH ecc . Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.

  16. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    PubMed

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the composition of e-liquid, and the devices' ability to efficiently deliver e-liquid to the heating coil are important product design factors effecting coil operating temperature. Precautionary temperature checks on e-cigarettes under manufacturer-recommended normal use conditions may help to reduce the health risks from exposure to toxic carbonyl emissions associated with coil overheating.

  17. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer

    PubMed Central

    Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A.; Kumagai, Kazukiyo

    2018-01-01

    Objectives To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a “top-coil” clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. Methods The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3–6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). Results For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such “top-coil” clearomizers. Conclusions This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the composition of e-liquid, and the devices’ ability to efficiently deliver e-liquid to the heating coil are important product design factors effecting coil operating temperature. Precautionary temperature checks on e-cigarettes under manufacturer-recommended normal use conditions may help to reduce the health risks from exposure to toxic carbonyl emissions associated with coil overheating. PMID:29672571

  18. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.

  19. [Elderly, poor, solitary and marginal patients: geriatric vulnerability in emergency services].

    PubMed

    Marín Gámez, N; Kessel Sardiñas, H; López Martínez, G; Barnosi Marín, A; Montoya Vergel, J; Navarro Corral, A; Delgado Rodríguez, M

    1998-07-01

    Status is a powerful determinant of health, and it may influence on the demand of Hospital emergency services. The aim of our investigation is to assess whether elderly patients usually wandering emergency services gather more negative socioeconomic conditions. A cross-sectional study on 800 randomised patients cared in emergency services was carried out. A questionnaire about economic, educational and professional levels, domestic violence, loneliness and life style was applied. A crude analysis was used to assess the age-factor (>/= 65 y.o.) by BMDP (PC 90). The trial was approved by the local Bioethics board. Low incomes, low educational level and loneliness were clinic and statistically related with age (65 and more). Data is offered as n (%), X2 and p < 0.0001 (Fisher exact Test two sided p value). Elderly patients frequently demanding hospital emergency services gather more vulnerability conditions, not merely medical. Low incomes, low educational level and loneliness are probably working as key factors on the geriatric demand of emergency services.

  20. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  1. Gender and chronological age affect erythrocyte membrane oxidative indices in citrate phosphate dextrose adenine-formula 1 (CPDA-1) blood bank storage condition.

    PubMed

    Erman, Hayriye; Aksu, Uğur; Belce, Ahmet; Atukeren, Pınar; Uzun, Duygu; Cebe, Tamer; Kansu, Ahmet D; Gelişgen, Remisa; Uslu, Ezel; Aydın, Seval; Çakatay, Ufuk

    2016-07-01

    It is well known that in vitro storage lesions lead to membrane dysfunction and decreased number of functional erythrocytes. As erythrocytes get older, in storage media as well as in peripheral circulation, they undergo a variety of biochemical changes. In our study, the erythrocytes with different age groups in citrate phosphate dextrose adenine-formula 1 (CPDA-1) storage solution were used in order to investigate the possible effect of gender factor on oxidative damage. Oxidative damage biomarkers in erythrocyte membranes such as ferric reducing antioxidant power, pro-oxidant-antioxidant balance, protein-bound advance glycation end products, and sialic acid were analyzed. Current study reveals that change in membrane redox status during blood-bank storage condition also depends on both gender depended homeostatic factors and the presence of CPDA-1. During the storage period in CPDA-1, erythrocytes from the male donors are mostly affected by free radical-mediated oxidative stress but erythrocytes obtained from females are severely affected by glyoxidative stress.

  2. Major depressive disorder is a risk factor for low bone mass, central obesity, and other medical conditions

    PubMed Central

    Cizza, Giovanni

    2011-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric illnesses in the adult population. It is often associated with an increased risk of cardiovascular disease. Osteoporosis is also a major public health threat. Multiple studies have reported an association between depression and low bone mineral density, but a causal link between these two conditions is disputed. Here the most important findings of the POWER (Premenopausal, Osteoporosis Women, Alendronate, Depression) Study, a large prospective study of bone turnover in premenopausal women with major depression, are summarized. The endocrine and immune alterations secondary to depression that might affect bone mass, and the possible role of poor lifestyle in the etiology of osteoporosis in subjects with depression, are also reviewed, as is the potential effect of antidepressants on bone loss. It is proposed that depression induces bone loss and osteoporotic fractures, primarily via specific immune and endocrine mechanisms, with poor lifestyle habits as potential contributory factors. PMID:21485748

