Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Power flow analysis of two coupled plates with arbitrary characteristics
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.
NASA Astrophysics Data System (ADS)
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Parallel processing methods for space based power systems
NASA Technical Reports Server (NTRS)
Berry, F. C.
1993-01-01
This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation
2014-02-01
Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be
Estimating the vibration level of an L-shaped beam using power flow techniques
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.
1986-01-01
The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.
Development of parallel algorithms for electrical power management in space applications
NASA Technical Reports Server (NTRS)
Berry, Frederick C.
1989-01-01
The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.
Transitioning of power flow in beam models with bends
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1990-01-01
The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A
2008-06-01
Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.
NASA Astrophysics Data System (ADS)
Telang, Aparna S.; Bedekar, P. P.
2017-09-01
Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.
Single-phase power distribution system power flow and fault analysis
NASA Technical Reports Server (NTRS)
Halpin, S. M.; Grigsby, L. L.
1992-01-01
Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostermann, Lars; Seidel, Christian
2015-03-10
The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less
TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5
L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...
2016-06-06
A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less
Analysis of large power systems
NASA Technical Reports Server (NTRS)
Dommel, H. W.
1975-01-01
Computer-oriented power systems analysis procedures in the electric utilities are surveyed. The growth of electric power systems is discussed along with the solution of sparse network equations, power flow, and stability studies.
Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer
NASA Technical Reports Server (NTRS)
Evans, D. G.
1973-01-01
The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.
Uehara, Mayuko; Takagi, Nobuyuki; Muraki, Satoshi; Yanase, Yosuke; Tabuchi, Masaki; Tachibana, Kazutoshi; Miyaki, Yasuko; Ito, Toshiro; Higami, Tetsuya
2015-12-01
Transit-time flow measurement (TTFM) parameters such as mean graft flow (MGF, ml/min), pulsatility index (PI) and diastolic filling (DF, %) have been extensively researched for internal mammary arterial or saphenous vein grafts. In our experience of using the right gastroepiploic arterial (GEA) graft for right coronary artery (RCA) grafting, we observed unique GEA graft flow waveforms. We analysed the GEA graft flow waveforms for their effectiveness in determining GEA graft patency by power spectral analysis. Forty-five patients underwent off-pump coronary artery bypass using the GEA graft for RCA grafting individually. The means of intraoperative MGF, PI and DF were compared between patent and non-patent grafts, postoperatively. Furthermore, the GEA flow data were output and analysed using power spectral analysis. Forty grafts were 'patent' and five were 'non-patent'. There were no significant differences in the mean TTFM parameters between the patent and non-patent grafts (MGF: 22 vs 8 ml/min, respectively, P = 0.068; PI: 3.5 vs 6.5, respectively, P = 0.155; DF: 63 vs 53%, respectively, P = 0.237). Results of the power spectral analysis presented clear differences; the power spectral density (PSD) of patent grafts presented high peaks at frequency levels of 1, 2 and 3 Hz, and the non-patent graft PSD presented high peaks that were not limited to these frequencies. The PSD had a sensitivity and specificity of 80 and 87.5%, respectively. Power spectral analysis of the GEA graft flow is useful to distinguish between non-patent and patent grafts intraoperatively. This should be used as a fourth parameter along with MGF, PI and DF. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.; Steinetz, B. M.
1995-01-01
A numerical analysis methodology and solutions of the interaction between the power stream and multiply-connected multi-cavity sealed secondary flow fields are presented. Flow solutions for a multi-cavity experimental rig were computed and compared with experimental data of Daniels and Johnson. The flow solutions illustrate the complex coupling between the main-path and the cavity flows as well as outline the flow thread that exists throughout the subplatform multiple cavities and seals. The analysis also shows that the de-coupled solutions on single cavities is inadequate. The present results show trends similar to the T-700 engine data that suggests the changes in the CDP seal altered the flow fields throughout the engine and affected the engine performance.
NASA Technical Reports Server (NTRS)
Schmit, Ryan
2010-01-01
To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
2014-12-22
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.
Power flow as a complement to statistical energy analysis and finite element analysis
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1989-01-01
An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Space station electrical power distribution analysis using a load flow approach
NASA Technical Reports Server (NTRS)
Emanuel, Ervin M.
1987-01-01
The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Intracycle angular velocity control of cross-flow turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven L.; Polagye, Brian
2017-08-01
Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.
Williams, P Stephen
2016-05-01
Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.
APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.
cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
A zonal method for modeling powered-lift aircraft flow fields
NASA Technical Reports Server (NTRS)
Roberts, D. W.
1989-01-01
A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.
2016-05-01
In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.
Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.
Telford, William G
2004-09-01
Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.
Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources
NASA Astrophysics Data System (ADS)
Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi
2017-01-01
Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.
Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.
Mechanical energy and power flow analysis of wheelchair use with different camber settings.
Huang, Yueh-Chu; Guo, Lan-Yuen; Tsai, Chung-Ying; Su, Fong-Chin
2013-04-01
It has been suggested that minimisation of energy cost is one of the primary determinants of wheelchair designs. Wheel camber is one important parameter related to wheelchair design and its angle may affect usability during manual propulsion. However, there is little available literature addressing the effect of wheel camber on the mechanical energy or power flow involved in manual wheelchair propulsion. Twelve normal subjects (mean age, 22.3 years; SD, 1.6 years) participated in this study. A video-tracking system and an instrumented wheel were used to collect 3D kinematic and kinetic data. Wheel camber of 0° and 15° was chosen to examine the difference between mechanical power and power flow of the upper extremity during manual wheelchair propulsion. The work calculated from power flow and the discrepancy between the mechanical work and power flow work of upper extremity had significantly greater values with increased camber. The upper arm had a larger active muscle power compared with that in the forearm and hand segments. While propelling the increased camber, the magnitude of both the proximal and distal joint power and proximal muscle power was increased in all three segments. While the propelling wheel with camber not only needs a greater energy cost but also there is greater energy loss.
Global analysis of a renewable micro hydro power generation plant
NASA Astrophysics Data System (ADS)
Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul
2017-12-01
Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.
Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G
2018-06-01
Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.
Stochastic methods for analysis of power flow in electric networks
NASA Astrophysics Data System (ADS)
1982-09-01
The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Statistical analysis of cascading failures in power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin
2010-12-01
We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yingying; Homer, Juliet S.; McDermott, Thomas E.
The purpose of this document is to summarize types of electric distribution system analyses along with their application and relative maturity. Particular emphasis is placed on analyses associated with distributed energy resources (DERs). Analyses are separated into the categories of power flow, power quality, fault analysis, dynamic analysis and market analysis. Studies associated with DERs are called out in a separate section.
Cost and performance model for redox flow batteries
NASA Astrophysics Data System (ADS)
Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2014-02-01
A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
1993-01-27
Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffey, R.B.; Rohatgi, U.S.
Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less
Challenges in reducing the computational time of QSTS simulations for distribution system analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
UEDGE Simulations for Power and Particle Flow Analysis of FRC Rocket
NASA Astrophysics Data System (ADS)
Zheng, Fred; Evans, Eugene S.; McGreivy, Nick; Kaptanoglu, Alan; Izacard, Olivier; Cohen, Samuel A.
2017-10-01
The field-reversed configuration (FRC) is under consideration for use in a direct fusion drive (DFD) rocket propulsion system for future space missions. To achieve a rocket configuration, the FRC is embedded within an asymmetric magnetic mirror, in which one end is closed and contains a gas box, and the other end is open and incorporates a magnetic nozzle. Neutral deuterium is injected into the gas box, and flows through the scrape-off layer (SOL) around the core plasma and out the magnetic nozzle, both cooling the core and serving as propellant. Previous studies have examined a range of operating conditions for the SOL of a DFD using UEDGE, a 2D fluid code; discrepancies on the order of 5% were found during the analysis of overall power balance. This work extends the analysis of the previously-studied SOL geometry by updating boundary conditions and conducting a detailed study of power and particle flows within the simulation with the goals of modeling electrical power generation instead of thrust and achieving higher specific impulse. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
NASA Astrophysics Data System (ADS)
Tilmant, Amaury; Marques, Guilherme
2016-04-01
Among the environmental impacts caused by dams, the alteration of flow regimes is one of the most critical to river ecosystems given its influence in long river reaches and its continuous pattern. Provided it is technically feasible, the reoperation of hydroelectric reservoir systems can, in principle, mitigate the impacts on degraded freshwater ecosystems by recovering some of the natural flow regime. The typical approach to implement hydropower-to-environment water transfers focuses on the reoperation of the dam located immediately upstream of the environmentally sensitive area, meaning that only one power station will bear the brunt of the benefits forgone for the power sector. By ignoring the contribution of upstream infrastructures to the alteration of the flow regime, the opportunity cost associated with the restoration of a flow regime is not equitably distributed among the power companies in the river basin, therefore slowing the establishment of environmental flow programs. Yet, there is no criterion, nor institutional mechanisms, to ensure a fair distribution of the opportunity cost among power stations. This paper addresses this issue by comparing four rules to redistribute the costs faced by the power sector when environmental flows must be implemented in a multireservoir system. The rules are based on the the installed capacity of the power plants, the live storage capacity of the reservoirs, the ratio between the incremental flows and the live storage capacity, and the extent of the storage services; that is, the volume of water effectively transferred by each reservoir. The analysis is carried out using the Parana River Basin (Brazil) as a case study.
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-10-14
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.
Piezoelectric Energy Harvesting in Internal Fluid Flow
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described.
NASA Astrophysics Data System (ADS)
Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.
2014-05-01
Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.
Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.
1975-09-01
Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references. (auth)
IR-drop analysis for validating power grids and standard cell architectures in sub-10nm node designs
NASA Astrophysics Data System (ADS)
Ban, Yongchan; Wang, Chenchen; Zeng, Jia; Kye, Jongwook
2017-03-01
Since chip performance and power are highly dependent on the operating voltage, the robust power distribution network (PDN) is of utmost importance in designs to provide with the reliable voltage without voltage (IR)-drop. However, rapid increase of parasitic resistance and capacitance (RC) in interconnects makes IR-drop much worse with technology scaling. This paper shows various IR-drop analyses in sub 10nm designs. The major objectives are to validate standard cell architectures, where different sizes of power/ground and metal tracks are validated, and to validate PDN architecture, where types of power hook-up approaches are evaluated with IR-drop calculation. To estimate IR-drops in 10nm and below technologies, we first prepare physically routed designs given standard cell libraries, where we use open RISC RTL, synthesize the CPU, and apply placement & routing with process-design kits (PDK). Then, static and dynamic IR-drop flows are set up with commercial tools. Using the IR-drop flow, we compare standard cell architectures, and analysis impacts on performance, power, and area (PPA) with the previous technology-node designs. With this IR-drop flow, we can optimize the best PDN structure against IR-drops as well as types of standard cell library.
POD Analysis of Jet-Plume/Afterbody-Wake Interaction
NASA Astrophysics Data System (ADS)
Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew
2009-11-01
The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.
NASA Technical Reports Server (NTRS)
1998-01-01
Under SBIR (Small Business Innovative Research) contracts with Lewis Research Center, Nektonics, Inc., developed coating process simulation tools, known as Nekton. This powerful simulation software is used specifically for the modeling and analysis of a wide range of coating flows including thin film coating analysis, polymer processing, and glass melt flows. Polaroid, Xerox, 3M, Dow Corning, Mead Paper, BASF, Mitsubishi, Chugai, and Dupont Imaging Systems are only a few of the companies that presently use Nekton.
NASA Astrophysics Data System (ADS)
Astashev, M. G.; Panfilov, D. I.; Seregin, D. A.; Chernyshev, A. A.
2017-12-01
The features of using the bridge voltage inverter in small-size stand-alone series controllers of power flows (PFSC) for overhead power transmission lines (OPTL) are examined. The basic processes in the converter during transient and steady state modes were analyzed. The basic relations for calculating the electromagnetic processes taking into account the energy loss in the circuit and without it were received. A simulation model is proposed of a converter that makes it possible to study its operating modes during the formation of reactance introduced into the overhead power transmission line. The results of simulation of operating modes of the PFSC are presented.
Flow Energy Piezoelectric Bimorph Nozzle Harvester
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe;
2014-01-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Flow energy piezoelectric bimorph nozzle harvester
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary
2014-04-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Fluid Flow Nozzle Energy Harvesters
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkenmeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-01-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements
NASA Astrophysics Data System (ADS)
Williams, P. A.; Hadler, J. A.; Cromer, C.; West, J.; Li, X.; Lehman, J. H.
2018-06-01
A primary-standard flowing-water optical power meter for measuring multi-kilowatt laser emission has been built and operated. The design and operational details of this primary standard are described, and a full uncertainty analysis is provided covering the measurement range from 1–10 kW with an expanded uncertainty of 1.2%. Validating measurements at 5 kW and 10 kW show agreement with other measurement techniques to within the measurement uncertainty. This work of the U.S. Government is not subject to U.S. copyright.
NASA Astrophysics Data System (ADS)
Zhang, Lucy; Yu, Feimi; Krane, Michael
2017-11-01
The control volume analysis of power flow during sustained phonation is performed using results of a fully-coupled aeroelastic-aeroacoustic simulation. The control volumes consist of the laryngeal region, and the larynx and the vocal tract. Two cases are considered: an effectively infinite length vocal tract, where sound produced in the larynx radiates away and is not reflected back, and a constant-area vocal tract of normal adult human dimensions, in which phonatory sound resonates before radiating from the mouth opening. In both cases the lungs are modeled to absorb all incident sound, while providing a constant volume flow toward the larynx. Control of the acoustic boundary conditions is accomplished using perfectly matched- layers, and flow from the lungs is provided by a source distribution near the entrance to the trachea region. For both cases the power flow for the larynx and larynx plus vocal tract control volumes are computed using the integral form of the mechanical energy equation, expanded to consider power exchanges between slightly compressible flow in the larynx and the acoustic fields in the vocal tract and trachea. The funding from NIH 2R01DC005642-10A1 is greatly acknowledged.
NASA Astrophysics Data System (ADS)
Shi, Shanbin
The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.
Load flow and state estimation algorithms for three-phase unbalanced power distribution systems
NASA Astrophysics Data System (ADS)
Madvesh, Chiranjeevi
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different IEEE test-feeders and the results obtained are justified.
Pressure Mapping and Efficiency Analysis of an EPPLER 857 Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Clark, Tristan
A conceptual energy ship is presented to provide renewable energy. The ship, driven by the wind, drags a hydrokinetic turbine through the water. The power generated is used to run electrolysis on board, taking the resultant hydrogen back to shore to be used as an energy source. The basin efficiency (Power/thrust*velocity) of the Hydrokinetic Turbine (HTK) plays a vital role in this process. In order to extract the maximum allowable power from the flow, the blades need to be optimized. The structural analysis of the blade is important, as the blade will undergo high pressure loads from the water. A procedure for analysis of a preliminary Hydrokinetic Turbine blade design is developed. The blade was designed by a non-optimized Blade Element Momentum Theory (BEMT) code. Six simulations were run, with varying mesh resolution, turbulence models, and flow region size. The procedure was developed that provides detailed explanation for the entire process, from geometry and mesh generation to post-processing analysis tools. The efficiency results from the simulations are used to study the mesh resolution, flow region size, and turbulence models. The results are compared to the BEMT model design targets. Static pressure maps are created that can be used for structural analysis of the blades.
Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.
2015-01-01
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
NASA Astrophysics Data System (ADS)
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
Reduced viscosity interpreted for fluid/gas mixtures
NASA Technical Reports Server (NTRS)
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Analysis of flow reversal test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.
A series of tests has been conducted to measure the dryout power associated with a flow transient whereby the coolant in a heated channel undergoes a change in flow direction. An analysis of the test was made with the aid of a system code, RELAP5. A dryout criterion was developed in terms of a time-averaged void fraction calculated by RELAP5 for the heated channel. The dryout criterion was also compared with several CHF correlations developed for the channel geometry.
A fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot cavity
NASA Astrophysics Data System (ADS)
Liu, Guigen; Sheng, Qiwen; Resende Lisboa Piassetta, Geraldo; Hou, Weilin; Han, Ming
2016-05-01
A hot-wire fiber-optic water flow sensor based on laser-heated silicon Fabry-Pérot interferometer (FPI) has been proposed and demonstrated in this paper. The operation of the sensor is based on the convective heat loss to water from a heated silicon FPI attached to the cleaved enface of a piece of single-mode fiber. The flow-induced change in the temperature is demodulated by the spectral shifts of the reflection fringes. An analytical model based on the FPI theory and heat transfer analysis has been developed for performance analysis. Numerical simulations based on finite element analysis have been conducted. The analytical and numerical results agree with each other in predicting the behavior of the sensor. Experiments have also been carried to demonstrate the sensing principle and verify the theoretical analysis. Investigations suggest that the sensitivity at low flow rates are much larger than that at high flow rates and the sensitivity can be easily improved by increasing the heating laser power. Experimental results show that an average sensitivity of 52.4 nm/(m/s) for the flow speed range of 1.5 mm/s to 12 mm/s was obtained with a heating power of ~12 mW, suggesting a resolution of ~1 μm/s assuming a wavelength resolution of 0.05 pm.
