Power factor regulation for household usage
NASA Astrophysics Data System (ADS)
Daud, Nik Ghazali Nik; Hashim, Fakroul Ridzuan; Tarmizi, Muhammad Haziq Ahmad
2018-02-01
Power factor regulator technology has recently drawn attention to the consumer and to power generation company in order for consumers to use electricity efficiently. Controlling of power factor for efficient usage can reduce the production of power in fulfilment demands hence reducing the greenhouse effect. This paper presents the design method of power factor controller for household usage. There are several methods to improve the power factor. The power factor controller used by this method is by using capacitors. Total harmonic distortion also has become a major problem for the reliability of the electrical appliances and techniques to control it will be discussed.
NASA Astrophysics Data System (ADS)
Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.
2018-01-01
The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).
Three phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.
Commercialization of the power factor controller
NASA Technical Reports Server (NTRS)
1981-01-01
The purpose of the Motor Power Controller, also known as the Power Factor Controller, is to improve power factor and reduce power dissipation in induction motors operating below full load. These purposes were studied and tested in detail. The Motor Power Controller is capable of raising power factors from 0.2 to 0.8 and results in energy savings. It was found that many motors, in their present operating applications, are classified as unstable. The electronic nature of the controller vs. the electrical nature of the motor, compound this problem due to the differences in response time of the two devices. Many tests were successfully completed, the most indicating greater savings than anticipated. Also, there was an effect on efficiency which was not included in the calculations.
Control circuit maintains unity power factor of reactive load
NASA Technical Reports Server (NTRS)
Kramer, M.; Martinage, L. H.
1966-01-01
Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.
Motor power factor controller with a reduced voltage starter
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1981-01-01
A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.
Soft-Starting Power-Factor Motor Controller
NASA Technical Reports Server (NTRS)
Nola, F. J.
1983-01-01
Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.
Fast controller for a unity-power-factor PWM rectifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eissa, M.O.; Leeb, S.B.; Verghese, G.C.
1996-01-01
This paper presents an analog implementation of a fast controller for a unity-power-factor (UPF) PWM rectifier. The best settling times of many popular controllers for this type of converter are on the order of a few line cycles, corresponding to bandwidths under 20 Hz. The fast controller demonstrated in this paper can exercise control action at a rate comparable to the switching frequency rather than the line frequency. In order to accomplish this while maintaining unity power factor during steady-state operation, the fast controller employs a ripple-feedback cancellation scheme.
A new topology and control method for electromagnetic transmitter power supplies
NASA Astrophysics Data System (ADS)
Zhang, Yiming; Zhang, Jialin; Yuan, Dakang
2017-04-01
As essential equipment for electromagnetic exploration, electromagnetic transmitter reverse the steady power supply with desired frequency and transmit the power through grounding electrodes. To obtain effective geophysical data during deep exploration, the transmitter needs to be high-voltage, high-current, with high-accuracy output, and yet compact and light. The researches on the power supply technologies for high-voltage high-power electromagnetic transmitter is of significant importance to the deep geophysical explorations. Therefore, the performance of electromagnetic transmitter is mainly subject to the following two aspects: the performance of emission current and voltage, and the power density. These requirements bring technical difficulties to the development of power supplies. Conventionally, high-frequency switching power supplies are applied in the design of a high-power transmitter power supply. However, the structure of the topology is complicate, which may reduce the controllability of the output voltage and the reliability of the system. Without power factor control, the power factor of the structure is relatively low. Moreover high switching frequency causes high loss. With the development of the PWM (pulse width modulation) technique, its merits of simple structure, low loss, convenient control and unit power factor have made it popular in electrical energy feedback, active filter, and power factor compensation. Studies have shown that using PWM converters and space vector modulation have become the trend in designing transmitter power supply. However, the earth load exhibits different impedances at different frequencies. Thus ensuing high-accuracy and a stable output from a transmitter power supply in harsh environment has become a key topic in the design of geophysical exploration instruments. Based on SVPWM technology, an electromagnetic transmitter power supply has been designed and its control strategy has been studied. The transmitting system is composed of power supply, SVPWM converter, and power inverter units. The functions of the units are as follows: (1) power supply: a generator providing power with three phase; (2) SVPWM converter: convert AC to DC output; (3) power inverter unit: the inverter is used to convert DC to AC output whose frequency, amplitude and waveform are variable. In the SVPWM technique, the active current and the reactive current are controlled separately, and each variable is analyzed individually, thus the power factor of the system is improved. Through controlling the PWM converter at the generation side, we can get any power factor. Usually the power factor of the generation side is set to 1. Finally, simulation and experimental results validate both the correctness of the established model and the effectiveness of the control method. We can acquire unity power factor for the input and steady current for the output. They also demonstrated that the electromagnetic transmitter power supply designed in this study can meet the practical needs of field geological exploration. We can improve the utilization of the transmitter system.
NASA Technical Reports Server (NTRS)
1997-01-01
Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.
Power factor control system for AC induction motors
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1977-01-01
A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.
NASA Astrophysics Data System (ADS)
Liu, Jianxing; Laghrouche, Salah; Wack, Maxime
2014-06-01
In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.
Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine
2015-03-01
Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.
Model and Study on Cascade Control System Based on IGBT Chopping Control
NASA Astrophysics Data System (ADS)
Niu, Yuxin; Chen, Liangqiao; Wang, Shuwen
2018-01-01
Thyristor cascade control system has a wide range of applications in the industrial field, but the traditional cascade control system has some shortcomings, such as a low power factor, serious harmonic pollution. In this paper, not only analyzing its system structure and working principle, but also discussing the two main factors affecting the power factor. Chopping-control cascade control system, adopted a new power switching device IGBT, which could overcome traditional cascade control system’s two main drawbacks efficiently. The basic principle of this cascade control system is discussed in this paper and the model of speed control system is built by using MATLAB/Simulink software. Finally, the simulation results of the system shows that the system works efficiently. This system is worthy to be spread widely in engineering application.
Evaluation of induction motor performance using an electronic power factor controller
NASA Technical Reports Server (NTRS)
1978-01-01
The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.
NASA Astrophysics Data System (ADS)
Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin
2018-06-01
This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.
Three-phase power factor controller with induced EMF sensing
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.
NASA Technical Reports Server (NTRS)
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
A Study of Economical Incentives for Voltage Profile Control Method in Future Distribution Network
NASA Astrophysics Data System (ADS)
Tsuji, Takao; Sato, Noriyuki; Hashiguchi, Takuhei; Goda, Tadahiro; Tange, Seiji; Nomura, Toshio
In a future distribution network, it is difficult to maintain system voltage because a large number of distributed generators are introduced to the system. The authors have proposed “voltage profile control method” using power factor control of distributed generators in the previous work. However, the economical disbenefit is caused by the active power decrease when the power factor is controlled in order to increase the reactive power. Therefore, proper incentives must be given to the customers that corporate to the voltage profile control method. Thus, in this paper, we develop a new rules which can decide the economical incentives to the customers. The method is tested in one feeder distribution network model and its effectiveness is shown.
High-frequency AC/DC converter with unity power factor and minimum harmonic distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernekinch, E.R.
1987-01-01
The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimentalmore » results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.« less
Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC
NASA Astrophysics Data System (ADS)
Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang
2018-04-01
This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.
Power-Factor Controllers: How Safe?
NASA Technical Reports Server (NTRS)
Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.
1985-01-01
Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.
Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation
2014-02-01
Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be
Single-stage three-phase boost power factor correction circuit for AC-DC converter
NASA Astrophysics Data System (ADS)
Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.
2018-01-01
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... where one group, directly or indirectly, controls or has the power to control the other, or, a third group controls or has the power to control both. Factors indicating control include, but are not limited... attributable to a particular cost objective, such as a grant, project, service, or other activity, in...
Solar powered actuator with continuously variable auxiliary power control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
NASA Technical Reports Server (NTRS)
Wester, Gene W. (Inventor)
1980-01-01
A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.
Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.
Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit
2014-10-01
This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.
Proceedings of the Human Factors Society 35th annual meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
These volumes cover the proceedings of the 35th annual meeting of the Human Factors Society. Topics include: designing for the future of nuclear power plants international perspectives on advanced control room design; human performance assessment in the nuclear power industry; validity of strength tests for predicting endurance of coal miners, psychosocial issues in hazard management and nuclear power plants; and human factors at the DOE's national laboratories.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan
2014-01-01
Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side formore » power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.« less
NASA Technical Reports Server (NTRS)
1983-01-01
The power factor controller (PFC) senses shifts in the relationship between voltage and current, and matches them with a motor's need. This prevents waste as motors do not need a high voltage when they are not operating at full load conditions. PFC is manufactured by Nordic Controls Company, among others, and has proved extremely cost effective.
High-Frequency ac Power-Distribution System
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Mildice, James
1987-01-01
Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.
Power effects on cognitive control: Turning conflict into action.
Schmid, Petra C; Kleiman, Tali; Amodio, David M
2015-06-01
Power is known to promote effective goal pursuit, especially when it requires one to overcome distractions or bias. We proposed that this effect involves the ability to engage and implement cognitive control. In Study 1, we demonstrated that power enhances behavioral performance on a response conflict task and that it does so by enhancing controlled processing rather than by reducing automatic processing. In Study 2, we used an event-related potential index of anterior cingulate activity to test whether power effects on control were due to enhanced conflict sensitivity or action implementation. Power did not significantly affect neural sensitivity to conflict; rather, high power was associated with a stronger link between conflict processing and intended action, relative to low power. These findings suggest a new perspective on how social factors can affect controlled processing and offer new evidence regarding the transition between conflict detection and the implementation of action control. (c) 2015 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Andre, R.; Gates, D. A.
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.
2015-05-01
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Coordinated Research Program in Pulsed Power Physics.
1984-12-20
heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling
Turkish nurses' assessments of their power and the factors that affect it.
Basaran, Seher; Duygulu, Sergul
2015-11-01
To explore nurses' self-assessments of power and their opinions regarding factors affecting power in Turkey using a cross-sectional, descriptive study. In order to safely and cost-effectively care for patients, nurses must perceive themselves as powerful and have the use and control of power resources. The study sample consisted of 297 nurses in six hospitals: two government hospitals, two university hospitals and two private hospitals. Data were collected using the Demographic Data Form and Power Question Form. Nurses regarded themselves as 'quite powerful' regarding persuasion (53.2%) and referent power (43.4%). Many nurses also regarded themselves as having positional power and 'quite powerful' regarding, reward (44.1%) and legitimate power (34.7%). Nurses saw themselves as least powerful in resource power (48.1%). Individual, educational and organisational factors were the main factors affecting personal and positional power sources. Turkish nurses regarded themselves as above average on being powerful in both the personal and positional power base but not in resource power. We recommend that nurses, educators and managers develop strategies to support nurses' power as a way to enhance the patient care outcomes. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping
2016-07-01
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
NLCC controller for SEPIC-based micro-wind energy conversion system
NASA Astrophysics Data System (ADS)
Justin Nayagam, Brintha Jane; Sathi, Rama Reddy; Olimuthu, Divya
2017-04-01
The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.
Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C
2015-01-01
muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.
The power-consumption-controlled extruder: a tool for pellet production.
Kleinebudde, P; Sølvberg, A J; Lindner, H
1994-07-01
Based on the assumption that there is a link between power consumption of an extruder and pellet properties, a control circuit for power consumption was developed. Powder and granulation liquid are fed separately into a twin-screw extruder. The power consumption is controlled by varying the pump rate at a given powder-feed rate; consequently each level of power consumption results in a specific water content of the extrudate for a particular formulation. The shape of pellets depends almost entirely on the level of power consumption irrespective of formulation. The size of dry pellets is additionally affected by a shrinking factor which depends on the water content. The power-consumption-controlled extruder is an appropriate tool for the production of pellets. The system is able to adapt the water content for a formulation automatically.
Solar Powered Remediation and pH Control
2017-04-13
Kitanidis, and P.L. McCarty. 2004. Possible factors controlling the effectiveness of bioenhanced dissolution of non -aqueous phase tetrachloroethene...FINAL REPORT Solar Powered Remediation and pH Control ESTCP Project ER-201033 APRIL 2017 David Lippincott, PG CB&I Federal... control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To
Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John
2016-09-01
This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ze
2017-09-01
In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.
Sanders, David A
2017-08-01
A shared-control scheme for a powered wheelchair is presented. The wheelchair can be operated by a wheelchair driver using a joystick, or directed by a sensor system, or control can be combined between them. The wheelchair system can modify direction depending on the local environment. Sharing the control allows a disabled wheelchair driver to drive safely and efficiently. The controller automatically establishes the control gains for the sensor system and the human driver by calculating a self-reliance factor for the wheelchair driver. The sensor system can influence the motion of the wheelchair to compensate for some deficiency in a disabled driver. Practical tests validate the proposed techniques and designs.
Experimental evaluation of open-loop UpLink Power Control using ACTS
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka
1995-01-01
The present investigation deals with the implementation of open-loop up-link power control using a beacon signal in the down-link frequency band as the control parameter. A power control system was developed and tested using the ACTS satellite. ACTS carries beacon signals in both up- and down-link bands with which the relationship between the up- and down-link fading can be established. A power controlled carrier was transmitted to the ACTS satellite from a NASA operated ground station and the transponded signal was received at COMSAT Laboratories using a terminal that was routinely used to monitor the two ACTS beacon signals. The experiment ran for a period of approximately six months and the collected data were used to evaluate the performance of the power control system. A brief review of propagation factors involved in estimating the up-link fade using a beacon signal in the down-link band are presented. The power controller design and the experiment configuration are discussed. Results of the experiment are discussed.
Effect of Solid-State Power-Converter Harmonics on Electric-Power-Supply Systems
DOT National Transportation Integrated Search
1973-03-01
The United States utility industry has not set suitable standards, other than TIF (Telephone Interference Factor), for controlling the design of solid-state wayside and on-board power-conversion equipment, to limit the harmonic currents and voltages ...
High thermoelectricpower factor in graphene/hBN devices
Duan, Junxi; Wang, Xiaoming; Lai, Xinyuan; Li, Guohong; Taniguchi, Takashi; Zebarjadi, Mona; Andrei, Eva Y.
2016-01-01
Fast and controllable cooling at nanoscales requires a combination of highly efficient passive cooling and active cooling. Although passive cooling in graphene-based devices is quite effective due to graphene’s extraordinary heat conduction, active cooling has not been considered feasible due to graphene’s low thermoelectric power factor. Here, we show that the thermoelectric performance of graphene can be significantly improved by using hexagonal boron nitride (hBN) substrates instead of SiO2. We find the room temperature efficiency of active cooling in the device, as gauged by the power factor times temperature, reaches values as high as 10.35 W⋅m−1⋅K−1, corresponding to more than doubling the highest reported room temperature bulk power factors, 5 W⋅m−1⋅K−1, in YbAl3, and quadrupling the best 2D power factor, 2.5 W⋅m−1⋅K−1, in MoS2. We further show that the Seebeck coefficient provides a direct measure of substrate-induced random potential fluctuations and that their significant reduction for hBN substrates enables fast gate-controlled switching of the Seebeck coefficient polarity for applications in integrated active cooling devices. PMID:27911824
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
Feasibility study of self-powered magnetorheological damper systems
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-04-01
This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
NASA Astrophysics Data System (ADS)
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
Control of wind turbine generators connected to power systems
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.
1978-01-01
A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.
Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.
2015-01-01
BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132
Bridgeless SEPIC PFC Converter for Multistring LED Driver
NASA Astrophysics Data System (ADS)
Jha, Aman; Singh, Bhim
2018-05-01
This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
NASA Astrophysics Data System (ADS)
Kota, Venkata Reddy; Vinnakoti, Sudheer
2017-12-01
Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.
The influence of power on HIV risk among pregnant women in rural Haiti.
Kershaw, Trace S; Small, Maria; Joseph, Gabriel; Theodore, Melanie; Bateau, Reginald; Frederic, Rikerdy
2006-05-01
Given that condom use is not directly under a woman's control, the sexual division of power may play an important role in sexual behavior among pregnant women. We assessed the influence of factors related to the theory of gender and power (e.g., relationship power, abuse history, and sexual communication) on sexual behavior (e.g., two or more partners in the year prior to pregnancy, condom use, condom-use intentions, and STI diagnosis) among 196 pregnant women recruited from five community dispensaries in rural Haiti. Results showed that gender and power factors significantly related to sexual behavior. Gender and power factors were most significant for condom use and intention to use condoms, accounting for 18 and 25% of the variance above and beyond HIV knowledge and demographic covariates, respectively. These results suggest the need to create prevention interventions that restore power imbalances, provide support for women suffering abuse, and strengthen communication skills.
NASA Astrophysics Data System (ADS)
Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.
2016-07-01
This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
Power inversion design for ocean wave energy harvesting
NASA Astrophysics Data System (ADS)
Talebani, Anwar N.
The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.
A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe, Jeffrey C.
Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model formore » U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.« less
Substation Reactive Power Regulation Strategy
NASA Astrophysics Data System (ADS)
Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing
2018-01-01
With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.
Lee, Jungwook; Chung, Kwangsue
2011-01-01
Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.
2017-02-01
Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.
NASA Astrophysics Data System (ADS)
Errami, Youssef; Obbadi, Abdellatif; Sahnoun, Smail; Ouassaid, Mohammed; Maaroufi, Mohamed
2018-05-01
This paper proposes a Direct Torque Control (DTC) method for Wind Power System (WPS) based Permanent Magnet Synchronous Generator (PMSG) and Backstepping approach. In this work, generator side and grid-side converter with filter are used as the interface between the wind turbine and grid. Backstepping approach demonstrates great performance in complicated nonlinear systems control such as WPS. So, the control method combines the DTC to achieve Maximum Power Point Tracking (MPPT) and Backstepping approach to sustain the DC-bus voltage and to regulate the grid-side power factor. In addition, control strategy is developed in the sense of Lyapunov stability theorem for the WPS. Simulation results using MATLAB/Simulink validate the effectiveness of the proposed controllers.
Origin and control of instability in SCR/triac three-phase motor controllers
NASA Technical Reports Server (NTRS)
Dearth, J. J.
1982-01-01
The energy savings and reactive power reduction functions initiated by the power factor controller (PFC) are discussed. A three-phase PFC with soft start is examined analytically and experimentally to determine how well it controls the open loop instability and other possible modes of instability. The detailed mechanism of the open loop instability is determined and shown to impose design constraints on the closed loop system. The design is shown to meet those constraints.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Customer Dissatisfaction Index and its Improvement Costs
NASA Astrophysics Data System (ADS)
Lvovs, Aleksandrs; Mutule, Anna
2010-01-01
The paper gives description of customer dissatisfaction index (CDI) that can be used as reliability level characterizing factor. The factor is directly joined with customer satisfaction of power supply and can be used for control of reliability level of power supply for residential customers. CDI relations with other reliability indices are shown. Paper also gives a brief overview of legislation of Latvia in power industry that is the base for CDI introduction. Calculations of CDI improvement costs are performed in the paper too.
ERIC Educational Resources Information Center
Smith, Francie
Factors in the development of empowerment through ethical leadership are discussed in this paper, which draws on feminist and humanist theories. A review of literature describes the conditions in patriarchal societies that lead to and lessen the exaltation of power and control; conditions of temporary and permanent inequality; ways in which…
Real-time multi-DSP control of three-phase current-source unity power factor PWM rectifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Wang; Boon-Teck Ooi
1993-07-01
The design of a real-time multi-DSP controller for a high-quality six-valve three-phase current-source unity power factor PWM rectifier is discussed in this paper. With the decoupler preprocessor and the dynamic trilogic PWM trigger scheme, each of the three input currents can be controlled independently. Based on the a-b-c frame system model and the fast parallel computer control, the pole-placement control method is implemented successfully to achieve fast response in the ac currents. The low-frequency resonance in the ac filter L-C networks has been damped effectively. The experimental results are obtained from a 1-kVA bipolar transistor current-source PWM rectifier with amore » real-time controller using three TMS320C25 DSP's.« less
Internal Control, Powerful Others, and Chance: A Confirmation of Levenson's Factor Structure.
ERIC Educational Resources Information Center
Walkey, Frank H.
1979-01-01
The internal-external locus of control scales of Rotter and Levenson and the Marlowe-Crowne Social Desirability Scale were completed by 156 undergraduates. The three-factor structure underlying Levenson's questionnaire was clearly confirmed. Some new evidence for the multidimensionality of Rotter's scale was also presented. (Author/GDC)
Reliable and Affordable Control Systems Active Combustor Pattern Factor Control
NASA Technical Reports Server (NTRS)
McCarty, Bob; Tomondi, Chris; McGinley, Ray
2004-01-01
Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.
Hooker, Claire; Chapman, Simon
2006-02-01
To analyse structural factors revealed by politicians that shaped legislation on tobacco control in New South Wales, 1955-95. Parliamentary debates and other records were collected. Open-ended interviews were conducted with 17 Members of Parliament (MPs) who were significantly involved, and then analysed for structural elements. Tobacco industry lobbying had a significant but limited influence on policy making, being exerted largely through social interactions with executives and based on concerns about the economic impact on third parties. MPs saw health advocates' chief functions as (1) generating community concern about the issue and support for control measures, and (2) bringing any new information to political attention, providing pro-control arguments and data through the media. Factors that delayed tobacco control policies included: the conservative stance of Premiers and major parties, commitments to unanimous federal action, and rivalry between parties. Factors that facilitated control policies included: reforms that gave the Legislative Council increased power, the use of parliamentary committees, and backbencher and grass roots support. Tobacco control policy and legislation has been the product of political structures that gave power to those MPs in the least powerful positions--minor parties, Members of the Legislative Council (MLCs), backbenchers, women and party rank and file--rather than to major parties and their executives. Advocates should make the most of their access points to the political process, providing information, arguments and support and demonstrating public opinion in favour of further control.
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
Gordon, Jill A; Stichman, Amy J
2016-10-01
Maintaining order is a key goal for prison managers. Much of the research on order maintenance focuses, however, on disruptions of order, even when order is more common. Examining factors related to perceptions on how officers get inmates to comply is, therefore, an important consideration. Using a survey of correctional officers from a Mid-Atlantic state, this study considers three dimensions of French and Raven's theory on the bases of power. The focus is to examine correctional orientation and compliance regarding three dimensions of power that rely on informal control and relationships. The results indicate that officers' belief in rehabilitative ideals is consistently related to the dimensions of legitimate, referent, and expert control. Other individual and organizational factors are also related to dimensions of power. Implications for policies and for future research are discussed. © The Author(s) 2015.
Single-state electronic ballast with dimming feature and unity power factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.F.; Yu, T.H.; Chiang, M.C.
1998-05-01
Analysis, design, and practical consideration of a single-stage electronic ballast with dimming feature and unity power factor are presented in this paper. The proposed single-stage ballast is the combination of a boost converter and a half-bridge series-resonant parallel-loaded inverter. The boost semistage working in the discontinuous conduction mode functions as a power factor corrector and the inverter semistage operated above resonance are employed to ballast the lamp. Replacing the lamp with the plasma model, analysis of the ballast is fulfilled. The dimming feature is carried out by pulse-width modulation (PWM) and variable-frequency controls simultaneously. The proposed single-stage ballast is suitablemore » for applications with moderate power level and low-line voltage while requiring a high-output voltage. It can save a controller, an active switch and its driver, reduce size, and possibly increase system reliability while requiring two additional diodes over a conventional two-stage system. A prototype was implemented to verify the theoretical discussion. The hardware measurements have shown that the desired performance can be achieved feasibly.« less
NASA Astrophysics Data System (ADS)
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
Vibration Platform Training in Women at Risk for Symptomatic Knee Osteoarthritis
Segal, Neil A.; Glass, Natalie A.; Shakoor, Najia; Wallace, Robert
2013-01-01
Objective To determine whether a platform exercise program with vibration is more effective than the platform exercise alone for improving lower limb muscle strength and power in women age 45-60 with risk factors for knee osteoarthritis (OA). Design Randomized, controlled study Setting Academic center Participants 48 women age 45-60 years old with risk factors for knee OA (history of knee injury or surgery or BMI≥25kg/m2). Interventions Subjects were randomized to a twice weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises) on either a vertically vibrating (35Hz, 2mm), or a non-vibrating platform. Main Outcome Measurements The main outcome measures included change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. Results 39 out of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly due to lack of time. There were no intergroup differences in age, BMI, or activity level. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0±69.7 W in the vibration group (p<.0001) and 58.2±96.2 W in the control group (p=0.0499), but did not differ between groups (p=0.2262). Stair climb power improved by 53.4±64.7 W in the vibration group (p=0.0004) and 55.7±83.3 W in the control group (p=0.0329), but did not differ between groups (p=0.9272). Conclusions Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than participation in the exercise program without vibration. PMID:22981005
Vibration platform training in women at risk for symptomatic knee osteoarthritis.