  3. The influence of social power on weight perception.

    PubMed

    Lee, Eun Hee; Schnall, Simone

    2014-08-01

    Three studies explored whether social power affects the perception of physical properties of objects, testing the hypothesis that the powerless find objects to be heavier than the powerful do. Correlational findings from Study 1 revealed that people with a low personal sense of power perceived loaded boxes to be heavier than people with a high personal sense of power perceived them to be. In Study 2, experimentally manipulated power indicated that participants in the powerless condition judged the boxes to be heavier than did participants in the powerful condition. Study 3 further indicated that lacking power actively influences weight perception relative to a neutral control condition, whereas having power does not. Although much research on embodied perception has shown that various physiological and psychosocial resources influence visual perception of the physical environment, this is the first demonstration suggesting that power, a psychosocial construct that relates to the control of resources, changes the perception of physical properties of objects. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  5. Power Conditioning for High-Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1971-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  6. Power Conditioning for High Speed Tracked Vehicles

    DOT National Transportation Integrated Search

    1973-01-01

    The linear induction motor is to provide the propulsion of high-speed tracked vehicles; speed and brake control of the propulsion motor is essential for vehicle operation. The purpose of power conditioning is to provide the power matching interface b...

  7. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  8. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  9. ALARA and work management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schieber, C.; Perin, M.; Saumon, P.

    1995-03-01

    At the request of Electricite de France (EDF) and Framatome, the Nuclear Protection Evaluation Centre (CEPN) developed a three-year research project, between 1991 and 1993, to evaluate the impact of various work management factors that can influence occupational exposures in nuclear power plants (NPPs) and to assess the effectiveness of protective actions implemented to reduce them. Three different categories of factors have been delineated: those linked to working conditions (such as ergonomic of work areas and protective suits), those characterizing the operators (qualification, experience level, motivation, etc.). In order to quantify the impact of these factors, a detailed survey wasmore » carried out in five French NPPs, focusing on three types of operations: primary valves maintenance, decontamination of reactor cavity, and specialized maintenance operations on the steam generator. This survey was augmented by a literature review on the influence of {open_quotes}hostile{close_quotes} environment on working conditions. Finally, a specific study was performed in order to quantify the impact of various types of protective suits used in French nuclear installations according to the type of work to be done. All of these factors have been included in a model aiming at quantifying the effectiveness of protection actions, both from dosimetric and economic point of views.« less

  10. Numerical Simulations of SCR DeNOx System for a 660MW coal-fired power station

    NASA Astrophysics Data System (ADS)

    Yongqiang, Deng; Zhongming, Mei; Yijun, Mao; Nianping, Liu; Guoming, Yin

    2018-06-01

    Aimed at the selective catalytic reduction (SCR) DeNOx system of a 660 MW coal-fired power station, which is limited by low denitrification efficiency, large ammonia consumption and over-high ammonia escape rate, numerical simulations were conducted by employing STAR-CCM+ (CFD tool). The simulations results revealed the problems existed in the SCR DeNOx system. Aimed at limitations of the target SCR DeNOx system, factors affecting the denitrification performance of SCR, including the structural parameters and ammonia injected by the ammonia nozzles, were optimized. Under the optimized operational conditions, the denitrification efficiency of the SCR system was enhanced, while the ammonia escape rate was reduced below 3ppm. This study serves as references for optimization and modification of SCR systems.

  11. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less

  12. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  13. Fuel properties effect on the performance of a small high temperature rise combustor

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  14. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    PubMed

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  15. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    NASA Astrophysics Data System (ADS)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  16. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  17. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    PubMed

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  18. Energy consumption and load profiling at major airports. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.