Dubelaar, G B; Gerritzen, P L; Beeker, A E; Jonker, R R; Tangen, K
1999-12-01
The high costs of microscopical determination and counting of phytoplankton often limit sampling frequencies below an acceptable level for the monitoring of dynamic ecosystems. Although having a limited discrimination power, flow cytometry allows the analysis of large numbers of samples to a level that is sufficient for many basic monitoring jobs. For this purpose, flow cytometers should not be restricted to research laboratories. We report here on the development of an in situ flow cytometer for autonomous operation inside a small moored buoy or on other platforms. Operational specifications served a wide range of applications in the aquatic field. Specific conditions had to be met with respect to the operation platform and autonomy. A small, battery-operated flow cytometer resulted, requiring no external sheath fluid supply. Because it was designed to operate in a buoy, we call it CytoBuoy. Sampling, analysis, and radio transmission of the data proceed automatically at user-defined intervals. A powerful feature is the acquisition and radio transmission of full detector pulse shapes of each particle. This provides valuable morphological information for particles larger than the 5-microm laser focus. CytoBuoy allows on-line in situ particle analysis, estimation of phytoplankton biomass, and discrimination between different phytoplankton groups. This will increase the applicability of flow cytometry in the field of environmental monitoring. Copyright 1999 Wiley-Liss, Inc.
Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet
NASA Astrophysics Data System (ADS)
Putra Adnan, F.; Hartono, Firman
2018-04-01
In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.
Gravity flow operated small electricity generator retrofit kit to flour mill industry.
Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara
2013-10-01
Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1992-01-01
The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.
Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel
NASA Astrophysics Data System (ADS)
Dewangan, Satish Kumar
2018-05-01
Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.
NASA Technical Reports Server (NTRS)
Mclallin, K. L.; Kofskey, M. G.; Civinskas, K. C.
1983-01-01
The performance of a variable-area stator, axial flow power turbine was determined in a cold-air component research rig for two inlet duct configurations. The two ducts were an interstage diffuser duct and an accelerated-flow inlet duct which produced stator inlet boundary layer flow blockages of 11 percent and 3 percent, respectively. Turbine blade total efficiency at design point was measured to be 5.3 percent greater with the accelerated-flow inlet duct installed due to the reduction in inlet blockage. Blade component measurements show that of this performance improvement, 35 percent occurred in the stator and 65 percent occurred in the rotor. Analysis of inlet duct internal flow using an Axisymmetric Diffuser Duct Code (ADD Code) were in substantial agreement with the test data.
Convective Array Cooling for a Solar Powered Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Dolce, James (Technical Monitor)
2003-01-01
A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.
The Azimuth Structure of Nuclear Collisions — I
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Kettler, David T.
We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.
Numerical analysis of radial inward flow turbine for CO2 based closed loop Brayton cycle
NASA Astrophysics Data System (ADS)
Kisan, Jadhav Amit; Govardhan, M.
2017-06-01
Last few decades have witnessed a phenomenal growth in the demand for power, which has driven the suppliers to find new sources of energy and increase the efficiency of power generation process. Power generation cycles are either steam based Rankine cycle or closed loop Brayton cycles providing an efficiency of 30 to 40%. An upcoming technology in this regard is the CO2 based Brayton cycle operating near the critical region which has applications in vast areas. Power generation of CO2 based Brayton cycle can vary from few kilowatts for waste heat recovery to hundreds of megawatts in sodium cooled fast reactors. A CO2 based Brayton cycle is being studied for power generation especially in mid-sized concentrated solar power plants by numerous research groups around the world. One of the main components of such a setting is its turbine. Simulating the flow conditions inside the turbine becomes very crucial in order to accurately predict the performance of the system. The flow inside radial inflow turbine is studied at various inlet temperatures and mass flow rates in order to predict the behavior of the turbine under various boundary conditions. The performance investigation of the turbine system is done on the basis of parameters such as total efficiency, pressure ratio, and power coefficient. Effect of different inlet stagnation temperature and exit mass flow rates on these parameters is also studied. Results obtained are encouraging for the use of CO2 as working fluid in Brayton cycle.
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Sample EP Flow Analysis of Severely Damaged Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werley, Kenneth Alan; McCown, Andrew William
These are slides for a presentation at the working group meeting of the WESC SREMP Software Product Integration Team on sample EP flow analysis of severely damaged networks. The following topics are covered: ERCOT EP Transmission Model; Zoomed in to Houston and Overlaying StreetAtlas; EMPACT Solve/Dispatch/Shedding Options; QACS BaseCase Power Flow Solution; 3 Substation Contingency; Gen. & Load/100 Optimal Dispatch; Dispatch Results; Shed Load for Low V; Network Damage Summary; Estimated Service Areas (Potential); Estimated Outage Areas (potential).
NASA Technical Reports Server (NTRS)
Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.
1999-01-01
OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain
NASA Astrophysics Data System (ADS)
Castellani, Francesco; Astolfi, Davide; Piccioni, Emanuele; Terzi, Ludovico
2015-06-01
Assessment and interpretation of the quality of wind farms power output is a non-trivial task, which poses at least three main challenges: reliable comprehension of free wind flow, which is stretched to the limit on very complex terrains, realistic model of how wake interactions resemble on the wind flow, awareness of the consequences on turbine control systems, including alignment patterns to the wind and, consequently, power output. The present work deals with an onshore wind farm in southern Italy, which has been a test case of IEA- Task 31 Wakebench project: 17 turbines, with 2.3 MW of rated power each, are sited on a very complex terrain. A cluster of machines is investigated through numerical and experimental methods: CFD is employed for simulating wind fields and power extraction, as well as wakes, are estimated through the Actuator Disc model. SCADA data mining techniques are employed for comparison between models and actual performances. The simulations are performed both on the real terrain and on flat terrain, in order to disentangle the effects of complex flow and wake effects. Attention is devoted to comparison between actual alignment patterns of the cluster of turbines and predicted flow deviation.
Sengupta
1998-08-01
BACKGROUND: Conventional indices could not define the pathogenesis of pre-eclampsia and its predictability. It has also not been possible to record these indices from the local uteroplacental system where the pathology lies. OBJECTIVE: To investigate the limitations of the currently available blood pressure-flow measuring indices and techniques commonly used in pregnancy.METHOD: Blood pressure and velocity profiles were obtained under various pathophysiological conditions for pregnant and non-pregnant animals and human subjects. The data were analysed using both conventional and computer-based spectral methods. RESULTS: Continuous monitoring of blood pressure and velocity together with their spectral analysis appeared to be a useful sensitive indicator in pregnancy beyond the commonly available conventional analytical method. In high-resistance flow such as in hypertension and in pre-eclampsia, the power amplitude was relatively low at low frequency. Power amplitude remained high at low frequency in normal low-resistance state of pregnancy. CONCLUSION: The results suggest the need to develop a highly sensitive instrumentation whereby any minute variation in mean arterial pressure that is of clinical significance can be measured. Alternatively, analytical advancement, such as use of power spectrum analysers, might prove to be useful and sensitive. Variability of heart rate is an important determinant of the underlying pathophysiology in pregnancy. It is concluded that the heart rate of pre-eclamptics and hypertensives has to increase in order to maintain a constant organic blood flow whereas in normal pregnancy bloow flow can rise even without an incrase in heart rate. Future research should be directed towards blood flow mapping, power spectral analysis and image processing of the blood pressure-flow profile obtained from local and systemic compartments under different pathophysiological conditions of pregnancy.
Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor
NASA Technical Reports Server (NTRS)
Lyon, William F., III
1991-01-01
Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.
Computer program for preliminary design analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1972-01-01
The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
NASA Technical Reports Server (NTRS)
1987-01-01
It was previously observed that an incident acoustic field on a wing with laminar flow can cause transition to turbulent flow if the fluctuating acoustic velocities are of sufficient amplitude and in the critical frequency range for an unstable laminar boundary layer. A section of a wing was modified with a natural laminar flow (NLF) glove to allow direct measurement of the effect of varying engine noise on the extent of laminar flow. The flight test program was completed in June, 1985. At each flight condition, the engine power was varied from about 2600 r/min (idle) to about 4500 r/min (maximum continuous power). The spectral data provides considerable insight into the influences of the various sound sources that contribute to the overall noise levels. Additional analysis will be required to assess the impact of these sources on boundary layer transition. These results demonstrate that substantial laminar flow on the wing of a transport configuration with wing-mounted engines can be obtained.
A Comprehensive Comparison of Current Operating Reserve Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong
Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less
NASA Astrophysics Data System (ADS)
Marconi, S.; Orfanelli, S.; Karagounis, M.; Hemperek, T.; Christiansen, J.; Placidi, P.
2017-02-01
A dedicated power analysis methodology, based on modern digital design tools and integrated with the VEPIX53 simulation framework developed within RD53 collaboration, is being used to guide vital choices for the design and optimization of the next generation ATLAS and CMS pixel chips and their critical serial powering circuit (shunt-LDO). Power consumption is studied at different stages of the design flow under different operating conditions. Significant effort is put into extensive investigations of dynamic power variations in relation with the decoupling seen by the powering network. Shunt-LDO simulations are also reported to prove the reliability at the system level.
NASA Astrophysics Data System (ADS)
Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep
2017-04-01
In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.
NASA Astrophysics Data System (ADS)
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow
NASA Astrophysics Data System (ADS)
Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy
2013-09-01
Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.
Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data
NASA Technical Reports Server (NTRS)
Sree, David
1992-01-01
Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
Continuation Power Flow Analysis for PV Integration Studies at Distribution Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiyu; Zhu, Xiangqi; Lubkeman, David L.
2017-10-30
This paper presents a method for conducting continuation power flow simulation on high-solar penetration distribution feeders. A load disaggregation method is developed to disaggregate the daily feeder load profiles collected in substations down to each load node, where the electricity consumption of residential houses and commercial buildings are modeled using actual data collected from single family houses and commercial buildings. This allows the modeling of power flow and voltage profile along a distribution feeder on a continuing fashion for a 24- hour period at minute-by-minute resolution. By separating the feeder into load zones based on the distance between the loadmore » node and the feeder head, we studied the impact of PV penetration on distribution grid operation in different seasons and under different weather conditions for different PV placements.« less
Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow
NASA Astrophysics Data System (ADS)
Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.
2005-04-01
Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
Analysis of a combined refrigerator-generator space power system
NASA Technical Reports Server (NTRS)
Klann, J. L.
1973-01-01
Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.
Mobility of power-law and Carreau fluids through fibrous media.
Shahsavari, Setareh; McKinley, Gareth H
2015-12-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied, with a focus on developing relationships for evaluating the effective fluid mobility. Three methods are used here: (i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, (ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and (iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number and the medium porosity, our results show that for porosities less than ɛ≃0.65, the dimensionless mobility becomes independent of the Carreau number and the mobility function exhibits power-law characteristics as a result of the high shear rates at the pore scale. We derive a suitable criterion for determining the flow regime and the transition from a constant viscosity Newtonian response to a power-law regime in terms of a new Carreau number rescaled with a dimensionless function which incorporates the medium porosity and the arrangement of fibers.
Performance analysis of a new hypersonic vitrector system.
Stanga, Paulo Eduardo; Pastor-Idoate, Salvador; Zambrano, Isaac; Carlin, Paul; McLeod, David
2017-01-01
To evaluate porcine vitreous flow and water flow rates in a new prototype hypersonic vitrectomy system compared to currently available pneumatic guillotine vitrectors (GVs) systems. Two vitrectors were tested, a prototype, ultrasound-powered, hypersonic vitrector (HV) and a GV. Porcine vitreous was obtained within 12 to 24 h of sacrifice and kept at 4°C. A vial of vitreous or water was placed on a precision balance and its weight measured before and after the use of each vitrector. Test parameters included changes in aspiration levels, vitrector gauge, cut rates for GVs, % ultrasound (US) power for HVs, and port size for HVs. Data was analysed using linear regression and t-tests. There was no difference in the total average mean water flow between the 25-gauge GV and the 25-gauge HV (t-test: P = 0.363); however, 25-gauge GV was superior (t-test: P < 0.001) in vitreous flow. The 23-gauge GV was only more efficient in water and vitreous removal than 23-gauge HV needle-1 (Port 0.0055) (t-test: P < 0.001). For HV, wall thickness and gauge had no effect on flow rates. Water and vitreous flows showed a direct correlation with increasing aspiration levels and % US power (p<0.05). The HV produced consistent water and vitreous flow rates across the range of US power and aspiration levels tested. Hypersonic vitrectomy may be a promising new alternative to the currently available guillotine-based technologies.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Gas-core reactor power transient analysis
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1972-01-01
The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.
Computational effects of inlet representation on powered hypersonic, airbreathing models
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
Computational results are presented to illustrate the powered aftbody effects of representing the scramjet inlet on a generic hypersonic vehicle with a fairing, to divert the external flow, as compared to an operating flow-through scramjet inlet. This study is pertinent to the ground testing of hypersonic, airbreathing models employing scramjet exhaust flow simulation in typical small-scale hypersonic wind tunnels. The comparison of aftbody effects due to inlet representation is well-suited for computational study, since small model size typically precludes the ability to ingest flow into the inlet and perform exhaust simulation at the same time. Two-dimensional analysis indicates that, although flowfield differences exist for the two types of inlet representations, little, if any, difference in surface aftbody characteristics is caused by fairing over the inlet.
Arc burst pattern analysis fault detection system
NASA Technical Reports Server (NTRS)
Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)
1997-01-01
A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.
2015-02-01
Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.
Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.
2018-01-01
This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954
Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor
NASA Astrophysics Data System (ADS)
Kojima, Takayuki; Mori, Hiroyuki
This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Chang, Ching-Fu; Shiau, Jenq-Tzong
2015-05-01
The full range of natural flow regime is essential for sustaining the riverine ecosystems and biodiversity, yet there are still limited tools available for assessment of flow regime alterations over a spectrum of temporal scales. Wavelet analysis has proven useful for detecting hydrologic alterations at multiple scales via the wavelet power spectrum (WPS) series. The existing approach based on the global WPS (GWPS) ratio tends to be dominated by the rare high-power flows so that alterations of the more frequent low-power flows are often underrepresented. We devise a new approach based on individual deviations between WPS (DWPS) that are root-mean-squared to yield the global DWPS (GDWPS). We test these two approaches on the three reaches of the Feitsui Reservoir system (Taiwan) that are subjected to different classes of anthropogenic interventions. The GDWPS reveal unique features that are not detected with the GWPS ratios. We also segregate the effects of individual subflow components on the overall flow regime alterations using the subflow GDWPS. The results show that the daily hydropeaking waves below the reservoir not only intensified the flow oscillations at daily scale but most significantly eliminated subweekly flow variability. Alterations of flow regime were most severe below the diversion weir, where the residual hydropeaking resulted in a maximum impact at daily scale while the postdiversion null flows led to large hydrologic alterations over submonthly scales. The smallest impacts below the confluence reveal that the hydrologic alterations at scales longer than 2 days were substantially mitigated with the joining of the unregulated tributary flows, whereas the daily-scale hydrologic alteration was retained because of the hydropeaking inherited from the reservoir releases. The proposed DWPS approach unravels for the first time the details of flow regime alterations at these intermediate scales that are overridden by the low-frequency high-power flows when the long-term averaged GWPS are used.
The flow of a power-law fluid in the near-wake of a flat plate
NASA Astrophysics Data System (ADS)
Zhou, Min; Ladeinde, Foluso; Bluestein, Danny
2006-08-01
The analysis of the near-wake flow downstream of a flat plate is reported in this paper for the case of a non-Newtonian (power-law) constitutive model. To our knowledge, the present paper is the first to address this problem, as previous work on near-wakes has been limited to the use of a Newtonian model. The motivation for this work comes from the biomedical engineering problem of blood flow around the bileaflet of a mechanical heart valve. In the present paper, the series method has been used to calculate the flow near the centerline of the wake, while an asymptotic method has been used for larger distances from the centerline. The effects of power-law inlet conditions on the wake flow are reported for various values of the power-law index n, within the range 0.7≤n ≤1.3. The present analysis has been successfully validated by comparing the results for n =1 to the near-wake results by Goldstein [Proc. Cambridge Philos. Soc. 26, 1 (1930)]. We generalized the equations for arbitrary values of n, without any special considerations for n =1. Therefore, the accurate results observed for n =1 validate our procedure as a whole. The first major finding is that a fluid with smaller n develops faster downstream, such that decreasing n leads to monotonically increasing velocities compared to fluids with large n values. Another finding is that the non-Newtonian effects become more significant as the downstream distance increases. Finally, these effects tend to be more pronounced in the vicinity of the wake centerline compared to larger y locations.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.
2018-02-13
Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.
Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less
Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W
2018-06-01
The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle
NASA Technical Reports Server (NTRS)
Hall, Eldon W
1944-01-01
A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.
Nano-composite insert in 1D waveguides for control of elastic power flow
NASA Astrophysics Data System (ADS)
Vignesh, P. S.; Mitra, Mira; Gopalakrishnan, S.
2007-01-01
In this paper, carbon nanotube embedded polymer composite/nano-composites are used to regulate power flow from its source to other parts of the structure. This is done by inserting nano-composite strips in the waveguides which are modelled here as isotropic Euler-Bernoulli beams with axial, transverse and rotational degrees of freedom. The power flow is due to wave propagation resulting from a high frequency broadband impulse load. The underlying concept is that the high stiffness of the insert reduces the wave transmission between different parts of the structures. The simulations are done using a wavelet based spectral finite element (WSFE) technique which is specially tailored for such high frequency wave propagation analysis. Numerical experiments are performed to illustrate the use of inserts in maintaining the power flow in a certain region of the structure below a given threshold value which may be specified depending on various applications. The effects of parameters such as the volume fraction of carbon nanotube (CNT) in the polymer, and the length and position of the inserts are also studied. These studies help in defining the optimal volume fraction of CNT and length of the insert for a specified structural configuration.
Small lasers in flow cytometry.
Telford, William G
2004-01-01
Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed.
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
Analysis of Mach number 0.8 turboprop slipstream wing/nacelle interactions
NASA Technical Reports Server (NTRS)
Welge, H. R.; Neuhart, D. H.; Dahlin, J. A.