Segal, Neil A; Glass, Natalie A; Shakoor, Najia; Wallace, Robert
2013-03-01
To determine whether a platform exercise program with vibration is more effective than platform exercise alone for improving lower limb muscle strength and power in women ages 45 to 60 with risk factors for knee osteoarthritis (OA). Randomized, controlled study. Academic center. A total of 48 women ages 45-60 years with risk factors for knee OA (a history of knee injury or surgery or body mass index ≥25 kg/m(2)). Subjects were randomly assigned to a twice-weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises, step-ups, and lunges) on either a vertically vibrating platform (35 Hz, 2 mm) or a nonvibrating platform. Change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. A total of 39 of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly because of a lack of time. No intergroup differences in age, body mass index, or activity level existed. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0 ± 69.7 W in the vibration group (P < .0001) and 58.2 ± 96.2 W in the control group (P = .0499) but did not differ between groups (P = .2262). Stair climb power improved by 53.4 ± 64.7 W in the vibration group (P = .0004) and 55.7 ± 83.3 W in the control group (P = .0329) but did not differ between groups (P = .9272). Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, the addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than did participation in the exercise program without vibration. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
14 CFR 23.203 - Turning flight and accelerated turning stalls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... use of the flight controls, but without increasing power and without— (1) Excessive loss of altitude... permissible speed or allowable limit load factor. (c) Compliance with the requirements of this section must be.../speedbrakes: Retracted and extended unless they have no measureable effect at low speeds. (5) Power: (i) Power...
14 CFR 23.203 - Turning flight and accelerated turning stalls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... use of the flight controls, but without increasing power and without— (1) Excessive loss of altitude... permissible speed or allowable limit load factor. (c) Compliance with the requirements of this section must be.../speedbrakes: Retracted and extended unless they have no measureable effect at low speeds. (5) Power: (i) Power...
ERIC Educational Resources Information Center
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
Unity power factor switching regulator
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1983-01-01
A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.
Electrical system options for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.; Cull, Ronald C.
1991-01-01
The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.
The Effect of a Constant Level Lighting Control System on Small Offices With Windows
1992-01-01
Scientific 2101 Digital Power Analyzer. The power factor was calculated by dividing the real power by the apparent power (current multiplied by voltage...CBNSC-TT-P 22060 INSODM - Cb. huad. Div. Delace Tockslcol to. C 2M30 US Arm Bo~kuau Disvriaw Pt Dalvoir VA 22M6 AWN: DTIC-AB (2) ATTN: Libary (41) ATmN
Multi-kw dc power distribution system study program
NASA Technical Reports Server (NTRS)
Berkery, E. A.; Krausz, A.
1974-01-01
The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.
NASA Astrophysics Data System (ADS)
Zhilenkov, A. A.; Kapitonov, A. A.
2017-10-01
It is known that many of today’s ships and vessels have a shaft generator as a part of their power plants. Modern automatic control systems used in the world’s fleet do not enable their shaft generators to operate in parallel with the main diesel generators for long-term sustenance of the total load of the ship network. On the other hand, according to our calculations and experiments, a shaft generator operated in parallel with the main power plant helps save at least 10% of fuel while making the power system of the ship more efficient, reliable, and eco-friendly. The fouling and corrosion of the propeller as well as the weather conditions of navigation affect its modulus of resistance. It changes the free component of the transient process of shaft generator stress frequency changes in transient processes. While the shaft generator and the diesel generator of the ship power plant are paralleled, there emerges an angle between their EMF. This results in equalizing currents generated between them. The altering torque in the drive-shaft line—propeller system causes torsional fluctuations of the ship shaft line. To compensate for the effect of destabilizing factors and torsional fluctuations of the shaft line on the dynamic characteristics of the transient process that alters the RPM of the main engine, sliding mode controls can be used. To synthesize such a control, one has to evaluate the effect of destabilizing factors.
Controlling An Inverter-Driven Three-Phase Motor
NASA Technical Reports Server (NTRS)
Dolland, C.
1984-01-01
Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.
Pejtersen, Jan Hyld; Burr, Hermann; Hannerz, Harald; Fishta, Alba; Hurwitz Eller, Nanna
2015-01-01
The present review deals with the relationship between occupational psychosocial factors and the incidence of ischemic heart disease (IHD) with special regard to the statistical power of the findings. This review with 4 inclusion criteria is an update of a 2009 review of which the first 3 criteria were included in the original review: (1) STUDY: a prospective or case-control study if exposure was not self-reported (prognostic studies excluded); (2) OUTCOME: definite IHD determined externally; (3) EXPOSURE: psychosocial factors at work (excluding shift work, trauma, violence or accidents, and social capital); and (4) Statistical power: acceptable to detect a 20% increased risk in IHD. Eleven new papers met the inclusion criteria 1-3; a total of 44 papers were evaluated regarding inclusion criteria 4. Of 169 statistical analyses, only 10 analyses in 2 papers had acceptable statistical power. The results of the 2 papers pointed in the same direction, namely that only the control dimension of job strain explained the excess risk for myocardial infarction for job strain. The large number of underpowered studies and the focus on psychosocial models, such as the job strain models, make it difficult to determine to what extent psychosocial factors at work are risk factors of IHD. There is a need for considering statistical power when planning studies.
Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.
2007-01-01
When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.
Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.
2006-01-01
When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.
Human Factors and Information Operation for a Nuclear Power Space Vehicle
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Brown-VanHoozer, S. Alenka
2002-01-01
This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.
Comparative evaluation of power factor impovement techniques for squirrel cage induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spee, R.; Wallace, A.K.
1992-04-01
This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less
NASA Astrophysics Data System (ADS)
Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.
2015-06-01
This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.
Advanced Controller for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.
2004-01-01
The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.
Elevated midline-parietal gamma band noise power in schizophrenia but not in bipolar patients.
Suazo, Vanessa; Lubeiro, Alba; Jurado-Barba, Rosa; Moreno-Ortega, Marta; Dompablo, Mónica; Morales-Muñoz, Isabel; Rodriguez-Jimenez, Roberto; Palomo, Tomas; Molina, Vicente
2016-12-01
Gamma oscillations are key in coordinating brain activity and seem to be altered in schizophrenia. In previous work, we studied the spatial distribution of a noise power measure (scalp-recorded electroencephalographic activity unlocked to stimuli) and found higher magnitudes in the gamma band related to symptoms and cognition in schizophrenia. In the current study, we sought to replicate those findings and to study its specificity for schizophrenia in a completely independent sample. A principal component analysis (PCA) was used to determine the factorial structure of gamma noise power acquired with an electroencephalographic recording during an odd-ball P300 paradigm in the 250- to 550-ms window in 70 patients with schizophrenia (16 patients with first episode), 45 bipolar patients and 65 healthy controls. Clinical and cognitive correlates of the resulting factors were also assessed. Three factors arose from the PCA. The first displayed a midline-parietal distribution (roughly corresponding to the default mode network), the second was centro-temporal and the third anterior-frontal. Schizophrenia but not bipolar patients showed higher gamma noise power loadings in the first factor in comparison with controls. Scores for this factor were significantly and directly associated with positive and total symptoms in patients and inversely associated with global cognition in all participants. The results of this study replicate those of our previous publication and suggest an elevated midline-parietal gamma noise power specific to schizophrenia. The gamma noise power measure seems to be a useful tool for studying background oscillatory activity during performance of cognitive tasks.
NASA Astrophysics Data System (ADS)
Juromskiy, V. M.
2016-09-01
It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.
Study of Thermal Control Systems for orbiting power systems
NASA Technical Reports Server (NTRS)
Howell, H. R.
1981-01-01
Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.
NASA Technical Reports Server (NTRS)
1986-01-01
The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.
Analog self-powered harvester achieving switching pause control to increase harvested energy
NASA Astrophysics Data System (ADS)
Makihara, Kanjuro; Asahina, Kei
2017-05-01
In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.
Zhuo, Fan; Duan, Hucai
2017-01-01
The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803
Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka
2015-01-01
Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas. PMID:26565700
Lampinen, Jussi; Ruokolainen, Kalle; Huhta, Ari-Pekka
2015-01-01
Regularly managed electric power line corridors may provide habitats for both early-successional grassland plant species and disturbance-dependent alien plant species. These habitats are especially important in urban areas, where they can help conserve native grassland species and communities in urban greenspace. However, they can also provide further footholds for potentially invasive alien species that already characterize urban areas. In order to implement power line corridors into urban conservation, it is important to understand which environmental conditions in the corridors favor grassland species and which alien species. Likewise it is important to know whether similar environmental factors in the corridors control the species composition of the two groups. We conducted a vegetation study in a 43 kilometer long urban power line corridor network in south-western Finland, and used generalized linear models and distance-based redundancy analysis to determine which environmental factors best predict the occurrence and composition of grassland and alien plant species in the corridors. The results imply that old corridors on dry soils and steep slopes characterized by a history as open areas and pastures are especially suitable for grassland species. Corridors suitable for alien species, in turn, are characterized by productive soils and abundant light and are surrounded by a dense urban fabric. Factors controlling species composition in the two groups are somewhat correlated, with the most important factors including light abundance, soil moisture, soil calcium concentration and soil productivity. The results have implications for grassland conservation and invasive alien species control in urban areas.
Closed Brayton Cycle (CBC) Power Generation from an Electric Systems Perspective
NASA Astrophysics Data System (ADS)
Halsey, David G.; Fox, David A.
2006-01-01
Several forms of closed cycle heat engines exist to produce electrical energy suitable for space exploration or planetary surface applications. These engines include Stirling and Closed Brayton Cycle (CBC). Of these two, CBC has often been cited as providing the best balance of mass and efficiency for deep space or planetary power systems. Combined with an alternator on the same shaft, the hermetically sealed system provides the potential for long life and reliable operation. There is also a list of choices for the type of alternator. Choices include wound rotor machines, induction machines, switched reluctance machines, and permanent magnet generators (PMGs). In trades involving size, mass and efficiency the PMG is a favorable solution. This paper will discuss the consequences of using a CBC-PMG source for an electrical power system, and the system parameters that must be defined and controlled to provide a stable, useful power source. Considerations of voltage, frequency (including DC), and power quality will be discussed. Load interactions and constraints for various power types will also be addressed. Control of the CBC-PMG system during steady state operation and startup is also a factor.s
Power considerations for λ inflation factor in meta-analyses of genome-wide association studies.
Georgiopoulos, Georgios; Evangelou, Evangelos
2016-05-19
The genomic control (GC) approach is extensively used to effectively control false positive signals due to population stratification in genome-wide association studies (GWAS). However, GC affects the statistical power of GWAS. The loss of power depends on the magnitude of the inflation factor (λ) that is used for GC. We simulated meta-analyses of different GWAS. Minor allele frequency (MAF) ranged from 0·001 to 0·5 and λ was sampled from two scenarios: (i) random scenario (empirically-derived distribution of real λ values) and (ii) selected scenario from simulation parameter modification. Adjustment for λ was considered under single correction (within study corrected standard errors) and double correction (additional λ corrected summary estimate). MAF was a pivotal determinant of observed power. In random λ scenario, double correction induced a symmetric power reduction in comparison to single correction. For MAF 1·2 and MAF >5%. Our results provide a quick but detailed index for power considerations of future meta-analyses of GWAS that enables a more flexible design from early steps based on the number of studies accumulated in different groups and the λ values observed in the single studies.
Analysis and Design of Bridgeless Switched Mode Power Supply for Computers
NASA Astrophysics Data System (ADS)
Singh, S.; Bhuvaneswari, G.; Singh, B.
2014-09-01
Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.
Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.
Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour
2015-09-01
The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-10-11
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less
Demagnetization monitoring and life extending control for permanent magnet-driven traction systems
NASA Astrophysics Data System (ADS)
Niu, Gang; Liu, Senyi
2018-03-01
This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
NASA Astrophysics Data System (ADS)
Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng
2018-02-01
A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.
Relationship power and sexual risk among women in community-based substance abuse treatment.
Campbell, Aimee N C; Tross, Susan; Dworkin, Shari L; Hu, Mei-Chen; Manuel, Jennifer; Pavlicova, Martina; Nunes, Edward V
2009-11-01
Relationship power has been highlighted as a major factor influencing women's safer sex practices. Little research, however, has specifically examined relationship power in drug-involved women, a population with increased risk for HIV transmission. Using baseline data from a National Institute on Drug Abuse Clinical Trials Network multisite trial of a women's HIV prevention intervention in community-based drug treatment programs, this paper examined the association between sexual relationship power and unprotected vaginal or anal sex. The Sexual Relationship Power Scale, a measure of relationship control and decision-making dominance, was used to assess the association between power and unprotected sex in relationships with primary male partners. It was hypothesized that increased relationship power would be associated with decreased unprotected sexual occasions, after controlling for relevant empirical and theoretical covariates. Findings show a more complex picture of the association between power and sexual risk in this population, with a main effect in the hypothesized direction for decision-making dominance but not for relationship control. Possible explanations for these findings are discussed, and future research directions for examining power constructs and developing interventions targeting relationship power among drug-involved women are suggested.
Power-Quality Improvement in PFC Bridgeless SEPIC-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2013-06-01
This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000-3-2.
Power Spectrum of a Noisy System Close to a Heteroclinic Orbit
NASA Astrophysics Data System (ADS)
Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin
2017-07-01
We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.
Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
Photovoltaic power systems workshop
NASA Technical Reports Server (NTRS)
Killian, H. J.; Given, R. W.
1978-01-01
Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.
Resonant UPS topologies for the emerging hybrid fiber-coaxial networks
NASA Astrophysics Data System (ADS)
Pinheiro, Humberto
Uninterruptible power supply (UPS) systems have been extensively applied to feed critical loads in many areas. Typical examples of critical loads include life-support equipment, computers and telecommunication systems. Although all UPS systems have a common purpose to provide continuous power-to critical loads, the emerging hybrid fiber-coaxial networks have created the need for specific types of UPS topologies. For example, galvanic isolation for the load and the battery, small size, high input power factor, and trapezoidal output voltage waveforms are among the required features of UPS topologies for hybrid fiber-coaxial networks. None of the conventional UPS topologies meet all these requirements. Consequently. this thesis is directed towards the design and analysis of UPS topologies for this new application. Novel UPS topologies are proposed and control techniques are developed to allow operation at high switching frequencies without penalizing the converter efficiency. By the use of resonant converters in the proposed UPS topologies. a high input power factor is achieved without requiring a dedicated power factor correction stage. In addition, a self-sustained oscillation control method is proposed to ensure soft switching under all operating conditions. A detailed analytical treatment of the resonant converters in the proposed UPS topologies is presented and design procedures illustrated. Simulation and experimental results are presented to validate the analyses and to demonstrate the feasibility of the proposed schemes.
NASA Technical Reports Server (NTRS)
1991-01-01
Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, J.W.
1983-03-10
A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-06-08
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less
Ho, Lindsey A; Lange, Ethan M
2010-12-01
Genome-wide association (GWA) studies are a powerful approach for identifying novel genetic risk factors associated with human disease. A GWA study typically requires the inclusion of thousands of samples to have sufficient statistical power to detect single nucleotide polymorphisms that are associated with only modest increases in risk of disease given the heavy burden of a multiple test correction that is necessary to maintain valid statistical tests. Low statistical power and the high financial cost of performing a GWA study remains prohibitive for many scientific investigators anxious to perform such a study using their own samples. A number of remedies have been suggested to increase statistical power and decrease cost, including the utilization of free publicly available genotype data and multi-stage genotyping designs. Herein, we compare the statistical power and relative costs of alternative association study designs that use cases and screened controls to study designs that are based only on, or additionally include, free public control genotype data. We describe a novel replication-based two-stage study design, which uses free public control genotype data in the first stage and follow-up genotype data on case-matched controls in the second stage that preserves many of the advantages inherent when using only an epidemiologically matched set of controls. Specifically, we show that our proposed two-stage design can substantially increase statistical power and decrease cost of performing a GWA study while controlling the type-I error rate that can be inflated when using public controls due to differences in ancestry and batch genotype effects.
An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2015-12-01
This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.
Human Factors Principles in Information Dashboard Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques V.; St. Germain, Shawn
When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state conceptsmore » for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.« less
Electronic control of different generation regimes in mode-locked all-fibre F8 laser
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey
2018-04-01
We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
Taheri, Asghar; Zhalebaghi, Mohammad Hadi
2017-11-01
This paper presents a new control strategy based on finite-control-set model-predictive control (FCS-MPC) for Neutral-point-clamped (NPC) three-level converters. Containing some advantages like fast dynamic response, easy inclusion of constraints and simple control loop, makes the FCS-MPC method attractive to use as a switching strategy for converters. However, the large amount of required calculations is a problem in the widespread of this method. In this way, to resolve this problem this paper presents a modified method that effectively reduces the computation load compare with conventional FCS-MPC method and at the same time does not affect on control performance. The proposed method can be used for exchanging power between electrical grid and DC resources by providing active and reactive power compensations. Experiments on three-level converter for three Power Factor Correction (PFC), inductive and capacitive compensation modes verify the good and comparable performance. The results have been simulated using MATLAB/SIMULINK software. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Katerndahl, David A
2009-06-01
Although symptoms of anxiety and depression correlate, they may covary in irregular and unpredictable ways. This non-linear covariation may be important to psychiatric diagnosis, treatment and relapse. This non-linear anxiety-depression interaction suggests that power laws may be observed. Power laws are statistical distributions found when systems vary in complex ways at the interface between chaotic dynamics and periodic dynamics, such that data points vary randomly but are still partially correlated with each other. Such non-linear dynamics and relationships should result in characteristic patterns of interaction among patients, stressors and treatment. This is important because non-linear dynamics could affect our understanding of mental disorders, the need for varied treatment approaches and patterns of early response to treatment. To determine whether the relationships between anxiety and depression levels, changes and rates of change follow power law distributions among patients with newly diagnosed major depressive episode (MDE), panic disorder (PD) and neither disorder (controls). Time series of hourly mood variation. Setting Acute and continuity primary care clinics. Five adult patients presenting each with MDE, PD and controls based on DSM-IV criteria. Four patients in each group completed 30 days of assessments. MAIN AND SECONDARY OUTCOME MEASURES: Hourly self-assessments (while awake) of levels of anxiety and depression using visual analogue scales for a 30-day period. Covariation in level of symptoms, in the change of symptoms and in the rate of change were assessed. Anxiety-depression matrices were prepared for pooled subjects. Power laws were sought using log-log plots of frequency versus order of that frequency. Although visual inspection of plots for symptoms levels, change and rates of change all suggest power laws, statistical assessments provide stronger support for power laws in symptom change than for either symptom levels or rates of change. Adjusted R(2) terms are larger for MDE and PD subjects compared with controls while the inverse slope is about 2.5 for controls and 1.7-1.9 for those with MDE or PD. This study found that power laws may be present in both the symptom change data for all three diagnostic groups. Evidence for power laws in symptom levels and rates of change was less compelling. The inverse slopes suggest that the anxiety-depression relationships among subjects with PD and major depression are similar but differ from those among controls. First, power laws suggest a scale-free relationship; the differences seen in transition from symptom level to change level may reflect that complex events at the level of mood assessment affect change in mood. Second, this covariation may be due to external factors acting on the patient or multiple internal interrelated factors. Third, different factors and populations can yield different slopes. Future research is needed to confirm these preliminary findings and to understand the origin of these dynamics.
Electrical System Technology Working Group (WG) Report
NASA Technical Reports Server (NTRS)
Silverman, S.; Ford, F. E.
1984-01-01
The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.
FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L Boring; David I Gertman; Tuan Q Tran
2008-09-01
This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and riskmore » associated with human performance in next generation control rooms.« less
Willmann, Matthias; Klimek, Anna M; Vogel, Wichard; Liese, Jan; Marschal, Matthias; Autenrieth, Ingo B; Peter, Silke; Buhl, Michael
2014-12-10
This study aimed to investigate risk factors for colonisation with extensively drug-resistant P. aeruginosa (XDR-PA) in immunocompromised patients and to build a clinical risk score (CRS) based on these results. We conducted a matched case-control study with 31 cases and 93 controls (1:3). Cases were colonised with XDR-PA during hospitalisation. Independent risk factors were determined using a three step conditional logistic regression procedure. A CRS was built with respect to the corresponding risk fraction of each risk factor, and its discriminatory power was estimated by receiver operating characteristic (ROC) analysis. The presence of a central venous catheter (OR 7.41, P = 0.0008), the presence of a urinary catheter (OR 21.04, P < 0.0001), CRP > 10 mg/dl (OR 7.36, P = 0.0015), and ciprofloxacin administration (OR 5.53, P = 0.025) were independent risk factors. The CRS exhibited a high discriminatory power, defining a high risk population with an approximately fourteen times greater risk for XDR-PA colonisation. Unnecessary use of antibiotics, particularly ciprofloxacin should be avoided, and a high standard of infection control measures must be achieved when using medical devices. A CRS can be used for adaptation of the active screening culture policy to the local setting.
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
NASA Astrophysics Data System (ADS)
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLanc, Katya Le; Powers, David; Joe, Jeffrey
2015-08-01
Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologiesmore » that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.« less
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
NASA Astrophysics Data System (ADS)
Luo, Wei; Jasiewicz, Jaroslaw; Stepinski, Tomasz; Wang, Jinfeng; Xu, Chengdong; Cang, Xuezhi
2016-01-01
Previous studies of land dissection density (D) often find contradictory results regarding factors controlling its spatial variation. We hypothesize that the dominant controlling factors (and the interactions between them) vary from region to region due to differences in each region's local characteristics and geologic history. We test this hypothesis by applying a geographical detector method to eight physiographic divisions of the conterminous United States and identify the dominant factor(s) in each. The geographical detector method computes the power of determinant (q) that quantitatively measures the affinity between the factor considered and D. Results show that the factor (or factor combination) with the largest q value is different for physiographic regions with different characteristics and geologic histories. For example, lithology dominates in mountainous regions, curvature dominates in plains, and glaciation dominates in previously glaciated areas. The geographical detector method offers an objective framework for revealing factors controlling Earth surface processes.
Emission Control Technologies for Thermal Power Plants
NASA Astrophysics Data System (ADS)
Nihalani, S. A.; Mishra, Y.; Juremalani, J.
2018-03-01
Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.
The analysis of transient noise of PCB P/G network based on PI/SI co-simulation
NASA Astrophysics Data System (ADS)
Haohang, Su
2018-02-01
With the frequency of the space camera become higher than before, the power noise of the imaging electronic system become the important factor. Much more power noise would disturb the transmissions signal, and even influence the image sharpness and system noise. "Target impedance method" is one of the traditional design method of P/G network (power and ground network), which is shorted of transient power noise analysis and often made "over design". In this paper, a new design method of P/G network is provided which simulated by PI/SI co-simulation. The transient power noise can be simulated and then applied in the design of noise reduction, thus effectively controlling the change of the noise in the P/G network. The method can efficiently control the number of adding decoupling capacitor, and is very efficient and feasible to keep the power integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya
2016-08-15
The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less
Application of multi-function display and control technology
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included.
Robust multi-model control of an autonomous wind power system
NASA Astrophysics Data System (ADS)
Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul
2006-09-01
This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright
High frequency x-ray generator basics.
Sobol, Wlad T
2002-02-01
The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
Development of a Low Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.
Development of a Low-Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.
NASA Technical Reports Server (NTRS)
1984-01-01
Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Ulrich; Ronald Boring; William Phoenix
2012-08-01
The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolvesmore » around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.« less
Controlled soil warming powered by alternative energy for remote field sites.
Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela
2013-01-01
Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.
NASA Astrophysics Data System (ADS)
Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.
2018-01-01
We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.
NASA Technical Reports Server (NTRS)
Mildice, J. W.; Schreiner, K. E.; Wolff, F.
1987-01-01
Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads.
An Architecture to Enable Autonomous Control of Spacecraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis
2014-01-01
Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.