    1998-12-01

    This report describes the results of energy audits at three major US airports. These studies developed load profiles and quantified energy usage at these airports while identifying procedures and electrotechnologies that could reduce their power consumption. The major power consumers at the airports studied included central plants, runway and taxiway lighting, fuel farms, terminals, people mover systems, and hangar facilities. Several major findings emerged during the study. The amount of energy efficient equipment installed at an airport is directly related to the age of the facility. Newer facilities had more energy efficient equipment while older facilities had much of themore » original electric and natural gas equipment still in operation. As redesign, remodeling, and/or replacement projects proceed, responsible design engineers are selecting more energy efficient equipment to replace original devices. The use of computer-controlled energy management systems varies. At airports, the primary purpose of these systems is to monitor and control the lighting and environmental air conditioning and heating of the facility. Of the facilities studied, one used computer management extensively, one used it only marginally, and one had no computer controlled management devices. At all of the facilities studied, natural gas is used to provide heat and hot water. Natural gas consumption is at its highest in the months of November, December, January, and February. The Central Plant contains most of the inductive load at an airport and is also a major contributor to power consumption inefficiency. Power factor correction equipment was used at one facility but was not installed at the other two facilities due to high power factor and/or lack of need.« less

  19. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  20. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  1. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System

    PubMed Central

    Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.

    2018-01-01

    SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600

  2. A digital prediction algorithm for a single-phase boost PFC

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi

    2012-12-01

    A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.

  3. Thermoelectric Properties of Mg2Si0.995Sb0.005 Prepared by the High-Pressure High-Temperature Method

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Chen, Gang; Duan, Bo; Zhu, Yaju; Hu, Xiaojun; Zhai, Pengcheng; Li, Peng

    2017-05-01

    Mg2Si0.995Sb0.005 compound was prepared by the high-pressure high-temperature (HPHT) method. The simultaneous synthesis and consolidation in one step could be completed in <15 min. The effects of pressure and temperature on the thermoelectric properties of Mg2Si0.995Sb0.005 were analyzed in this work. With the pressure and temperature increasing, the electrical conductivity rises markedly, while the Seebeck coefficient changes slightly, which results in significant enhancement of the power factor. The Mg2Si0.995Sb0.005 sample prepared under the condition of 1073 K and 2 GPa achieves the highest power factor of ˜2.12 × 10-3 W m-1 K-2 at 575 K. As the sample prepared at 973 K and 2 GPa retains a lower thermal conductivity, it obtains the highest thermoelectric figure-of-merit ZT ˜0.62 at 800 K. In conclusion, the HPHT method can serve as a route to prepare Sb-doped Mg2Si thermoelectric materials efficiently.

  4. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  5. [Trust and power--three interrelationships].

    PubMed

    Grimen, H

    2001-12-10

    Trust is not always an idyllic phenomenon; it may also serve as a context in which power is exercised. Reflecting on power in relation to trust gives us a richer theoretical framework for analysing the social conditions for establishing, maintaining and eroding relations of trust. This article proposes three interrelationships between trust and power: power may create trust; unequal distribution of power may affect the conditions for establishing and maintaining relations of trust; the internal structure of interest and control is identical in some types of trust relations and some types of power relations.

  6. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  7. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be fired in Cabras Power Plant Units Nos. 1 through 3 and in Piti Power Plant Units Nos. 4 and 5... conditionally exempts Piti Power Plant Units No. 8 and No. 9 from certain CAA requirements. (2) A waiver of the... Administrator of EPA conditionally exempts Guam Power Authority (“GPA”) from certain CAA requirements. (1) A...

  8. 29 CFR 1926.1410 - Power line safety (all voltages)-equipment operations closer than the Table A zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories) to a complete stop; wind conditions; degree of sway in the power line; lighting conditions, and... 29 Labor 8 2011-07-01 2011-07-01 false Power line safety (all voltages)-equipment operations... FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1410 Power line safety (all voltages...

  9. Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Gutiérrez, J.; Durán-Grados, V.; Uriondo, Z.; Ángel Llamas, J.