1981-01-01
Data from wind tunnel tests of a powered propeller and nacelle mounted on a supercritical wing are analyzed. Installation of the nacelle significantly affected the wing flow and the flow on the upper surface of the wing is separated near the leading edge under powered conditions. Comparisons of various theories with the data indicated that the Neumann surface panel solution and the Jameson transonic solution gave results adequate for design purposes. A modified wing design was developed (Mod 3) which reduces the wing upper surface pressure coefficients and section lift coefficients at powered conditions to levels below those of the original wing without nacelle or power. A contoured over the wing nacelle that can be installed on the original wing without any appreciable interference to the wing upper surface pressure is described.
NASA Astrophysics Data System (ADS)
Shapovalov, V. M.
2018-05-01
The accuracy of the Ostwald-de Waele model in solving the problem of roll flow has been assessed by comparing with the "reference" solution for an Ellis fluid. As a result of the analysis, it has been shown that the model based on a power-law equation leads to substantial distortions of the flow pattern.
Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors
NASA Astrophysics Data System (ADS)
Karve, Atul A.
We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low-flow/high-power region and hence these points should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced and the frequency of 0.5Hz observed in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal kinetics equations results in growing nonlinear oscillations. Thus, we show that side-by-side out-of-phase growing power oscillations result due to the very important first harmonic mode effect and that the use of point kinetics, which fails to predict these growing oscillations, leads to dramatically nonconservative results. Finally, the effect of a simple recirculation loop model that we develop is studied by carrying out additional stability analyses and additional numerical simulations. It is shown that the loop has a stabilizing effect on certain points on the 100% rod line for time delays equal to integer multiples of the natural period of oscillation, whereas it has a destabilizing effect for half-integer multiples. However, for more practical time delays, it is determined that the overall effect generally is destabilizing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
1990-03-01
equation of the statistical energy analysis (SEA) using the procedure indicated in equation (13) [8, 9]. Similarly, one may state the quantities (. (X-)) and...CONGRESS ON ACOUSTICS, July 24-31 1986, Toronto, Canada, Paper D6-1. 5. CUSCHIERI, J.M., Power flow as a compliment to statistical energy analysis and...34Random response of identical one-dimensional subsystems", Journal of Sound and Vibration, 1980, Vol. 70, p. 343-353. 8. LYON, R.H., Statistical Energy Analysis of
1975-06-01
Conventional Hydroelectric and Pumped Storage Power XI- 49 2. Electric Power Demand XI- 53 3. Water Demand by Power Plants XI- 54 4. Fossil and Nuclear ...Systems and Temporary Evacuation XV- 32 12. Upstream Land Use and Agricultural Treatment XV- 32 13. Results and Criteria for Further Analysis XV- 33... resulted in record flows and significant flooding. The August, 1955, flood was a result of Hurricanes Connie and Diane. Northern New Jersey streams have had
Flow Field Analysis of Micromixer Powered by Ciliary Motion of Vorticella
NASA Astrophysics Data System (ADS)
Hayasaka, Yo; Nagai, Moeto; Matsumoto, Nobuyoshi; Kawashima, Takahiro; Shibata, Takayuki
We demonstrate the observation of a flow field generated by ciliary motion of Vorticella in a microfluidic chamber. We applied the property that Vorticella vibrates its cilia and create a flow field to a micromixer. The stability and mixing performance of Vorticella were measured by PIV (Particle Image Velocimetry). One cell of Vorticella mixed the half area of the microchamber. We revealed that the flow field of a single cell in a chamber was more stable than that of multiple cells.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Watson, E. C.
1976-01-01
The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.
Space shuttle booster multi-engine base flow analysis
NASA Technical Reports Server (NTRS)
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.
In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combinemore » performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.« less
Intercooler cooling-air weight flow and pressure drop for minimum drag loss
NASA Technical Reports Server (NTRS)
Reuter, J George; Valerino, Michael F
1944-01-01
An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.
Laser Powered Launch Vehicle Performance Analyses
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)
2001-01-01
The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.
A numerical analysis to evaluate Betz's Law for vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.
2016-09-01
The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki
Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density andmore » inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.« less
Mass transport enhancement in redox flow batteries with corrugated fluidic networks
NASA Astrophysics Data System (ADS)
Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos
2017-08-01
We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.
Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren
2017-05-01
Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.
Flow cytometry: basic principles and applications.
Adan, Aysun; Alizada, Günel; Kiraz, Yağmur; Baran, Yusuf; Nalbant, Ayten
2017-03-01
Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.
Microcomputer Applications in Interaction Analysis.
ERIC Educational Resources Information Center
Wadham, Rex A.
The Timed Interval Categorical Observation Recorder (TICOR), a portable, battery powered microcomputer designed to automate the collection of sequential and simultaneous behavioral observations and their associated durations, was developed to overcome problems in gathering subtle interaction analysis data characterized by sequential flow of…
Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha
2010-06-01
Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.
Energy loss analysis of an integrated space power distribution system
NASA Technical Reports Server (NTRS)
Kankam, M. D.; Ribeiro, P. F.
1992-01-01
The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.
Computer code for preliminary sizing analysis of axial-flow turbines
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
This mean diameter flow analysis uses a stage average velocity diagram as the basis for the computational efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last stage absolute and relative Mach numbers. An analysis is presented along with a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA-TN-D-6702. These modifications improve modeling rigor and extend code applicability.
NASA Technical Reports Server (NTRS)
Lang, A. L., Jr.
1971-01-01
Data presented in the appendices covers: (1) summary description of baseline power system; (2) revised thermal profile analysis; (3) design analysis of television monitor; (4) bioresearch module ground station support evaluation; (5) variable spin control analysis; and (6) bioresearch modules and work flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanham, R.; Vogt, W.G.; Mickle, M.H.
1986-01-01
This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.
Guangdong.Zhu@nrel.gov | 303-275-4497 Guangdong joined the Thermal Systems Group at NREL in 2010 and is working collectors is performed. He is also involved in optical and thermal modeling and economic analysis of solar , and presentations in the areas of multiphase flow, power generation systems, and solar thermal power
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
NASA Technical Reports Server (NTRS)
McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian
2003-01-01
The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott
2017-11-01
Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Alasdair; Thomsen, Edwin; Reed, David
2016-04-20
A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
NASA Astrophysics Data System (ADS)
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
Using Delft3D to Simulate Current Energy Conversion
NASA Astrophysics Data System (ADS)
James, S. C.; Chartrand, C.; Roberts, J.
2015-12-01
As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.
NASA Astrophysics Data System (ADS)
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
Steady state security assessment in deregulated power systems
NASA Astrophysics Data System (ADS)
Manjure, Durgesh Padmakar
Power system operations are undergoing changes, brought about primarily due to deregulation and subsequent restructuring of the power industry. The primary intention of the introduction of deregulation in power systems was to bring about competition and improved customer focus. The underlying motive was increased economic benefit. Present day power system analysis is much different than what it was earlier, essentially due to the transformation of the power industry from being cost-based to one that is price-based and due to open access of transmission networks to the various market participants. Power is now treated as a commodity and is traded in an open market. The resultant interdependence of the technical criteria and the economic considerations has only accentuated the need for accurate analysis in power systems. The main impetus in security analysis studies is on efficient assessment of the post-contingency status of the system, accuracy being of secondary consideration. In most cases, given the time frame involved, it is not feasible to run a complete AC load flow for determining the post-contingency state of the system. Quite often, it is not warranted as well, as an indication of the state of the system is desired rather than the exact quantification of the various state variables. With the inception of deregulation, transmission networks are subjected to a host of multilateral transactions, which would influence physical system quantities like real power flows, security margins and voltage levels. For efficient asset utilization and maximization of the revenue, more often than not, transmission networks are operated under stressed conditions, close to security limits. Therefore, a quantitative assessment of the extent to which each transaction adversely affects the transmission network is required. This needs to be done accurately as the feasibility of the power transactions and subsequent decisions (execution, curtailment, pricing) would depend upon the outcome of the analysis. Also considering the large number of transactions occurring in the power market, and the massive sizes of transmission networks, the need for efficient analysis techniques is further highlighted. Thus on the whole, for present-day power systems, security assessment has acquired predominant importance. The primary emphasis of the work done in this dissertation is on development of techniques for fast assessment of the state of the transmission network following credible contingencies in traditional and deregulated power systems. In addition, methodologies for optimal correction strategies in the event of violation of security limits are also proposed. The work done can be enumerated as: (1) development of fast methods to assess the state of the transmission network from the point of view of loading margin and power flows, following increased loading conditions and line outages; (2) development of a comprehensive scheme to assess the impact of bilateral transactions on the operating state of the network; (3) optimal rescheduling of generation and curtailable loads for relieving the system of congestion and simultaneously maximizing the security margins.
Uddameri, Venkatesh; Singaraju, Sreeram; Hernandez, E Annette
2018-02-21
Seasonal and cyclic trends in nutrient concentrations at four agricultural drainage ditches were assessed using a dataset generated from a multivariate, multiscale, multiyear water quality monitoring effort in the agriculturally dominant Lower Rio Grande Valley (LRGV) River Watershed in South Texas. An innovative bootstrap sampling-based power analysis procedure was developed to evaluate the ability of Mann-Whitney and Noether tests to discern trends and to guide future monitoring efforts. The Mann-Whitney U test was able to detect significant changes between summer and winter nutrient concentrations at sites with lower depths and unimpeded flows. Pollutant dilution, non-agricultural loadings, and in-channel flow structures (weirs) masked the effects of seasonality. The detection of cyclical trends using the Noether test was highest in the presence of vegetation mainly for total phosphorus and oxidized nitrogen (nitrite + nitrate) compared to dissolved phosphorus and reduced nitrogen (total Kjeldahl nitrogen-TKN). Prospective power analysis indicated that while increased monitoring can lead to higher statistical power, the effect size (i.e., the total number of trend sequences within a time-series) had a greater influence on the Noether test. Both Mann-Whitney and Noether tests provide complementary information on seasonal and cyclic behavior of pollutant concentrations and are affected by different processes. The results from these statistical tests when evaluated in the context of flow, vegetation, and in-channel hydraulic alterations can help guide future data collection and monitoring efforts. The study highlights the need for long-term monitoring of agricultural drainage ditches to properly discern seasonal and cyclical trends.
Laser absorption phenomena in flowing gas devices
NASA Technical Reports Server (NTRS)
Chapman, P. K.; Otis, J. H.
1976-01-01
A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. P-13346-001] Free Flow...: February 18, 2011. d. Submitted By: Free Flow Power Corporation (Free Flow Power), on behalf of its... Officer, Free Flow Power Corporation, 239 Causeway Street, Boston, MA 02114-2130; or at (978) 283-2822. i...
Mechanistic linkage of hydrologic regime to summer growth of age-0 Atlantic salmon
K.H. Nislow; A.J. Sepulveda; C.L. Folt
2004-01-01
Significant reductions in juvenile stream salmonid growth have been observed in association with low summer flow, but underlying mechanisms are poorly understood and predictive power is limited. We conducted a stage-specific analysis of the relationship between summer flow and the growth of age-0 Atlantic salmon Salmo salar in two rearing sites in...
Robust Fixed-Structure Control
1994-10-30
Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp
Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics
NASA Astrophysics Data System (ADS)
Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens
2017-03-01
The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.
NASA Astrophysics Data System (ADS)
Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.
2018-01-01
We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.
Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho
2010-06-01
The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.
Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.
Yan, Xiang; Yuan, Fuh-Gwo
2015-06-01
This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
Two-stage solar power tower cavity-receiver design and thermal performance analysis
NASA Astrophysics Data System (ADS)
Pang, Liping; Wang, Ting; Li, Ruihua; Yang, Yongping
2017-06-01
New type of two-stage solar power tower cavity-receiver is designed and a calculating procedure of radiation, convection and flow under the Gaussian heat flux is established so as to determine the piping layout and geometries in the receiver I and II and the heat flux distribution in different positions is obtained. Then the main thermal performance on water/steam temperature, steam quality, wall temperature along the typical tubes and pressure drop are specified according to the heat transfer and flow characteristics of two-phase flow. Meanwhile, a series of systematic design process is promoted and analysis on thermal performance of the two receivers is conducted. Results show that this type of two-stage cavity-receivers can minimize the size and reduce the mean temperature of receiver I while raise the average heat flux, thus increase the thermal efficiency of the two receivers; besides, the multiple serpentine tubes from header can make a more uniform distribution of the outlet parameters, preventing wall overheated.
On a solution of the nonlinear differential equation for transonic flow past a wave-shaped wall
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1952-01-01
The Prandtl-Busemann small-perturbation method is utilized to obtain the flow of a compressible fluid past an infinitely long wave-shaped wall. When the essential assumption for transonic flow (that all Mach numbers in the region of flow are nearly unity) is introduced, the expression for the velocity potential takes the form of a power series in the transonic similarity parameter. On the basis of this form of the solution, an attempt is made to solve the nonlinear differential equation for transonic flow past the wavy wall. The analysis utilized exhibits clearly the difficulties inherent in nonlinear-flow problems.
1984-12-14
VIj/D. tv, Response parameter, (I + 2 /D) ( VSt )-i; see Eq. (10). Z Cross flow displacement (m or ft). Y Cross flow displacement amplitude (mor ft). Y...pressure fluctuation spectra were increased for all values of a. The angular variation of the power spectral density (PSD) for case 12 (see Table 2) is...shedding was found. Spectral and statistical analysis indicated that different physical mecha- nisms take place at various angular positions on the
Hydraulic analysis and optimization design in Guri rehabilitation project
NASA Astrophysics Data System (ADS)
Cheng, H.; Zhou, L. J.; Gong, L.; Wang, Z. N.; Wen, Q.; Zhao, Y. Z.; Wang, Y. L.
2016-11-01
Recently Dongfang was awarded the contract for rehabilitation of 6 units in Guri power plant, the biggest hydro power project in Venezuela. The rehabilitation includes, but not limited to, the extension of output capacity by about 50% and enhancement of efficiency level. To achieve the targets the runner and the guide vanes will be replaced by the newly optimized designs. In addition, the out-of-date stay vanes with straight plate shape will be modified into proper profiles after considering the application feasibility in field. The runner and vane profiles were optimized by using state-of-the-art flow simulation techniques. And the hydraulic performances were confirmed by the following model tests. This paper describes the flow analysis during the optimization procedure and the comparison between various technical concepts.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Application of Effective Discharge Analysis to Environmental Flow Decision-Making.
McKay, S Kyle; Freeman, Mary C; Covich, Alan P
2016-06-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
NASA Astrophysics Data System (ADS)
Pan, Minqiang; Zhong, Yujian
2018-01-01
Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.
NASA Technical Reports Server (NTRS)
Matson, D. L.; Ransford, G. A.; Johnson, T. V.
1981-01-01
The existing ground-based measurements of Io's thermal emission at infrared wavelengths of 8.4, 10.6, and 21 microns have been reexamined. Present in these data is the signature of hot spots, presumably similar to the hot spots seen by the IRIS experiment on Voyager. It is possible to extract from these data the total amount of power radiated. Since the hot spots are believed to be a result of deep-seated activity in Io and since the remainder of Io's surface is an extraordinarily poor thermal conductor, the power radiated by the hot spots is essentially the total heat flow. The analysis yields a heat flow of 2 + or - 1 W/sq m. This value is tremendously large in comparison to the average heat flow of the earth (0.06 W/sq m) and the moon (0.02 W/sq m), but is characteristic of active geothermal areas on the earth. A heat flow this large requires that the interior of Io be at least partially molten on a global scale.
Turbine Design for Energy Extraction from Dust Devils
NASA Astrophysics Data System (ADS)
Malaya, Nicholas; Moser, Robert
2016-11-01
Columnar vortices ("Dust-Devils") arise naturally in the atmosphere, over a wide range of scales in many different locations across the Earth, as well as on Mars. A new energy harvesting approach makes use of this ubiquitous process by creating and anchoring the vortices artificially and extracting energy from them. However, any analysis of the power that can be extracted is complicated by the presence of considerable vertical and azimuthal flow in the vortex, and so the design considerations are different from those for a classical wind turbine. This talk presents a modeling approach to estimate the upper limit on the power that could be extracted from such a flow. This method is based on the actuator disk model common to turbine design, but with generalized drag polars permitting exploration of a broader design space. This model can be fully coupled to the flow, which ensures the results do not violate any Betz-like considerations that might similarly arise in an analysis of frozen flow fields. The results of this model demonstrate a limit on how much of the energy can be extracted before disrupting the flow so greatly that the vortex cannot be maintained. This work supported by the Department of Energy [ARPA-E] un- der Award Number [DE-FOA-0000670].
NASA Astrophysics Data System (ADS)
Yoo, Yeon-Jong
The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12817-002, Project No. 14083-000] Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice Announcing Filing... priority is as follows: 1. Free Flow Power Corporation; Project No. 12817-002. 2. Northland Power...
LOFT L2-3 blowdown experiment safety analyses D, E, and G; LOCA analyses H, K, K1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, J.L.; Keeler, C.D.; Saukkoriipi, L.O.