Hvid, L G; Nielsen, M K F; Simonsen, C; Andersen, M; Caserotti, P
2017-07-01
Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications
NASA Astrophysics Data System (ADS)
Zhang, Yuefeng
1995-01-01
To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has been designed for the power factor correction, and the simulation results show that the power factor has been improved.
A new topology of fuel cell hybrid power source for efficient operation and high reliability
NASA Astrophysics Data System (ADS)
Bizon, Nicu
2011-03-01
This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.
On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls
NASA Astrophysics Data System (ADS)
Bilchenko, Grigory; Bilchenko, Nataly
2018-05-01
The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.
Spatial distribution and cognitive correlates of gamma noise power in schizophrenia.
Díez, A; Suazo, V; Casado, P; Martín-Loeches, M; Molina, V
2013-06-01
Brain activity is less organized in patients with schizophrenia than in healthy controls (HC). Noise power (scalp-recorded electroencephalographic activity unlocked to stimuli) may be of use for studying this disorganization. Method Fifty-four patients with schizophrenia (29 minimally treated and 25 stable treated), 23 first-degree relatives and 27 HC underwent clinical and cognitive assessments and an electroencephalographic recording during an oddball P300 paradigm to calculate noise power magnitude in the gamma band. We used a principal component analysis (PCA) to determine the factor structure of gamma noise power values across electrodes and the clinical and cognitive correlates of the resulting factors. The PCA revealed three noise power factors, roughly corresponding to the default mode network (DMN), frontal and occipital regions respectively. Patients showed higher gamma noise power loadings in the first factor when compared to HC and first-degree relatives. In the patients, frontal gamma noise factor scores related significantly and inversely to working memory and problem-solving performance. There were no associations with symptoms. There is an elevated gamma activity unrelated to task processing over regions coherent with the DMN topography in patients with schizophrenia. The same type of gamma activity over frontal regions is inversely related to performance in tasks with high involvement in these frontal areas. The idea of gamma noise as a possible biological marker for schizophrenia seems promising. Gamma noise might be of use in the study of underlying neurophysiological mechanisms involved in this disease.
Gender, marital power, and marital quality in later life.
Bulanda, Jennifer Roebuck
2011-01-01
This study uses data from the 1992 Health and Retirement Study to examine gender differences in marital power and marital quality among older adults and to assess whether there are gender differences in the correlates of marital quality and marital power in later life. Results show that women report lower marital happiness, marital interaction, and marital power than do men, on average. These differences persist even after controlling for a number of life-course events and transitions. Further, results show that gender differences are also evident in the relationship of employment, childrearing, caregiving, and health factors with marital quality and power.
León, Federico R
2013-07-01
Research on gender power in contraceptive use has focused on whether women have an active role in household decision-making (the participation model) or on the extent of their control of domestic decisions (the control model); it has also addressed the joint effects of power, age, education and work. Findings published in this journal (Woldemicael, 2009) suggest a third power model according to which wives make joint decisions with their husbands on important domestic areas and autonomous decisions on secondary matters (the egalitarian model). In analyses of Demographic and Health Survey data sets from 46 countries, the egalitarian model explained contraceptive use better than the control and participation models in 19 out of 20 countries outside sub-Saharan Africa; its superiority was less overwhelming in this sub-continent. Power effects on contraceptive use that depend on women's education, age and work for cash are larger in sub-Saharan Africa than in other world regions, whereas independent power effects differ little regionally, suggesting the action of a personality factor. Situational specification of decision importance and direct measurement of women's assertiveness are needed to improve the explanation of contraceptive behaviour.
Cycling firing method for bypass operation of bridge converters
Zabar, Zivan
1982-01-01
The bridge converter comprises a number of switching elements and an electronic logic system which regulated the electric power levels by controlling the firing, i.e., the initiation of the conduction period of the switching elements. Cyclic firing of said elements allows the direct current to bypass the alternating current system with high power factor and negligible losses.
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
Forecast Inaccuracies in Power Plant Projects From Project Managers' Perspectives
NASA Astrophysics Data System (ADS)
Sanabria, Orlando
Guided by organizational theory, this phenomenological study explored the factors affecting forecast preparation and inaccuracies during the construction of fossil fuel-fired power plants in the United States. Forecast inaccuracies can create financial stress and uncertain profits during the project construction phase. A combination of purposeful and snowball sampling supported the selection of participants. Twenty project managers with over 15 years of experience in power generation and project experience across the United States were interviewed within a 2-month period. From the inductive codification and descriptive analysis, 5 themes emerged: (a) project monitoring, (b) cost control, (c) management review frequency, (d) factors to achieve a precise forecast, and (e) factors causing forecast inaccuracies. The findings of the study showed the factors necessary to achieve a precise forecast includes a detailed project schedule, accurate labor cost estimates, monthly project reviews and risk assessment, and proper utilization of accounting systems to monitor costs. The primary factors reported as causing forecast inaccuracies were cost overruns by subcontractors, scope gaps, labor cost and availability of labor, and equipment and material cost. Results of this study could improve planning accuracy and the effective use of resources during construction of power plants. The study results could contribute to social change by providing a framework to project managers to lessen forecast inaccuracies, and promote construction of power plants that will generate employment opportunities and economic development.
The Just-in-Time Operating Philosophy: Implications for Workers and Work Teams
1990-01-01
anyone at all conversant with business who has not heard or read about the startling improvements in productivity and quality of worklife to be gained by...need to yield to the new philosophy. The transition to JIT can also impact the balance of power and control between management and labor. Without buffer...internal substitutability weaken the power of the worker [31]. These factors intervene to create a delicate balance of power between management and the
Validation of a motivation-based typology of angry aggression among antisocial youths in Norway.
Bjørnebekk, Gunnar; Howard, Rick
2012-01-01
This article describes the validation of the Angry Aggression Scales (AAS), the Behavior Inhibition System and the Behavior Activation System (BIS/BAS) scales, the reactive aggression and proactive power scales in relation to a Norwegian sample of 101 antisocial youths with conduct problems (64 boys, 37 girls, mean age 15 ± 1.3 years) and 101 prosocial controls matched on age, gender, education, ethnicity, and school district. Maximum likelihood exploratory factor analyses with oblique rotation were performed on AAS, BIS/BAS, reactive aggression and proactive power scales as well as computation of Cronbach's alpha and McDonald's omega. Tests for normality and homogeneity of variance were acceptable. Factor analyses of AAS and the proactive/reactive aggression scales suggested a hierarchical structure comprising a single higher-order angry aggression (AA) factor and four and two lower-order factors, respectively. Moreover, results suggested one BIS factor and a single higher-order BAS factor with three lower-order factors related to drive, fun-seeking and reward responsiveness. To compare scores of antisocial youths with controls, t-tests on the mean scale scores were computed. Results confirmed that antisocial youths were different from controls on the above-mentioned scales. Consistent with the idea that anger is associated with approach motivation, AAS scores correlated with behavioral activation, but only explosive/reactive and vengeful/ruminative AA correlated with behavioral inhibition. Results generally validated the quadruple typology of aggression and violence proposed by Howard (2009). Copyright © 2012 John Wiley & Sons, Ltd.
Salgotra, Aprajita; Pan, Somnath
2018-05-01
This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari
2015-01-01
Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032
Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari
2015-01-01
Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.
Matrix Converter Interface for a Wind Energy Conversion System: Issues and Limitations
NASA Astrophysics Data System (ADS)
Patki, Chetan; Agarwal, Vivek
2009-08-01
Variable speed grid connected wind energy systems sometimes involve AC-AC power electronic interface between the generator and the grid. Matrix converter is an attractive option for such applications. Variable speed of the wind generator demands variable voltage variable frequency at the generator terminal. Matrix converter is used in this work to generate such a supply. Also, matrix converter can be appropriately controlled to compensate the grid for non-linear, reactive loads. However, any change of power factor on the grid side reflects on the voltage magnitude on the wind generator side. It is highlighted that this may contradict the maximum power point tracking control requirements. All the results of this work are presented.
Stackable Form-Factor Peripheral Component Interconnect Device and Assembly
NASA Technical Reports Server (NTRS)
Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)
2013-01-01
A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.
Analysis of a boron-carbide-drum-controlled critical reactor experiment
NASA Technical Reports Server (NTRS)
Mayo, W. T.
1972-01-01
In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.
Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali
2011-01-12
Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
Moreau, Didier; Artaud, J. F.; Ferron, John R.; ...
2015-05-01
This paper shows that semi-empirical data-driven models based on a twotime- scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, β N, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated data obtained using a rapidly converging plasmamore » transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0-D scaling laws and 1.5-D ordinary differential equations. A number of open loop simulations were performed, in which the heating and current drive (H&CD) sources were randomly modulated around the typical values of a reference AT discharge on DIIID. Using these simulated data, a two-time-scale state space model was obtained for the coupled evolution of the poloidal flux profile and βN parameter, and a controller was synthesized based on the near-optimal ARTAEMIS algorithm [D. Moreau et al., Nucl. Fusion 53 (2013) 063020]. The paper discusses the results of closed-loop nonlinear simulations, using this controller for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and β N are satisfactorily tracked with a time scale of about ten seconds, despite large disturbances applied to the feedforward powers and plasma parameters. The effectiveness of the control algorithm is thus demonstrated for long pulse and steady state high-β N AT discharges. Its robustness with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.« less
NASA Astrophysics Data System (ADS)
Frey, Jesse
In recent years there has been a growing interest in smaller satellites. Smaller satellites are cheaper to build and launch than larger satellites. One form factor, the CubeSat, is especially popular with universities and is a 10~cm cube. Being smaller means that the mass and power budgets are tighter and as such new ways must be developed to cope with these constraints. Traditional attitude control systems often use reaction wheels with gas thrusters which present challenges on a CubeSat. Many CubeSats use magnetic attitude control which uses the Earth's magnetic field to torque the satellite into the proper orientation. Magnetic attitude control systems fall into two main categories: active and passive. Active control is often achieved by running current through a coil to produce a dipole moment, while passive control uses the dipole moment from permanent magnets that consume no power. This thesis describes a system that uses twelve hard magnetic torquers along with a magnetometer. The torquers only consume current when their dipole moment is flipped, thereby significantly reducing power requirements compared with traditional active control. The main focus of this thesis is on the design, testing and fabrication of CubeSat hardware and software in preparation for launch.
Development of Advanced Stirling Radioisotope Generator for Space Exploration
NASA Technical Reports Server (NTRS)
Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.
2007-01-01
Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.
Ohneberg, K; Wolkewitz, M; Beyersmann, J; Palomar-Martinez, M; Olaechea-Astigarraga, P; Alvarez-Lerma, F; Schumacher, M
2015-01-01
Sampling from a large cohort in order to derive a subsample that would be sufficient for statistical analysis is a frequently used method for handling large data sets in epidemiological studies with limited resources for exposure measurement. For clinical studies however, when interest is in the influence of a potential risk factor, cohort studies are often the first choice with all individuals entering the analysis. Our aim is to close the gap between epidemiological and clinical studies with respect to design and power considerations. Schoenfeld's formula for the number of events required for a Cox' proportional hazards model is fundamental. Our objective is to compare the power of analyzing the full cohort and the power of a nested case-control and a case-cohort design. We compare formulas for power for sampling designs and cohort studies. In our data example we simultaneously apply a nested case-control design with a varying number of controls matched to each case, a case cohort design with varying subcohort size, a random subsample and a full cohort analysis. For each design we calculate the standard error for estimated regression coefficients and the mean number of distinct persons, for whom covariate information is required. The formula for the power of a nested case-control design and the power of a case-cohort design is directly connected to the power of a cohort study using the well known Schoenfeld formula. The loss in precision of parameter estimates is relatively small compared to the saving in resources. Nested case-control and case-cohort studies, but not random subsamples yield an attractive alternative for analyzing clinical studies in the situation of a low event rate. Power calculations can be conducted straightforwardly to quantify the loss of power compared to the savings in the num-ber of patients using a sampling design instead of analyzing the full cohort.
Wei, Peng; Tang, Hongwei; Li, Donghui
2014-01-01
Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (GxE) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying GxE interactions which may be partly due to limited statistical power and inaccurately measured exposures. While existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes which may modify this association. PMID:25219575
Wei, Peng; Tang, Hongwei; Li, Donghui
2014-11-01
Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (G × E) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying G × E interactions, which may be partly due to limited statistical power and inaccurately measured exposures. Although existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here, we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes that may modify this association. © 2014 Wiley Periodicals, Inc.
Ethernet-Enabled Power and Communication Module for Embedded Processors
NASA Technical Reports Server (NTRS)
Perotti, Jose; Oostdyk, Rebecca
2010-01-01
The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Adaptive low-power listening MAC protocol based on transmission rates.
Hwang, Kwang-il; Yi, Gangman
2014-01-01
Even though existing low-power listening (LPL) protocols have enabled ultra-low-power operation in wireless sensor networks (WSN), they do not address trade-off between energy and delay, since they focused only on energy aspect. However, in recent years, a growing interest in various WSN applications is requiring new design factors, such as minimum delay and higher reliability, as well as energy efficiency. Therefore, in this paper we propose a novel sensor multiple access control (MAC) protocol, transmission rate based adaptive low-power listening MAC protocol (TRA-MAC), which is a kind of preamble-based LPL but is capable of controlling preamble sensing cycle adaptively to transmission rates. Through experiments, it is demonstrated that TRA-MAC enables LPL cycle (LC) and preamble transmission length to adapt dynamically to varying transmission rates, compensating trade-off between energy and response time.
A Technique for Transient Thermal Testing of Thick Structures
NASA Technical Reports Server (NTRS)
Horn, Thomas J.; Richards, W. Lance; Gong, Leslie
1997-01-01
A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.
Computer-aided design studies of the homopolar linear synchronous motor
NASA Astrophysics Data System (ADS)
Dawson, G. E.; Eastham, A. R.; Ong, R.
1984-09-01
The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.
Capacity value of energy storage considering control strategies.
Shi, Nian; Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given.
The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.
McDonald, Kerry S
2011-07-01
Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reale, D. V., E-mail: david.reale@ttu.edu; Bragg, J.-W. B.; Gonsalves, N. R.
2014-05-15
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bandsmore » of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.« less
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.
Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J
2014-05-01
Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.
Chierchia, G; Lesemann, F H Parianen; Snower, D; Vogel, M; Singer, T
2017-09-11
Standard economic theory postulates that decisions are driven by stable context-insensitive preferences, while motivation psychology suggests they are driven by distinct context-sensitive motives with distinct evolutionary goals and characteristic psycho-physiological and behavioral patterns. To link these fields and test how distinct motives could differentially predict different types of economic decisions, we experimentally induced participants with either a Care or a Power motive, before having them take part in a suite of classic game theoretical paradigms involving monetary exchange. We show that the Care induction alone raised scores on a latent factor of cooperation-related behaviors, relative to a control condition, while, relative to Care, Power raised scores on a punishment-related factor. These findings argue against context-insensitive stable preferences and theories of strong reciprocity and in favor of a motive-based approach to economic decision making: Care and Power motivation have a dissociable fingerprint in shaping either cooperative or punishment behaviors.
Test Results from a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.
Test Results From a High Power Linear Alternator Test Rig
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.
2010-01-01
Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.
1997-01-01
Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.
Flight-deck automation - Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.
Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices.
Gehring, Pascal; Harzheim, Achim; Spièce, Jean; Sheng, Yuewen; Rogers, Gregory; Evangeli, Charalambos; Mishra, Aadarsh; Robinson, Benjamin J; Porfyrakis, Kyriakos; Warner, Jamie H; Kolosov, Oleg V; Briggs, G Andrew D; Mol, Jan A
2017-11-08
Although it was demonstrated that discrete molecular levels determine the sign and magnitude of the thermoelectric effect in single-molecule junctions, full electrostatic control of these levels has not been achieved to date. Here, we show that graphene nanogaps combined with gold microheaters serve as a testbed for studying single-molecule thermoelectricity. Reduced screening of the gate electric field compared to conventional metal electrodes allows control of the position of the dominant transport orbital by hundreds of meV. We find that the power factor of graphene-fullerene junctions can be tuned over several orders of magnitude to a value close to the theoretical limit of an isolated Breit-Wigner resonance. Furthermore, our data suggest that the power factor of an isolated level is only given by the tunnel coupling to the leads and temperature. These results open up new avenues for exploring thermoelectricity and charge transport in individual molecules and highlight the importance of level alignment and coupling to the electrodes for optimum energy conversion in organic thermoelectric materials.
NASA Astrophysics Data System (ADS)
Li, Jin; Qiu, Zhiling; Hu, Leilei
2018-04-01
The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.
Abdul Rahman, Hairul Izwan; Shah, Shamsul Azhar; Alias, Hamidah; Ibrahim, Hishamshah Mohd
2008-01-01
In Malaysia, acute leukemia is the most common cancer among children below the age of 15. A case-control study was here conducted for cases from the Klang Valley, Malaysia, who received treatment at the National University of Malaysia Hospital (HUKM) and Kuala Lumpur General Hospital (GHKL). The main objective was to determine any association with environmental factors. Case subjects were children aged below 15 years and diagnosed with acute leukemia in HUKM and GHKL between January 1, 2001 and May 30, 2007. Control subjects were children aged below 15 years who were diagnosed with any non-cancerous acute illnesses in these hospitals. A total of 128 case subjects and 128 control subjects were enrolled in this study. The information was collected using a structured questionnaire and a global positioning system (GPS) device. All factors were analyzed using unmatched logistic regression. The analysis showed that the occurrence of acute leukemia among children was strongly determined by the following factors: family income (odds ratio (OR) 0.19, 95% confidence interval (CI): 0.09-0.42), father with higher social contact (OR 7.61, 95% CI: 3.78-15.4), number of elder siblings (OR 0.36, 95% CI: 0.18-0.77), father who smokes (OR 2.78, 95% CI: 1.49-5.16), and the distance of the house from a power line (OR 2.30, 95% CI: 1.18-4.49). Some socioeconomic, demographic, and environmental factors are strong predictors of the occurrence of acute leukemia among children in Klang Valley, Malaysia. In terms of environmental factors, it is recommended that future housing areas should be developed at least 200 m away from power lines.
Receptor control in mesenchymal stem cell engineering
NASA Astrophysics Data System (ADS)
Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel
2018-03-01
Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.
ERIC Educational Resources Information Center
Lytle, Michael A.
Legal methods and related case law that can be used by public higher education administrators to deal with intrusions by outsiders onto the campus are examined. The following legal factors related to control of campus access are addressed: risk management, police power, general trespass, school related trespass/loitering statutes, First and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques
The software application is called "HFE-Trace". This is an integrated method and tool for the management of Human Factors Engineering analyses and related data. Its primary purpose is to support the coherent and consistent application of the nuclear industry's best practices for human factors engineering work. The software is a custom Microsoft® Access® application. The application is used (in conjunction with other tools such as spreadsheets, checklists and normal documents where necessary) to collect data on the design of a new nuclear power plant from subject matter experts and other sources. This information is then used to identify potential systemmore » and functional breakdowns of the intended power plant design. This information is expanded by developing extensive descriptions of all functions, as well as system performance parameters, operating limits and constraints, and operational conditions. Once these have been verified, the human factors elements are added to each function, including intended operator role, function allocation considerations, prohibited actions, primary task categories, and primary work station. In addition, the application includes a computational method to assess a number of factors such as system and process complexity, workload, environmental conditions, procedures, regulations, etc.) that may shape operator performance. This is a unique methodology based upon principles described in NUREG/CR-3331 ("A methodology for allocating nuclear power plant control functions to human or automatic control") and it results in a semi-quantified allocation of functions to three or more levels of automation for a conceptual automation system. The aggregate of all this information is then linked to the Task Analysis section of the application where the existing information on all operator functions is transformed into task information and ultimately into design requirements for Human-System Interfaces and Control Rooms. This final step includes assessment of methods to prevent potential operator errors.« less
NASA Astrophysics Data System (ADS)
Kirmani, Sheeraz; Kumar, Brijesh
2018-01-01
“Electric Power Quality (EPQ) is a term that refers to maintaining the near sinusoidal waveform of power distribution bus voltages and currents at rated magnitude and frequency”. Today customers are more aware of the seriousness that the power quality possesses, this prompt the utilities to assure good quality of power to their customer. The power quality is basically customer centric. Increased focus of utilities toward maintaining reliable power supply by employing power quality improvement tools has reduced the power outages and black out considerably. Good power quality is the characteristic of reliable power supply. Low power factor, harmonic pollution, load imbalance, fast voltage variations are some common parameters which are used to define the power quality. If the power quality issues are not checked i.e. the parameters that define power quality doesn't fall within the predefined standards than it will lead into high electricity bill, high running cost in industries, malfunctioning of equipments, challenges in connecting renewable. Capacitor banks, FACTS devices, harmonic filters, SVC’s (static voltage compensators), STATCOM (Static-Compensator) are the solutions to achieve the power quality. The performance of Wind turbine generators is affected by poor quality power, at the same time these wind power generating plant affects the power quality negatively. This paper presents the STATCOM-BESS (battery energy storage system) system and studies its impact on the power quality in a system which consists of wind turbine generator, non linear load, hysteresis controller for controlling the operation of STATCOM and grid. The model is simulated in the MATLAB/Simulink. This scheme mitigates the power quality issues, improves voltage profile and also reduces harmonic distortion of the waveforms. BESS level out the imbalances caused in real power due to intermittent nature of wind power available due to varying wind speeds.
Dasari, Deepika; Shou, Guofa; Ding, Lei
2017-01-01
Electroencephalograph (EEG) has been increasingly studied to identify distinct mental factors when persons perform cognitively demanding tasks. However, most of these studies examined EEG correlates at channel domain, which suffers the limitation that EEG signals are the mixture of multiple underlying neuronal sources due to the volume conduction effect. Moreover, few studies have been conducted in real-world tasks. To precisely probe EEG correlates with specific neural substrates to mental factors in real-world tasks, the present study examined EEG correlates to three mental factors, i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in EEG component signals, which were obtained using an independent component analysis (ICA) on high-density EEG data. EEG data were recorded when subjects performed a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent component (IC) signals that were associated with specific neural substrates (i.e., the frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and the alpha power of the other four ICs, were detected to be correlated to mental workload and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis indicated that spectral powers at five ICs significantly increased with TOT. These findings indicated that different levels of mental factors can be sensitively reflected in EEG signals associated with various brain functions, including visual perception, cognitive processing, and motor outputs, in real-world tasks. These results can potentially aid in the development of efficient operational interfaces to ensure productivity and safety in ATC and beyond.
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
Atuonwu, J C; Tassou, S A
2018-01-23
The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.
Advanced Technology Development for Stirling Convertors
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2004-01-01
A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.
Automated power control system for reactor TRIGA PUSPATI
NASA Astrophysics Data System (ADS)
Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair
2017-01-01
Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.
Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect
NASA Astrophysics Data System (ADS)
Razavi, Rouzbeh; Fleury, Martin; Ghanbari, Mohammed
2008-12-01
Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality.
Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K.; Bi, Jun; Liu, Yang
2013-01-01
We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public’s attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies. PMID:24248341
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The amount of wind energy in power systems is increasing at a significant rate. With this increased penetration, there are certain problems associated with the operation of windfarms which need careful attention. In the operations side, the wake effects of upstream wind turbines on downstream wind turbines can cause a reduction in the total generated power of a windfarm. On the market side, the fluctuation of real-time prices can make the operation of windfarms less profitable. Similarly, the intermittent nature of wind power prevents the windfarms from participating in the day-ahead and forward markets. On the system side, the volatile nature of wind speeds is also an obstacle for windfarms to provide frequency regulation to the system. In this thesis, we address these issues and optimize the operation of windfarms in power systems and deregulated electricity markets. First, the total power generation in a windfarm is maximized by using yaw angle of wind turbines as a control variable. We extend the existing wake models to include the effects of yaw misalignment and wake deflection of wind turbines. A numerical study is performed to find the optimal values of induction factor and yaw misalignment angle of wind turbines in a single row of a windfarm for achieving the maximum total power with wake effects. The numerical study shows that the maximum power is achieved by keeping the induction factor close to 1/3 and only changing the yaw angle to deflect the wake. We then propose a Dynamic Programming Framework (DPF) to maximize the total power production of a windfarm using yaw angle as the control variable. We compare the windfarm efficiency achieved with our DPF with the efficiency values obtained through greedy control strategy and induction factor optimization. We also extend our expressions to a windfarm with multiple rows and columns of turbines and perform simulations on the 3x3 and 4x4 grid topologies. Our results show that the optimal induction factor for most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze distributed control schemes for frequency regulation in a smart grid using energy storage, wind generators, demand response and conventional generators while having no communication or data sharing between them. We also propose a novel control scheme for frequency support by energy storage in which the power output of energy storage changes proportionally with the reduction in its available energy. The application of the proposed control schemes indicates an improvement in system frequency characteristics, when there is a sudden net loss of generation.