    2012-08-01

    A reliable and up-to-date maritime emission inventory is essential for atmospheric scientists quantifying the impact of shipping. The objective of this study is to estimate the atmospheric emissions of SO2, NOx, CO2 and PM10 by international merchant shipping in 2007 in the Strait of Gibraltar, Spain, including the Algeciras Bay by two methods. Two methods (both bottom-up) have been used in this study: 1. Establishing engine power-based emission factors (g kWh-1, EPA) or the mass of pollutant per work performed by the engine for each of the relevant components of the exhaust gas from diesel engines and power for each ship. 2. Establishing fuel-based emission factors (kg emitted/t of fuel) or mass of pollutant per mass of combusted fuel for each of the relevant components of the exhaust gas and a fuel-consumption inventory (IMO). In both methods, the means to estimate engine power and fuel-consumption inventories are the same. The exhaust from boilers and incinerators is regarded as a small contributor and excluded. In total, an estimated average of 1 389 111.05 t of CO2, 23 083.09 t of SO2, 32 005.63 t of NOx and 2972 t of PM10 were emitted from January 2007 until December 2007 by international and domestic shipping. The estimated total fuel consumption amounts to 437 405.84 t. The major differences between the estimates generated by the two methods are for NOx (16% in certain cases) and CO (up to 23%). A total difference for all compounds of 3038 t (approximately 2%) has been found between the two methods but it is not areasonable estimate of uncertainty. Therefore, the results for both methods may be considered acceptable because the actual uncontrolled deviations appear in the changes in emission factors that occur for a given engine with age. These deviations are often difficult to quantify and depend on individual shipboard service and maintenance routines. Emission factors for CO and NOx are not constant and depend on engine condition. For example, tests conducted by the authors of this paper demonstrate that when an engine operates under normal in-service conditions, the emissions are within limits. However, with a small fault in injection timing, the NOx emission exceeds the limits (30% higher value in some cases). A fault in the maintenance of the injection nozzles increases the CO emission (15% higher value in some cases).

  10. Quantitative variability of renewable energy resources in Norway

    NASA Astrophysics Data System (ADS)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  11. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.

    PubMed

    Gregoire, K P; Becker, J G

    2012-09-01

    Agricultural crop residues contain high amounts of biochemical energy as cellulose and lignin. A portion of this biomass could be sustainably harvested for conversion to bioenergy to help offset fossil fuel consumption. In this study, the potential for converting lignocellulosic biomass directly to electricity in a microbial fuel cell (MFC) was explored. Design elements of tubular air cathode MFCs and leach-bed bioreactors were integrated to develop a new solid-substrate MFC in which cellulose hydrolysis, fermentation, and anode respiration occurred in a single chamber. Electricity was produced continuously from untreated corncob pellets for >60 d. Addition of rumen fluid increased power production, presumably by providing growth factors to anode-respiring bacteria. Periodic exposure to oxygen also increased power production, presumably by limiting the diversion of electrons to methanogenesis. In the absence of methanogenesis, bioaugmentation with Geobacter metallireducens further improved MFC performance. Under these conditions, the maximum power density was 230 mW/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nondestructive Examination for Nuclear Power Plant Cable Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.

    2016-01-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable’s ability to perform safely over the initial 40 year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found inmore » an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program (AMP) to justify cable performance under normal operation as well as accident conditions. This paper addresses various NDE technologies that constitute the essence of an acceptable aging management program.« less

  13. Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell.

    PubMed

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2018-04-01

    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. Copyright © 2017. Published by Elsevier B.V.

  14. Research on the spatial-temporal distribution and development mode for renewable energy in Germany and Denmark

    NASA Astrophysics Data System (ADS)

    Li, Nana; Xie, Guohui

    2018-06-01

    Abstract—Global renewable energy have maintained a steady growth in recent years under the support of national policies and energy demand. Resource distribution, land supply, economy, voltage class and other relevant conditions affect the renewable energy distribution and development mode. Therefore, is necessary to analyze the spatial-temporal distribution and development modes for renewable energy, so as to provide reference and guidance for the renewable energy development around world. Firstly, the definitions and influence factors the renewable energy development mode are compared and summarized. Secondly, the renewable energy spatial-temporal distribution in Germany and Denmark are provided. Wind and solar power installations account for the largest proportion of all renewable energy in Germany and Denmark. Finally, renewable energy development modes are studied. The distributed photovoltaic generation accounts for more than 95%, and distributed wind power generation installations account for over 85% in Germany. Solar and wind resources are developed with distributed development mode, in which distributed wind power installation accounts for over 75%.

  15. Community Microgrid Scheduling Considering Network Operational Constraints and Building Thermal Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Ollis, Thomas B.; Xiao, Bailu

    Here, this paper proposes a Mixed Integer Conic Programming (MICP) model for community microgrids considering the network operational constraints and building thermal dynamics. The proposed optimization model optimizes not only the operating cost, including fuel cost, purchasing cost, battery degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation from the set point, but also several performance indices, including voltage deviation, network power loss and power factor at the Point of Common Coupling (PCC). In particular, the detailed thermal dynamic model of buildings is integrated into the distribution optimal power flow (D-OPF)more » model for the optimal operation of community microgrids. The heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently to reduce the electricity cost while maintaining the indoor temperature in the comfort range set by customers. Numerical simulation results show the effectiveness of the proposed model and significant saving in electricity cost could be achieved with network operational constraints satisfied.« less

  16. Thermal lensing and microchip laser performance of N g-cut Tm3+:KY(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Gaponenko, M. S.; Loiko, P. A.; Gusakova, N. V.; Yumashev, K. V.; Kuleshov, N. V.; Pavlyuk, A. A.