1978-12-01
Three calculations using conservative off-nominal conditions and evaluation model options were made using RELAP4/MOD5 for blowdown-refill and RELAP4/MOD6 for reflood for Loss-of-Fluid Test Experiment L2-3 to support the experiment safety analysis effort. The three analyses are as follows: Analysis D: Loss of commercial power during Experiment L2-3; Analysis E: Hot leg quick-opening blowdown valve (QOBV) does not open during Experiment L2-3; and Analysis G: Cold leg QOBV does not open during Experiment L2-3. In addition, the results of three LOFT loss-of-coolant accident (LOCA) analyses using a power of 56.1 MW and a primary coolant system flow rate of 3.6 millionmore » 1bm/hr are presented: Analysis H: Intact loop 200% hot leg break; emergency core cooling (ECC) system B unavailable; Analysis K: Pressurizer relief valve stuck in open position; ECC system B unavailable; and Analysis K1: Same as analysis K, but using a primary coolant system flow rate of 1.92 million 1bm/hr (L2-4 pre-LOCE flow rate). For analysis D, the maximum cladding temperature reached was 1762/sup 0/F, 22 sec into reflood. In analyses E and G, the blowdowns were slower due to one of the QOBVs not functioning. The maximum cladding temperature reached in analysis E was 1700/sup 0/F, 64.7 sec into reflood; for analysis G, it was 1300/sup 0/F at the start of reflood. For analysis H, the maximum cladding temperature reached was 1825/sup 0/F, 0.01 sec into reflood. Analysis K was a very slow blowdown, and the cladding temperatures followed the saturation temperature of the system. The results of analysis K1 was nearly identical to analysis K; system depressurization was not affected by the primary coolant system flow rate.« less
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis
NASA Astrophysics Data System (ADS)
Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea
2018-04-01
The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water flows, the study compares the steady flow depth profiles predicted by approximated models with those of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the approximated models is assessed by computing the average, along the channel length, of the errors, for several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error equal to 5%, the applicability conditions of the two approximations have been individuated for several values of the power-law exponent, showing a crucial role of the rheology. The comparison with the clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not properly accounted for.
78 FR 33400 - Free Flow Power Corporation; Notice Soliciting Scoping Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 13346-003] Free Flow Power... Major License. b. Project No.: P-13346-003. c. Date filed: December 3, 2012. d. Applicant: Free Flow Power Corporation (Free Flow Power), on behalf of its subsidiary PayneBridge, LLC. e. Name of Project...
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Solomon, Laura
2017-11-01
The simplistic design, fuel independence, and robustness of Stirling convertors makes them the ideal choice for use in solar power and combined heat and power (CHP) applications. A lack of moving parts and the use of novel flexure bearings allows free-piston type Stirling engines to run in excess of ten years without degradation or maintenance. The key component to their overall efficiency is the regenerator. While a foil type regenerator outperforms a sintered random fiber regenerator, limitation in manufacturing and keeping uniform spacing between the foils has limited their overall use. However, with the advent of additive manufacturing, a robust foil type regenerator can be cheaply manufactured without traditional limitations. Currently, a CFD analysis of the oscillating internal flow within the novel design was conducted to evaluate the flow loses within the system. Particularly the pressure drop across the regenerator in comparison to a traditionally used random fiber regenerator. Additionally, the heat transfer and flow over the tubular heater hear was evaluated. The results of the investigation will be used to optimize the operation of the next generation of additively manufactured Stirling convertors. This research was supported by ARPA-E and West Virginia University.
NASA Astrophysics Data System (ADS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku
2014-06-01
As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.
NASA Astrophysics Data System (ADS)
Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu
2017-08-01
In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.
Spectral indices of cardiovascular adaptations to short-term simulated microgravity exposure
NASA Technical Reports Server (NTRS)
Patwardhan, A. R.; Evans, J. M.; Berk, M.; Grande, K. J.; Charles, J. B.; Knapp, C. F.
1995-01-01
We investigated the effects of exposure to microgravity on the baseline autonomic balance in cardiovascular regulation using spectral analysis of cardiovascular variables measured during supine rest. Heart rate, arterial pressure, radial flow, thoracic fluid impedance and central venous pressure were recorded from nine volunteers before and after simulated microgravity, produced by 20 hours of 6 degrees head down bedrest plus furosemide. Spectral powers increased after simulated microgravity in the low frequency region (centered at about 0.03 Hz) in arterial pressure, heart rate and radial flow, and decreased in the respiratory frequency region (centered at about 0.25 Hz) in heart rate. Reduced heart rate power in the respiratory frequency region indicates reduced parasympathetic influence on the heart. A concurrent increase in the low frequency power in arterial pressure, heart rate, and radial flow indicates increased sympathetic influence. These results suggest that the baseline autonomic balance in cardiovascular regulation is shifted towards increased sympathetic and decreased parasympathetic influence after exposure to short-term simulated microgravity.
Space Shuttle Main Engine Off-Nominal Low Power Level Operation
NASA Technical Reports Server (NTRS)
Bradley, Michael
1997-01-01
This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, M. H.
1980-01-01
The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less
Investigation of the interference effects of mixed flow long duct nacelles on a DC-10 wing
NASA Technical Reports Server (NTRS)
Patel, S. P.; Donelson, J. E.
1982-01-01
Wind tunnel test results utilizing a 4.7 percent scale semispan model in the 11 foot transonic wind tunnel are presented. A low drag long duct nacelle installation for the DC-10 jet transport was developed. A long duct nacelle representative of a CF6-50 mixed flow configuration was investigated on the DC-10-30. The results showed that the long duct nacelle installation located in the same position as the current short duct nacelle and with the current production symmetrical pylon is a relatively low risk installation for the DC-10 aircraft. Tuft observations and analytical boundary layer analysis confirmed that the flow on the nacelle afterbody was attached. A small pylon fairing was evaluated and found to reduce channel peak suction pressures, which resulted in a small drag improvement. The test also confirmed that the optimum nacelle incidence angle is the same as for the short duct nacelle, thus the same engine mount as for the production short duct nacelle can be used for the long duct nacelle installation. Comparison of the inboard wing pylon nacelle channel pressure distributions, with flow through and powered long duct nacelles showed that the power effects did not change the flow mechanism; hence, power effects can be considered negligible.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
NASA Astrophysics Data System (ADS)
Ma, Libin; Ren, Jianxing
2018-01-01
Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.
Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia
2012-01-01
An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.
A Model of Small Capacity Power Plant in Tateli Village, North Sulawesi
NASA Astrophysics Data System (ADS)
Sangari, F. J.; Rompas, P. T. D.
2017-03-01
The electricity supply in North Sulawesi is still very limited so ubiquitous electric current outage. It makes rural communities have problems in life because most uses electrical energy. One of the solutions is a model of power plants to supply electricity in Tateli village, Minahasa, North Sulawesi, Indonesia. The objective of this research is to get the model that generate electrical energy for household needs through power plant that using a model of Picohydro with cross flow turbine in Tateli village. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of research, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design model of cross flow turbines used in pico-hydro hydropower installations is connected to a generator to produce electrical energy maximum of 3.29 kW for household needs. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia to be followed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13703-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13704-002] Free Flow Power.... c. Date Filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... Feldman, Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13702-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project... President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13701-002] Free Flow Power.... c. Date filed: November 13, 2013. d. Applicant: Free Flow Power Missouri 2, LLC. e. Name of Project..., Vice President of Project Development, Free Flow Power Corporation, 239 Causeway Street, Suite 300...
NASA Astrophysics Data System (ADS)
Su, Yi; Wang, Feifeng; Lu, Yufeng; Huang, Huimin; Xia, Xiaofei
2017-09-01
This paper is based on affine function equation of the grid and OPF problem, discusses the equivalent of some inequality constraints variables optimizing. Further, we propose the model of injection current and set up the constraint sensitivity index of affine characteristics. The index can be used to identify the central point voltage and effective inequality of the system automatically. And then we can know how to compensate reactive power of the corresponding generator node and control the voltage to ensure the quality of the system voltage. When checking the effective inequalities we introduce cross-solving method of power flow. This provide a different idea for solving the power flow. The paper uses the results of the IEEE5 node examples to illustrate the validity and practicality of the proposed method.
The Effect of Laminar Flow on Rotor Hover Performance
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
40 CFR 91.301 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this part 91. (b) Exhaust gases are sampled while the test engine is operated using a steady state test... analysis determining concentration of pollutant, exhaust volume, the fuel flow, and the power output during...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.
2014-11-15
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System (SEPS) computer program is considered in terms of the program manual, programmer guide, and program utilization. The main objective is to provide the information necessary to interpret and use the routines comprising the SEPS program. Subroutine descriptions including the name, purpose, method, variable definitions, and logic flow are presented.
Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Lockard, David P.; Luo, Li-Shi; Singer, Bart A.; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A careful comparison of the performance of a commercially available Lattice-Boltzmann Equation solver (Power-FLOW) was made with a conventional, block-structured computational fluid-dynamics code (CFL3D) for the flow over a two-dimensional NACA-0012 airfoil. The results suggest that the version of PowerFLOW used in the investigation produced solutions with large errors in the computed flow field; these errors are attributed to inadequate resolution of the boundary layer for reasons related to grid resolution and primitive turbulence modeling. The requirement of square grid cells in the PowerFLOW calculations limited the number of points that could be used to span the boundary layer on the wing and still keep the computation size small enough to fit on the available computers. Although not discussed in detail, disappointing results were also obtained with PowerFLOW for a cavity flow and for the flow around a generic helicopter configuration.
NASA Technical Reports Server (NTRS)
Helms, V. T., III; Bradley, P. F.
1984-01-01
Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.
Steinert, Roger F; Schafer, Mark E
2006-02-01
To evaluate and compare ultrasonic turbulence created by conventional and micropulse ultrasound technology. Sonora Medical Systems, Longmont, Colorado, USA. A high-resolution digital ultrasound probe imaged the zone around a phacoemulsification tip. Doppler analysis allowed determination of flow. The fluid velocity was measured at 4 levels of ultrasound power at a constant flow, comparing the ultrasonic conditions of continuous energy to WhiteStar micropulses. In addition to the normal baseline irrigation and aspiration, fluid movement was detected directly below the phaco tip, produced by a nonlinear effect known as acoustic streaming. Acoustic streaming increased with increased phacoemulsification power for both conditions. At each of the 4 levels of power, fluid velocity away from the tip was less with micropulse technology than with continuous phacoemulsification. The demonstrated decrease in acoustic streaming flow away from the phaco tip with Sovereign WhiteStar micropulse technology compared to conventional ultrasound provides an objective explanation for clinical observations of increased stability of nuclear fragments at the tip and less turbulence in the anterior chamber during phacoemulsification. This methodology can be used to examine and compare fluid flow and turbulence under a variety of clinically relevant conditions.
Energy distributions in rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1989-01-01
A hypothesis proposed by Nefske and Sung (1987) that the mechanical energy flow in acoustic/structural systems can be modeled using a thermal energy flow analogy was tested for both longitudinal vibration in rods and transverse flexural vibrations in beams. It was found that the rod behaves according to the energy flow analogy. However, the beam solutions behaved significantly differently than predicted by the thermal analogy, unless spatially averaged energy and power flow were considered. Otherwise, the beam analysis is restricted to frequencies where the near-field terms in the displacement solution are negligible over most of the beam.
Overview of NASA supported Stirling thermodynamic loss research
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Geng, Steven M.
1992-01-01
NASA is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooling and heat pump applications. The research results are reviewed. Much was learned about oscillating flow hydrodynamics, including laminar/turbulent transition, and tabulated data was documented for further analysis. Now, with a better understanding of the oscillating flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
NASA Astrophysics Data System (ADS)
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
Analytical Methods for Interconnection | Distributed Generation
; ANALYSIS Program Lead Kristen.Ardani@nrel.gov 303-384-4641 Accurately and quickly defining the effects of designed to accommodate voltage rises, bi-directional power flows, and other effects caused by distributed
Power formula for open-channel flow resistance
Chen, Cheng-lung
1988-01-01
This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.
2016-05-01
To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine efficiency. However negative angle of attack decreases when inlet swirl is anti-clockwise and efficiency of low pressure turbine can be increased by 3% compared to inlet condition of clockwise swirl. Consequently flow simulation and analysis are able to aid in figuring out interaction mechanism of turbine system and optimizing turbine system design.
The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Buraas, E. M.; Renshaw, C. E.
2015-01-01
Geomorphologists have long studied the impacts of extreme floods, yet the association between the magnitude of flow parameters (discharge, velocity, shear stress, or stream power) and resulting geomorphic effectiveness remains vague and non-deterministic. Attempts have been made to include flow duration and total expenditure of stream power, in combination with peak unit stream power, as important variables, but there has been minimal exploration of this hydraulic combination. Taking advantage of Tropical Storm Irene's rapid track through eastern Vermont (USA) in late summer 2011, this paper presents the array of geomorphic responses to a short duration (time to peak of < 8 h) but high magnitude flood that was the twentieth century flood of record for numerous watersheds. We present herein the geomorphic imprint of Tropical Storm Irene flooding within a larger context of fluvial theory concerning the role of, and trade-off between, the magnitude of energy expenditure during a flood and its duration. Focusing on a detailed field effort within the 187-km2 Saxtons River basin in southeastern VT, augmented by select sites along the adjacent lower gradient Williams River (291-km2), we elucidate (1) the geomorphic effects of a short duration flood in a humid, well-vegetated landscape; (2) the relationship between geomorphic response and (a) peak stream power, (b) total stream power, and (c) flow duration of stream power above a critical threshold; and (3) the spatial variation of geomorphic effects relative to reach-scale geologic and geomorphic controls. Flooding associated with Tropical Storm Irene ranged from the 1000 year recurrence interval (RI) flood (based on Weibull flood frequency analysis) to the 300 year RI flood (log Pearson Type III). Discharges spawned a peak unit stream power of 712 W/m2 (Saxtons River) and 361 W/m2 (Williams River), with total energy expenditure throughout the event of ~ 16,000 × 103 and 15,000 × 103 J, respectively. For the Saxtons River, channel widening was spatially infrequent and limited in magnitude; however, other geomorphic effects were profound (1) the entrainment, transport, and deposition of extremely coarse material; (2) stripping of floodplain surfaces; (3) channel avulsions and incision into Pleistocene-aged material; and (4) deposition of coarse material across floodplains. Based on our extensive field data and hydrologic/hydraulic analyses, we contend that short duration, high energy flows can have profound sedimentological effects but have limited erosive, channel widening impacts. Gravel entrainment and deposition of a catastrophic nature can certainly occur under these flow regimes, but the impacts of these extreme flows on channel geometry may have limited expression.
[Analysis of hydrodynamics parameters of runoff erosion and sediment-yielding on unpaved road].
Huang, Peng-Fei; Wang, Wen-Long; Luo, Ting; Wang, Zhen; Wang, Zheng-Li; Li, Ren
2013-02-01
By the method of field runoff washout experiment, a simulation study was conducted on the relationships between the soil detachment rate and the hydrodynamic parameters on unpaved road, and the related quantitative formulas were established. Under the conditions of different flow discharges and road gradients, the averaged soil detachment rate increased with increasing flow discharge and road gradient, and the relationships between them could be described by a power function. As compared with road gradient, flow discharge had greater effects on the soil detachment rate. The soil detachment rate had a power relation with water flow velocity and runoff kinetic energy, and the runoff kinetic energy was of importance to the soil detachment rate. The soil detachment rate was linearly correlated with the unit runoff kinetic energy. The averaged soil erodibility was 0.120 g m-1.J-F-1, and the averaged critical unit runoff kinetic energy was 2.875 g.m-1.J-1. Flow discharge, road gradient, and unit runoff kinetic energy could be used to accurately describe the soil erosion process and calculate the soil erosion rate on unpaved road.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
Computational analysis of a multistage axial compressor
NASA Astrophysics Data System (ADS)
Mamidoju, Chaithanya
Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2016-03-01
The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheatley, P.D.; Wagner, K.C.
The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
NASA Astrophysics Data System (ADS)
Deepak, G. Divya; Joshi, N. K.; Prakash, Ram
2018-05-01
In this study, both model analysis and electrical characterization of a dielectric barrier discharge based argon plasma jet have been carried at atmospheric pressure in a pin electrode configuration. The plasma and fluid dynamics modules of COMSOL multi-physics code have been used for the modeling of the plasma jet. The plasma parameters, such as, electron density, electron temperature and electrical potential have been analyzed with respect to the electrical parameters, i.e., supply voltage and supply frequency with and without the flow of gas. In all the experiments, gas flow rate has been kept constant at 1 liter per minute. This electrode configuration is subjected to a range of supply frequencies (10-25 kHz) and supply voltages (3.5-6.5 kV). The power consumed by the device has been estimated at different applied combinations (supply voltage & frequency) for optimum power consumption at maximum jet length. The maximum power consumed by the device in this configuration for maximum jet length of ˜26 mm is just ˜1 W.
Multi-port power router and its impact on resilient power grid systems
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji
2016-02-01
We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
Development of an Unmanned Air Research Vehicle for Supermaneuverability Studies
1990-03-29
VORTEX CONTROL Another emerging concept involves strake- generated vortex interactions, which improves maneuverability using non-linear lift generated by...undisturbed flow and is capable of prcJucing powerful vortex flow fields at high angles of attack. Asymmetrical vort ,;x control is feasible with actuated...control configuration, serves as an initial test vehicle for supermaneuverability analysis . Due to the relatively small scale of the UAV and the use of
Aerodynamic simulation strategies assessment for a fenestron in hover flight
NASA Astrophysics Data System (ADS)
Marino, M.; Gourdain, N.; Legras, G.; Alfano, D.
2017-06-01
The Fenestron® has a crucial antitorque function and its sizing is a key point of the Helicopter design, especially regarding thrust and power predictions. This paper reports the investigations done on a full scale Dauphin Fenestron®. The objectives are, first, to evaluate the in§uence of some numerical parameters on the performance of the Fenestron®; and then, the flow is analyzed for a high incidence pitch, for which the rotor blade can experience massive boundary layer separations. Simulations are carried out on a single blade passage model. Several parameters are benched such as grid quality, numerical schemes, and turbulence modeling. A comparison with test bench measurements is carried out to evaluate the capability of the numerical simulations to predict both global performance (thrust and power) and local flows (static pressure at the shroud and radial profiles inside the vein). The analysis demonstrates the capability of numerical simulations to accurately estimate the global performance of the Fenestron®, including at high pitch angles. However, some discrepancies remain on the local flow, especially in the vicinity of the rotor shroud. A more detailed analysis of the local flow is performed at a blade pitch angle of 35°, with a particular interest for the blade tip region.
Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems
NASA Astrophysics Data System (ADS)
Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.
1983-01-01
The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.
A comparison of economic evaluation models as applied to geothermal energy technology
NASA Technical Reports Server (NTRS)
Ziman, G. M.; Rosenberg, L. S.
1983-01-01
Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.
Martins, W P; Raine-Fenning, N J; Ferriani, R A; Nastri, C O
2010-03-01
To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in 'flow-free' models. 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PRF) settings. Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. (c) 2010 ISUOG. Published by John Wiley & Sons, Ltd.
Power generation systems and methods
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Chao, Yi (Inventor)
2011-01-01
A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2003-02-01
To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.
NASA Astrophysics Data System (ADS)
Calì, M.; Santarelli, M. G. L.; Leone, P.
Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.
Mobility power flow analysis of an L-shaped plate structure subjected to distributed loading
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.; Cimmerman, B.
1990-01-01
An analytical investigation based in the Mobility Power Flow (MPF) method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to distributed excitation. The principle of the MPF method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the MPF. In the considered coupled plate structure, MPF expressions are derived for distributed mechanical excitation which is independent of the structure response. However using a similar approach with some modifications excitation by an acoustic plane wave can be considered. Some modifications are required to deal with the latter case are necessary because the forces (acoustic pressure) acting on the structure are dependent on the response of the structure due to the presence of the scattered pressure.
Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis
NASA Astrophysics Data System (ADS)
Zaatri, A.; Roth, M.
2008-09-01
The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.
Utilizing Wavelet Analysis to assess hydrograph change in northwestern North America
NASA Astrophysics Data System (ADS)
Tang, W.; Carey, S. K.
2017-12-01
Historical streamflow data in the mountainous regions of northwestern North America suggest that changes flows are driven by warming temperature, declining snowpack and glacier extent, and large-scale teleconnections. However, few sites exist that have robust long-term records for statistical analysis, and pervious research has focussed on high and low-flow indices along with trend analysis using Mann-Kendal test and other similar approaches. Furthermore, there has been less emphasis on ascertaining the drivers of change in changes in shape of the streamflow hydrograph compared with traditional flow metrics. In this work, we utilize wavelet analysis to evaluate changes in hydrograph characteristics for snowmelt driven rivers in northwestern North America across a range of scales. Results suggest that wavelets can be used to detect a lengthening and advancement of freshet with a corresponding decline in peak flows. Furthermore, the gradual transition of flows from nival to pluvial regimes in more southerly catchments is evident in the wavelet spectral power through time. This method of change detection is challenged by evaluating the statistical significance of changes in wavelet spectra as related to hydrograph form, yet ongoing work seeks to link these patters to driving weather and climate along with larger scale teleconnections.
On the theoretical velocity distribution and flow resistance in natural channels
NASA Astrophysics Data System (ADS)
Moramarco, Tommaso; Dingman, S. Lawrence
2017-12-01
The velocity distribution in natural channels is of considerable interest for streamflow measurements to obtain information on discharge and flow resistance. This study focuses on the comparison of theoretical velocity distributions based on 1) entropy theory, and 2) the two-parameter power law. The analysis identifies the correlation between the parameters of the distributions and defines their dependence on the geometric and hydraulic characteristics of the channel. Specifically, we investigate how the parameters are related to the flow resistance in terms of Manning roughness, shear velocity and water surface slope, and several formulae showing their relationships are proposed. Velocity measurements carried out in the past 20 years at Ponte Nuovo gauged section along the Tiber River, central Italy, are the basis for the analysis.
Fault-tolerant continuous flow systems modelling
NASA Astrophysics Data System (ADS)
Tolbi, B.; Tebbikh, H.; Alla, H.
2017-01-01
This paper presents a structural modelling of faults with hybrid Petri nets (HPNs) for the analysis of a particular class of hybrid dynamic systems, continuous flow systems. HPNs are first used for the behavioural description of continuous flow systems without faults. Then, faults' modelling is considered using a structural method without having to rebuild the model to new. A translation method is given in hierarchical way, it gives a hybrid automata (HA) from an elementary HPN. This translation preserves the behavioural semantics (timed bisimilarity), and reflects the temporal behaviour by giving semantics for each model in terms of timed transition systems. Thus, advantages of the power modelling of HPNs and the analysis ability of HA are taken. A simple example is used to illustrate the ideas.
Buratti, S; Benedetti, S; Cosio, M S
2007-02-28
In this paper is described the applicability of a flow injection system, operating with an amperometric detector, for measurement in rapid and simple way the antioxidant power of honey, propolis and royal jelly. The proposed method evaluates the reducing power of selected antioxidant compounds and does not require the use of free radicals or oxidants. Twelve honey, 12 propolis and 4 royal jelly samples of different botanical and geographical origin were evaluated by the electrochemical method and the data were compared with those obtained by the DPPH assay. Since a good correlation was found (R(2)=0.92) the proposed electrochemical method can be successfully employed for the direct, rapid and simple monitoring of the antioxidant power of honeybee products. Furthermore, the total phenolic content of samples was determined by the Folin-Ciocalteau procedure and the characteristic antioxidant activities showed a good correlation with phenolics (R(2)=0.96 for propolis and 0.90 for honey).
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant H.; Shukla, Ratnesh K.
2013-08-01
An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.
NASA Astrophysics Data System (ADS)
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
Validation of a CFD Methodology for Variable Speed Power Turbine Relevant Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; McVetta, Ashlie B.
2013-01-01
Analysis tools are needed to investigate aerodynamic performance of Variable-Speed Power Turbines (VSPT) for rotorcraft applications. The VSPT operates at low Reynolds numbers (transitional flow) and over a wide range of incidence. Previously, the capability of a published three-equation turbulence model to predict accurately the transition location for three-dimensional heat transfer problems was assessed. In this paper, the results of a post-diction exercise using a three-dimensional flow in a transonic linear cascade comprising VSPT blading are presented. The measured blade pressure distributions and exit total pressure and flow angles for two incidence angles corresponding to cruise (i = 5.8deg) and takeoff (i = -36.7deg) were used for this study. For the higher loading condition of cruise and the negative incidence condition of takeoff, overall agreement with data may be considered satisfactory but areas of needed improvement are also indicated.
Pipe network flow analysis was among the first civil engineering applications programmed for solution on the early commercial mainframe computers in the 1960s. Since that time, advancements in analytical techniques and computing power have enabled us to solve systems with tens o...
Albatsh, Fadi M; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M A
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.
Albatsh, Fadi M.; Ahmad, Shameem; Mekhilef, Saad; Mokhlis, Hazlie; Hassan, M. A.
2015-01-01
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches. PMID:25874560
Minich, L L; Tani, L Y; Pantalos, G M
1997-01-01
To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.
Transient analysis of a molten salt central receiver (MSCR) in a solar power plant
NASA Astrophysics Data System (ADS)
Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.
2016-05-01
Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.
White, M.A.; Schmidt, J.C.; Topping, D.J.
2005-01-01
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.
Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)
NASA Technical Reports Server (NTRS)
Barber, T.
1988-01-01
A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.
Reentrant Information Flow in Electrophysiological Rat Default Mode Network.
Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong
2017-01-01
Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.
NASA Astrophysics Data System (ADS)
Lindsey, Martin Forrester
Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.
Wave Turning and Flow Angle in the E-Region Ionosphere
NASA Astrophysics Data System (ADS)
Young, M.; Oppenheim, M. M.; Dimant, Y. S.
2016-12-01
This work presents results of particle-in-cell (PIC) simulations of Farley-Buneman (FB) turbulence at various altitudes in the high-latitude E-region ionosphere. In that region, the FB instability regularly produces meter-scale plasma irregularities. VHF radars observe coherent echoes via Bragg scatter from wave fronts parallel or anti-parallel to the radar line of sight (LoS) but do not necessarily measure the mean direction of wave propagation. Haldoupis (1984) conducted a study of diffuse radar aurora and found that the spectral width of back-scattered power depends critically on the angle between the radar LoS and the true flow direction, called the flow angle. Knowledge of the flow angle will allow researchers to better interpret observations of coherent back-scatter. Experiments designed to observe meter-scale irregularities in the E-region ionosphere created by the FB instability typically assume that the predominant flow direction is the E×B direction. However, linear theory of Dimant and Oppenheim (2004) showed that FB waves should turn away from E×B and particle-in-cell simulations by Oppenheim and Dimant (2013) support the theory. The present study comprises a quantitative analysis of the dependence of back-scattered power, flow velocity, and spectral width as functions of the flow angle. It also demonstrates that the mean direction of meter-scale wave propagation may differ from the E×B direction by tens of degrees. The analysis includes 2-D and 3-D simulations at a range of altitudes in the auroral ionosphere. Comparison between 2-D and 3-D simulations illustrates the relative importance to the irregularity spectrum of a small but finite component in the direction parallel to B. Previous work has shown this small parallel component to be important to turbulent electron heating and nonlinear transport.
Multiport power router and its impact on future smart grids
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Shichijo, Daiki; Wada, Keiji; Iwatsuki, Katsumi
2016-07-01
We propose a Y configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y configuration power router controls the direction and magnitude of power flows between three ports regardless of DC or AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y configuration power router. The electrical insulation between three ports assures safety and reliability for power network systems. We then tested the operation of power flow control. The experimental results revealed that our methodology based on a governing equation was appropriate to control the power flow of the three-way DC/DC converter. In addition, a distribution network composed of power routers had the ability to easily enable interchanges of electrical power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flows in a coordinated manner and their impact on resilient power grid systems.
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-01-01
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition. PMID:29036888
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-10-14
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.
1987-07-01
of vibrational power flow had been considered by experiments in the area of statistical energy analysis (SEA)8, 9 using other measurement ipproaches...Constants in Statistical Energy Analysis of Structure," J. Acoust. Soc. Am. Vol. 52, No. 2, pp. 516-524 (1973) 9. Fahy, F. and R. Pierri, "Application of
Power and efficiency analysis of a flapping wing wind energy harvester
NASA Astrophysics Data System (ADS)
Bryant, Matthew; Shafer, Michael W.; Garcia, Ephrahim
2012-04-01
Energy harvesting from flowing fluids using flapping wings and fluttering aeroelastic structures has recently gained significant research attention as a possible alternative to traditional rotary turbines, especially at and below the centimeter scale. One promising approach uses an aeroelastic flutter instability to drive limit cycle oscillations of a flexible piezoelectric energy harvesting structure. Such a system is well suited to miniaturization and could be used to create self-powered wireless sensors wherever ambient flows are available. In this paper, we examine modeling of the aerodynamic forces, power extraction, and efficiency of such a flapping wing energy harvester at a low Reynolds number on the order of 1000. Two modeling approaches are considered, a quasi-steady method generalized from existing models of insect flight and a modified model that includes terms to account to the effects of dynamic stall. The modified model is shown to provide better agreement with CFD simulations of a flapping energy harvester.
NASA Astrophysics Data System (ADS)
Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua
2018-04-01
The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.
RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian
2012-01-01
This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints
NASA Astrophysics Data System (ADS)
Cassidy, Ian L.
Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.
Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek
Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form amore » hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.« less
Computer program for design analysis of radial-inflow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1976-01-01
A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.
The Analysis of a Vortex Type Magnetohydrodynamic Induction Generator
NASA Technical Reports Server (NTRS)
Lengyel, L. L.
1962-01-01
Consideration it is given to the performance to the characteristics of an AC magnetohydrodynamic power generator, A rotating magnetic field is imposed on the vortex flow of an electrically conducting fluid, which is injected tangentially into an annulus formed by two nonconducting concentric cylinders and two nonconducting end plates. A perturbation technique is used to determine the two dimensional velocity and three dimensional electromagnetic field and current distributions. Finally, the generated power, the ohmic losses, the effective power and the electrical efficiency of the converter system are calculated.
NASA Astrophysics Data System (ADS)
Rothe, P. H.
The conference includes such topics as the reduction of fluid transient pressures by minimax optimization, modeling blockage in unsteady slurry flow in conduits, roles of vacuum breaker and air release devices in reducing waterhammer forces, and an analysis of laminar fluid transients in conduits of unconventional shape. Papers are presented on modulation systems for high speed water jets, water hammer analysis needs in nuclear power plant design, tail profile effects on unsteady large scale flow structure in the wing and plate junction, and a numerical study of pressure transients in a borehole due to pipe movement. Consideration is also given to boundary layer growth near a stagnation point, calculation of unsteady mixing in two-dimensional flows, the trailing edge of a pitching airfoil at high reduced frequencies, and a numerical study of instability-wave control through periodic wall suction/blowing.
Effect of Er,Cr:YSGG laser on human dentin fluid flow.
Al-Omari, Wael M; Palamara, Joseph E
2013-11-01
The aim of the current investigation was to assess the rate and magnitude of dentin fluid flow of dentinal surfaces irradiated with Er,Cr:YSGG laser. Twenty extracted third molars were sectioned, mounted, and irradiated with Er,Cr:YSGG laser at 3.5 and 4.5 W power settings. Specimens were connected to an automated fluid flow measurement apparatus (Flodec). The rate, magnitude, and direction of dentin fluid flow were recorded at baseline and after irradiation. Nonparametric Wilcoxon signed ranks repeated measure t test revealed a statistically significant reduction in fluid flow for all the power settings. The 4.5-W power output reduced the flow significantly more than the 3.5 W. The samples showed a baseline outward flow followed by inward flow due to irradiation then followed by decreased outward flow. It was concluded that Er,Cr:YSGG laser irradiation at 3.5 and 4.5 W significantly reduced dentinal fluid flow rate. The reduction was directly proportional to power output.
High temperature helical tubular receiver for concentrating solar power system
NASA Astrophysics Data System (ADS)
Hossain, Nazmul
In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.
COMPLEMENTARITY OF ECOLOGICAL GOAL FUNCTIONS
This paper summarizes, in the framework of network environ analysis, a set of analyses of energy-matter flow and storage in steady state systems. The network perspective is used to codify and unify ten ecological orientors or external principles: maximum power (Lotka), maximum st...
A Method for the Interpretation of Flow Cytometry Data Using Genetic Algorithms.
Angeletti, Cesar
2018-01-01
Flow cytometry analysis is the method of choice for the differential diagnosis of hematologic disorders. It is typically performed by a trained hematopathologist through visual examination of bidimensional plots, making the analysis time-consuming and sometimes too subjective. Here, a pilot study applying genetic algorithms to flow cytometry data from normal and acute myeloid leukemia subjects is described. Initially, Flow Cytometry Standard files from 316 normal and 43 acute myeloid leukemia subjects were transformed into multidimensional FITS image metafiles. Training was performed through introduction of FITS metafiles from 4 normal and 4 acute myeloid leukemia in the artificial intelligence system. Two mathematical algorithms termed 018330 and 025886 were generated. When tested against a cohort of 312 normal and 39 acute myeloid leukemia subjects, both algorithms combined showed high discriminatory power with a receiver operating characteristic (ROC) curve of 0.912. The present results suggest that machine learning systems hold a great promise in the interpretation of hematological flow cytometry data.
Exploring the use of optical flow for the study of functional NIRS signals
NASA Astrophysics Data System (ADS)
Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang; Hernandez-Juarez, Jesus
2017-03-01
Near infrared spectroscopy (NIRS) is an optical imaging technique that allows real-time measurements of Oxy and Deoxy-hemoglobin concentrations in human body tissue. In functional NIRS (fNIRS), this technique is used to study cortical activation in response to changes in neural activity. However, analysis of activation regions using NIRS is a challenging task in the field of medical image analysis and despite existing solutions, no homogeneous analysis method has yet been determined. For that reason, the aim of our present study is to report the use of an optical flow method for the analysis of cortical activation using near-infrared spectroscopy signals. We used real fNIRS data recorded from a noxious stimulation experiment as base of our implementation. To compute the optical flow algorithm, we first arrange NIRS signals (Oxy-hemoglobin) following our 24 channels (12 channels per hemisphere) head-probe configuration to create image-like samples. We then used two consecutive fNIRS samples per hemisphere as input frames for the optical flow algorithm, making one computation per hemisphere. The output from these two computations is the velocity field representing cortical activation from each hemisphere. The experimental results showed that the radial structure of flow vectors exhibited the origin of cortical activity, the development of stimulation as expansion or contraction of such flow vectors, and the flow of activation patterns may suggest prediction in cortical activity. The present study demonstrates that optical flow provides a power tool for the analysis of NIRS signals. Finally, we suggested a novel idea to identify pain status in nonverbal patients by using optical flow motion vectors; however, this idea will be study further in our future research.
Toward the Experimental Characterization of an Unmanned Air System Flow Field
NASA Astrophysics Data System (ADS)
Velarde, John-Michael; Connors, Jacob; Glauser, Mark
2017-11-01
The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.
2017-09-01
As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheatley, P.D.; Wagner, K.C.
The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less
Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Driggers, H. H.; Powers, S. A.; Roush, R. T.
1982-01-01
A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
NASA Astrophysics Data System (ADS)
Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki
Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less
NASA Astrophysics Data System (ADS)
Makinde, O. D.
2014-12-01
In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton's law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.
Development of energy-harvesting system using deformation of magnetic elastomer
NASA Astrophysics Data System (ADS)
Shinoda, Hayato; Tsumori, Fujio
2018-06-01
In this paper, we propose a power generation method using the deformation of a magnetic elastomer for vibration energy harvesting. The magnetic flux lines in the structure of the magnetic elastomer could be markedly changed if the properly designed structure was expanded and contracted in a static magnetic field. We set a coil on the magnetic elastomer to generate electricity by capturing this change in magnetic flux flow. We fabricated a centimeter-scale device and demonstrated that it generated 10.5 mV of maximum voltage by 10 Hz vibration. We also simulated the change in the magnetic flux flow using finite element analysis, and compared the result with the experimental data. Furthermore, we evaluated the power generation of a miniaturized device.