Capacity value of energy storage considering control strategies
Luo, Yi
2017-01-01
In power systems, energy storage effectively improves the reliability of the system and smooths out the fluctuations of intermittent energy. However, the installed capacity value of energy storage cannot effectively measure the contribution of energy storage to the generator adequacy of power systems. To achieve a variety of purposes, several control strategies may be utilized in energy storage systems. The purpose of this paper is to study the influence of different energy storage control strategies on the generation adequacy. This paper presents the capacity value of energy storage to quantitatively estimate the contribution of energy storage on the generation adequacy. Four different control strategies are considered in the experimental method to study the capacity value of energy storage. Finally, the analysis of the influence factors on the capacity value under different control strategies is given. PMID:28558027
A Bearingless Switched-Reluctance Motor for High Specific Power Applications
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Siebert, Mark
2006-01-01
A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.
The changing power equation in hospitals.
Rayburn, J M; Rayburn, L G
1997-01-01
This research traces the origins, development, and reasons for change in the power equation in the U.S. hospitals between physicians, administrators and accountants. The paper contains three major sections: a review of the literature concerning authority, power, influence, and institutional theory; a review of the development of the power of professions, especially physicians, accounting and healthcare administrators, and the power equilibrium of a hospital; and, a discussion of the social policy implications of the power struggle. The basis for physicians' power derives from their legal ability to act on which others are dependent, such as choosing which hospital to admit patients, order tests and procedures for their patients. The Federal Government's prospective payment system and the hospitals' related case-mix accounting systems appear to influence the power structure in hospitals by redistributing that power. The basis of the accountants' power base is control of financial information. Accountants have a definite potential for influencing which departments receive financial resources and for what purpose. This moves hospital accountants into the power equation. The basis of the hospital administrators' power is their formal authority in the organization. Regardless of what actions federal government agencies, hospital accountants, or hospital administrators take, physicians are expected to remain the dominant factor in the power equation. Without major environmental changes to gain control of physician services, only insignificant results in cost containment will occur.
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...
2017-11-17
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
Carey, Stephanie L; Lura, Derek J; Highsmith, M Jason
2015-01-01
The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to inform evidence-based clinical practice regarding prescription of these devices and training of users. A search of 9 databases identified 462 unique publications. Ultimately, 31 of them were included and 11 empirical evidence statements were developed. Conflicting evidence has been found in terms of the relative functional performance of body-powered and myoelectric prostheses. Body-powered prostheses have been shown to have advantages in durability, training time, frequency of adjustment, maintenance, and feedback; however, they could still benefit from improvements of control. Myoelectric prostheses have been shown to improve cosmesis and phantom-limb pain and are more accepted for light=intensity work. Currently, evidence is insufficient to conclude that either system provides a significant general advantage. Prosthetic selection should be based on a patient's individual needs and include personal preferences, prosthetic experience, and functional needs. This work demonstrates that there is a lack of empirical evidence regarding functional differences in upper-limb prostheses.
NASA Astrophysics Data System (ADS)
Park, Chang-Sun; Hong, Min-Hee; Cho, Hyung Hee; Park, Hyung-Ho
2017-07-01
The porosity of mesoporous SrTi0.8Nb0.2O3 (STNO) was controlled by changing the surfactant concentration to investigate the porosity effect on the thermoelectric properties. Mesoporous structure typically induces a large decrease in the carrier mobility and a small increase in the carrier concentration owing to carrier scattering and oxygen vacancies. These changes in the carrier mobility and concentration induce a change in the thermoelectric properties by enhancing the Seebeck coefficient owing to an increase in the electrical resistivity and carrier filtering effect. Brij-S10 surfactant induces a carrier filtering effect in STNO, and so the Seebeck coefficient could be enhanced even with increasing carrier concentration. Because the Seebeck coefficient affects the power factor more strongly than the electrical resistivity does, incorporation of Brij-S10 surfactant into STNO films increases the power factor. The maximum value of the power factor, approximately 2.2 × 10-4 W/mK2 at 200 °C, was obtained at a Brij-S10 molar ratio of 0.075. From this result, we can expect the application of STNO as a thermoelectric material with an enhanced power factor through successful adoption of mesoporous structure.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor
Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; ...
2016-11-17
Here, semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstratemore » that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of approximately 400 μW m -1K -2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date.« less
Modeling of a resonant heat engine
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2012-12-01
A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.
Energy consumption and load profiling at major airports. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.
1998-12-01
This report describes the results of energy audits at three major US airports. These studies developed load profiles and quantified energy usage at these airports while identifying procedures and electrotechnologies that could reduce their power consumption. The major power consumers at the airports studied included central plants, runway and taxiway lighting, fuel farms, terminals, people mover systems, and hangar facilities. Several major findings emerged during the study. The amount of energy efficient equipment installed at an airport is directly related to the age of the facility. Newer facilities had more energy efficient equipment while older facilities had much of themore » original electric and natural gas equipment still in operation. As redesign, remodeling, and/or replacement projects proceed, responsible design engineers are selecting more energy efficient equipment to replace original devices. The use of computer-controlled energy management systems varies. At airports, the primary purpose of these systems is to monitor and control the lighting and environmental air conditioning and heating of the facility. Of the facilities studied, one used computer management extensively, one used it only marginally, and one had no computer controlled management devices. At all of the facilities studied, natural gas is used to provide heat and hot water. Natural gas consumption is at its highest in the months of November, December, January, and February. The Central Plant contains most of the inductive load at an airport and is also a major contributor to power consumption inefficiency. Power factor correction equipment was used at one facility but was not installed at the other two facilities due to high power factor and/or lack of need.« less
Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis
2008-01-01
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447
Issues regarding the usage of MPPT techniques in micro grid systems
NASA Astrophysics Data System (ADS)
Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.
2018-01-01
The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.
Sohrabi, Mohammad-Reza; Tarjoman, Termeh; Abadi, Alireza; Yavari, Parvin
2010-01-01
This study aimed to investigate association of living near high voltage power lines with occurrence of childhood acute lymphoblastic leukemia (ALL). Through a case-control study 300 children aged 1-18 years with confirmed ALL were selected from all referral teaching centers for cancer. They interviewed for history of living near overhead high voltage power lines during at least past two years and compared with 300 controls which were individually matched for sex and approximate age. Logistic regression, chi square and paired t-tests were used for analysis when appropriate. The case group were living significantly closer to power lines (P<0.001). More than half of the cases were exposed to two or three types of power lines (P<0.02). Using logistic regression, odds ratio of 2.61 (95%CI: 1.73 to 3.94) calculated for less than 600 meters far from the nearest lines against more than 600 meters. This ratio estimated as 9.93 (95%CI: 3.47 to 28.5) for 123 KV, 10.78 (95%CI: 3.75 to 31) for 230 KV and 2.98 (95%CI: 0.93 to 9.54) for 400 KV lines. Odds of ALL decreased 0.61 for every 600 meters from the nearest power line. This study emphasizes that living close to high voltage power lines is a risk for ALL.
New heterogeneous test statistics for the unbalanced fixed-effect nested design.
Guo, Jiin-Huarng; Billard, L; Luh, Wei-Ming
2011-05-01
When the underlying variances are unknown or/and unequal, using the conventional F test is problematic in the two-factor hierarchical data structure. Prompted by the approximate test statistics (Welch and Alexander-Govern methods), the authors develop four new heterogeneous test statistics to test factor A and factor B nested within A for the unbalanced fixed-effect two-stage nested design under variance heterogeneity. The actual significance levels and statistical power of the test statistics were compared in a simulation study. The results show that the proposed procedures maintain better Type I error rate control and have greater statistical power than those obtained by the conventional F test in various conditions. Therefore, the proposed test statistics are recommended in terms of robustness and easy implementation. ©2010 The British Psychological Society.
Optimization of Driving Styles for Fuel Economy Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2012-01-01
Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of themore » driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.« less
NASA Astrophysics Data System (ADS)
Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.
2014-12-01
The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global control system. This control system will ensure arctic-wide coverage, will optimize Moball-buoys monitoring efforts according to their available resources and the priority of local areas of high scientific value within the Arctic region. Moball-buoy Network is expected to be the first robust and persistent Arctic-wide environment monitoring system capable of providing reliable readings in near real time
Micropillars with a controlled number of site-controlled quantum dots
NASA Astrophysics Data System (ADS)
Kaganskiy, Arsenty; Gericke, Fabian; Heuser, Tobias; Heindel, Tobias; Porte, Xavier; Reitzenstein, Stephan
2018-02-01
We report on the realization of micropillars with site-controlled quantum dots (SCQDs) in the active layer. The SCQDs are grown via the buried stressor approach which allows for the positioned growth and device integration of a controllable number of QDs with high optical quality. This concept is very powerful as the number and the position of SCQDs in the cavity can be simultaneously controlled by the design of the buried-stressor. The fabricated micropillars exhibit a high degree of position control for the QDs above the buried stressor and Q-factors of up to 12 000 at an emission wavelength of around 930 nm. We experimentally analyze and numerically model the cavity Q-factor, the mode volume, the Purcell factor, and the photon-extraction efficiency as a function of the aperture diameter of the buried stressor. Exploiting these SCQD micropillars, we experimentally observe a Purcell enhancement in the single-QD regime with FP = 4.3 ± 0.3.
A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Seiber, Larry Eugene; White, Cliff P
Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehiclemore » side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
[Cytogenetic analysis of genotoxic effects in subjects employed in heat power industry].
Savchenko, Ia A; Druzhinin, V G; Minina, V I; Glushkov, A N; Akhmat'ianova, V R; Ostaptseva, A V; Shibaldin, A V; Vetrova, I V
2008-06-01
Chromosomal aberration rate has been estimated in peripheral blood lymphocytes of subjects occupationally exposed to a set of hazardous factors (employees of the Kemerovo Heat Power Plant). The frequency of metaphases with aberrations in the workers (3.23 +/- 0.26%, N = 104) is significantly higher than in control subjects (2.11 +/- 0.28%, N = 70). The cytogenetic aberrations did not depend on the sex, age, duration of employment, or smoking.
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
NASA Technical Reports Server (NTRS)
Hung, J. C.
1980-01-01
The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.
2017-04-01
Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.
Alpha absolute power measurement in panic disorder with agoraphobia patients.
de Carvalho, Marcele Regine; Velasques, Bruna Brandão; Freire, Rafael C; Cagy, Maurício; Marques, Juliana Bittencourt; Teixeira, Silmar; Rangé, Bernard P; Piedade, Roberto; Ribeiro, Pedro; Nardi, Antonio Egidio; Akiskal, Hagop Souren
2013-10-01
Panic attacks are thought to be a result from a dysfunctional coordination of cortical and brainstem sensory information leading to heightened amygdala activity with subsequent neuroendocrine, autonomic and behavioral activation. Prefrontal areas may be responsible for inhibitory top-down control processes and alpha synchronization seems to reflect this modulation. The objective of this study was to measure frontal absolute alpha-power with qEEG in 24 subjects with panic disorder and agoraphobia (PDA) compared to 21 healthy controls. qEEG data were acquired while participants watched a computer simulation, consisting of moments classified as "high anxiety"(HAM) and "low anxiety" (LAM). qEEG data were also acquired during two rest conditions, before and after the computer simulation display. We observed a higher absolute alpha-power in controls when compared to the PDA patients while watching the computer simulation. The main finding was an interaction between the moment and group factors on frontal cortex. Our findings suggest that the decreased alpha-power in the frontal cortex for the PDA group may reflect a state of high excitability. Our results suggest a possible deficiency in top-down control processes of anxiety reflected by a low absolute alpha-power in the PDA group while watching the computer simulation and they highlight that prefrontal regions and frontal region nearby the temporal area are recruited during the exposure to anxiogenic stimuli. © 2013 Elsevier B.V. All rights reserved.
Dual arm master controller development
NASA Technical Reports Server (NTRS)
Kuban, D. P.; Perkins, G. S.
1985-01-01
The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape driven manipulators. Studies were performed which addressed to human factor design and performance tradeoffs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented.
ERIC Educational Resources Information Center
Peters, S. Colby; Woolley, Michael E.
2015-01-01
Data from the School Success Profile generated by 19,228 middle and high school students were organized into three broad categories of risk and protective factors--control, support, and challenge--to examine the relative and combined power of aggregate scale scores in each category so as to predict academic success. It was hypothesized that higher…
A digital prediction algorithm for a single-phase boost PFC
NASA Astrophysics Data System (ADS)
Qing, Wang; Ning, Chen; Weifeng, Sun; Shengli, Lu; Longxing, Shi
2012-12-01
A novel digital control algorithm for digital control power factor correction is presented, which is called the prediction algorithm and has a feature of a higher PF (power factor) with lower total harmonic distortion, and a faster dynamic response with the change of the input voltage or load current. For a certain system, based on the current system state parameters, the prediction algorithm can estimate the track of the output voltage and the inductor current at the next switching cycle and get a set of optimized control sequences to perfectly track the trajectory of input voltage. The proposed prediction algorithm is verified at different conditions, and computer simulation and experimental results under multi-situations confirm the effectiveness of the prediction algorithm. Under the circumstances that the input voltage is in the range of 90-265 V and the load current in the range of 20%-100%, the PF value is larger than 0.998. The startup and the recovery times respectively are about 0.1 s and 0.02 s without overshoot. The experimental results also verify the validity of the proposed method.
A question of place: medical power in rural Australia.
Kenny, Amanda; Duckett, Stephen
2004-03-01
In Australia, like many countries, government, medicine and the community have maintained an interdependent and symbiotic relationship based on mutual resource dependency and reciprocity. The services of medicine have been indispensable to government and the community and in return medicine has achieved power, elitism and financial gain. Traditionally, doctors have controlled and directed medical knowledge in an absolute manner and this has been the basis of increasing power and dominance. There are, however, claims that medicine's power and dominance over the health care system is being eroded by the emergence of major social trends. The corporatization of medicine, manageralism and proletarianization are touted as factors that are increasingly countervailing medical dominance and power. Whilst it could be suggested that as these trends become more firmly established government and the community gain greater discretionary control over how the resources of medicine can be allocated and utilized, this article argues that the geographic and social dimensions of the community in which doctors practice must be considered. Using a qualitative descriptive approach research was conducted in rural Victoria, Australia. The overall aim of the study was to identify the issues that impact upon service delivery in rural hospitals. The most significant issue that emerged related to medical relationships. The results of this research indicate that in this rural area the power of medicine is strengthened and institutionalized by geographically determined resource control. The sustainability of rural communities is linked to the ability of the town to attract and retain the services of a doctor. Crucial shortages of rural doctors provide medicine with a mandate to dictate the way in which medical resources will be allocated and used by hospitals and the community. Organizations that control critical resources are in an extremely powerful position to control others. Doctors in rural Victoria maintain a position of strength and use their power to exert control over the state, the community and the hospital. Although medical power and dominance may be declining in some areas, in rural Victoria it remains firmly entrenched.
Design and Management of an IMC Micro Center.
ERIC Educational Resources Information Center
Bunson, Stanley N.
1988-01-01
Outlines design and management factors to be considered when developing a microcomputer lab for an instructional media center (IMC). Highlights include environmental considerations, including spatial arrangements, furniture, power requirements, temperature control, and lighting; software and hardware acquisition; and administrative considerations,…
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION RULES OF PRACTICE RAILROAD ACQUISITION, CONTROL, MERGER, CONSOLIDATION PROJECT, TRACKAGE RIGHTS... approve, applicant carriers are subject to the full range of our conditioning power. Carriers that are... service capabilities (speed is not the only factor); (3) entering an interchange or market generating more...
NASA Astrophysics Data System (ADS)
Neto, B.; Klingler, A.; Reis, C.; Dionísio, R. P.; Nogueira, R. N.; Teixeira, A. L. J.; André, P. S.
2011-03-01
In this paper, we propose a method to mitigate the temporal power transients arising from Erbium doped fiber amplifiers (EDFAs) on packeted/bursty scenario. The technique, applicable on hybrid WDM/TDM-PON for extended reach, is based on a low power clamping provided by a distributed feedback (DFB) laser and a fiber Bragg grating (FBG). An improvement in the data signal Q factor was achieved keeping the clamping control signal with a low power, accompanied by a maximum reduction in the gain excursion of 1.12 dB.
Berg, Gabriele; Schüz, Joachim; Samkange-Zeeb, Florence; Blettner, Maria
2005-05-01
The objective of the study is to validate self-reported cellular phone use information by comparing it with the cumulative emitted power and duration of calls measured by software-modified cellular phones (SMP). The information was obtained using a questionnaire developed for the international case-control study on the risk of the use of mobile phones in tumours of the brain or salivary gland (INTERPHONE-study). The study was conducted in Bielefeld, Germany. Volunteers were asked to use SMPs instead of their own cellular phones for a period of 1 month. The SMP recorded the power emitted by the mobile phone handset during each base station contact. Information on cellular phone use for the same time period from traffic records of the network providers and from face-to-face interviews with the participants 3 months after the SMP use was assessed. Pearson's correlation coefficients and linear regression models were used to analyse the association between information from the interview and from the SMP. In total, 1757 personal mobile phone calls were recorded for 45 persons by SMP and traffic records. The correlation between the self-reported information about the number and the duration of calls with the cumulative power of calls was 0.50 (P<0.01) and 0.48 (P<0.01), respectively. Almost 23% of the variance of the cumulative power was explained by either the number or the cumulative duration of calls. After inclusion of possible confounding factors in the regression model, the variance increased to 26%. Minor confounding factors were "network provider", "contract form", and "cellular phone model". The number of calls alone is a sufficient parameter to estimate the cumulative power emitted by the handset of a cellular telephone. The cumulative power emitted by these phones is only associated with number of calls but not with possible confounding factors. Using the mobile phone while driving, mainly in cities, or mainly in rural areas is not associated with the recorded cumulative power in the SMP.
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1980-01-01
Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.
Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine
2016-06-13
Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.
Zeneli, Lulzim; Sekovanić, Ankica; Ajvazi, Majlinda; Kurti, Leonard; Daci, Nexhat
2016-02-01
Humans are exposed to different stress factors that are responsible for over-production of reactive oxygen species. Exposure to heavy metals is one of these factors. The aim of the study was to analyze the effect of chronic exposure to heavy metals through coal flying ash on the efficiency of antioxidative defensive mechanisms, represented by the activity of superoxide dismutase, glutathione peroxidase and ascorbic acid. Nonessential elements such as arsenic and mercury levels showed a significant increase (p > 0.001) in the power plant workers rather than in the control subjects. There were no significant differences of blood cadmium between power plant workers and control subjects. We found a significant positive correlation (p < 0.05) between BAs/SZn (r = 0.211), BAs/BSe (r = 0.287), BCd/SCu (r = 0.32) and BHg/BSe (r = 0.263) in the plant workers. Red blood cell antioxidant enzymes and plasma ascorbic acid were significantly lower in power plants workers than in the control group (p < 0.002). We can conclude that levels of mercury, arsenic and cadmium in blood, despite their concentration within the reference values, significantly affect plasma ascorbic acid concentration, superoxide dismutase and glutathione peroxidase activity, which are able to increase the risk of oxidative stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta
This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology tomore » implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.« less
A low-power reversible alkali atom source
NASA Astrophysics Data System (ADS)
Kang, Songbai; Mott, Russell P.; Gilmore, Kevin A.; Sorenson, Logan D.; Rakher, Matthew T.; Donley, Elizabeth A.; Kitching, John; Roper, Christopher S.
2017-06-01
An electrically controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease in the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10-15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating that Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
High power solid state laser modulator
Birx, Daniel L.; Ball, Don G.; Cook, Edward G.
2004-04-27
A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.
Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing
2012-01-01
Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds.
Hunt, Peter Cody; Boninger, Michael L; Cooper, Rory A; Zafonte, Ross D; Fitzgerald, Shirley G; Schmeler, Mark R
2004-11-01
To determine if a standard of care for wheelchair provision exists within the participating centers and if there is disparity in wheelchair customizability among the study sample. Convenience sample survey. Thirteen Model Spinal Cord Injury Systems that provide comprehensive rehabilitation for people with traumatic spinal cord injury (SCI) and that are part of the national database funded through the US Department of Education. A total of 412 people with SCI who use wheelchairs over 40 hours a week. Survey information was obtained from subjects via telephone and in-person interviews and from the national database. Collected information included age, race, education, level of injury, and wheelchair funding source. Number and type (manual or power) of wheelchairs. Wheelchair customizability as defined by design features (eg, adjustable axle position, programmable controls). Ninety-seven percent of manual wheelchair users and 54% of power wheelchair users had customizable wheelchairs. No power wheelchair user received a wheelchair without programmable controls. Minorities with low socioeconomic backgrounds (low income, Medicaid/Medicare recipients, less educated) were more likely to have standard manual and standard programmable power wheelchairs. Older subjects were also more likely to have standard programmable power wheelchairs. The standard of care for manual wheelchair users with SCI is a lightweight and customizable wheelchair. The standard of care for power wheelchairs users has programmable controls. Unfortunately, socioeconomically disadvantaged people were less likely to receive customizable wheelchairs.
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Impact of consumer power on consumers’ reactions to corporate transgression
Karasawa, Kaori
2018-01-01
We addressed how individuals’ power influences their judgments regarding corporate transgressions. Based on the Situated Focus Theory of Power, which theorizes that powerful people respond more in accordance to circumstantial factors, we tested the interaction of power and the type of corporate discourse offered by the accused company. Across two studies (overall N = 216), we experimentally primed power (Study 1) and manipulated participants’ sense of direct control over the company (Study 2). We consistently found an interaction effect of power and corporate discourse on people’s negative attitudes toward the company—particularly on the unwillingness to use the company’s products. Particularly, high-power individuals were prone to strongly vary their attitudes based on the mitigative/non-mitigative nature of the discourse, while those low in power were unsusceptible to the type of discourse. The results suggest how the potential rise of consumer power in society may critically influence the consumer-corporate relationships following corporate transgressions. PMID:29723306
Space applicable DOE photovoltaic technology: An update
NASA Technical Reports Server (NTRS)
Scott-Monck, J.; Stella, P.; Berman, P.
1981-01-01
Photovoltaic development projects applicable to space power are identified. When appropriate, the type of NASA support that would be necessary to implement these technologies for space use is indicated. It is conducted that the relatively small market and divergent operational requirements for space power are mainly responsible for the limited transfer of terrestrial technology to space applications. Information on the factors which control the cost and type of technology is provided. Terrestrial modules using semiconductor materials are investigated.
Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle
2017-04-01
Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Handwerker, W P
2001-01-01
Previous studies use zero-order analyses to show a link between child abuse and exposure to "stepfathers." These studies rest on a proposed evolved, domain-specific cognitive mechanism that induces adult males to abuse or kill offspring not their own and, so, contribute directly to reproductive success. However, child abuse may reflect an evolved neurological mechanism that creates behavioral plasticity and adaptability by assigning emotional weights (which in consciousness appear rationalized as costs and benefits) to choice alternatives in all behavioral domains. This mechanism should act as a selective mechanism to create enhanced ability to avoid predation (social exploitation) and to obtain access to resources, given the properties of specific ecosystems, and should control behavioral responses to variation in the balance of power in social relationships. Power equalities should elicit good treatment for both parties; power inequalities, by contrast, should elicit exploitative and coercive behavior on the part of those who hold the balance of power. This paper reports a test of both hypotheses simultaneously, controlling for a standard social science risk factor (growing up in poverty). Once we control for the balance of power in parental relationships, exposure to a stepfather and growing up in poverty show no effect on the intensity of child abuse. Powerful women negotiated affectionate behavior from their partners for both themselves and their children; powerless women's negotiations with partners usually left both themselves and their children open to violence.