    2012-09-01

    The thermal lensing effect was characterized in the diode-pumped monoclinic N g-cut Tm:KYW crystal under laser operation conditions at the wavelength of 1.94 μm. The thermal lens was found to be slightly astigmatic; its optical power D being positive for rays lying in all meridional planes. Thermal lens sensitivity factors M= dD/ dP abs equal 11.8 m-1/W and 8.8 m-1/W (with respect to the absorbed pump power P abs) for principal meridional planes containing N p and N m axes. Nearly athermal behavior of N g-cut crystal is associated with the mutual compensation of different impacts to the thermal lens optical power that arise from temperature dependence of the refractive index dn/ dT and anisotropic thermal expansion. It was utilized to produce passively cooled diode-pumped 0.65 W cw Tm:KYW microchip laser with slope efficiency of 44 % and low thermo-optic aberrations.

  17. Global map of solar power production efficiency, considering micro climate factors

    NASA Astrophysics Data System (ADS)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  18. Community Microgrid Scheduling Considering Network Operational Constraints and Building Thermal Dynamics

    DOE PAGES

    Liu, Guodong; Ollis, Thomas B.; Xiao, Bailu; ...

    2017-10-10

    Here, this paper proposes a Mixed Integer Conic Programming (MICP) model for community microgrids considering the network operational constraints and building thermal dynamics. The proposed optimization model optimizes not only the operating cost, including fuel cost, purchasing cost, battery degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation from the set point, but also several performance indices, including voltage deviation, network power loss and power factor at the Point of Common Coupling (PCC). In particular, the detailed thermal dynamic model of buildings is integrated into the distribution optimal power flow (D-OPF)more » model for the optimal operation of community microgrids. The heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently to reduce the electricity cost while maintaining the indoor temperature in the comfort range set by customers. Numerical simulation results show the effectiveness of the proposed model and significant saving in electricity cost could be achieved with network operational constraints satisfied.« less

  19. Erectile dysfunction and lower urinary tract symptoms: a consensus on the importance of co-diagnosis

    PubMed Central

    Kirby, M; Chapple, C; Jackson, G; Eardley, I; Edwards, D; Hackett, G; Ralph, D; Rees, J; Speakman, M; Spinks, J; Wylie, K

    2013-01-01

    Despite differences in design, many large epidemiological studies using well-powered multivariate analyses consistently provide overwhelming evidence of a link between erectile dysfunction (ED) and lower urinary tract symptoms (LUTS). Preclinical evidence suggests that several common pathophysiological mechanisms are involved in the development of both ED and LUTS. We recommend that patients seeking consultation for one condition should always be screened for the other condition. We propose that co-diagnosis would ensure that patient management accounts for all possible co-morbid and associated conditions. Medical, socio-demographic and lifestyle risk factors can help to inform diagnoses and should be taken into consideration during the initial consultation. Awareness of risk factors may alert physicians to patients at risk of ED or LUTS and so allow them to manage patients accordingly; early diagnosis of ED in patients with LUTS, for example, could help reduce the risk of subsequent cardiovascular disease. Prescribing physicians should be aware of the sexual adverse effects of many treatments currently recommended for LUTS; sexual function should be evaluated prior to commencement of treatment, and monitored throughout treatment to ensure that the choice of drug is appropriate. PMID:23617950

  20. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  1. High-throughput screening of chromatographic separations: II. Hydrophobic interaction.

    PubMed

    Kramarczyk, Jack F; Kelley, Brian D; Coffman, Jonathan L

    2008-07-01

    A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored. (c) 2008 Wiley Periodicals, Inc.

  2. Determining critical groundwater level to prevent degraded peatland from severe peat fire

    NASA Astrophysics Data System (ADS)

    Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.

    2018-05-01

    Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.

  3. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  4. A novel method to estimate safety factor of capture by a fetal micropacemaker.