Characterization of a spray torch and analysis of process parameters
NASA Astrophysics Data System (ADS)
Ramasamy, R.; Selvarajan, V.
1999-07-01
Anode for a non-transferred DC plasma spray torch was designed to improve electrothermal efficiency. A theoretical calculation was made for the electrothermal efficiency in a DC plasma torch operating with argon at atmospheric pressure with power level in the range of 5.2 20 kW using energy balance equations. ANOVA for the two level factorial design was done. Plasma gas flow rate, current intensity, nozzle diameter and length were found to influence the efficiency. The efficiency was found to decrease with increase in current intensity and nozzle length and to increase with increase in nozzle diameter and gas flow rate. The overall energy balance calculations showed that the heat transfer to the plasma-forming gas decreases with increase in arc current and the same was more significant at higher flow rates. Plasma jet velocity for different flow rates, input to the torch and nozzle dimensions was calculated from the gas enthalpy. It was found that the velocity increased with increase in the power input to the torch and gas flow rate and decreased with increase in nozzle length and diameter. The current voltage characteristics of the torch operating with argon gas were studied for different gas flow rates. The Nottingham coefficients were calculated using least square method.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen
2007-01-01
A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded turbulent flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultiplier tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. An acoustically driven nozzle flow is studied to validate velocity fluctuation measurements, and an asymmetric oscillating counterflow with unequal enthalpies is studied to validate the measurement of temperature fluctuations. Velocity fluctuations are compared with constant temperature anemometry measurements and temperature fluctuations are compared with constant current anemometry measurements at the same locations. Time-series and power spectra of the temperature and velocity measurements are presented. A numerical simulation of the light scattering and detection process was developed and compared with experimental data for future use as an experiment design tool.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
............ Project No. 2266-096. Sabine River Authority of Texas and Project No. 2305-020. State of Louisiana. Town of Massena Electric Department Project No. 12607-001. Free Flow Power Corporation........ Project No. 12829-001. Free Flow Power Corporation........ Project No. 12861-001. Free Flow Power Corporation...
The Shock and Vibration Digest. Volume 15. Number 1
1983-01-01
acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end
The Shock and Vibration Digest, Volume 17, Number 8
1985-08-01
ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Effects of lubrication on the performance of high speed spur gears
NASA Technical Reports Server (NTRS)
Mizutani, Hachiro; Isikawa, Yuuichi; Townsend, Dennis P.
1989-01-01
An experimental analysis was conducted to determine power loss and gear noise of high speed spur gears with long addendum under various conditions of load, speed, and oil jet pressure for into mesh lubrication. Power losses were calculated from temperature measurements of lubricating oil, gears, gear box, and oil flow rate. Furthermore, power loss was divided into windage loss, friction loss and churning loss. The results show that windage loss and churning loss were the main components of gear power loss of high gear speed. In addition, lubricating conditions had some influences on gear noise especially under low oil temperature or high viscosity.
Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows
NASA Astrophysics Data System (ADS)
Le, Truong; Newman, William; Edge, Brinkley
2018-06-01
Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.
The cultural capitalists: Notes on the ongoing reconfiguration of trafficking culture in Asia
Yates, Donna; Mackenzie, Simon; Smith, Emiline
2017-01-01
Most analysis of the international flows of the illicit art market has described a global situation in which a postcolonial legacy of acquisition and collection exploits cultural heritage by pulling it westwards towards major international trade nodes in the USA and Europe. As the locus of consumptive global economic power shifts, however, these traditional flows are pulled in other directions: notably for the present commentary, towards and within Asia. PMID:29278251
Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex
2010-05-01
of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy, solar heating (and cooling), and...peaks of individual buildings; thus the needed gen- eration and back-up capacity is smaller. To develop the community energy concept, energy models...overall thermal energy system, a hydraulic flow model (Figure 5) should be used to analyze critical capacities and flows in the system. This material is
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
Identification of spatially-localized initial conditions via sparse PCA
NASA Astrophysics Data System (ADS)
Dwivedi, Anubhav; Jovanovic, Mihailo
2017-11-01
Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.
Variable Selection for Regression Models of Percentile Flows
NASA Astrophysics Data System (ADS)
Fouad, G.
2017-12-01
Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.
Power System Study for Renewable Energy Interconnection in Malaysia
NASA Astrophysics Data System (ADS)
Askar, O. F.; Ramachandaramurthy, V. K.
2013-06-01
The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.
Catalytic microwave pyrolysis of oil palm fiber (OPF) for the biochar production.
Hossain, Md Arafat; Ganesan, Poo Balan; Sandaran, Shanti Chandran; Rozali, Shaifulazuar Bin; Krishnasamy, Sivakumar
2017-12-01
Microwave pyrolysis of oil palm fiber (OPF) with three types of Na-based catalysts was experimentally investigated to produce biochar. Sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium carbonate (Na 2 CO 3 ) with purity 99.9% were selected for this investigation. Microwave muffle reactor (Model: HAMiab-C1500) with a microwave power controller including a microwave generator was used to perform the microwave pyrolysis. OPF particles were used after removing foreign materials, impurities, and dust. Microwave power ranges from 400 to 900 W, temperature ranges from 450 to 700 °C, and N 2 flow rates ranges from 200 to -1200 cm 3 /min were used along with all three Na-based catalysts for this investigation. Lower microwave power, temperature, and N 2 flow rate have been found favorable for higher yield of biochar. NaOH is to be found as the more suitable catalyst than NaCl and Na 2 CO 3 to produce biochar. A maximum biochar yield (51.42 wt%) has been found by using the catalysts NaOH at N 2 flow rate of 200 cm 3 /min. One sample of the biochar (maximum yield without catalysts) was selected for further characterization via thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), BET surface area, Fourier transform infrared spectroscopy (FTIR), and ultimate and proximate analysis. SEM and BET surface area analysis showed the presence of some pores in the biochar. High percentage of carbon (60.24 wt%) was also recorded in the sample biochar. The pores and high percentage of carbon of biochar have significant impact on soil fertilization by increasing the carbon sequestration in the soil. It assists to slow down the decomposition rate of nutrients from soil and therefore enhances the soil quality.
Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor
NASA Technical Reports Server (NTRS)
Godfroy, T. J.; Sadasivan, P.; Masterson, S.
2007-01-01
As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.
Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples
NASA Astrophysics Data System (ADS)
LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.
2016-12-01
Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation.
Jochem, Aljosha-Rakim; Ankah, Genesis Ngwa; Meyer, Lars-Arne; Elsenberg, Stephan; Johann, Christoph; Kraus, Tobias
2016-10-07
Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV-vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1-20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.
Continuous microwave flow synthesis of mesoporous hydroxyapatite.
Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat
2015-11-01
We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui
2016-04-01
The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.
Three-dimensional flow measurements in a tesla turbine rotor
NASA Astrophysics Data System (ADS)
Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian
2015-11-01
Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.
Locational Marginal Pricing in the Campus Power System at the Power Distribution Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Gu, Yi; Zhang, Yingchen
2016-11-14
In the development of smart grid at distribution level, the realization of real-time nodal pricing is one of the key challenges. The research work in this paper implements and studies the methodology of locational marginal pricing at distribution level based on a real-world distribution power system. The pricing mechanism utilizes optimal power flow to calculate the corresponding distributional nodal prices. Both Direct Current Optimal Power Flow and Alternate Current Optimal Power Flow are utilized to calculate and analyze the nodal prices. The University of Denver campus power grid is used as the power distribution system test bed to demonstrate themore » pricing methodology.« less
A comprehensive approach to reactive power scheduling in restructured power systems
NASA Astrophysics Data System (ADS)
Shukla, Meera
Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.
2012-03-13
Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less
Design and initial evaluation of a portable in situ runoff and sediment monitoring device
NASA Astrophysics Data System (ADS)
Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi
2014-11-01
An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.
Second law analysis of a conventional steam power plant
NASA Technical Reports Server (NTRS)
Liu, Geng; Turner, Robert H.; Cengel, Yunus A.
1993-01-01
A numerical investigation of exergy destroyed by operation of a conventional steam power plant is computed via an exergy cascade. An order of magnitude analysis shows that exergy destruction is dominated by combustion and heat transfer across temperature differences inside the boiler, and conversion of energy entering the turbine/generator sets from thermal to electrical. Combustion and heat transfer inside the boiler accounts for 53.83 percent of the total exergy destruction. Converting thermal energy into electrical energy is responsible for 41.34 percent of the total exergy destruction. Heat transfer across the condenser accounts for 2.89 percent of the total exergy destruction. Fluid flow with friction is responsible for 0.50 percent of the total exergy destruction. The boiler feed pump turbine accounts for 0.25 percent of the total exergy destruction. Fluid flow mixing is responsible for 0.23 percent of the total exergy destruction. Other equipment including gland steam condenser, drain cooler, deaerator and heat exchangers are, in the aggregate, responsible for less than one percent of the total exergy destruction. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the plant. The results show that high first law efficiency does not mean high second law efficiency. Therefore, the second law analysis has been proven to be a more powerful tool in pinpointing real losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other steam power plants and other thermal systems.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1974-01-01
An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
Giddings, J C
1989-10-20
A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.
1975-01-01
An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.
Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems
NASA Astrophysics Data System (ADS)
Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel
2007-01-01
Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Solar Stirling power generation - Systems analysis and preliminary tests
NASA Technical Reports Server (NTRS)
Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III
1977-01-01
The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
2011-08-01
industries and key players providing equipment include Flow and OMAX. The decision tree for waterjet machining is shown in Figure 28. Figure 28...about the melt pool. Process parameters including powder flow , laser power, and scan speed are adjusted accordingly • Multiple materials o BD...project.eu.com/home/home_page_static.jsp o Working with multiple partners; one is Cochlear . Using LMD or SLM to fabricate cochlear implants with 10
Impedance analysis of a disk-type SOFC using doped lanthanum gallate under power generation
NASA Astrophysics Data System (ADS)
Kato, Tohru; Nozaki, Ken; Negishi, Akira; Kato, Ken; Monma, Akihiko; Kaga, Yasuo; Nagata, Susumu; Takano, Kiyonami; Inagaki, Toru; Yoshida, Hiroyuki; Hosoi, Kei; Hoshino, Koji; Akbay, Taner; Akikusa, Jun
Impedance measurements were carried out under practical power generation conditions in a disk-type SOFC, which may be utilized as a small-scale power generator. The tested cell was composed of doped lanthanum gallate (La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ) as the electrolyte, Sm 0.5Sr 0.5CoO 3 as the cathode electrode and Ni/Ce 0.8Sm 0.2O 2 cermet as the anode electrode. The cell impedance was measured between 10 mHz and 10 kHz by varying the fuel utilization and gas flow rate and plotted in complex impedance diagrams. The observed impedance shows a large semi-circular pattern on the low frequency side. The semi-circular impedance, having a noticeably low characteristic frequency between 0.13 and 0.4 Hz, comes from the change in gas composition, originally caused by the cell reaction. The change in impedance with the fuel utilization (load current) and the gas flow rate agreed qualitatively well with the theoretical predictions from a simulation. This impedance was dominant under high fuel-utilization power-generation conditions. The impedance, which described the activation polarizations in the electrode reactions, was comparatively small and scarcely changed with the change in fuel utilization (load current) and gas flow rate.
Refrigeration generation using expander-generator units
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.
2016-05-01
The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.
MOLFLUX analysis of the SSF electrical power system contamination
NASA Technical Reports Server (NTRS)
Cognion, Rita L.
1991-01-01
The external induced contamination of Space Station Freedom's electrical power system surfaces is assessed using a molecular flow evaluation code, MOLFLUX. Outgassing rates are compared to available experimental data, and deposition to the midregion of both the solar array and the photovoltaic power module thermal control system radiator is calculated using a constant sticking coefficient. An estimate of annual deposition to the solar array due to outgassing is found to be 10 percent of the Space Station Freedom program requirement for maximum allowable deposition, while annual deposition to the radiator is approximately equal to the requirement.
Harmonic analysis of spacecraft power systems using a personal computer
NASA Technical Reports Server (NTRS)
Williamson, Frank; Sheble, Gerald B.
1989-01-01
The effects that nonlinear devices such as ac/dc converters, HVDC transmission links, and motor drives have on spacecraft power systems are discussed. The nonsinusoidal currents, along with the corresponding voltages, are calculated by a harmonic power flow which decouples and solves for each harmonic component individually using an iterative Newton-Raphson algorithm. The sparsity of the harmonic equations and the overall Jacobian matrix is used to an advantage in terms of saving computer memory space and in terms of reducing computation time. The algorithm could also be modified to analyze each harmonic separately instead of all at the same time.
New power sharing control for inverter-dominated microgrid based on impedance match concept.
Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang
2013-01-01
Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1991-01-01
An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.
NASA Astrophysics Data System (ADS)
Sayar, Ersin; Farouk, Bakhtier
2012-07-01
Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.
Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode.
Telford, William G; Hawley, Teresa S; Hawley, Robert G
2003-07-01
Low power violet laser diodes (VLDs) have been evaluated as potential replacements for water-cooled argon-ion and krypton-ion ultraviolet and violet lasers for DNA content analysis using the Hoechst dyes and 4,6-diamidino-2-phenylindole (Shapiro HMN, Perlmutter NG: Cytometry 44:133-136, 2001). In this study, we used a VLD to excite a variety of violet-excited fluorescent molecules important in biomedical analysis, including the fluorochromes Cascade Blue and Pacific Blue, the expressible fluorescent protein cyan fluorescent protein (CFP), and the fluorogenic alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazoline (ELF-97; for endogenous AP detection and cell surface labeling with AP-conjugated antibodies). Comparisons were made between VLD excitation and a krypton-ion laser emitting at 407 nm (both at higher power levels and with the beam attenuated at levels approximating the VLD) on the same FACSVantage SE stream-in-air flow cytometer. We evaluated a Power Technology 408-nm VLD (30 mW) equipped with circularization optics (18 mW maximum output, set to 15 mW) and a Coherent I-302C krypton-ion laser emitting at power levels ranging from 15 to 75 mW. Cascade Blue, Pacific Blue, and CFP showed comparable signal-to-noise ratios and levels of sensitivity with VLD excitation versus the krypton-ion laser at high and VLD-matched power outputs. Multicolor fluorescent protein analysis with 488-nm excitation of green fluorescent protein and DsRed and VLD excitation of CFP was therefore feasible and was demonstrated. Similar levels of excitation efficiency between krypton-ion and VLD sources also were observed for ELF-97 detection. These evaluations confirmed that VLDs may be cost- and maintenance-effective replacements for water-cooled gas lasers for applications requiring violet excitation in addition to DNA binding dyes. Published 2003 Wiley-Liss, Inc.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.
Mao, Boyan; Wang, Wenxin; Zhao, Zhou; Zhao, Xi; Li, Lanlan; Zhang, Huixia; Liu, Youjun
2016-12-28
During coronary artery bypass grafting (CABG), the ratio of powers of the fundamental frequency and its first harmonic (F0/H1) in fast Fourier transformation (FFT) analysis of the graft's flow waves has been used in the field of evaluation of the patency in anastomosis. But there is no report about using the FFT method to evaluate the magnitude of competitive flow. This study is aiming at exploring the relationship between competitive flow and FFT analysis of the flow waves in left internal mammary artery (LIMA) graft, and finding a new method to evaluate the magnitude of competitive flow. At first, establishing the CABG multiscale models of different stenosis in left anterior descending artery (LAD) to get different magnitude of competitive flows. Then, calculating the models by ANSYS-CFX and getting the flow waves in LIMA. Finally, analyzing the flow waves by FFT method and comparing the FFT results with the magnitude of competitive flow. There is no relationship between competitive flow and F0/H1. As for F0/H2 and F0/H3, they both increase with the reduction of the stenosis in LAD. But the increase of F0/H3 is not obviously enough and it can't identify the significant competitive flow clearly, so it can't be used as the evaluation index. It is found that F0/H2 increases obviously with the increase of the competitive flow and can identify the significant competitive flow. The FFT method can be used in the evaluation of competitive flow and the F0/H2 is the ideal index. High F0/H2 refers to the significant competitive flow. This method can be used during CABG to avoid the risk of competitive flow.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
NASA Astrophysics Data System (ADS)
Szurgacz, Dawid
2018-01-01
The article discusses basic functions of a powered roof support in a longwall unit. The support function is to provide safety by protecting mine workings against uncontrolled falling of rocks. The subject of the research includes the measures to shorten the time of roof support shifting. The roof support is adapted to transfer, in hazard conditions of rock mass tremors, dynamic loads caused by mining exploitation. The article presents preliminary research results on the time reduction of the unit advance to increase the extraction process and thus reduce operating costs. Conducted stand tests showed the ability to increase the flow for 3/2-way valve cartridges. The level of fluid flowing through the cartridges is adequate to control individual actuators.
1989-03-01
statistical energy analysis , the finite clement method, and the power flow method. Experimental solutions are the most common in the literature. The authors of...to the added weights and inertias of the transducers attached to an experimental structure. Statistical energy analysis (SEA) is a computational method...Analysis and Diagnosis," Journal of Sound and Vibration, Vol. 115, No. 3, pp. 405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Systems
NASA Astrophysics Data System (ADS)
Tongchitpakdee, Chanin
With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
Improvement and analysis of the hydrogen-cerium redox flow cell
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-09-01
The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.
Deplacement effect of the laminar boundary layer and the pressure drag
NASA Technical Reports Server (NTRS)
Gortler, H
1951-01-01
The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.