NASA Astrophysics Data System (ADS)
Peng, Yong; Li, Hongqiang; Shen, Chunlong; Guo, Shun; Zhou, Qi; Wang, Kehong
2017-06-01
The power density distribution of electron beam welding (EBW) is a key factor to reflect the beam quality. The beam quality test system was designed for the actual beam power density distribution of high-voltage EBW. After the analysis of characteristics and phase relationship between the deflection control signal and the acquisition signal, the Post-Trigger mode was proposed for the signal acquisition meanwhile the same external clock source was shared by the control signal and the sampling clock. The power density distribution of beam cross-section was reconstructed using one-dimensional signal that was processed by median filtering, twice signal segmentation and spatial scale calibration. The diameter of beam cross-section was defined by amplitude method and integral method respectively. The measured diameter of integral definition is bigger than that of amplitude definition, but for the ideal distribution the former is smaller than the latter. The measured distribution without symmetrical shape is not concentrated compared to Gaussian distribution.
High static gain single-phase PFC based on a hybrid boost converter
NASA Astrophysics Data System (ADS)
Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo
2017-05-01
In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.
Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697
Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.
Effects of voltage control in utility interactive dispersed storage and generation systems
NASA Technical Reports Server (NTRS)
Kirkham, H.; Das, R.
1983-01-01
When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. The effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator is examined. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power. Operation with a constant slightly lagging factor is shown to have some advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard
With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. Inmore » this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare the performances of the two methods in terms of their frequency nadirs, rates of change of frequency, and recovery times. We conclude the results under various wind speeds and penetration cases, which provide insight into designing the inertial response of WTGs. Further, we discuss the impact of the parameters on the performance of the inertial control methods. We evaluate both the scaling factors for the FBIC method and the slope values for the TLIC methods. The simulation work shows the characteristics of different inertial responses compared to conventional synchronous generators. Based on the simulation results, we modify, improve, and test the inertial control methods under a more realistic wind turbine model based on FAST. We then validate the inertial responses under highly turbulent wind conditions generated by TurbSim, and we examine their influences on the turbine mechanical components. The extensive simulation proves the effectiveness of the proposed inertial control methods as well as the nine-bus test power system. We then reconsider the parameters. We rebuild the same test power system using Real time Simulator Computer Aided Design (RSCAD), and we implement the inertial control methods in the real Controls Advanced Research Turbine (CART3), which is prepared for the hardware-in-the-loop field-test simulation. After the setups for the hardware and software hybrid simulation platform are complete, the inertial response is further tested on a real wind turbine for the first time, in which CART3 release the controlled inertial response against the emulated frequency excursion, provided by the real-time simulated power system test bed in RTDS.« less
2015-05-31
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (■DD-MM-YYYV9 05/31/2015 2. REPORT TYPE...completely describe and quantify behavioral responses of baleen whales to controlled exposure experiments while including the effects of prey provides a...novel and powerful insight into interpreting responses to sound and controlling for environmental factors. In order to determine whether and how
NASA Astrophysics Data System (ADS)
Long, Yun; Wang, Jian
2014-06-01
Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.
Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Onar, Omer C; DeVault, Robert C
2011-09-01
Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The powermore » system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications for the residential sector. The purpose is to cover the gaps that exist in the information captured by the sensors for energy management system to be able to provide demand response and load factor control. The vision is the development of an energy management system or other controlling enterprise hardware and software that is not only able to control loads, PHEVs, and renewable generation for demand response and load factor control, but also to do so with consumer comforts in mind and in an optimal fashion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHenry, Mark P.; Johnson, Jay; Hightower, Mike
The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less
McHenry, Mark P.; Johnson, Jay; Hightower, Mike
2016-01-01
The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Steve; Piekarz, Henryk; Pfeffer, Howie
2007-06-01
Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020more » H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.« less
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
Clyde, Merlise A.; Palmieri Weber, Rachel; Iversen, Edwin S.; Poole, Elizabeth M.; Doherty, Jennifer A.; Goodman, Marc T.; Ness, Roberta B.; Risch, Harvey A.; Rossing, Mary Anne; Terry, Kathryn L.; Wentzensen, Nicolas; Whittemore, Alice S.; Anton-Culver, Hoda; Bandera, Elisa V.; Berchuck, Andrew; Carney, Michael E.; Cramer, Daniel W.; Cunningham, Julie M.; Cushing-Haugen, Kara L.; Edwards, Robert P.; Fridley, Brooke L.; Goode, Ellen L.; Lurie, Galina; McGuire, Valerie; Modugno, Francesmary; Moysich, Kirsten B.; Olson, Sara H.; Pearce, Celeste Leigh; Pike, Malcolm C.; Rothstein, Joseph H.; Sellers, Thomas A.; Sieh, Weiva; Stram, Daniel; Thompson, Pamela J.; Vierkant, Robert A.; Wicklund, Kristine G.; Wu, Anna H.; Ziogas, Argyrios; Tworoger, Shelley S.; Schildkraut, Joellen M.
2016-01-01
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted. PMID:27698005
NASA Astrophysics Data System (ADS)
Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.
2017-04-01
The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeff; Rylander, Matthew; Boemer, Jens
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less
Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010
NASA Astrophysics Data System (ADS)
Tong, D.; Qiang, Z.; Davis, S. J.
2016-12-01
There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from <1MW to >1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.
Biomedical effects of low-power laser controlled by electroacupuncture
NASA Astrophysics Data System (ADS)
Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.
1997-12-01
The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.
Using degree-days to maximize your pest management tool box
USDA-ARS?s Scientific Manuscript database
Insecticide control is limited by many factors: insecticide coverage, insecticide half-life, insect life stage, and plant growth. Using degree-day models to time insecticide applications accurately is a powerful tactic that increases the efficacy of each insecticide application. Mating disruption op...
Large-scale Eucalyptus energy farms and power cogeneration
Robert C. Noroña
1983-01-01
A thorough evaluation of all factors possibly affecting a large-scale planting of eucalyptus is foremost in determining the cost effectiveness of the planned operation. Seven basic areas of concern must be analyzed:1. Species Selection 2. Site Preparation 3. Planting 4. Weed Control 5....
A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey
Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digitalmore » modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.« less
A Review of Transformer Aging and Control Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gourisetti, Sri Nikhil Gup; Kirkham, Harold; Sivaraman, Deepak
Transformer aging is an important challenge in power system. Distribution transformers themselves are minimally controllable, but smart meters provide excellent, new insights into electrical loads, which insights can be used to understand and mitigate transformer aging. The nature of transformer loads is changing with the integration of distributed energy resources (DERs) and electric vehicles (EVs). This paper first reviews factors that influence the aging of distribution transformers, including root causes of transformer failure. Existing and proposed load control methods are then discussed. A distribution model is introduced to help evaluate potential control methods.
NASA Astrophysics Data System (ADS)
Susilo, J.; Suparlina, L.; Deswandri; Sunaryo, G. R.
2018-02-01
The using of a computer program for the PWR type core neutronic design parameters analysis has been carried out in some previous studies. These studies included a computer code validation on the neutronic parameters data values resulted from measurements and benchmarking calculation. In this study, the AP1000 first cycle core radial power peaking factor validation and analysis were performed using CITATION module of the SRAC2006 computer code. The computer code has been also validated with a good result to the criticality values of VERA benchmark core. The AP1000 core power distribution calculation has been done in two-dimensional X-Y geometry through ¼ section modeling. The purpose of this research is to determine the accuracy of the SRAC2006 code, and also the safety performance of the AP1000 core first cycle operating. The core calculations were carried out with the several conditions, those are without Rod Cluster Control Assembly (RCCA), by insertion of a single RCCA (AO, M1, M2, MA, MB, MC, MD) and multiple insertion RCCA (MA + MB, MA + MB + MC, MA + MB + MC + MD, and MA + MB + MC + MD + M1). The maximum power factor of the fuel rods value in the fuel assembly assumedapproximately 1.406. The calculation results analysis showed that the 2-dimensional CITATION module of SRAC2006 code is accurate in AP1000 power distribution calculation without RCCA and with MA+MB RCCA insertion.The power peaking factor on the first operating cycle of the AP1000 core without RCCA, as well as with single and multiple RCCA are still below in the safety limit values (less then about 1.798). So in terms of thermal power generated by the fuel assembly, then it can be considered that the AP100 core at the first operating cycle is safe.
Austin, Peter C; Schuster, Tibor; Platt, Robert W
2015-10-15
Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.
System performance conclusions
NASA Technical Reports Server (NTRS)
Arndt, G. D.
1980-01-01
The advantages and disadvantages of reducing power levels and using antennas with diameters smaller than 1 Km were evaluated if rectenna costs and land usage requirements become major factors, operating at 5800 megahertz should be considered. Three sequences (random, incoherent phasing, and concentric rings - center to edge) provided satisfactory performance in that the resultant sidelobe levels during startup/ shutdown were lower than the steady-state levels present during normal operations. Grating lobe peaks and scattered power levels were used to determine the array/subarray mechanical alignment requirements. The antenna alignment requirement is 1 min or 3 min depending on phase control configuration. System error parameters were defined to minimize scattered microwave power.
Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak
2012-09-01
An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.
Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.
2013-01-01
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Pratt, Annabelle; Bialek, Tom
2016-11-21
This paper reports on tools and methodologies developed to study the impact of adding rooftop photovoltaic (PV) systems, with and without the ability to provide voltage support, on the voltage profile of distribution feeders. Simulation results are provided from a study of a specific utility feeder. The simulation model of the utility distribution feeder was built in OpenDSS and verified by comparing the simulated voltages to field measurements. First, we set all PV systems to operate at unity power factor and analyzed the impact on feeder voltages. Then we conducted multiple simulations with voltage support activated for all the smartmore » PV inverters. These included different constant power factor settings and volt/VAR controls.« less
Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
Luo, Cheng; Hofmann, Heath F
2011-07-01
In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
Predictors of relationship power among drug-involved women.
Campbell, Aimee N C; Tross, Susan; Hu, Mei-chen; Pavlicova, Martina; Nunes, Edward V
2012-08-01
Gender-based relationship power is frequently linked to women's capacity to reduce sexual risk behaviors. This study offers an exploration of predictors of relationship power, as measured by the multidimensional and theoretically grounded sexual relationship power scale, among women in outpatient substance abuse treatment. Linear models were used to test nine predictors (age, race/ethnicity, education, time in treatment, economic dependence, substance use, sexual concurrency, partner abuse, and sex role orientation) of relationship power among 513 women participating in a multi-site HIV risk reduction intervention study. Significant predictors of relationship control included having a non-abusive male partner, only one male partner, and endorsing traditional masculine (or both masculine and feminine) sex role attributes. Predictors of decision-making dominance were interrelated, with substance use × partner abuse and age × sex role orientation interactions. Results contribute to the understanding of factors which may influence relationship power and to their potential role in HIV sexual risk reduction interventions.
Causadias, José M.; Salvatore, Jessica E.; Sroufe, L. Alan
2012-01-01
The present study examines two childhood markers of self-regulation, ego-control and ego-resiliency, as promotive factors for the development of global adjustment and as risk factors for the development of internalizing and externalizing behavior problems in a high-risk sample. Teachers and observers rated ego-control and ego-resiliency when participants (n = 136) were in preschool and elementary school. Ratings showed evidence for convergent and discriminant validity and stability over time. Ego-resiliency, but not ego-control, emerged as powerful predictor of adaptive functioning at age 19 and 26, as well as internalizing and externalizing problems at 16, 23, 26, and 32 years. We interpret these findings as evidence that flexibility and adaptability -measured with ego-resiliency- may reduce risk and promote successful adaptation in low-SES environments. PMID:23155299
Solar energy/utility interface - The technical issues
NASA Astrophysics Data System (ADS)
Tabors, R. D.; White, D. C.
1982-01-01
The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.
Cascaded H-bridge multilevel inverter for renewable energy generation
NASA Astrophysics Data System (ADS)
Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi
2016-04-01
In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.
Factors That Facilitate Or Hinder Fuel-Saving Initiatives and Technology
2015-12-01
loading times, unloading times, prevailing winds , flying times, and such other factors as air traffic control delay times, taxi delay times, and...just the simple vehicle telematics used, which is the sensors and so on, the driver behavior telematics. There’s things like the communication module...electric, compressed natural gas, and even turbine -powered vehicles (Interview FE02, July 2, 2015). As early as 2003, the company was looking to replace
Does Adolescents’ Religiousness Moderate Links between Harsh Parenting and Adolescent Substance Use?
Kim-Spoon, Jungmeen; Farley, Julee P.; Holmes, Christopher J.; Longo, Gregory S.
2014-01-01
Extant literature suggests that religiousness is inversely related to adolescent substance use; yet, no systematic investigation has examined whether religiousness may be a protective factor against substance use in the presence of risk factors. We examined whether religiousness moderates the links between parents’ psychological and physical aggression and adolescent substance use directly and indirectly through adolescent self-control. The sample comprised adolescents (N = 220, 45% female) and their primary caregivers. Structural equation modeling analyses suggested that adolescents with low religiousness were likely to engage in substance use when subjected to harsh parenting, but there was no association between harsh parenting and substance use among adolescents with high religiousness. Furthermore, although harsh parenting was related to poor adolescent self-control regardless of religiousness levels, poor self-control was significantly related to substance use for adolescents with low religiousness, whereas the link between poor self-control and substance use did not exist for adolescents with high religiousness. The findings present the first evidence that adolescent religiousness may be a powerful buffering factor that can positively alter pathways to substance use in the presence of risk factors such as harsh parenting and poor self-control. PMID:24979658
Does adolescents' religiousness moderate links between harsh parenting and adolescent substance use?
Kim-Spoon, Jungmeen; Farley, Julee P; Holmes, Christopher J; Longo, Gregory S
2014-12-01
Extant literature suggests that religiousness is inversely related to adolescent substance use; yet, no systematic investigation has examined whether religiousness may be a protective factor against substance use in the presence of risk factors. We examined whether religiousness moderates the links between parents' psychological and physical aggression and adolescent substance use directly and indirectly through adolescent self-control. The sample comprised adolescents (n = 220, 45% female) and their primary caregivers. Structural equation modeling analyses suggested that adolescents with low religiousness were likely to engage in substance use when subjected to harsh parenting, but there was no association between harsh parenting and substance use among adolescents with high religiousness. Furthermore, although harsh parenting was related to poor adolescent self-control regardless of religiousness levels, poor self-control was significantly related to substance use for adolescents with low religiousness, whereas the link between poor self-control and substance use did not exist for adolescents with high religiousness. The findings present the first evidence that adolescent religiousness may be a powerful buffering factor that can positively alter pathways to substance use in the presence of risk factors such as harsh parenting and poor self-control.
Survey of multi-function display and control technology
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Tonkin, M. H.
1982-01-01
The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described.
NASA Technical Reports Server (NTRS)
Spencer, F. A.
1980-01-01
Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control; noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference; and noise-related landing charges.
Savage, Jennifer S; Rollins, Brandi Y; Kugler, Kari C; Birch, Leann L; Marini, Michele E
2017-01-26
Parents shape children's eating environments and act as powerful socialization agents, impacting young children's behavioral controls of food intake. Most feeding measures assess parents' use of control to manage children's intake of energy dense foods. The Structure and Control in Parent Feeding (SCPF) questionnaire was developed to assess more positive aspects of feeding practices with their young children -setting limits, providing routines-that promote self-regulation, as well as controlling feeding practices. A mixed method approach was used to develop the SCPF. In 2013, cognitive interviews informed the modification, deletion and/or replacement of items. In 2014, the survey was distributed statewide to mothers of toddlers aged 12 to 36 months participating in the Women, Infants, and Children program. In 2016, exploratory factor analyses was conducted to test our theoretical parenting model and content validity and criterion validity were assessed (n = 334). Exploratory factor analysis (EFA) and second-order EFA revealed a 2-factor, 22-item Structure model and a 2-factor, 12-item Control model. Internal consistencies for all factors exceeded 0.70. As predicted, the Structure superfactor was positivity associated with responsiveness, whereas the Control superfactor was positively associated with demandingness on the Caregiver's Feeding Styles Questionnaire. The Structure subscales were also positively associated with mealtime behaviors and Control subscales were positively associated with control-oriented feeding measures from the Control in Parent Feeding Practices questionnaire. The SCPF questionnaire is a reliable tool that can be used to assess aspects of structure- and control-based feeding practices to better understand how parents feed their toddlers.
Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1992-01-01
The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.
Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
For miniaturization of electronics systems, power consumption plays a key role in the realm of constraints. Considering the very large scale integration (VLSI) design aspect, as transistor feature size is decreased to 50 nm and below, there is sizable increase in the number of transistors as more functional building blocks are embedded in the same chip. However, the consequent increase in power consumption (dynamic and leakage) will serve as a key constraint to inhibit the advantages of transistor feature size reduction. Power consumption can be reduced by minimizing the voltage supply (for dynamic power consumption) and/or increasing threshold voltage (V(sub th), for reducing leakage power). When the feature size of the transistor is reduced, supply voltage (V(sub dd)) and threshold voltage (V(sub th)) are also reduced accordingly; then, the leakage current becomes a bigger factor of the total power consumption. To maintain low power consumption, operation of electronics at sub-threshold levels can be a potentially strong contender; however, there are two obstacles to be faced: more leakage current per transistor will cause more leakage power consumption, and slow response time when the transistor is operated in weak inversion region. To enable low power consumption and yet obtain high performance, the CMOS (complementary metal oxide semiconductor) transistor as a basic element is viewed and controlled as a four-terminal device: source, drain, gate, and body, as differentiated from the traditional approach with three terminals: i.e., source and body, drain, and gate. This technique features multiple voltage sources to supply the dynamic control, and uses dynamic control to enable low-threshold voltage when the channel (N or P) is active, for speed response enhancement and high threshold voltage, and when the transistor channel (N or P) is inactive, to reduce the leakage current for low-leakage power consumption.
Relationship between obesity, ethnicity and risk of late stillbirth: a case control study
2011-01-01
Background In high income countries there has been little improvement in stillbirth rates over the past two decades. Previous studies have indicated an ethnic disparity in the rate of stillbirths. This study aimed to determine whether maternal ethnicity is independently associated with late stillbirth in New Zealand. Methods Cases were women with a singleton, late stillbirth (≥28 weeks' gestation) without congenital abnormality, born between July 2006 and June 2009 in Auckland, New Zealand. Two controls with ongoing pregnancies were randomly selected at the same gestation at which the stillbirth occurred. Women were interviewed in the first few weeks following stillbirth, or at the equivalent gestation for controls. Detailed demographic data were recorded. The study was powered to detect an odds ratio of 2, with a power of 80% at the 5% level of significance, given a prevalence of the risk factor of 20%. A multivariable regression model was developed which adjusted for known risk factors for stillbirth, as well as significant risk factors identified in the current study, and adjusted odds ratios and 95% confidence intervals were calculated. Results 155/215 (72%) cases and 310/429 (72%) controls consented. Pacific ethnicity, overweight and obesity, grandmultiparity, not being married, not being in paid work, social deprivation, exposure to tobacco smoke and use of recreational drugs were associated with an increased risk of late stillbirth in univariable analysis. Maternal overweight and obesity, nulliparity, grandmultiparity, not being married and not being in paid work were independently associated with late stillbirth in multivariable analysis, whereas Pacific ethnicity was no longer significant (adjusted Odds Ratio 0.99; 0.51-1.91). Conclusions Pacific ethnicity was not found to be an independent risk factor for late stillbirth in this New Zealand study. The disparity in stillbirth rates between Pacific and European women can be attributed to confounding factors such as maternal obesity and high parity. PMID:21226915
Recent Stirling Conversion Technology Developments and Operational Measurements
NASA Technical Reports Server (NTRS)
Oriti, Salvatore; Schifer, Nicholas
2009-01-01
Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.
Design of Interline Unified Power Quality Conditioner for Power Quality Disturbances using Simulink
NASA Astrophysics Data System (ADS)
Kumaraswamy, G.; Reddy, Y. Rajasekhar; Harikrishna, Ch.
2012-10-01
Proliferation of electronic equipment in commercial and industrial processes has resulted in increasingly sensitive electrical loads to be fed from power distribution system which introduce contamination to voltage and current waveforms at the point of common coupling of industrial loads. The unified power quality conditioner (UPQC) is connected between two different feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC (IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of voltage sag/swell compensation, harmonic elimination and power factor correction in a power distribution network, so that improved power quality can be made available at the point of common coupling. The structure, control and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration has been verified through simulation using MATLAB/ SIMULINK.
2009-10-01
and ratings of thermal comfort (TC) were measured at regular intervals. 3.0 RESULTS In study one, all IR1-4 paradigms significantly reduced... Thermal comfort and sensation in men wearing a cooling system controlled by skin temperatrure. Human Factors 49: 1033-1044, 2007. [7] Xu X
Assessing Risk Factors for Problem Parenting: The Significance of Social Support.
ERIC Educational Resources Information Center
Turner, R. Jay; Avison, William R.
1985-01-01
Case comparison analyses were used to assess the power of social support, life stress, and personal control in distinguishing maladaptive mothers. Results indicate that social support, as experienced or perceived by the individual, effectively distinguishes among women who vary in their adaptation to the parenting role. (Author/BL)
An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting
NASA Astrophysics Data System (ADS)
Gerber, Daniel L.
High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification indicates functional performance for all the modules in the LED driver. The driver exhibits moderate efficiency at half voltage. Although the part was only testable to half voltage, loss models predict that its efficiency would be much higher at full voltage. The driver also meets specifications on the line current harmonics and ripple cancellation. This dissertation introduces multilevel circuit techniques to the IC and LED research space. The prototype's functional performance indicates that integrated multilevel converters are a viable topology for lighting and other similar applications.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Dubé, William P.; Karamchandani, Prakash; Yarwood, Greg; Peischl, Jeff; Ryerson, Thomas B.; Neuman, J. Andrew; Nowak, John B.; Holloway, John S.; Washenfelder, Rebecca A.; Brock, Charles A.; Frost, Gregory J.; Trainer, Michael; Parrish, David D.; Fehsenfeld, Frederick C.; Ravishankara, A. R.
2012-04-01
Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOxoxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36-44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOxemissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M
2016-05-12
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.
Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.
2016-01-01
The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397
Vehicular Integration of Wireless Power Transfer Systems and Hardware Interoperability Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Campbell, Steven L; Seiber, Larry Eugene
Several wireless charging methods are under development or available as an aftermarket option in the light-duty automotive market. However, there are not a sufficient number of studies detailing the vehicle integration methods, particularly a complete vehicle integration with higher power levels. This paper presents the design, development, implementation, and vehicle integration of wireless power transfer (WPT)-based electric vehicle (EV) charging systems for various test vehicles. Before having the standards effective, it is expected that WPT technology first will be integrated as an aftermarket retrofitting approach. Inclusion of this technology on production vehicles is contingent upon the release of the internationalmore » standards. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction, high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, and communications, systems are presented. Aftermarket conversion approaches including the WPT on-board charger (OBC) integration, WPT CHAdeMO integration, and WPT direct battery connection scenarios are described. The experiments are carried out using the integrated vehicles and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies.« less
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
Adjustable speed drive study, part 1
NASA Astrophysics Data System (ADS)
Wallace, A.
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
Blow molding electric drives of Mechanical Engineering
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Ramazanov, M. A.; Tsirkunenko, A. T.
2018-03-01
The article considers the questions about the analysis of new possibilities, which gives the use of adjustable electric drives for blowing mechanisms of plastic production. Thus, the use of new semiconductor converters makes it possible not only to compensate the instability of the supply network by using special dynamic voltage regulators, but to improve (correct) the power factor. The calculation of economic efficiency in controlled electric drives of blowing mechanisms is given. On the basis of statistical analysis, the calculation of the reliability parameters of the regulated electric drives’ elements under consideration is given. It is shown that an increase in the reliability of adjustable electric drives is possible both due to overestimation of the electric drive’s installed power, and in simpler schemes with pulse-vector control.
NASA Astrophysics Data System (ADS)
Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui
2016-08-01
To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
NASA Technical Reports Server (NTRS)
1980-01-01
Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.
Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions
NASA Astrophysics Data System (ADS)
Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.
2001-01-01
The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.