    PubMed

    Vest, Adriana Nicholson; Zhou, Li; Bar-Cohen, Yaniv; Eli Loeb, Gerald

    2016-07-01

    We have developed a rechargeable fetal micropacemaker in order to treat severe fetal bradycardia with comorbid hydrops fetalis, a life-threatening condition in pre-term non-viable fetuses for which there are no effective treatment options. The small size and minimally invasive form factor of our design limit the volume available for circuitry and a power source. The device employs a fixed-rate and fixed-amplitude relaxation oscillator and a tiny, rechargeable lithium ion power cell. For both research and clinical applications, it is valuable to monitor the electrode-myocardium interface in order to determine that adequate pacemaker output is being provided. This is typically accomplished by observing the minimal stimulus strength that achieves threshold for pacing capture. The output of our simple micropacemaker cannot be programmatically altered to determine this minimal capture threshold, but a safety factor can be inferred by determining the refractory period for ventricular capture at a given stimulus strength. This is done by measuring the minimal timing between naturally occurring QRS complexes and pacing stimuli that successfully generate a premature ventricular contraction. The method was tested in a pilot study in four fetal sheep and the data demonstrate that a relative measure of threshold is obtainable. This method provides valuable real-time information about the electrode-tissue interface.

  5. A novel method to estimate safety factor of capture by a fetal micropacemaker

    PubMed Central

    Vest, Adriana Nicholson; Zhou, Li; Bar-Cohen, Yaniv; Loeb, Gerald Eli

    2016-01-01

    We have developed a rechargeable fetal micropacemaker in order to treat severe fetal bradycardia with comorbid hydrops fetalis, a life-threatening condition in pre-term non-viable fetuses for which there are no effective treatment options. The small size and minimally invasive form factor of our design limit the volume available for circuitry and a power source. The device employs a fixed-rate and fixed-amplitude relaxation oscillator and a tiny, rechargeable lithium ion power cell. For both research and clinical applications, it is valuable to monitor the electrode-myocardium interface in order to determine that adequate pacemaker output is being provided. This is typically accomplished by observing the minimal stimulus strength that achieves threshold for pacing capture. The output of our simple micropacemaker cannot be programmatically altered to determine this minimal capture threshold, but a safety factor can be inferred by determining the refractory period for ventricular capture at a given stimulus strength. This is done by measuring the minimal timing between naturally occurring QRS complexes and pacing stimuli that successfully generate a premature ventricular contraction. The method was tested in a pilot study in 4 fetal sheep and the data demonstrate that a relative measure of threshold is obtainable. This method provides valuable real-time information about the electrode-tissue interface. PMID:27340134

  6. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria

    NASA Astrophysics Data System (ADS)

    Miura, Naoki; Sakai, Shinsuke

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.

  8. 76 FR 36864 - Special Conditions: Gulfstream Model GVI Airplane; Operation Without Normal Electric Power

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM444; Special Conditions No. 25-435-SC] Special Conditions: Gulfstream Model GVI Airplane; Operation Without... rules (VFR) conditions for at least five minutes after loss of all normal electrical power. This rule...

  9. 18 CFR 701.303 - Conditions of disclosure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Conditions of disclosure. 701.303 Section 701.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.303 Conditions of disclosure. (a) Subject to the conditions of...

  10. 18 CFR 701.303 - Conditions of disclosure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Conditions of disclosure. 701.303 Section 701.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.303 Conditions of disclosure. (a) Subject to the conditions of...

  11. 18 CFR 701.303 - Conditions of disclosure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Conditions of disclosure. 701.303 Section 701.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.303 Conditions of disclosure. (a) Subject to the conditions of...

  12. 18 CFR 701.303 - Conditions of disclosure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Conditions of disclosure. 701.303 Section 701.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.303 Conditions of disclosure. (a) Subject to the conditions of...

  13. 18 CFR 701.303 - Conditions of disclosure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Conditions of disclosure. 701.303 Section 701.303 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.303 Conditions of disclosure. (a) Subject to the conditions of...

  14. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    NASA Astrophysics Data System (ADS)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  15. [Hygienic characteristics of work conditions at large Hydroelectric Power Plants with mechanization and automatization].

    PubMed

    Iakimova, L D

    1997-01-01

    The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.