Analysis of the velocity distribution in different types of ventilation system ducts
NASA Astrophysics Data System (ADS)
Peszyński, Kazimierz; Olszewski, Lukasz; Smyk, Emil; Perczyński, Daniel
2018-06-01
The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.)of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.
Flow of nanofluid by nonlinear stretching velocity
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
Main objective in this article is to model and analyze the nanofluid flow induced by curved surface with nonlinear stretching velocity. Nanofluid comprises water and silver. Governing problem is solved by using homotopy analysis method (HAM). Induced magnetic field for low magnetic Reynolds number is not entertained. Development of convergent series solutions for velocity and skin friction coefficient is successfully made. Pressure in the boundary layer flow by curved stretching surface cannot be ignored. It is found that magnitude of power-law index parameter increases for pressure distibutions. Magnitude of radius of curvature reduces for pressure field while opposite trend can be observed for velocity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
...: August 17, 2012. d. Submitted By: Free Flow Power Corporation on behalf of its subsidiary limited... River in Beaver County, Pennsylvania. The project would occupy United States lands administered by the U..., Boston, MA 02114-2130; (978) 283-2822; or email at flow-power.com ">[email protected] flow-power.com . i...
Power of Your Pancreas: Keep Your Digestive Juices Flowing
... Issues Subscribe February 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing ... your entire digestive system working properly. Related Stories Power to the Pelvis Battling a Bulging Hernia Keeping ...
Skills-demands compatibility as a determinant of flow experience in an inductive reasoning task.
Schiefele, Ulrich; Raabe, Andreas
2011-10-01
The skills-demands fit hypothesis of flow theory was examined. Based on the earlier finding that high demands in a game situation do not reduce the experience of flow, a cognitive task paradigm was used. The effect of skills-demands compatibility on the experience of flow but not of other, similar psychological states (i.e., concentration, negative and positive activation) was also investigated. Participants were 89 undergraduate students who worked on a number of inductive reasoning tasks in four successive trials with or without skills-demands compatibility. The results clearly supported the skills-demands fit hypothesis; concentration and activation were affected only by the tasks' difficulty. Inductive reasoning tasks are a useful tool for the experimental analysis of flow, and skills-demands compatibility is a significant and powerful condition of flow, but not of other, similar psychological states.
A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
1992-01-01
Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified.
NASA Astrophysics Data System (ADS)
Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.
2016-09-01
High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.
Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; ...
2014-11-01
Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less
Analysis of levels of support and resonance demonstrated by an elite singing teacher
NASA Astrophysics Data System (ADS)
Scherer, Ronald C.; Radhakrishnan, Nandhakumar; Poulimenos, Andreas
2003-04-01
This was a study of levels of singing expertise demonstrated by an elite operatic singer and teacher. This approach may prove advantageous because the teacher demonstrates what he thinks is important, not what the nonsinging scientist thinks should be important. Two pedagogical sequences were studied: (1) the location of support-glottis (poor), chest (better), abdomen (best); (2) locations of resonance-hard palate/straight tone (poor), mouth (better), sinus/head (best). Measures were obtained for a single frequency (196 Hz), the vowel /ae/, and for mezzo-forte loudness using the /pae pae pae/ technique. Sequence differences: The support sequence was characterized by formant frequency lowering suggestive of vocal tract lengthening. The resonance sequence was characterized by flow (AC, mean flow) and abduction increases. Sequence similarities: The best locations had the widest F2 bandwidths. The better and best locations had the largest dB difference between F2 and F3. Although acoustic power increased through the sequences, the acoustic efficiency was not a discriminating factor. Open and speed quotients were not differentiating. The flow resistance was highest and aerodynamic power the lowest for the first of each sequence. Combined data: The maximum flow declination rate correlated highly with the AC flow (r=-0.92) and SPL (r=0.901).
Fiocco, U; Ferro, F; Vezzu, M; Cozzi, L; Checchetto, C; Sfriso, P; Botsios, C; Ciprian, L; Armellin, G; Nardacchione, R; Piccoli, A; Todesco, S; Rubaltelli, L
2005-01-01
Objective: To determine the effect of tumour necrosis factor α (TNFα) blockade with etanercept in refractory knee joint synovitis (KJS) in rheumatoid and psoriatic arthritis, by local and systemic disease activity assessment and combined grey scale and power Doppler ultrasonographic monitoring. Methods: 27 knees affected by rheumatoid KJS (n = 12) and psoriatic KJS (n = 8) were assessed before receiving treatment and at 3 and 12 months' follow up. Time dependent clinical changes in disease activity were monitored by C reactive protein, erythrocyte sedimentation rate (ESR), global health status (GHS), and Ritchie (RAI) and knee joint articular (KJAI) indices; synovial changes were monitored by ultrasonographic and power Doppler indices for grey scale synovial thickening and for distinct intrasynovial vessel power Doppler flow configurations (fluid/synovium interface (F/SI-PD) and pannus/cartilage interface (P/CI-PD)). Interobserver and intraobserver variability of grey scale and power Doppler ultrasonographic was evaluated. Response to treatment was assessed by analysis of variance for repeated measures on clinical and ultrasonographic variables. Results: Rapid (3 months) reduction in F/SI-PD flow (p<0.001), parallel to reductions of C reactive protein (p<0.05), ESR (p<0.001), KJAI (p<0.002), RAI, and GHS (p<0.001), was sustained at 12 months when it was accompanied by reduction in both synovial thickening and P/CI-PD flow (p<0.001). No differences (ANOVA) were noted at baseline or at 12 months in clinical and ultrasonographic variables between either the rheumatoid or the psoriatic KJS groups. Conclusion: Grey scale and power Doppler ultrasonography are reliable measures of long term change in rheumatoid and psoriatic KJS disease activity in response to anti-TNFα treatment with etanercept. PMID:15567814
A compressor designed for the energy research and development agency automotive gas turbine program
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1975-01-01
A centrifugal compressor was designed for a gas turbine powered automobile as part of the Energy Research and Development Agency program to demonstrate emissions characteristics that meet 1978 standards with fuel economy and acceleration which are competitive with conventionally powered vehicles. A backswept impeller was designed for the compressor in order to attain the efficiency goal range required for the objectives of this program. Details of the design and method of flow analysis of the compressor are presented.
Modeling Liquid Rocket Engine Atomization and Swirl/Coaxial Injectors
2008-02-27
47-61, 2004. 2. Yoon, S . S ., and Heister, S . D., "A Fully Nonlinear Model for Atomization of High - Speed Jets," Engineering Analysis with... Power , V20, pp 468-479, 2004. 5. Yoon, S . S ., and Heister, S . D., "Analytic Solutions for Computing Velocities Induced from Potential Vortex Ring...Heister, S . D., "Three Dimensional Flow Simulations in Recessed Region of a Coaxial Injector," J. Propulsion and Power , V21, No.4, pp. 728-742
Cavitating behaviour analysis of Darrieus-type cross flow water turbines
NASA Astrophysics Data System (ADS)
Aumelas, V.; Pellone, C.; Maître, T.
2010-08-01
The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
NASA Technical Reports Server (NTRS)
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
An evolutionary Satellite Power Systems development plan was prepared. Planning analysis was directed toward the evolution of a scenario that met the stated objectives, was technically possible and economically attractive, and took into account constraining considerations, such as requirements for very large scale end-to-end demonstration in a compressed time frame, the relative cost/technical merits of ground testing versus space testing, and the need for large mass flow capability to low Earth orbit and geosynchronous orbit at reasonable cost per pound.
Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters
NASA Technical Reports Server (NTRS)
Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.
1989-01-01
The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some sample results are compared to data obtained from testing hardware inverters.
Frequency domain model for analysis of paralleled, series-output-connected Mapham inverters
NASA Technical Reports Server (NTRS)
Brush, Andrew S.; Sundberg, Richard C.; Button, Robert M.
1989-01-01
The Mapham resonant inverter is characterized as a two-port network driven by a selected periodic voltage. The two-port model is then used to model a pair of Mapham inverters connected in series and employing phasor voltage regulation. It is shown that the model is useful for predicting power output in paralleled inverter units, and for predicting harmonic current output of inverter pairs, using standard power flow techniques. Some examples are compared to data obtained from testing hardware inverters.
Arcjet thruster research and technology, phase 1
NASA Technical Reports Server (NTRS)
Knowles, Steven C.
1987-01-01
The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.
NASA Astrophysics Data System (ADS)
Al Sawaf, Mohamad Basel; Kawanisi, Kiyosi; Kagami, Junya; Bahreinimotlagh, Masoud; Danial, Mochammad Meddy
2017-10-01
The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02 ± 0.42% less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed approximately by 42 ± 21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady and depends on constructing a relationship between discharge and water level, while the discharge obtained by the FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements at high-frequency levels.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
NASA Astrophysics Data System (ADS)
Elsas, José Hugo; Szalay, Alexander S.; Meneveau, Charles
2018-04-01
Motivated by interest in the geometry of high intensity events of turbulent flows, we examine the spatial correlation functions of sets where turbulent events are particularly intense. These sets are defined using indicator functions on excursion and iso-value sets. Their geometric scaling properties are analysed by examining possible power-law decay of their radial correlation function. We apply the analysis to enstrophy, dissipation and velocity gradient invariants Q and R and their joint spatial distributions, using data from a direct numerical simulation of isotropic turbulence at Reλ ≈ 430. While no fractal scaling is found in the inertial range using box-counting in the finite Reynolds number flow considered here, power-law scaling in the inertial range is found in the radial correlation functions. Thus, a geometric characterisation in terms of these sets' correlation dimension is possible. Strong dependence on the enstrophy and dissipation threshold is found, consistent with multifractal behaviour. Nevertheless, the lack of scaling of the box-counting analysis precludes direct quantitative comparisons with earlier work based on multifractal formalism. Surprising trends, such as a lower correlation dimension for strong dissipation events compared to strong enstrophy events, are observed and interpreted in terms of spatial coherence of vortices in the flow.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1991-01-01
Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.
Flow reversal power limit for the HFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lap Y.; Tichler, P.R.
The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less
Streak Imaging Flow Cytometer for Rare Cell Analysis.
Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham
2017-01-01
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M
2014-01-01
Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John
2017-08-01
Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection
Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.
2016-01-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186
40 CFR 89.301 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart B of part 89. (b) Exhaust gases, either raw or dilute, are sampled while the test engine is operated using an 8-mode test cycle on an engine dynamometer. The exhaust gases receive specific component analysis determining concentration of pollutant, exhaust volume, the fuel flow, and the power output during...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.W.; Hiew, K.L.; Loubser, E.
1985-11-01
The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less
Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.
Power Generation Evaluated on a Bismuth Telluride Unicouple Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi
2015-06-01
The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.
Spectroscopic chemical analysis methods and apparatus
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.
Spectroscopic chemical analysis methods and apparatus
NASA Technical Reports Server (NTRS)
Reid, Ray D. (Inventor); Hug, William F. (Inventor)
2010-01-01
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.
Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
...: April 3, 2012. d. Submitted By: Free Flow Power Corporation on behalf of FFP Project 70, LLC (FFP), a wholly-owned subsidiary of Free Flow Power, LLC. e. Name of Project: Mississippi Lock and Dam 19 Water..., Free Flow Power Corporation, 239 Causeway Street, Suite 300, Boston, MA 02114; (978) 283-2822; or email...
Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
NASA Technical Reports Server (NTRS)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.
2008-01-01
A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.
NASA Astrophysics Data System (ADS)
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.
2006-01-01
As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.
Deformation of a Capsule in a Power-Law Shear Flow
2016-01-01
An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values. PMID:27840656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Gareth C.; Pessah, Martin E., E-mail: gmurphy@nbi.dk, E-mail: mpessah@nbi.dk
The magnetorotational instability (MRI) is thought to play an important role in enabling accretion in sufficiently ionized astrophysical disks. The rate at which MRI-driven turbulence transports angular momentum is intimately related to both the strength of the amplitudes of the fluctuations on various scales and the degree of anisotropy of the underlying turbulence. This has motivated several studies to characterize the distribution of turbulent power in spectral space. In this paper we investigate the anisotropic nature of MRI-driven turbulence using a pseudo-spectral code and introduce novel ways for providing a robust characterization of the underlying turbulence. We study the growth ofmore » the MRI and the subsequent transition to turbulence via parasitic instabilities, identifying their potential signature in the late linear stage. We show that the general flow properties vary in a quasi-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way to extract spectral information from the turbulent magnetized flow, whose anisotropic character depends strongly on time. This consists of stacking 1D Fourier spectra along three orthogonal directions that exhibit maximum anisotropy in Fourier space. The resulting averaged spectra show that the power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a fundamental level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smed, T.; Andersson, G.
In this paper, damping of slow oscillations with active and reactive power modulation of HVDC-links is analyzed with the aim of gaining a physical insight into the problem. The analysis shows that active power modulation is efficient when applied to a short mass-scaled electrical distance from one of the swinging machines, and reactive power modulation is most efficient when there exists a well-defined power flow direction and the modulation is made at a point close to the electrical midpoint between the swinging machines. It is shown that the intuitively appealing feedback signals frequency and derivative of the voltage are appropriatemore » for active and reactive power modulation, respectively. The impact of the constraints imposed by the HVDC equations are analyzed, and it is determined when the implicit reactive power modulation resulting from constant [gamma] control may be detrimental for the damping.« less
New Power Sharing Control for Inverter-Dominated Microgrid Based on Impedance Match Concept
Gu, Herong; Wang, Deyu; Shen, Hong; Zhao, Wei; Guo, Xiaoqiang
2013-01-01
Power flow control is one of the most important issues for operating the inverter-dominated autonomous microgrid. A technical challenge is how to achieve the accurate active/reactive power sharing of inverters. P-F and Q-V droop control schemes have been widely used for power sharing in the past decades. But they suffer from the poor power sharing in the presence of unequal line impedance. In order to solve the problem, a comprehensive analysis of the power droop control is presented, and a new droop control based on the impedance match concept is proposed in this paper. In addition, the design guidelines of control coefficients and virtual impedance are provided. Finally, the performance evaluation is carried out, and the evaluation results verify the effectiveness of the proposed method. PMID:24453910
NASA Astrophysics Data System (ADS)
Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian
2014-10-01
Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.
Automated measurement of diatom size
Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.
2012-01-01
Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.
NASA Astrophysics Data System (ADS)
Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng
2018-06-01
Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.
Flow topologies and turbulence scales in a jet-in-cross-flow
Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem
2015-04-03
This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less
The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian
2011-01-01
NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.
Power laws and fragility in flow networks.
Shore, Jesse; Chu, Catherine J; Bianchi, Matt T
2013-01-01
What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
Ion Heating and Flows in a High Power Helicon Source
NASA Astrophysics Data System (ADS)
Scime, Earl; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Remy; Plyushchev, Gennady; Thompson, Derek
2017-10-01
We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). RAID is equipped with a high power helicon source. Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.
Ion heating and flows in a high power helicon source
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.
2017-06-01
We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.
Kumarasinghe, Chathurangi S.; Premaratne, Malin; Gunapala, Sarath D.; Agrawal, Govind P.
2016-01-01
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors. PMID:26887286
Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P
2016-02-18
We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
NASA Astrophysics Data System (ADS)
Matsypura, Dmytro
In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following coauthored papers: Nagurney, Cruz, and Matsypura (2003), Nagurney and Matsypura (2004, 2005, 2006), Matsypura and Nagurney (2005), Matsypura, Nagurney, and Liu (2006).
Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun
2017-09-14
Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Feldman, E.E.
A series of eight loss-of-flow (LOF) tests have been conducted in EBR-II to study the transition between forced and natural convective flows following a variety of loss-of-primary-pumping power conditions from decay heat levels. Comparisons of measurements and pretest/posttest predictions were made on a selected test. Good agreements between measurements and predictions was found prior to and just after the flow reaching its minimum, but the agreement is not as good after that point. The temperatures are consistent with the flow response and the assumed decay power. The measured results indicate that the flows of driver and the instrumented subassemblies aremore » too much in the analytical model in the natural convective region. Although a parametric study on secondary flow, turbulent-laminar flow transition, heat transfer ability of the intermediate heat exchange at low flow and flow mixing in the primary tank has been performed to determine their effects on the flow, the cause of the discrepancy at very low flow level is still unknown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehder, J.B.
The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion ofmore » the potential applications of floating hydro power systems in small streams.« less
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
Thermal margin protection system for a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musick, C.R.
1974-02-12
A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less
NASA Astrophysics Data System (ADS)
Pan, Wen-hao; Liu, Shi-he; Huang, Li
2018-02-01
This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.
Two-Phase flow instrumentation for nuclear accidents simulation
NASA Astrophysics Data System (ADS)
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
A Low-Power and Portable Biomedical Device for Respiratory Monitoring with a Stable Power Source
Yang, Jiachen; Chen, Bobo; Zhou, Jianxiong; Lv, Zhihan
2015-01-01
Continuous respiratory monitoring is an important tool for clinical monitoring. Associated with the development of biomedical technology, it has become more and more important, especially in the measuring of gas flow and CO2 concentration, which can reflect the status of the patient. In this paper, a new type of biomedical device is presented, which uses low-power sensors with a piezoresistive silicon differential pressure sensor to measure gas flow and with a pyroelectric sensor to measure CO2 concentration simultaneously. For the portability of the biomedical device, the sensors and low-power measurement circuits are integrated together, and the airway tube also needs to be miniaturized. Circuits are designed to ensure the stability of the power source and to filter out the existing noise. Modulation technology is used to eliminate the fluctuations at the trough of the waveform of the CO2 concentration signal. Statistical analysis with the coefficient of variation was performed to find out the optimal driving voltage of the pressure transducer. Through targeted experiments, the biomedical device showed a high accuracy, with a measuring precision of 0.23 mmHg, and it worked continuously and stably, thus realizing the real-time monitoring of the status of patients. PMID:26270665
Improvement and analysis of the hydrogen-cerium redox flow cell
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-08-03
In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1983-01-01
A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.