Students perception on the usage of PowerPoint in learning calculus
NASA Astrophysics Data System (ADS)
Othman, Zarith Sofiah; Tarmuji, Nor Habibah; Hilmi, Zulkifli Ab Ghani
2017-04-01
Mathematics is a core subject in most of the science and technology courses and in some social sciences programs. However, the low achievement of students in the subject especially in topics such as Differentiation and Integration is always an issue. Many factors contribute to the low performance such as motivation, environment, method of learning, academic background and others. The purpose of this paper is to determine the perception of learning mathematics using PowerPoint on Integration concepts at the undergraduate level with respect to mathematics anxiety, learning enjoyment, mobility and learning satisfaction. The main content of the PowerPoint presentation focused on the integration method with historical elements as an added value. The study was conducted on 48 students randomly selected from students in computer and applied sciences program as experimental group. Questionnaires were distributed to students to explore their learning experiences. Another 51 students who were taught using the traditional chalkboard method were used as the control group. Both groups were given a test on Integration. The statistical methods used were descriptive statistics and independent sample t-test between the experimental and the control group. The finding showed that most students perceived positively to the PowerPoint presentations with respect to mobility and learning satisfaction. The experimental group performed better than the control group.
Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants
NASA Astrophysics Data System (ADS)
Krylov, D. A.; Sidorova, G. P.
2013-04-01
This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.
Development of a nearshore oscillating surge wave energy converter with variable geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, N. M.; Lawson, M. J.; Yu, Y. H.
This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less
Skeem, J L; Mulvey, E P
2001-06-01
Although psychopathy is recognized as a relatively strong risk factor for violence among inmates and mentally disordered offenders, few studies have examined the extent to which its predictive power generalizes to civil psychiatric samples. Using data on 1,136 patients from the MacArthur Violence Risk Assessment project, this study examined whether the 2 scales that underlie the Psychopathy Checklist: Screening Version (PCL:SV) measure a unique personality construct that predicts violence among civil patients. The results indicate that the PCL:SV is a relatively strong predictor of violence. The PCL:SV's predictive power is substantially reduced, but remains significant, after controlling for a host of covariates that reflect antisocial behavior and personality disorders other than psychopathy. However, the predictive power of the PCL:SV is not based on its assessment of the core traits of psychopathy, as traditionally construed. Implications for the 2-factor model that underlies the PCL measures and for risk assessment practice are discussed.
Informative priors on fetal fraction increase power of the noninvasive prenatal screen.
Xu, Hanli; Wang, Shaowei; Ma, Lin-Lin; Huang, Shuai; Liang, Lin; Liu, Qian; Liu, Yang-Yang; Liu, Ke-Di; Tan, Ze-Min; Ban, Hao; Guan, Yongtao; Lu, Zuhong
2017-11-09
PurposeNoninvasive prenatal screening (NIPS) sequences a mixture of the maternal and fetal cell-free DNA. Fetal trisomy can be detected by examining chromosomal dosages estimated from sequencing reads. The traditional method uses the Z-test, which compares a subject against a set of euploid controls, where the information of fetal fraction is not fully utilized. Here we present a Bayesian method that leverages informative priors on the fetal fraction.MethodOur Bayesian method combines the Z-test likelihood and informative priors of the fetal fraction, which are learned from the sex chromosomes, to compute Bayes factors. Bayesian framework can account for nongenetic risk factors through the prior odds, and our method can report individual positive/negative predictive values.ResultsOur Bayesian method has more power than the Z-test method. We analyzed 3,405 NIPS samples and spotted at least 9 (of 51) possible Z-test false positives.ConclusionBayesian NIPS is more powerful than the Z-test method, is able to account for nongenetic risk factors through prior odds, and can report individual positive/negative predictive values.Genetics in Medicine advance online publication, 9 November 2017; doi:10.1038/gim.2017.186.
Saving Power at Peak Hours (LBNL Science at the Theater)
Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.
2005-01-01
From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.
Received optical power calculations for optical communications link performance analysis
NASA Technical Reports Server (NTRS)
Marshall, W. K.; Burk, B. D.
1986-01-01
The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.
Cladding-pumped ytterbium-doped fiber laser with radially polarized output.
Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A
2014-09-15
A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.
Group-sequential three-arm noninferiority clinical trial designs
Ochiai, Toshimitsu; Hamasaki, Toshimitsu; Evans, Scott R.; Asakura, Koko; Ohno, Yuko
2016-01-01
We discuss group-sequential three-arm noninferiority clinical trial designs that include active and placebo controls for evaluating both assay sensitivity and noninferiority. We extend two existing approaches, the fixed margin and fraction approaches, into a group-sequential setting with two decision-making frameworks. We investigate the operating characteristics including power, Type I error rate, maximum and expected sample sizes, as design factors vary. In addition, we discuss sample size recalculation and its’ impact on the power and Type I error rate via a simulation study. PMID:26892481
Human factors aspects of control room design
NASA Technical Reports Server (NTRS)
Jenkins, J. P.
1983-01-01
A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.
Vibroacoustic optimization using a statistical energy analysis model
NASA Astrophysics Data System (ADS)
Culla, Antonio; D`Ambrogio, Walter; Fregolent, Annalisa; Milana, Silvia
2016-08-01
In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A preliminary sensitivity analysis of subsystem energy to CLF's is performed to select CLF's that are most effective on subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization procedure, where approximate relationships between CLF's, injected power and physical parameters are derived. The approach is applied on a typical aeronautical structure: the cabin of a helicopter.
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
NASA Astrophysics Data System (ADS)
Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis
2009-11-01
The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.
Internship Abstract and Final Reflection
NASA Technical Reports Server (NTRS)
Sandor, Edward
2016-01-01
The primary objective for this internship is the evaluation of an embedded natural language processor (NLP) as a way to introduce voice control into future space suits. An embedded natural language processor would provide an astronaut hands-free control for making adjustments to the environment of the space suit and checking status of consumables procedures and navigation. Additionally, the use of an embedded NLP could potentially reduce crew fatigue, increase the crewmember's situational awareness during extravehicular activity (EVA) and improve the ability to focus on mission critical details. The use of an embedded NLP may be valuable for other human spaceflight applications desiring hands-free control as well. An embedded NLP is unique because it is a small device that performs language tasks, including speech recognition, which normally require powerful processors. The dedicated device could perform speech recognition locally with a smaller form-factor and lower power consumption than traditional methods.
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe
2013-01-01
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. PMID:23340418
2015-08-21
plants (200 MW and above) produce the majority of the nation’s energy demands, and these are the most heavily regulated by the EPA . The automotive...existing engines are not achieving the best possible efficiency. As in the electric power industry, EPA regulation is a major factor in the US...automotive engine market. Cummins, for example, was the only company in the market to meet the 2010 EPA standards for NOx emissions with their release of a 6.7
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Morley, Nicholas J.
1991-01-01
Multiyear civilian manned missions to explore the surface of Mars are thought by NASA to be possible early in the next century. Expeditions to Mars, as well as permanent bases, are envisioned to require enhanced piloted vehicles to conduct science and exploration activities. Piloted rovers, with 30 kWe user net power (for drilling, sampling and sample analysis, onboard computer and computer instrumentation, vehicle thermal management, and astronaut life support systems) in addition to mobility are being considered. The rover design, for this study, included a four car train type vehicle complete with a hybrid solar photovoltaic/regenerative fuel cell auxiliary power system (APS). This system was designed to power the primary control vehicle. The APS supplies life support power for four astronauts and a limited degree of mobility allowing the primary control vehicle to limp back to either a permanent base or an accent vehicle. The results showed that the APS described above, with a mass of 667 kg, was sufficient to provide live support power and a top speed of five km/h for 6 hours per day. It was also seen that the factors that had the largest effect on the APS mass were the life support power, the number of astronauts, and the PV cell efficiency. The topics covered include: (1) power system options; (2) rover layout and design; (3) parametric analysis of total mass and power requirements for a manned Mars rover; (4) radiation shield design; and (5) energy conversion systems.
Managing motivation and developing job satisfaction in the health care work environment.
Timmreck, T C
2001-09-01
Motivation relies on internal/intrinsic and external factors to stimulate work-related behavior. This article presents an overview of Herzberg's motivation-hygiene theory and reports on the results of a study of 99 health service midmanagers. The participants completed a survey asking whether they believe in motivational factors and if they use them. Several of Herzberg's motivational factors were included (achievement, recognition, work itself, responsibility, advancement) plus several other motivational factors including money/pay, self-interest, seek a higher standard of living. Negative factors included guilt, threats, power, and control. This article presents motivation factors, such as achievement, recognition, work itself, responsibility, advancement, growth, self-interest, pay, and belief in successful outcome, that were presented to 99 mid-level health services administrators.
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus Candidatus Liberibacter(Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small Ribonucleic acid (sRNA) play a vital role in regulating host responses to pa...
Jung, In Hwan; Hong, Cheon Taek; Lee, Un-Hak; Kang, Young Hun; Jang, Kwang-Suk; Cho, Song Yun
2017-01-01
We studied the thermoelectric properties of a diketopyrrolopyrrole-based semiconductor (PDPP3T) via a precisely tuned doping process using Iron (III) chloride. In particular, the doping states of PDPP3T film were linearly controlled depending on the dopant concentration. The outstanding Seebeck coefficient of PDPP3T assisted the excellent power factors (PFs) over 200 μW m−1K−2 at the broad range of doping concentration (3–8 mM) and the maximum PF reached up to 276 μW m−1K−2, which is much higher than that of poly(3-hexylthiophene), 56 μW m−1K−2. The high-mobility of PDPP3T was beneficial to enhance the electrical conductivity and the low level of total dopant volume was important to maintain high Seebeck coefficients. In addition, the low bandgap PDPP3T polymer effiectively shifted its absorption into near infra-red area and became more colorless after doping, which is great advantage to realize transparent electronic devices. Our results give importance guidance to develop thermoelectric semiconducting polymers and we suggest that the use of low bandgap and high-mobility polymers, and the accurate control of the doping levels are key factors for obtaining the high thermoelectric PF. PMID:28317929
Berg, Michael B; Anshika, Avi
2017-04-01
To investigate the health locus of control (HLOC) beliefs of patients and visitors at a free, state-run medical clinic in Faridabad, India, in order to establish a norm for this population and to explore potential associations between the different categories of causal health beliefs. Participants (110 men, 96 women) were interviewed in Hindi and asked a shortened version of the Multidimensional Health Locus of Control Scale assessing both internal HLOC and three aspects of external HLOC (chance, powerful others, and God). Additional variables of interest included a Traditional Values Scale, a measure of spirituality, an assessment of health status, and demographic information including gender, age, employment status, and religion. Participants rated the external-God factor as a stronger determinant of their health than the internal or other external HLOC factors. Internal HLOC was positively correlated with external HLOC in terms of chance and the role of powerful others and these associations were strongest for the most interdependent participants (i.e. women and the unemployed). For patients and visitors at the Faridabad clinic, religion played a significant role in their causal health beliefs. In addition, internal HLOC was positively associated with aspects of external locus of control, suggesting that causal health beliefs were viewed in a holistic, integrated fashion. Interventions based on these findings are suggested.
NASA Technical Reports Server (NTRS)
Cohen, M. M.
1985-01-01
The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.
Spontaneous Gamma Activity in Schizophrenia.
Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M
2015-08-01
A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30-100 Hz) gamma power was increased in patients with SZ compared with controls during steady-state stimulation (6.579 [3.783] vs 3.984 [1.843]; F1,46 = 9.128 [P = .004]; d = 0.87) but not during rest (0.006 [0.003] vs 0.005 [0.002]; F1,34 = 1.067 [P = .309]; d = 0.35). Induced gamma power in the left hemisphere of the patients with SZ during the 40-Hz stimulation was positively correlated with auditory hallucination symptoms (tangential, ρ = 0.587 [P = .031]; radial, ρ = 0.593 [P = .024]) and negatively correlated with the ASSR phase-locking factor (baseline: ρ = -0.572 [P = .024]; ASSR: ρ = -0.568 [P = .032]). Spontaneous gamma activity is increased during auditory steady-state stimulation in SZ, reflecting a disruption in the normal balance of excitation and inhibition. This phenomenon interacts with evoked oscillations, possibly contributing to the gamma ASSR deficit found in SZ. The similarity of increased spontaneous gamma power in SZ to the findings of increased spontaneous gamma power in animal models of NMDAR hypofunction suggests that spontaneous gamma power could serve as a biomarker for the integrity of NMDARs on parvalbumin-expressing inhibitory interneurons in humans and in animal models of neuropsychiatric disorders.
Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan
2016-11-15
The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.
Xu, Jinfeng; Yuan, Ao; Zheng, Gang
2012-01-01
Summary In the analysis of case-control genetic association, the trend test and Pearson’s test are the two most commonly used tests. In genome-wide association studies (GWAS), Bayes factor is a useful tool to support significant p-values, and a better measure than p-value when results are compared across studies with different sample sizes. When reporting the p-value of the trend test, we propose a Bayes factor directly based on the trend test. To improve the power to detect association under recessive or dominant genetic models, we propose a Bayes factor based on the trend test and incorporating Hardy-Weinberg disequilibrium in cases. When the true model is unknown, or both the trend test and Pearson’s test or other robust tests are applied in genome-wide scans, we propose a joint Bayes factor, combining the previous two Bayes factors. All three Bayes factors studied in this paper have closed forms and are easy to compute without integrations, so they can be reported along with p-values, especially in GWAS. We discuss how to use each of them and how to specify priors. Simulation studies and applications to three GWAS are provided to illustrate their usefulness to detect non-additive gene susceptibility in practice. PMID:22607017
Method and apparatus for lead-unity-lag electric power generation system
NASA Technical Reports Server (NTRS)
Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)
2013-01-01
A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Ventre, Daniel; Puzan, Marissa; Ashbolt, Emily; Koppes, Abigail
2018-04-17
Despite the prevalence of peripheral nerve injuries (PNI), challenges remain in restoring full functionality to those afflicted. For recovery to occur, axons must extend across the injury site to connect with distal targets, where injury gap size is a critical factor in the probability of restoration of function. Current clinical therapies often achieve limited neural regeneration, motivating the development of new therapeutic interventions such as biophysical stimulation. To investigate the potential for low intensity, pulsed ultrasonic simulation (LIPUS) to impact peripheral nerve regeneration, primary neonatal rat dorsal root ganglion neurons were examined in vitro in response to ultrasound (US). Dissociated neurons were stimulated with varied acoustic power (low, medium, high) and their morphometrics, including total outgrowth, branching, and length, were analyzed acutely after 18 h of growth. Results show US increases total neurite outgrowth by 2.83-fold compared to unstimulated controls at the highest power. Neurite branching at medium and high-power US increased approximately 2-fold compared to controls, while low stimulation exhibited more muted trends. Neurite branching is also impacted by US, with medium and high power eliciting the highest branching, of approximately 2-fold compared to low power and unstimulated controls. These results demonstrate that US stimulation of DRG neurons in vitro impacts neurite morphology and enhances total extension, indicating the potential for advancing and understanding driving mechanisms of ultrasonic therapies for peripheral nerve regeneration.
Trends and problems in development of the power plants electrical part
NASA Astrophysics Data System (ADS)
Gusev, Yu. P.
2015-03-01
The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.
NASA Technical Reports Server (NTRS)
1982-01-01
The device called the Power Factor Controller (PFC) offers exceptional energy conservation potential by virtue of its ability to sense shifts in the relationship between voltage and current flow, and to match them with the motor's need. Originating from the solar heating/cooling program, the PFC senses a light load, it cuts the voltage level to the minimum needed which in turn reduces current flow and heat loss. Laboratory tests showed that the PFC could reduce power used by six to eight percent under normal motor loads, and as much as 65 percent when the motor was idling. Over 150 companies have been granted NASA licenses for commercial use of this technology. One system that utilizes this technology is the Vectrol Energy System, (VES) produced by Vectrol, Inc. a subsidiary of Westinghouse. The VES is being used at Woodward & Lothrop, on their escalators. Energy use is regulated according to how many people are on the escalator at any time. It is estimated that the energy savings are between 30 to 40 percent.
Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li
2012-01-01
Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.
Space, our next frontier; Proceedings of the conference, Dallas, TX, June 7, 8, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, G.
1985-01-01
The present conference on space development encompasses space commercialization, legislative, legal, and insurance-related factors in current space programs, political aspects of space militarization and governmental control, the military future uses of space and their consequences, command and control issues arising in space, economic influences on space policy, and recent developments in space solar power generation concepts. Attention is given to public opinion surveys concerning the scientific, military, and economic uses of space, the Leasecraft orbital industrial infrastructure concept, capitalism and democracy in space development, the current status of space law on commercialization topics, the nature of Ballistic Missile Defense, themore » Soviet Space threat, the High Frontier concept for space defense, lunar solar power systems, solar power satellites, and the utilization of lunar resources for the reduction of lunar base construction costs. Such specific technical issues as microgravity crystal growth and directional solidification, electrophoresis operations for pharmaceuticals, and technical barriers to commercial access to space, are also noted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, P M; Selby, D L; Hanley, M J
1983-09-01
This report summarizes results of research sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to initiate the use of the Systems Approach to Training in the evaluation of training programs and entry level qualifications for nuclear power plant (NPP) personnel. Variables (performance shaping factors) of potential importance to personnel selection and training are identified, and research to more rigorously define an operationally useful taxonomy of those variables is recommended. A high-level model of the Systems Approach to Training for use in the nuclear industry, which could serve as a model for NRC evaluation of industrymore » programs, is presented. The model is consistent with current publically stated NRC policy, with the approach being followed by the Institute for Nuclear Power Operations, and with current training technology. Checklists to be used by NRC evaluators to assess training programs for NPP control-room personnel are proposed which are based on this model.« less
Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.
Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less
Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E I; Barley, C D; Drouilhet, S
1997-09-01
Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control,more » the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.« less
Predictors of Relationship Power among Drug-involved Women
Campbell, Aimee N. C.; Tross, Susan; Hu, Mei-chen; Pavlicova, Martina; Nunes, Edward V.
2012-01-01
Gender-based relationship power is frequently linked to women’s capacity to reduce sexual risk behaviors. This study offers an exploration of predictors of relationship power, as measured by the multidimensional and theoretically grounded Sexual Relationship Power Scale (SRPS), among women in outpatient substance abuse treatment. Linear models were used to test nine predictors (age, race/ethnicity, education, time in treatment, economic dependence, substance use, sexual concurrency, partner abuse, sex role orientation) of relationship power among 513 women participating in a multi-site HIV risk reduction intervention study. Significant predictors of relationship control included having a non-abusive male partner, only one male partner, and endorsing traditional masculine (or both masculine and feminine) sex role attributes. Predictors of decision-making dominance were interrelated, with substance use x partner abuse and age x sex role orientation interactions. Results contribute to the understanding of factors which may influence relationship power and to their potential role in HIV sexual risk reduction interventions. PMID:22614746
Alvarez, Carmen; Villarruel, Antonia
2015-04-01
Sexual communication is an important strategy in promoting safer sex behavior, but few investigators have explored sexual communication among young adult Latinos. In this cross-sectional study, we examined the role of traditional gender norms, relationship factors (relationship characteristics and relationship power), intrapersonal factors (attitudes and subjective norms), and acculturation as statistical predictors of three different types of sexual communication (sexual health, pleasure discussions, and physical sexual communication) in Latino women and men. The sample was 220 Latinos (111 women and 109 men) ages 18-30 years who were sexually active in heterosexual relationships. In multiple regression, after controlling for relationship power, intrapersonal factors, and acculturation, traditional gender norms did not predict sexual communication for either women or men. For both women and men, pleasure-focused communication (pleasure discussions and physical sexual communication) increased with acculturation. For women, the strongest predictor of all types of sexual communication was their attitudes toward sexual communication. Greater relationship power and lower acculturation were associated with women's sexual health communication. For men, no variables explained sexual health communication or physical sexual communication, and acculturation and attitude toward pleasure discussions predicted pleasure communication. Women who believed they had power in their relationships and had positive attitudes toward pleasure discussions and a high level of acculturation reported more physical sexual communication. Findings suggest the importance of relationship power, attitudes, and acculturation in young adult Latinos' sexual communication. Sexual risk prevention strategies among young adult Latinos should include encouraging sexual communication by supporting positive attitudes toward pleasure-focused communication. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.
Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan
2015-01-01
In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.
A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs
Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan
2015-01-01
In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042
NASA Technical Reports Server (NTRS)
Brown, Dale H.
1976-01-01
A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.
Storage filters upland suspended sediment signals delivered from watersheds
Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana
2017-01-01
Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.
Adjustable speed drive study, June 1985 to September 1988. Part 2: Appendices
NASA Astrophysics Data System (ADS)
Wallace, Alan
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
Thrust Vector Control for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Ensworth, Clinton B. F.
2013-01-01
Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.
An Optimization Framework for Driver Feedback Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2013-01-01
Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-12-01
The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW ofmore » electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang
The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less
Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion
NASA Technical Reports Server (NTRS)
Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.;
2012-01-01
Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
Perinatal factors and the risk of bipolar disorder in Finland.
Chudal, Roshan; Sourander, Andre; Polo-Kantola, Päivi; Hinkka-Yli-Salomäki, Susanna; Lehti, Venla; Sucksdorff, Dan; Gissler, Mika; Brown, Alan S
2014-02-01
Complications during the perinatal period have been associated with neurodevelopmental disorders like schizophrenia and autism. However, similar studies on bipolar disorder (BPD) have been limited and the findings are inconsistent. The aim of this study was to examine the association between perinatal risk factors and BPD. This nested case-control study, based on the Finnish Prenatal Study of Bipolar Disorders (FIPS-B), identified 724 cases and 1419 matched controls from population based registers. Conditional logistic regression was used to examine the associations between perinatal factors and BPD adjusting for potential confounding due to maternal age, psychiatric history and educational level, place of birth, number of previous births and maternal smoking during pregnancy. Children delivered by planned cesarean section had a 2.5-fold increased risk of BPD (95% CI: 1.32-4.78, P<0.01). No association was seen between other examined perinatal risk factors and BPD. The limitations of this study include: the restriction in the sample to treated cases of BPD in the population, and usage of hospital based clinical diagnosis for case ascertainment. In addition, in spite of the large sample size, there was low power to detect associations for certain exposures including the lowest birth weight category and pre-term birth. Birth by planned cesarean section was associated with risk of BPD, but most other perinatal risk factors examined in this study were not associated with BPD. Larger studies with greater statistical power to detect less common exposures and studies utilizing prospective biomarker-based exposures are necessary in the future. © 2013 Published by Elsevier B.V.
Power converters for the 120 V bus supply control
NASA Astrophysics Data System (ADS)
Elisabelar, Christian
1993-03-01
Power converters for the 120 V bus supply control in such projects as Columbus and Hermes are addressed. Because of the power levels involved and the existing state of the art, several converter modules need to be connected in parallel to supply a single bus. To simplify the study, the power of each converter is set at around 1 kW. Many converter structures which satisfy requirement specifications and several solutions, with or without galvanic insulation, are proposed. The choice and sizing of the converter structure are considered. Stress factors and available technology are selection criteria in determining the most suitable structures. The dimensions of each structure, taking into account the rules of space design enable efficiency to be analytically estimated and it is subsequently verified experimentally. The converter command and its functional performance are then addressed. Numerical simulations with SUCCESS software are run to observe the actual operation of the power part of the converter and to develop the command law with its regulation parameters. The converter is simulated in its entirety and different transients are studied like load variation, no load operating point, short circuit. The response time, stability and behavior under disturbed conditions are thus known. A comparison of the various structures studied enabled the optimal converter to be chosen for some 120 V regulated bus applications.
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...
Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong
2017-02-01
This paper presents a low-noise amplifier (LNA) using attenuation-adaptive noise control (AANC) for ultrasound imaging systems. The proposed AANC reduces unnecessary power consumption of the LNA, which arises from useless noise floor, by controlling the noise floor of the LNA with respect to the attenuation of the ultrasound. In addition, a current feedback amplifier with a source-degenerated input stage reduces variations of the bandwidth and the closed loop gain, which are caused by the AANC. The proposed LNA was fabricated using a 0.18-[Formula: see text] CMOS process. The input-referred voltage noise density of the fabricated LNA is 1.01 [Formula: see text] at the frequency of 5 MHz. The second harmonic distortion is -53.5 dB when the input signal frequency is 5 MHz and the output voltage swing is 2 [Formula: see text]. The power consumption of the LNA using the AANC is 16.2 mW at the supply voltage of 1.8 V, which is reduced to 64% of that without using the AANC. The noise efficiency factor (NEF) of the proposed LNA is 3.69, to our knowledge, which is the lowest NEF compared with previous LNAs for ultrasound imaging.