  16. 57. VIEW LOOKING NORTHWEST OF SIGNAL POWER CONDITIONING ROOM LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. VIEW LOOKING NORTHWEST OF SIGNAL POWER CONDITIONING ROOM LOCATED OVER CONTROL ROOM MEZZANINE. SHOWN WITHIN THE BRICK PARTITIONS ARE SIGNAL VOLTAGE AUTOTRANSFORMERS. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  17. On the experience of feeling powerful: perceived power moderates the effect of stereotype threat on women's math performance.

    PubMed

    Van Loo, Katie J; Rydell, Robert J

    2013-03-01

    This research examined whether feeling powerful can eliminate the deleterious effect of stereotype threat (i.e., concerns about confirming a negative self-relevant stereotype) on women's math performance. In Experiments 1 and 2, priming women with high power buffered them from reduced math performance in response to stereotype threat instructions, whereas women in the low and control power conditions showed poorer math performance in response to threat. Experiment 3 found that working memory capacity is one mechanism through which power moderates the effect of threat on women's math performance. In the low and control power conditions, women showed reduced working memory capacity in response to stereotype threat, accounting for threat's effect on performance. In contrast, women in the high power condition did not show reductions in working memory capacity or math performance in response to threat. This work demonstrates that perceived power moderates stereotype threat-based performance effects and explains why this occurs.

  18. The 2006 William Feinberg lecture: shifting the paradigm from stroke to global vascular risk estimation.

    PubMed

    Sacco, Ralph L

    2007-06-01

    By the year 2010, it is estimated that 18.1 million people worldwide will die annually because of cardiovascular diseases and stroke. "Global vascular risk" more broadly includes the multiple overlapping disease silos of stroke, myocardial infarction, peripheral arterial disease, and vascular death. Estimation of global vascular risk requires consideration of a variety of variables including demographics, environmental behaviors, and risk factors. Data from multiple studies suggest continuous linear relationships between the physiological vascular risk modulators of blood pressure, lipids, and blood glucose rather than treating these conditions as categorical risk factors. Constellations of risk factors may be more relevant than individual categorical components. Exciting work with novel risk factors may also have predictive value in estimates of global vascular risk. Advances in imaging have led to the measurement of subclinical conditions such as carotid intima-media thickness and subclinical brain conditions such as white matter hyperintensities and silent infarcts. These subclinical measurements may be intermediate stages in the transition from asymptomatic to symptomatic vascular events, appear to be associated with the fundamental vascular risk factors, and represent opportunities to more precisely quantitate disease progression. The expansion of studies in molecular epidemiology and detection of genetic markers underlying vascular risks also promises to extend our precision of global vascular risk estimation. Global vascular risk estimation will require quantitative methods that bundle these multi-dimensional data into more precise estimates of future risk. The power of genetic information coupled with data on demographics, risk-inducing behaviors, vascular risk modulators, biomarkers, and measures of subclinical conditions should provide the most realistic approximation of an individual's future global vascular risk. The ultimate public health benefit, however, will depend on not only identification of global vascular risk but also the realization that we can modify this risk and prove the prediction models wrong.

  19. Mechanism behind the high thermoelectric power factor of SrTiO3 by calculating the transport coefficients

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Yamanaka, Kazunori

    2013-02-01

    The thermoelectric power factor of SrTiO3 is unusually high with respect to its mobility and band gap. Good thermoelectrics usually have high mobility and a narrow band gap, but such properties are not found in SrTiO3. We have determined the mechanism behind the high power factor by calculating the transport coefficients. The key to understanding the power factor is that different effective masses contribute to different transport phenomena. The discrepancy between the effective mass for the conductivity and the thermoelectric power showed that the conductivity and thermoelectric power are conveyed by electrons with different effective masses in the Brillouin zone. Light electrons were responsible for the high conductivity, whereas heavy electrons were responsible for the high thermoelectric power. The high carrier concentrations of more than 1020 cm-3 did not reduce the thermoelectric power of SrTiO3 above the classical limit. This indicates that the electrons carrying the thermoelectric power were not degenerate. This is achieved by a decrease in the Fermi energy and the contribution of the heavy electrons to the Seebeck coefficient. The strong dielectric screening also contributed to the high power factor. The Coulomb scattering by ionized impurities, which would usually reduce the carrier mobility, was effectively screened. These results clarify the mechanism behind the contribution of different types of electrons, and show that high thermoelectric power does not necessarily reduce conductivity. Our findings provide a new direction for the band engineering of thermoelectric materials.

  20. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.

Top