Distributed Control Architecture for Gas Turbine Engine. Chapter 4
NASA Technical Reports Server (NTRS)
Culley, Dennis; Garg, Sanjay
2009-01-01
The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.
Magnetics and Power System Upgrades for the Pegasus-U Experiment
NASA Astrophysics Data System (ADS)
Preston, R. C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.
2014-10-01
To support the missions of developing local helicity injection startup and exploiting advanced tokamak physics studies at near unity aspect ratio, the proposed Pegasus-U will include expanded magnetic systems and associated power supplies. A new centerstack increases the toroidal field seven times to 1 T and the volt-seconds by a factor of six while maintaining operation at an aspect ratio of 1.2. The poloidal field magnet system is expanded to support improved shape control and robust double or single null divertor operation at the full plasma current of 0.3 MA. An integrated digital control system based on Field Programmable Gate Arrays (FPGAs) provides active feedback control of all magnet currents. Implementation of the FPGAs is achieved with modular noise reducing electronics. The digital feedback controllers replace the existing analog systems and switch multiplexing technology. This will reduce noise sensitivity and allow the operational Ohmic power supply voltage to increase from 2100 V to its maximum capacity of 2400 V. The feedback controller replacement also allows frequency control for ``freewheeling''--stopping the switching for a short interval and allowing the current to coast. The FPGAs assist in optimizing pulse length by having programmable switching events to minimize energy losses. They also allow for more efficient switching topologies that provide improved stored energy utilization, and support increasing the pulse length from 25 ms to 50-100 ms. Work supported by US DOE Grant DE-FG02-96ER54375.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
ERIC Educational Resources Information Center
Vuolo, Mike; Uggen, Christopher; Lageson, Sarah
2016-01-01
Given their capacity to identify causal relationships, experimental audit studies have grown increasingly popular in the social sciences. Typically, investigators send fictitious auditors who differ by a key factor (e.g., race) to particular experimental units (e.g., employers) and then compare treatment and control groups on a dichotomous outcome…
2005-09-01
utilizing common household products that contain precursor chemicals which, when combined, become explosive. B. IMPORTANCE Improvised Explosive...legislation removing acetone or other common household products from the market. Consumer convenience is a powerful lobbying factor and law makers...as IEDs rather than common household products . 23 Oklahoma City National Memorial website, http
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2011 CFR
2011-01-01
... Appendix C of this part with a liquid water content factor of 1.0. (iii) Ice accumulated during approach... engine control or the desired thrust or power level was not achieved, including engine flameouts. Planned... involved. A relevant problem is a problem with an ETOPS group 1 significant system that has or could result...
Relationship between Functional Movement Screen and Some Athletic Abilities in Karate Athletes
ERIC Educational Resources Information Center
Yildiz, Suat
2018-01-01
In karate athletes, quality of movement and trunk control are important factors. Power output that is performed in short time requires functional movement capabilities. It's quite important to know that which athletic abilities are related to functional movement. Due to this concern, the aim of the study was to examine relationship between…
The Effects of Organizational Climate Factors on Industrial Training Outcomes.
ERIC Educational Resources Information Center
Richey, Rita C.
An extensive evaluation was conducted of a training program on industrial safety that was designed to change employee attitudes and behaviors in relation to energy control and power lockout (ECPL), i.e., closing down an assembly line while completing diagnostic or repair tasks. The research question was aimed at determining the effects of entry…
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
High-power VCSEL systems and applications
NASA Astrophysics Data System (ADS)
Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich
2015-03-01
Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.
Utility interface issues for grid-connected photovoltaic systems
NASA Astrophysics Data System (ADS)
Chu, D.; Key, T.; Fitzer, J.
Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.
Molecular solid-state inverter-converter system
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1973-01-01
A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.
NASA Technical Reports Server (NTRS)
Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James
2010-01-01
CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.
Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu
Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less
External-Stimuli-Assisted Control over Assemblies of Plasmonic Metals.
Watanabe, Kanako; Kuroda, Kotaro; Nagao, Daisuke
2018-05-15
Assembly of plasmonic nanoparticles (NPs) in suspensions is a promising approach for the control of optical and sensing properties that depend on the assembled states of plasmonic NPs. This review focuses on the controlling methods to assemble the NP via external stimuli such as pH, temperature, light, magnetic field, and electric field. External stimuli are introduced as powerful tools to assemble the NPs because of various operational factors, such as the intensity, application time, and frequency, which can be employed. In addition to a summary of recent studies on the controlling methods, a future study on the reversible control over assembled states of the plasmonic NPs via external stimuli is proposed.
HMI conventions for process control graphics.
Pikaar, Ruud N
2012-01-01
Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.
Distributed solid state programmable thermostat/power controller
NASA Technical Reports Server (NTRS)
Smith, Dennis A. (Inventor); Alexander, Jane C. (Inventor); Howard, David E. (Inventor)
2008-01-01
A self-contained power controller having a power driver switch, programmable controller, communication port, and environmental parameter measuring device coupled to a controllable device. The self-contained power controller needs only a single voltage source to power discrete devices, analog devices, and the controlled device. The programmable controller has a run mode which, when selected, upon the occurrence of a trigger event changes the state of a power driver switch and wherein the power driver switch is maintained by the programmable controller at the same state until the occurrence of a second event.
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
Advanced Grid Support Functionality Testing for Florida Power and Light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Martin, Gregory; Hurtt, James
This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are beingmore » required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis between the four test inverters. Inverters were mostly able to meet the requirements of their stated GSF capabilities, with deviations from expected results discussed throughout the report. There were mixed results across the range of abnormal tests, and results were often dependent on the capability of each test inverter to deploy the GSFs of interest. Detailed test data has been provided to FPL to support future decision making with respect to inverter selection and GSF deployment in the field.« less
Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilotto, L.A.S.; Szechtman, M.; Hammad, A.E.
1992-07-01
In this paper a didactic explanation of voltage stability associated phenomena at HVDC terminals is presented. Conditions leading to ac voltage collapse problems are identified. A mechanism that excites control-induced voltage oscillations is shown. The voltage stability factor is used for obtaining the maximum power limits of ac/dc systems operating with different control strategies. Correlation to Pd {times} Id curves is given. Solutions for eliminating the risks of voltage collapse and for avoiding control-induced oscillations are discussed. The results are supported by detailed digital simulations of a weak ac/dc system using EMTP.
Damping torque analysis of VSC-based system utilizing power synchronization control
NASA Astrophysics Data System (ADS)
Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.
2017-05-01
Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.
Thermoelectric Power Factor Limit of a 1D Nanowire
NASA Astrophysics Data System (ADS)
Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-01
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Thermoelectric Power Factor Limit of a 1D Nanowire.
Chen, I-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-27
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW/m K^{2}) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Omran, Esraa; Grandison, Tyrone; Abu Almaati, Shereef
2010-01-01
Healthcare applications that have access control, disclosure management and or privacy enforcement requirements may implement the respective solutions to these issues at the application level or at the database level or in both. Unfortunately, there are technical and non-technical factors that influence what can be done. In this paper we present a flexible, simple and novel approach to seamlessly imbuing current healthcare applications and their supporting infrastructure with security and privacy functionality, while being cognizant of these factors. This approach is called the Chain method. This paper will highlight the smaller design footprint, the increased ease of implementation and use of the Chain method, while demonstrating that it is as powerful and effective as traditional methods.
Environmental risk factors associated with bovine tuberculosis among cattle in high-risk areas
Winkler, B.; Mathews, F.
2015-01-01
Our research shows that environmental features are important predictors of bovine tuberculosis (bTB) in British cattle herds in high-prevalence regions. Data from 503 case and 808 control farms included in the randomized badger culling trial (RBCT) were analysed. bTB risk increased in larger herds and on farms with greater areas of maize, deciduous woodland and marsh, whereas a higher percentage of boundaries composed of hedgerows decreased the risk. The model was tested on another case–control study outside RBCT areas, and here it had a much smaller predictive power. This suggests that different infection dynamics operate outside high-risk areas, although it is possible that unknown confounding factors may also have played a role. PMID:26559511
Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb.
He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng
2016-11-29
Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm -1 ⋅K -2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb 0.95 Ti 0.05 FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm -2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.
Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb
He, Ran; Kraemer, Daniel; Mao, Jun; Zeng, Lingping; Jie, Qing; Lan, Yucheng; Li, Chunhua; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Broido, David; Chu, Ching-Wu; Chen, Gang; Ren, Zhifeng
2016-01-01
Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. PMID:27856743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, R.; Jones, J. M.
2006-07-01
With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less
Safe Direct Current Stimulator design for reduced power consumption and increased reliability.
Fridman, Gene
2017-07-01
Current state of the art neural prosthetics, such as cochlear implants, spinal cord stimulators, and deep brain stimulators use implantable pulse generators (IPGs) to excite neural activity. Inhibition of neural firing is typically indirect and requires excitation of neurons that then have inhibitory projections downstream. Safe Direct Current Stimulator (SDCS) technology is designed to convert electronic pulses delivered to electrodes embedded within an implantable device to ionic direct current (iDC) at the output of the device. iDC from the device can then control neural extracellular potential with the intent of being able to not only excite, but also inhibit and sensitize neurons, thereby greatly expanding the possible applications of neuromodulation therapies and neural interface mechanisms. While the potential applications and proof of concept of this device have been the focus of previous work, the published descriptions of this technology leave significant room for power and reliability optimization. We describe and model a novel device construction designed to reduce power consumption by a factor of 12 and to improve its reliability by a factor of 8.
Carpal tunnel syndrome: the role of occupational factors.
Palmer, Keith T
2011-02-01
Carpal tunnel syndrome (CTS) is a fairly common condition in working-aged people, sometimes caused by physical occupational activities, such as repeated and forceful movements of the hand and wrist or use of hand-held, powered, vibratory tools. Symptoms may be prevented or alleviated by primary control measures at work, and some cases of disease are compensable. Following a general description of the disorder, its epidemiology and some of the difficulties surrounding diagnosis, this review focusses on the role of occupational factors in causation of CTS and factors that can mitigate risk. Areas of uncertainty, debate and research interest are emphasised where relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.
Allgöwer, Kathrin; Hermsdörfer, Joachim
2017-10-01
To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Cohen, Justin M; Wilson, Mark L; Cruz-Celis, Adriana; Ordoñez, Rosalinda; Ramsey, Janine M
2006-11-01
Long-term control of Chagas disease requires not only interruption of the human transmission cycle of Trypanosoma cruzi Schyzotrypanum, Chagas, 1909 by controlling its domestic triatomine vectors but also surveillance to prevent reinfestation of residences from sylvatic or persistent peridomestic populations. Although a number of potential risk factors for infestation have been implicated in previous studies, the explanatory power of resulting models has been low. Two years after cessation of triatomine vector control efforts in the town of Chalcatzingo, Morelos, 78 environmental, socioecological, and spatial variables were analyzed for association with infestation by Triatoma pallidipennis Stal 1872 (Hemiptera: Reduviidae: Triatominae), the principal vector of T. cruzi. We studied 712 residences in this rural community to identify specific intradomestic and peridomestic risk factors that predicted infestation with T. pallidipennis. From numerous characteristics that were identified as correlated with infestation, we derived multivariate logistic regression models to predict residences that were more or less likely to be infested with T. pallidipennis. The most important risk factors for infestation included measurements of house age, upkeep, and spatial location in the town. The effects of certain risk factors on infestation were found to be modified by spatial characteristics of residences. The results of this study provide new information regarding risk factors for infestation by T. pallidipennis that may aid in designing sustainable disease control programs in rural Mexico.
What variables are important in predicting bovine viral diarrhea virus? A random forest approach.
Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo
2015-07-24
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.
A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR
NASA Astrophysics Data System (ADS)
Peng, Xiao; Shuhai, Quan; Changjun, Xie
2017-02-01
The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.
El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony
1992-01-01
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.
El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.
1992-07-28
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.
Reichert, Johanna Louise; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme
2015-11-01
Instrumental conditioning of EEG activity (EEG-IC) is a promising method for improvement and rehabilitation of cognitive functions. However, it has been found that even healthy adults are not always able to learn how to regulate their brain activity during EEG-IC. In the present study, the role of a neurophysiological predictor of EEG-IC learning performance, the resting-state power of sensorimotor rhythm (rs-SMR, 12-15Hz), was investigated. Eyes-open and eyes-closed rs-SMR power was assessed before N=28 healthy adults underwent 10 training sessions of instrumental SMR conditioning (ISC), in which participants should learn to voluntarily increase their SMR power by means of audio-visual feedback. A control group of N=19 participants received gamma (40-43Hz) or sham EEG-IC. N=19 of the ISC participants could be classified as "responders" as they were able to increase SMR power during training sessions, while N=9 participants ("non-responders") were not able to increase SMR power. Rs-SMR power in responders before start of ISC was higher in widespread parieto-occipital areas than in non-responders. A discriminant analysis indicated that eyes-open rs-SMR power in a central brain region specifically predicted later ISC performance, but not an increase of SMR in the control group. Together, these findings indicate that rs-SMR power is a specific and easy-to-measure predictor of later ISC learning performance. The assessment of factors that influence the ability to regulate brain activity is of high relevance, as it could be used to avoid potentially frustrating and expensive EEG-IC training sessions for participants who have a low chance of success. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki
2017-08-01
Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Managing nurses through disciplinary power: a Foucauldian analysis of workplace violence.
St-Pierre, Isabelle; Holmes, Dave
2008-04-01
This paper describes discipline as a specific technique of power which constitutes, in our view, a form of institutional violence. The need to create and maintain safe and healthy work environments for healthcare professionals is well documented. Foucault's concept of disciplinary power was used to explore institutional violence from a critical perspective. Violence is identified as an important factor in the recruitment and retention of healthcare professionals. Given the shortage of such professionals, there is an urgent need to take a fresh look at their working environments and working conditions. Power, surveillance and disciplinary techniques are used at all levels of hospital management to control and contain both human resources and costs. By associating common workplace practices with institutional violence, employers who have a policy of zero tolerance toward workplace violence will need to re-examine their current ways of operating.
Study on dynamic performance of SOFC
NASA Astrophysics Data System (ADS)
Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai
2017-05-01
In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.
Leadership is associated with lower levels of stress
Sherman, Gary D.; Lee, Jooa J.; Cuddy, Amy J. C.; Renshon, Jonathan; Oveis, Christopher; Gross, James J.; Lerner, Jennifer S.
2012-01-01
As leaders ascend to more powerful positions in their groups, they face ever-increasing demands. As a result, there is a common perception that leaders have higher stress levels than nonleaders. However, if leaders also experience a heightened sense of control—a psychological factor known to have powerful stress-buffering effects—leadership should be associated with reduced stress levels. Using unique samples of real leaders, including military officers and government officials, we found that, compared with nonleaders, leaders had lower levels of the stress hormone cortisol and lower reports of anxiety (study 1). In study 2, leaders holding more powerful positions exhibited lower cortisol levels and less anxiety than leaders holding less powerful positions, a relationship explained significantly by their greater sense of control. Altogether, these findings reveal a clear relationship between leadership and stress, with leadership level being inversely related to stress. PMID:23012416
Thermal considerations in the use of solid state power amplifiers on the GOES spacecraft
NASA Technical Reports Server (NTRS)
Mallette, L.; Darby, S.; Baatz, M.; Ujihara, K.
1984-01-01
The use of solid state power amplifiers (SSPA) in satellites has been quite prevalent in several frequency bands. This trend is evidenced by the use of SSPAs at Hughes in the UHF band (Leasat/Syncom IV), S band (GOES), C band (Telstar), and SHF band. The junction temperature of the transistor is the driving requirement which determines the lifetime of the transistor, SSPA, and the payload. This temperature is determined by the transistor characteristics, use of the device, and mounting temperature of the SSPA. The temperature of the spacecraft in the area of the SSPA can be controlled by active or passive means. The various factors and interrelationships used to calculate and control the temperatures of SSPAs are described. The thermal design and calculation of junction temperatures are exemplified with the Geostationary Operational Environmental Satellite spacecraft.
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah
2015-12-30
Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.
Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.
Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran
2016-05-01
In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.
Molnár, András; Surányi, Andrea; Jakó, Mária; Nyári, Tibor; Németh, Gábor
2017-07-01
Development of intrauterine growth restriction (IUGR) can be traced back to maternal or fetal factors, but in many cases we find placental factors (reduced placental circulation) in the background. Our aim was to examine whether the reduced placental bloodperfusion and vascularity show any correlation with cesarean section frequency and the clinical outcome in IUGR pregnancies. The aim of the present study was also to use a properly calibrated and reproducible method for evaluating placental blood flow, that can later be incorporated into the routine examination. 254 women were recruited in our prospective case-control study. The 3 dimensional power Doppler (3DPD) ultrasound indices; vascularisation index (VI), flow index (FI) and vascularization flow index (VFI) were measured on each participant. Median VI was 3.7% (interquartile range [IQR] 3.2%-4.2%) in the IUGR group and 10.1% (IQR 8.6%-10.9%) in the control group (p = 0.001). Median FI value was 40.0 (IQR 39.7-42.5) in the IUGR group and 45.1 (IQR 44.1-53.1) in the control group (p = 0.012). Median VFI was 2.2 (IQR 2.1-2.4) in the IUGR group and 4.8 (IQR 4.4-5.3) in the control. The 3DPD indices may be useful for examining changes in circulation in IUGR pregnancies to characterize the underlying pathology. Orv Hetil. 2017; 158(26): 1008-1013.
[Spanish version of the Multidimensional health locus of control scale innursing students].
Tomás-Sábado, Joaquín; Montes-Hidalgo, Javier
2016-01-01
To determine the preliminary psychometric properties of the Spanish form of the Multidimensional Health Locus of Control Scale (MHLC), which consists of three subscales: (1) Internalitu, (2) Powerful other externality, and (3) Chance externality. It also aims to study the relationship that the internal/external health control beliefs has with self-esteem, self-efficacy and perceived competence in a sample of nursing undergraduates. An observational and cross-sectional study including 109 nursing students who completed an anonymous questionnaire containing the demographic variables and the Spanish versions of the MHLC, the Rosenberg Self-Esteem Scale, the General Self-Efficacy Scale, and the Perceived personal competence Scale. A Cronbach's alpha coefficient of 0.713 for Internality, 0.665 for Chance and 0.728 for Powerful other were obtained. The test-retest correlation for the 18 items of the MHLC was 0.866. Internality subscale was positively and significantly correlated with self-efficacy and competence. By contrast, chance externality has negative and significant correlations with self-esteem and competence. There are no significant gender differences in any of the subscales. Younger subjects show greater tendency to external attribution. Factor analysis confirms the three-factor hypothesis. The results suggest that the Spanish form of the MHLC has adequate construct validity and acceptable metric properties. Also, they evidence the relationship between the attribution of health-related internal control with the perceived well-being and confidence in their own skills and abilities. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Zhang, Weiqing; Liu, Hui; Jiang, Xiaolian; Wu, Dongmei; Tian, Yali
2014-01-01
Post-traumatic stress disorder is a common psychological maladaptation among adolescents after undergoing an earthquake. Knowledge about the prevalence and maintenance of post-traumatic stress disorder symptoms and the changes of its predictors over time can help medical providers assist adolescent survivors with mitigating long-term impacts. This study examined the changes in posttraumatic stress disorder symptoms and its relationship with coping skill and locus of control among adolescent earthquake survivors in China. The study used an observational longitudinal design. A total of 1420 adolescents were evaluated twice after the earthquake by using the Post-traumatic stress disorder Checklist-Civilian Version, The Internality, Powerful others and Chance scale and the Coping Styles Scale. The results indicated that the mean scores of posttraumatic stress disorder symptoms were decreased significantly and the positive rates of posttraumatic stress disorder symptoms also declined remarkably at 17 months compared to the 3 months post-earthquake. Internality locus of control and problem solving coping skill were effective resilient factors for the development and maintenance of posttraumatic stress disorder symptoms, while chance locus of control was a powerful risk factor of posttraumatic stress disorder symptoms as well as being female, being injured and property loss. Continuous screening is recommended to identify adolescent earthquake survivors with posttraumatic stress disorder symptoms. More attention should be paid to adolescent survivors who are prone to adopt passive coping strategies responding to trauma events and who own external causal attribution.
High-frequency high-voltage high-power DC-to-DC converters
NASA Astrophysics Data System (ADS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-07-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
High-frequency high-voltage high-power DC-to-DC converters
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-01-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
An integrated phenomic approach to multivariate allelic association
Medland, Sarah Elizabeth; Neale, Michael Churton
2010-01-01
The increased feasibility of genome-wide association has resulted in association becoming the primary method used to localize genetic variants that cause phenotypic variation. Much attention has been focused on the vast multiple testing problems arising from analyzing large numbers of single nucleotide polymorphisms. However, the inflation of experiment-wise type I error rates through testing numerous phenotypes has received less attention. Multivariate analyses can be used to detect both pleiotropic effects that influence a latent common factor, and monotropic effects that operate at a variable-specific levels, whilst controlling for non-independence between phenotypes. In this study, we present a maximum likelihood approach, which combines both latent and variable-specific tests and which may be used with either individual or family data. Simulation results indicate that in the presence of factor-level association, the combined multivariate (CMV) analysis approach performs well with a minimal loss of power as compared with a univariate analysis of a factor or sum score (SS). As the deviation between the pattern of allelic effects and the factor loadings increases, the power of univariate analyses of both factor and SSs decreases dramatically, whereas the power of the CMV approach is maintained. We show the utility of the approach by examining the association between dopamine receptor D2 TaqIA and the initiation of marijuana, tranquilizers and stimulants in data from the Add Health Study. Perl scripts that takes ped and dat files as input and produces Mx scripts and data for running the CMV approach can be downloaded from www.vipbg.vcu.edu/~sarahme/WriteMx. PMID:19707246
Design Considerations for Gun Propellant Climatic Storage Chambers.
1982-11-01
Schematic diagram of thermal element 5 4. Prototype Lhermal element 6 5. Power control circuit diagram 7 6. Power control module 7 7. Temperature...plates. Each plate is powered through a triac and temperature control circuit as shown in figure 5. Figure 6 is a photograph of an assembled power control...SHEATER PLATES Figure 5. Power control circuit diagram 4 f Figure 6. Power control module WSR.L-0295-TR -8- Figure 7. Temperature control module 9 -WSRL
Control voltage and power fluctuations when connecting wind farms
NASA Astrophysics Data System (ADS)
Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana
2015-12-01
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
NASA Astrophysics Data System (ADS)
Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory
2018-02-01
Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.
Guo, Xiaopeng; Ren, Dongfang; Guo, Xiaodan
2018-06-01
Recently, Chinese state environmental protection administration has brought out several PM10 reduction policies to control the coal consumption strictly and promote the adjustment of power structure. Under this new policy environment, a suitable analysis method is required to simulate the upcoming major shift of China's electric power structure. Firstly, a complete system dynamics model is built to simulate China's evolution path of power structure with constraints of PM10 reduction considering both technical and economical factors. Secondly, scenario analyses are conducted under different clean-power capacity growth rates to seek applicable policy guidance for PM10 reduction. The results suggest the following conclusions. (1) The proportion of thermal power installed capacity will decrease to 67% in 2018 with a dropping speed, and there will be an accelerated decline in 2023-2032. (2) The system dynamics model can effectively simulate the implementation of the policy, for example, the proportion of coal consumption in the forecast model is 63.3% (the accuracy rate is 95.2%), below policy target 65% in 2017. (3) China should promote clean power generation such as nuclear power to meet PM10 reduction target.
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
Wu, Hui; Yu, Shan-fa; Zhou, Wen-hui; Gu, Gui-zhen
2012-07-01
This study aimed to investigate the epidemiological characteristics and correlated factors of daily hassles among thermal power plant workers. A mass screening of daily hassles and correlated factors was conducted on 498 workers from a thermal power plant in Zhengzhou in July, 2008. The questionnaires included Daily Hassles Questionnaires, Work Roles Questionnaires, Job Content Questionnaires (Chinese version), Effort-Reward Imbalance (Chinese version), Work Locus of Control Scale and Type A Behavior Scale, with content covering demographic characters and occupational stress correlated factors among subjects. The daily hassles was divided into lower level and higher level according to scores, and the epidemiological characteristics and correlated factors of daily hassles were analyzed. A total of 446 qualified questionnaires were obtained, effective response rate was 89.6% (446/498). For respondents, the age was (36.96 ± 6.49) years old, working length of the current job was (12.05 ± 7.54) years, the daily hassles scores was (9.01 ± 2.50), and the prevalence rate of the higher level of daily hassles was 34.1% (152/446). The multiple non-conditional logistic regression analysis showed 5-14 years' working length of current job (OR = 0.451, 95%CI: 0.225 - 0.904), average income > 3000 yuan(OR = 0.372, 95%CI: 0.202 - 0.684), reward (OR = 0.557, 95%CI: 0.325 - 0.954) and coping strategy (OR = 0.552, 95%CI: 0.330 - 0.925) were negatively correlated with daily hassles, and shift-work (OR = 1.887, 95%CI: 1.108 - 3.215), effort (OR = 2.053, 95%CI: 1.198 - 3.519), psychological demand (OR = 1.797, 95%CI: 1.049 - 3.078), negative affectivity (OR = 3.421, 95%CI: 2.065 - 5.668) were positively correlated with daily hassles. The prevalence rate of the higher level of daily hassles was considerable high for thermal power plant workers. Its negative correlated factors included 5 - 14 years' working length of the current job, average income > 3000 yuan, reward and coping strategy and its positive corelated factors included shift-work, effort, psychological demand and negative affectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard
The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewablemore » energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.« less
Power and Precision in Confirmatory Factor Analytic Tests of Measurement Invariance
ERIC Educational Resources Information Center
Meade, Adam W.; Bauer, Daniel J.
2007-01-01
This study investigates the effects of sample size, factor overdetermination, and communality on the precision of factor loading estimates and the power of the likelihood ratio test of factorial invariance in multigroup confirmatory factor analysis. Although sample sizes are typically thought to be the primary determinant of precision and power,…
Power inverter implementing phase skipping control
Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa
2016-10-18
A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.
Scenarios for optimizing potato productivity in a lunar CELSS
NASA Technical Reports Server (NTRS)
Wheeler, R. M.; Morrow, R. C.; Tibbitts, T. W.; Bula, R. J.
1992-01-01
The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor.
NASA Astrophysics Data System (ADS)
Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.
Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).
Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam
NASA Astrophysics Data System (ADS)
Burnett, J.; Sagar, J.; Kennedy, O. W.; Warburton, P. A.; Fenton, J. C.
2017-07-01
We present low-temperature measurements of low-loss superconducting nanowire-embedded resonators in the low-power limit relevant for quantum circuits. The superconducting resonators are embedded with superconducting nanowires with widths down to 20 nm using a neon focused ion beam. In the low-power limit, we demonstrate an internal quality factor up to 3.9 ×105 at 300 mK [implying a two-level-system-limited quality factor up to 2 ×105 at 10 mK], not only significantly higher than in similar devices but also matching the state of the art of conventional Josephson-junction-embedded resonators. We also show a high sensitivity of the nanowire to stray infrared photons, which is controllable by suitable precautions to minimize stray photons in the sample environment. Our results suggest that there are excellent prospects for superconducting-nanowire-based quantum circuits.
Local Authorities Improving Life Chances: A Review of a New Approach to Raising Literacy Levels
ERIC Educational Resources Information Center
McCoy, Emily
2011-01-01
Public policy continues to grapple with the fact that the most powerful factor determining literacy levels--the home learning environment--lies outside of its control. Tickell's recent review of the Early Years Foundation Stage Curriculum has called for the early years curriculum to be recast as a partnership curriculum jointly owned by settings…
Long-term effects of psychosocial factors of home and work on biomarkers of stress.
Eller, Nanna Hurwitz; Kristiansen, Jesper; Hansen, Ase Marie
2011-02-01
The current study analyzed the relationship between psychosocial factors measured at baseline and heart rate variability (HRV) and salivary cortisol measured at baseline and again, six years later. In 2002 and 2008, measurements of HRV and salivary cortisol at three time points were obtained from 70 healthy participants (48 women and 22 men). The associations between the psychosocial factors measured in 2002 and the dependent variables, HRV and salivary cortisol measured in 2002 and 2008, were examined using a series of repeated measures ANCOVAs. The dependent variables were as follows: the logarithmically transformed levels of total power (LnTP), high frequency power (LnHF), the ratio between low and high frequency power (LnLF/HF) and salivary cortisol (LnCortisol). For women, high social status was associated with high LnTP, high LnHF, and low LnLF/HF. In work, lack of control was associated with low LnTP, and lack of support was associated with an increased LnLF/HF ratio. For men, high social status was associated with low LnTP, low LnHF and high LnCortisol. Greater number of hours spent doing housework was associated with both low LnLF/HF and low LnCortisol, whereas a large imbalance between effort and reward was associated with low LnTP and high LnCortisol. Despite the small sample size, this study demonstrated that psychosocial factors impact levels of activity in the allostatic systems. Copyright © 2010 Elsevier B.V. All rights reserved.
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
Microwave thermal radiation effects on skin tissues
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Song, Kyo D.; Lee, Uhn; Choi, Sang H.
2012-10-01
Microwave/RF energy has been used for wireless power transmission including many therapeutic applications, such as transurethral microwave therapy (TUMT). For safe uses of RF power, it is important to know how to deliver microwave energy on focused area and control the temperature changes not to drastically increase on adjacent areas. Graphical analysis of thermal loading factor is important to understand how to achieve effective transmission of microwave through the tissue. The loss mechanism while transmission often appears as thermal effects due to absorption of microwave, especially for materials such as human skin, muscles, and other organic parts including brain. In this paper, microwave thermal effects are investigated to measure temperatures, penetration depth through animal skins in terms of input power and various frequencies. This result will be compare with the case of human applications.
NASA Astrophysics Data System (ADS)
Verma, H. K.; Mafidar, P.
2013-09-01
In view of growing concern towards environment, power system engineers are forced to generate quality green energy. Hence the economic dispatch (ED) aims at the power generation to meet the load demand at minimum fuel cost with environmental and voltage constraints along with essential constraints on real and reactive power. The emission control which reduces the negative impact on environment is achieved by including the additional constraints in ED problem. Presently, the power system mostly operates near its stability limits, therefore with increased demand the system faces voltage problem. The bus voltages are brought within limit in the present work by placement of static var compensator (SVC) at weak bus which is identified from bus participation factor. The optimal size of SVC is determined by univariate search method. This paper presents the use of Teaching Learning based Optimization (TLBO) algorithm for voltage stable environment friendly ED problem with real and reactive power constraints. The computational effectiveness of TLBO is established through test results over particle swarm optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms for the ED problem.
Power throttling of collections of computing elements
Bellofatto, Ralph E [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Crumley, Paul G [Yorktown Heights, NY; Gara, Alan G [Mount Kidsco, NY; Giampapa, Mark E [Irvington, NY; Gooding,; Thomas, M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Megerian, Mark G [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY; Reed, Don D [Mantorville, MN; Swetz, Richard A [Mahopac, NY; Takken, Todd [Brewster, NY
2011-08-16
An apparatus and method for controlling power usage in a computer includes a plurality of computers communicating with a local control device, and a power source supplying power to the local control device and the computer. A plurality of sensors communicate with the computer for ascertaining power usage of the computer, and a system control device communicates with the computer for controlling power usage of the computer.
The Ames Power Monitoring System
NASA Technical Reports Server (NTRS)
Osetinsky, Leonid; Wang, David
2003-01-01
The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also provides power engineers and electricians with the information they need to plan modifications in advance and perform day-to-day maintenance of the ARC electric-power distribution system.
A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control.
Mirbozorgi, S Abdollah; Jia, Yaoyao; Canales, Daniel; Ghovanloo, Maysam
2016-10-01
A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Dimensionless factors for an alternating-current non-thermal arc plasma
NASA Astrophysics Data System (ADS)
Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min
2016-12-01
A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.
Adaptive control method for core power control in TRIGA Mark II reactor
NASA Astrophysics Data System (ADS)
Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd
2018-01-01
The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Conceptual study of a 250 kW planar SOFC system for CHP application
NASA Astrophysics Data System (ADS)
Fontell, E.; Kivisaari, T.; Christiansen, N.; Hansen, J.-B.; Pålsson, J.
In August 2002, Wärtsilä Corporation and Haldor Topsøe A/S entered into a co-operation agreement to start joint development program within the planar SOFC technology. The development program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with power outputs above 200 kW for distributed power generation with CHP and for marine applications. In this study, the product concept for a 250 kW natural gas-fuelled atmospheric SOFC plant has been studied. The process has been calculated and optimised for high electrical efficiency. In the calculations, system efficiencies more than 55-85% (electrical co-generation) have been reached. The necessary balance of plant (BoP) components have been identified and the concept for grid connection has been defined. The BoP includes fuel and air supply, anode re-circulation, start-up steam, purge gas, exhaust gas heat recovery, back-up power, power electronics and control system. Based on the analysed system and component information, a conceptual design and cost break down structure for the product have been made. The cost breakdown shows that the stack, system control and power electronics are the major cost factors, while the remaining BoP equipment stands for a minor share of the manufacturing cost. Finally, the feasibility of the SOFC plants has been compared to gas engines.
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...
Human factors engineering verification and validation for APR1400 computerized control room
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Y. C.; Moon, H. K.; Kim, J. H.
2006-07-01
This paper introduces the Advanced Power Reactor 1400 (APR1400) HFE V and V activities the Korea Hydro Nuclear Plant Co. LTD. (KHNP) has performed for the last 10 years and some of the lessons learned through these activities. The features of APR1400 main control room include large display panel, redundant compact workstations, computer-based procedure, and safety console. Several iterations of human factors evaluations have been performed from small scale proof of concept tests to large scale integrated system tests for identifying human engineering deficiencies in the human system interface design. Evaluations in the proof of concept test were focused onmore » checking the presence of any show stopper problems in the design concept. Later evaluations were mostly for finding design problems and for assuring the resolution of human factors issues of advanced control room. The results of design evaluations were useful not only for refining the control room design, but also for licensing the standard design. Several versions of APR1400 mock-ups with dynamic simulation models of currently operating Korea Standard Nuclear Plant (KSNP) have been used for the evaluations with the participation of operators from KSNP plants. (authors)« less
Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints
NASA Astrophysics Data System (ADS)
Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin
2017-05-01
Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...
Study of fuel cell thermal control systems for advanced missions.
NASA Technical Reports Server (NTRS)
Caputo, R. S.
1972-01-01
This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.
Sexual relationship power and depression among HIV-infected women in Rural Uganda.
Hatcher, Abigail M; Tsai, Alexander C; Kumbakumba, Elias; Dworkin, Shari L; Hunt, Peter W; Martin, Jeffrey N; Clark, Gina; Bangsberg, David R; Weiser, Sheri D
2012-01-01
Depression is associated with increased HIV transmission risk, increased morbidity, and higher risk of HIV-related death among HIV-infected women. Low sexual relationship power also contributes to HIV risk, but there is limited understanding of how it relates to mental health among HIV-infected women. Participants were 270 HIV-infected women from the Uganda AIDS Rural Treatment Outcomes study, a prospective cohort of individuals initiating antiretroviral therapy (ART) in Mbarara, Uganda. Our primary predictor was baseline sexual relationship power as measured by the Sexual Relationship Power Scale (SRPS). The primary outcome was depression severity, measured with the Hopkins Symptom Checklist (HSCL), and a secondary outcome was a functional scale for mental health status (MHS). Adjusted models controlled for socio-demographic factors, CD4 count, alcohol and tobacco use, baseline WHO stage 4 disease, social support, and duration of ART. The mean HSCL score was 1.34 and 23.7% of participants had HSCL scores consistent with probable depression (HSCL>1.75). Compared to participants with low SRPS scores, individuals with both moderate (coefficient b = -0.21; 95%CI, -0.36 to -0.07) and high power (b = -0.21; 95%CI, -0.36 to -0.06) reported decreased depressive symptomology. High SRPS scores halved the likelihood of women meeting criteria for probable depression (adjusted odds ratio = 0.44; 95%CI, 0.20 to 0.93). In lagged models, low SRPS predicted subsequent depression severity, but depression did not predict subsequent changes in SPRS. Results were similar for MHS, with lagged models showing SRPS predicts subsequent mental health, but not visa versa. Both Decision-Making Dominance and Relationship Control subscales of SRPS were associated with depression symptom severity. HIV-infected women with high sexual relationship power had lower depression and higher mental health status than women with low power. Interventions to improve equity in decision-making and control within dyadic partnerships are critical to prevent HIV transmission and to optimize mental health of HIV-infected women.
Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang
2015-08-01
This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.
Steinert, Tilman; Bohnet, Ulrich; Flammer, Erich; Lüchtenberg, Dietmar; Eisele, Frank
2009-09-01
Patients with dementia are most frequently affected by mechanical restraint in psychiatric hospitals, most frequently due to falls. There is evidence for beneficial effects of a training of power and balance on the frequency of falls in residential homes. An adapted training of power and balance was developed by specialists of training in sports. In 2007, 159 patients with dementia were trained. The frequency and duration of mechanical restraint was compared with a control group of a different hospital (n = 217) and the patients treated in the year before (n = 164). The percentage of patients with mechanical restraint and the mean duration of restraint per admission were significantly lower than in the control group. However, only a non-significant reduction could be achieved in comparison with the patients treated in the year before without an increase of falls. A considerable reduction of the use of mechanical restraint in patients with dementia is feasible. An unequivocal association with the training could not be confirmed due to other influencing factors.
Miu, Andrei C; Heilman, Renata M; Miclea, Mircea
2009-01-28
This study investigated heart rate variability (HRV) in healthy volunteers that were selected for extreme scores of trait anxiety (TA), during two opposite psychophysiological conditions of mental stress, and relaxation induced by autogenic training. R-R intervals, HF and LF powers, and LF/HF ratios were derived from short-term electrocardiographic recordings made during mental stress and relaxation by autogenic training, with respiratory rate and skin conductance being controlled for in all the analyses. The main finding was that high TA was associated with reduced R-R intervals and HF power across conditions. In comparison to mental stress, autogenic training increased HRV and facilitated the vagal control of the heart. There were no significant effects of TA or the psychophysiological conditions on LF power, or LF/HF ratio. These results support the view that TA, which is an important risk factor for anxiety disorders and predictor of cardiovascular morbidity and mortality, is associated with autonomic dysfunction that seems likely to play a pathogenetic role in the long term.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
The Marshall Center: Its place in NASA
NASA Technical Reports Server (NTRS)
1981-01-01
The organizational structure and facilities available at the Marshall Space Flight Center are described and the role of the Center in NASA program management is demonstrated in a review of the Center's past history and current development projects. Particular attention is given to space shuttle and the space transportation system; the preparation of experiments and management of Spacelab missions; and the development of the space telescope. Energy related activities discussed include the automatic guidance and control of the longwall shearing machine for coal extraction, systems for the solar heating and cooling of buildings, and the design of the solar power satellite. Products developed by Center personnel highlighted include the power factor controller to reduce electrical consumption by motors and the image enhancement process being used to restore early historical photographs. A free flying solar power source to increase mission duration of the orbiter and its payloads; techniques for the orbital assembly of large space structures; facilities for materials processing in space; the orbit transfer vehicle, solar electric propulsion systems; and the preparation of science and applications payloads are also described.
Control voltage and power fluctuations when connecting wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com
2015-12-23
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less
Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve
2016-02-01
New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to drive policy change and thereby accelerate access to new vector control tools. © The Author 2015. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bowen; Maroukis, Spencer D.; Lin, Yashen
2016-11-21
Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less
Pedersen, Camilla; Bräuner, Elvira V.; Rod, Naja H.; Albieri, Vanna; Andersen, Claus E.; Ulbak, Kaare; Hertel, Ole; Johansen, Christoffer; Schüz, Joachim; Raaschou-Nielsen, Ole
2014-01-01
We investigated whether there is an interaction between distance from residence at birth to nearest power line and domestic radon and traffic-related air pollution, respectively, in relation to childhood leukemia risk. Further, we investigated whether adjusting for potential confounders alters the association between distance to nearest power line and childhood leukemia. We included 1024 cases aged <15, diagnosed with leukemia during 1968–1991, from the Danish Cancer Registry and 2048 controls randomly selected from the Danish childhood population and individually matched by gender and year of birth. We used geographical information systems to determine the distance between residence at birth and the nearest 132–400 kV overhead power line. Concentrations of domestic radon and traffic-related air pollution (NOx at the front door) were estimated using validated models. We found a statistically significant interaction between distance to nearest power line and domestic radon regarding risk of childhood leukemia (p = 0.01) when using the median radon level as cut-off point but not when using the 75th percentile (p = 0.90). We found no evidence of an interaction between distance to nearest power line and traffic-related air pollution (p = 0.73). We found almost no change in the estimated association between distance to power line and risk of childhood leukemia when adjusting for socioeconomic status of the municipality, urbanization, maternal age, birth order, domestic radon and traffic-related air pollution. The statistically significant interaction between distance to nearest power line and domestic radon was based on few exposed cases and controls and sensitive to the choice of exposure categorization and might, therefore, be due to chance. PMID:25259740
Pedersen, Camilla; Bräuner, Elvira V; Rod, Naja H; Albieri, Vanna; Andersen, Claus E; Ulbak, Kaare; Hertel, Ole; Johansen, Christoffer; Schüz, Joachim; Raaschou-Nielsen, Ole
2014-01-01
We investigated whether there is an interaction between distance from residence at birth to nearest power line and domestic radon and traffic-related air pollution, respectively, in relation to childhood leukemia risk. Further, we investigated whether adjusting for potential confounders alters the association between distance to nearest power line and childhood leukemia. We included 1024 cases aged <15, diagnosed with leukemia during 1968-1991, from the Danish Cancer Registry and 2048 controls randomly selected from the Danish childhood population and individually matched by gender and year of birth. We used geographical information systems to determine the distance between residence at birth and the nearest 132-400 kV overhead power line. Concentrations of domestic radon and traffic-related air pollution (NOx at the front door) were estimated using validated models. We found a statistically significant interaction between distance to nearest power line and domestic radon regarding risk of childhood leukemia (p = 0.01) when using the median radon level as cut-off point but not when using the 75th percentile (p = 0.90). We found no evidence of an interaction between distance to nearest power line and traffic-related air pollution (p = 0.73). We found almost no change in the estimated association between distance to power line and risk of childhood leukemia when adjusting for socioeconomic status of the municipality, urbanization, maternal age, birth order, domestic radon and traffic-related air pollution. The statistically significant interaction between distance to nearest power line and domestic radon was based on few exposed cases and controls and sensitive to the choice of exposure categorization and might, therefore, be due to chance.
Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations
NASA Astrophysics Data System (ADS)
Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung
In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.
Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen
2017-09-01
In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.
HIF-1 and ventilatory acclimatization to chronic hypoxia
Powell, Frank L.; Fu, Zhenxing
2008-01-01
Ventilatory acclimatization to hypoxia (VAH) is a time-dependent increase in ventilation and ventilatory O2-sensitivity that involves plasticity in carotid body chemoreceptors and CNS respiratory centers. Hypoxia inducible factor-1α (HIF-1α) controls the expression of several genes that increase physiological O2 supply. Studies using transgenic mice show HIF-1α expression in the carotid bodies and CNS with chronic sustained and intermittent hypoxia is important for VAH. Other O2-sensitive transcription factors such as HIF-2α may be important for VAH by reducing metabolic O2 demands also. Specific gene targets of HIF-1α shown to be involved in VAH include erythropoietin, endothelin-1, neuronal nitric oxide synthase and tyrosine hydroxylase. Other HIF-1α targets that may be involved in VAH include vascular endothelial growth factor, heme oxygenase 1 and cytoglobin. Interactions between these multiple pathways and feedback control of HIF-1α expression from some of the targets support a complex and powerful role for HIF-1α in neural plasticity of physiological control circuits with chronic hypoxia. PMID:18708172
Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed
NASA Technical Reports Server (NTRS)
Mackin, Michael A.
1995-01-01
This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.
Reactor vessel annealing system
Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.
1991-01-01
A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).
48 CFR 19.101 - Explanation of terms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... has the power to control the other, or another concern controls or has the power to control both. In... franchise agreement are not considered in determining whether the franchisor controls or has the power to... indirectly control or have the power to control it. Control may be affirmative or negative and it is...
Kendrick, Denise; Stewart, Jane; Clacy, Rose; Coffey, Frank; Cooper, Nicola; Coupland, Carol; Hayes, Mike; McColl, Elaine; Reading, Richard; Sutton, Alex; M L Towner, Elizabeth; Craig Watson, Michael
2012-01-01
Background Childhood falls result in considerable morbidity, mortality and health service use. Despite this, little evidence exists on protective factors or effective falls prevention interventions in young children. Objectives To estimate ORs for three types of medically attended fall injuries in young children in relation to safety equipment, safety behaviours and hazard reduction and explore differential effects by child and family factors and injury severity. Design Three multicentre case–control studies in UK hospitals with validation of parental reported exposures using home observations. Cases are aged 0–4 years with a medically attended fall injury occurring at home, matched on age and sex with community controls. Children attending hospital for other types of injury will serve as unmatched hospital controls. Matched analyses will use conditional logistic regression to adjust for potential confounding variables. Unmatched analyses will use unconditional logistic regression, adjusted for age, sex, deprivation and distance from hospital in addition to other confounders. Each study requires 496 cases and 1984 controls to detect an OR of 0.7, with 80% power, 5% significance level, a correlation between cases and controls of 0.1 and a range of exposure prevalences. Main outcome measures Falls on stairs, on one level and from furniture. Discussion As the largest in the field to date, these case control studies will adjust for potential confounders, validate measures of exposure and investigate modifiable risk factors for specific falls injury mechanisms. Findings should enhance the evidence base for falls prevention for young children. PMID:22628151
Numerical System Solver Developed for the National Cycle Program
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1999-01-01
As part of the National Cycle Program (NCP), a powerful new numerical solver has been developed to support the simulation of aeropropulsion systems. This software uses a hierarchical object-oriented design. It can provide steady-state and time-dependent solutions to nonlinear and even discontinuous problems typically encountered when aircraft and spacecraft propulsion systems are simulated. It also can handle constrained solutions, in which one or more factors may limit the behavior of the engine system. Timedependent simulation capabilities include adaptive time-stepping and synchronization with digital control elements. The NCP solver is playing an important role in making the NCP a flexible, powerful, and reliable simulation package.
Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays
NASA Astrophysics Data System (ADS)
Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses
2017-11-01
For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.
NASA Technical Reports Server (NTRS)
Edler, H. G.
1978-01-01
Potential organizational options for a solar power satellite system (SPS) were investigated. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international); and cost effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives appeared to offer reasonable promise as potential options for SPS. A large number of key issues emerged as being factors which would influence the final selection process. Among these issues were a variety having to do with international law, international institutions, environmental controls, economics, operational flexibility, congressional policies, commercial-vs-governmental ownership, national dedication, and national and operational stategic issues.
Frequency control of wind turbine in power system
NASA Astrophysics Data System (ADS)
Xu, Huawei
2018-06-01
In order to improve the stability of the overall frequency of the power system, automatic power generation control and secondary frequency adjustment were applied. Automatic power generation control was introduced into power generation planning. A dual-fed wind generator power regulation model suitable for secondary frequency regulation was established. The results showed that this method satisfied the basic requirements of frequency regulation control of large-scale wind power access power systems and improved the stability and reliability of power system operation. Therefore, this system frequency control method and strategy is relatively simple. The effect is significant. The system frequency can quickly reach a steady state. It is worth applying and promoting.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
NASA Astrophysics Data System (ADS)
Bakhmutov, S.; Sizov, Y.; Kim, M.
2018-02-01
The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.
A unique power supply for the PEP II klystron at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassel, R.; Nguyen, M.N.
1997-07-01
Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitormore » configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA.« less
Cathode degradation and erosion in high pressure arc discharges
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Nakanishi, S.
1984-01-01
The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.
Ecosystem Services Flows: Why Stakeholders' Power Relationships Matter.
Felipe-Lucia, María R; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the "cascade" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services.
Cost analysis of a coal-fired power plant using the NPV method
NASA Astrophysics Data System (ADS)
Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.
2015-12-01
The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.
Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter
Felipe-Lucia, María R.; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A.
2015-01-01
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the “cascade” framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders’ interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders’ ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services. PMID:26201000