An optimal tuning strategy for tidal turbines
2016-01-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870
An optimal tuning strategy for tidal turbines
NASA Astrophysics Data System (ADS)
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
An optimal tuning strategy for tidal turbines.
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
Experimental and numerical study of a dual configuration for a flapping tidal current generator.
Kim, Jihoon; Quang Le, Tuyen; Hwan Ko, Jin; Ebenezer Sitorus, Patar; Hartarto Tambunan, Indra; Kang, Taesam
2015-07-30
In this study, we conduct experimental and consecutive numerical analyses of a flapping tidal current generator with a mirror-type dual configuration with front-swing and rear-swing flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted by means of two-dimensional computational fluid dynamics simulations with an in-house code. An experimental study with a controller to determine the target arm angle shows that the resultant arm angle is dependent on the input arm angle, the frequency, and the applied load, while a high pitch is obtained simply with a high input arm angle. Through a parametric analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. Moreover, the optimal reduced frequency was found to be 0.125 in terms of the power extraction. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90° phase difference between the two. The high contribution stems from the high power generated by the rear-swing flapper, which mimics the tail fin movement of a dolphin along a flow, compared to a plunge system or a front-swing system, which mimics the tail fin movement of a dolphin against a flow. It is also due to the fact that the shed vorticities of the front-swing flapper slightly affect negatively or even positively the power performance of the rear-swing system at a given distance and phase angle.
A Review of Criticality Accidents 2000 Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost
Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. Themore » second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.« less
2001-01-24
Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.
A Mobile Device for Measuring Regional Cerebral Circulation
Howard, George; Griffith, David W.; Stump, David A.; Hinschelwood, Laura
1980-01-01
Immobility and costs of currently available regional cerebral blood flow (rCBF) equipment usually require having a single fixed blood flow lab, which cannot be used to study non-ambulatory patients who are often the most interesting to study. After careful study of the information flow between the steps involved in the collection, analysis and display of data, a new rCBF machine has been developed with a mobile satellite and a host processor. The satellite is equipped with a Z-80 microprocessor which controls the data collection, screen formating, data display and communications with the host. The host provides the processing power necessary for moderately complex curve fitting and data storage.
NASA Technical Reports Server (NTRS)
2001-01-01
Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.
Minimizing water consumption when producing hydropower
NASA Astrophysics Data System (ADS)
Leon, A. S.
2015-12-01
In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and optimal penstock diameter. For instance, it was found that for minimizing water consumption, the ratio of head loss to gross head should not exceed about 15%. Two examples of application are presented to illustrate the procedure for determining optimal flow discharge and optimal penstock diameter for impulse and reaction turbines.
Approximation methods for stochastic petri nets
NASA Technical Reports Server (NTRS)
Jungnitz, Hauke Joerg
1992-01-01
Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay equivalence often fails to converge, while flow equivalent aggregation can lead to potentially bad results if a strong dependence of the mean completion time on the interarrival process exists.
Barmashenko, B D; Rosenwaks, S
2012-09-01
A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20 m/s.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, R. E. (Technical Monitor)
2000-01-01
The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox's k-omega model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h (heat transfer coefficient based on T(sub o)-T(sub w)) match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.
POD- Mapping and analysis of hydroturbine exit flow dynamics
NASA Astrophysics Data System (ADS)
Kjeldsen, Morten; Finstad, Pal Henrik
2012-11-01
Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.
NASA Astrophysics Data System (ADS)
Morales, Y.; Olivares, M. A.; Vargas, X.
2015-12-01
This research aims to improve the representation of stochastic water inflows to hydropower plants used in a grid-wide, power production scheduling model in central Chile. The model prescribes the operation of every plant in the system, including hydropower plants located in several basins, and uses stochastic dual dynamic programming (SDDP) with possible inflow scenarios defined from historical records. Each year of record is treated as a sample of weekly inflows to power plants, assuming this intrinsically incorporates spatial and temporal correlations, without any further autocorrelation analysis of the hydrological time series. However, standard good practice suggests the use of synthetic flows instead of raw historical records.The proposed approach generates synthetic inflow scenarios based on hydrological modeling of a few basins in the system and transposition of flows with other basins within so-called homogeneous zones. Hydrologic models use precipitation and temperature as inputs, and therefore this approach requires producing samples of those variables. Development and calibration of these models imply a greater demand of time compared to the purely statistical approach to synthetic flows. This approach requires consideration of the main uses in the basins: agriculture and hydroelectricity. Moreover a geostatistical analysis of the area is analyzed to generate a map that identifies the relationship between the points where the hydrological information is generated and other points of interest within the power system. Consideration of homogeneous zones involves a decrease in the effort required for generation of information compared with hydrological modeling of every point of interest. It is important to emphasize that future scenarios are derived through a probabilistic approach that incorporates the features of the hydrological year type (dry, normal or wet), covering the different possibilities in terms of availability of water resources. We present the results for Maule basin in Chile's Central Interconnected System (SIC).
Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow
NASA Astrophysics Data System (ADS)
Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang
2017-07-01
Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.
AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXI, MICHIGAN/CLARK TRANSMISSION--COMPLETE POWER TRAIN.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MOSULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF A SPECIFIC POWER TRAIN SYSTEM USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE EXAMINING THE POWER FLOW, UNIT OIL FLOW, AND OIL PRESSURE IN THE CONVERTER AND TRANSMISSION SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAM TRAINING FILM "UNDERSTANDING THE…
NASA Astrophysics Data System (ADS)
Rahimi, Mohammad; Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce E.
2018-01-01
Thermally regenerative ammonia batteries (TRABs) have shown great promise as a method to convert low-grade waste heat into electrical power, with power densities an order of magnitude higher than other approaches. However, previous TRABs based on copper electrodes suffered from unbalanced anode dissolution and cathode deposition rates during discharging cycles, limiting practical applications. To produce a TRAB with stable and reversible electrode reactions over many cycles, inert carbon electrodes were used with silver salts. In continuous flow tests, power production was stable over 100 discharging cycles, demonstrating excellent reversibility. Power densities were 23 W m-2-electrode area in batch tests, which was 64% higher than that produced in parallel tests using copper electrodes, and 30 W m-2 (net energy density of 490 Wh m-3-anolyte) in continuous flow tests. While this battery requires the use a precious metal, an initial economic analysis of the system showed that the cost of the materials relative to energy production was 220 per MWh, which is competitive with energy production from other non-fossil fuel sources. A substantial reduction in costs could be obtained by developing less expensive anion exchange membranes.
Harnessing Wind Power in Moving Reference Frames with Application to Vehicles
NASA Astrophysics Data System (ADS)
Goushcha, Oleg; Felicissimo, Robert; Danesh-Yazdi, Amir; Andreopoulos, Yiannis
2017-11-01
The extraction of wind power from unique configurations embedded in moving vehicles by using micro-turbine devices has been investigated. In such moving environments, the specific power of the air motion is much greater and less intermittent than in stationary wind turbines anchored to the ground in open atmospheric conditions. In a translational frame of reference, the rate of work done by the drag force acting on the wind harnessing device due the relative motion of air should be taken into account in the overall performance evaluation through an energy balance. A device with a venting tube has been tested that connects a high-pressure stagnating flow region in the front of the vehicle with a low-pressure region at its rear. Our analysis identified two key areas to focus on for potentially significant rewards: (1) Vehicles with high energy conversion efficiency which require a high mass flow rate through the venting duct, and (2) low efficiency vehicles with wakes, which will be globally affected by the introduction of the venting duct device in a manner that reduces their drag so that there is a net gain in power generation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14538-000] Go With the Flow..., Motions To Intervene, and Competing Applications On July 22, 2013, Go with the Flow Hydro Power, LLC...), proposing to study the feasibility of the Go with the Flow Hydroelectric Project (project) to be located on...
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1974-01-01
A computer program to analyze power systems having any number of shafts up to a maximum of five is presented. On each shaft there can be as many as five compressors and five turbines, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included. Turbine coolant flow can be accounted for. Any fuel consisting entirely of hydrogen and/or carbon can be used. The program is valid for maximum temperatures up to about 2000 K (3600 R). The system description, the analysis method, a detailed explanation of program input and output including an illustrative example, a dictionary of program variables, and the program listing are explained.
Control Algorithms Charge Batteries Faster
NASA Technical Reports Server (NTRS)
2012-01-01
On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.
Görges, Rainer; Eising, E G; Fotescu, D; Renzing-Köhler, K; Frilling, A; Schmid, K W; Bockisch, A; Dirsch, O
2003-02-01
Ultrasonography is an established diagnostic modality in the follow-up of thyroid cancer. Color flow Doppler has been proposed by some authors as an additional tool for differentiating benign from malignant cervical lesions in various types of head and neck cancer. Over the last few years, a new generation of high-resolution ultrasound platforms with the "power-mode" feature has become available, that also enables the imaging of small vessel blood flow. The objective of our study was to find ways of optimizing the differentiation of benign and malignant cervical tumors in thyroid cancer follow-up by means of sonography. Hundred and twelve cervical lesions in 90 patients with thyroid cancer were evaluated by high-end ultrasonography (Sonoline Elegra, Siemens) using a small-part transducer (7.5 L 40, Siemens). B-mode sonography was performed at a frequency of 8 MHz. The Solbiati index (SI= ratio of largest to smallest diameter), configuration, echogenicity, intranodular structures, and margins were assessed. Perinodular and intranodular blood flow was evaluated by color flow Doppler (PRF 1250 Hz for conventional color flow Doppler, 868 Hz for power-mode Doppler). Possible malignancy was validated by histology, cytology, scintigraphy, and follow-up. Thirty five lesions were benign (diameter 0.4-3.0 cm) and 77 were malignant (0.4-5.4 cm). The patients were randomized into a test group and a learning group to determine the diagnostic value of various ultrasound criteria by means of statistical analysis. In the learning group, decision rules based on the dichotomized criteria were developed using a logistic regression model. Sensitivity and specificity of these decision rules were then evaluated in the test group. The presence of an echocomplex pattern or irregular hyperechoic small intranodular structures (criterion A) and the presence of an irregular diffuse intranodular blood flow (criterion B) are the best indicators of malignancy, whereas an SI >2 is highly indicative of benign changes. Color flow Doppler is a useful addition to B-mode scanning for distinguishing benign and malignant neoplasms in the follow-up of thyroid cancer. Power-mode Doppler sonography significantly improves imaging of perinodular and intranodular blood flow when compared with conventional color flow Doppler. We propose the following decision rules based on a combination of the criteria above: (A) and (B) fulfilled: malignant, if SI< or =4; (B) but not (A) fulfilled: malignant, if SI< or =3; (A) but not (B) fulfilled: malignant, if SI< or =2; neither (A) nor (B) fulfilled: malignant, if SI approximately equal to 1 (sensitivity: 90%; specificity: 82%; accuracy 88%).
Pollock, G.G.
1997-01-28
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.
NASA Astrophysics Data System (ADS)
Orhan, K.; Mayerle, R.
2016-12-01
A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.
Williams, P Stephen
2017-01-01
Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalimullah
1994-03-01
Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of themore » phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS.« less
Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen
2008-01-01
A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.
The role of flow cytometry in companion animal diagnostic medicine.
Tarrant, Jacqueline M
2005-11-01
Flow cytometry is a powerful tool for characterising the composition of complex cell populations. The accuracy and precision of this technology for describing and enumerating cells exceeds traditional methods. The number of diagnostic veterinary laboratories with access to a dedicated machine is increasing, and there is the potential to offer a clinical flow cytometry service. The improved availability of monoclonal antibodies (mAb) to cell markers expressed by the leukocytes of companion animals, permits the implementation of comprehensive mAb panels suitable for diagnosis of lympho- and myeloproliferative disease. Reticulated erythrocyte and platelet quantification, antiglobulin assays for immune-mediated cytopenias, lymphocyte subset analysis, and immunophenotyping of lymphoma and leukemia, have been validated for companion animal samples on the flow cytometer. It is now timely to consider the role of flow cytometry in diagnostic practice, and the requirement for quality assurance and standardization of testing procedures.
Separated Flow over Wind Turbines
NASA Astrophysics Data System (ADS)
Brown, David; Lewalle, Jacques
2015-11-01
The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.
Flow diagram analysis of electrical fatalities in construction industry.
Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad
2012-01-01
The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.
NASA Astrophysics Data System (ADS)
Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.
2012-04-01
Debris flows occurring in the European Alps frequently cause significant damage to settlements, power-lines and transportation infrastructure which has led to traffic disruptions, economic loss and even death. Estimating the debris flow run-out extent and the parameter uncertainty related to run-out modeling are some of the difficulties found in the Quantitative Risk Assessment (QRA) of debris flows. Also, the process of the entrainment of material into a debris flow is until now not completely understood. Debris flows observed in the French Alps entrain 5 - 50 times the amount of volume compared to the initially mobilized source volume. In this study we analyze a debris flow that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The analysis was carried out using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2D numerical modeling software. The historic event was back calibrated based on source, entrainment and deposit volumes, including the run-out distance, velocities and deposit heights of the debris flow. This was then followed by a sensitivity analysis of the rheological and entrainment parameters to produce 120 debris flow scenarios leading to a frequency assessment of the run-out distance and deposit height at the debris fan. The study shows that the Voellmy frictional parameters mainly influence the run-out distance and velocity of the flow, while the entrainment parameter has a major impact on the debris flow height. The frequency assessment of the 120 simulated scenarios further gives an indication on the most likely debris flow run-out extents and heights for this catchment. Such an assessment can be an important link between the rheological model parameters and the spatial probability of the run-out for the Quantitative Risk Assessment (QRA) of debris flows.
Power flow control based solely on slow feedback loop for heart pump applications.
Wang, Bob; Hu, Aiguo Patrick; Budgett, David
2012-06-01
This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.
Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee
2015-07-31
This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
2012-10-01
use of high-order numerical methods can also be a powerful tool in the analysis of such complex flows, but we need to understand the interaction of...computational physics, 43(2):357372, 1981. [47] B. Einfeldt. On godunov-type methods for gas dynamics . SIAM Journal on Numerical Analysis , pages 294...dimensional effects with complex reaction kinetics, the simple one-dimensional detonation structure provides a rich spectrum of dynamical features which are
Computing the Feasible Spaces of Optimal Power Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molzahn, Daniel K.
The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less
Computing the Feasible Spaces of Optimal Power Flow Problems
Molzahn, Daniel K.
2017-03-15
The solution to an optimal power flow (OPF) problem provides a minimum cost operating point for an electric power system. The performance of OPF solution techniques strongly depends on the problem’s feasible space. This paper presents an algorithm that is guaranteed to compute the entire feasible spaces of small OPF problems to within a specified discretization tolerance. Specifically, the feasible space is computed by discretizing certain of the OPF problem’s inequality constraints to obtain a set of power flow equations. All solutions to the power flow equations at each discretization point are obtained using the Numerical Polynomial Homotopy Continuation (NPHC)more » algorithm. To improve computational tractability, “bound tightening” and “grid pruning” algorithms use convex relaxations to preclude consideration of many discretization points that are infeasible for the OPF problem. Here, the proposed algorithm is used to generate the feasible spaces of two small test cases.« less
NASA Astrophysics Data System (ADS)
Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu
2017-09-01
Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.
Thermal management methods for compact high power LED arrays
NASA Astrophysics Data System (ADS)
Christensen, Adam; Ha, Minseok; Graham, Samuel
2007-09-01
The package and system level temperature distributions of a high power (>1W) light emitting diode (LED) array has been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. An analysis of thermal stresses and residual stresses in the die are also calculated based on power dissipation and convection heat transfer coefficients. Results show that the thermal stress in the GaN layer are compressive which can impact the band gap and performance of the LEDs.
NASA Astrophysics Data System (ADS)
Holden, Jacob R.
Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.
Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants
NASA Astrophysics Data System (ADS)
AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali
2018-05-01
Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by turbine, as a result decline of power and gas turbine power plant efficiency causing the drop in the level of electric generation. The fuel quality is found to be a strong function of specific fuel consumption and its effects on the power generation and the efficiency of the gas turbine power plants and hence, the cycle performance shifts towards favorable conditions.
NASA Astrophysics Data System (ADS)
Martin, E. H.; Klepper, C. C.; Isler, R. C.; Goniche, M.; Caughman, J. B. O.
2014-10-01
Recently, the RF electric field vector (ELH) in front of a lower hybrid (LH) launcher, operating at 3.7 GHz, at the low field side of the Tore Supra tokamak was determined by spectroscopic analysis of passive Dβ spectral emission from the near-antenna plasma. The ELH was determined by globally minimizing the χ associated with the experimental and theoretical spectral line profile. The theoretical profile is calculated from a non-perturbative solution to the Schrödinger equation, which includes the magnetic and dynamic electric field vectors. The magnitude, the direction, and the scaling with LH power of the measured ELH were fairly consistent with those calculated from a full-wave LH model. In addition to ELH the inboard and an outboard neutral flow was determined from the Doppler shifts associated with the Dα and Dβ spectral profiles. It was found that excitation of the LH wave induced both an inboard and outboard co-current neutral flow, which is linearly dependent on injected power; preliminary results indicate ICRH decreases the LH wave-induced co-current neutral flow. Neutral flow velocities are consistent with measurements of ion flow velocities obtained by charge exchange recombination spectroscopy. Work supported by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC., and by the European Communities under the contract of Assoc. EURATOM-CEA and within the framework of the EFDA.
Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M
2017-04-01
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.
2012-01-01
This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.
System performance predictions for Space Station Freedom's electric power system
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.
1993-01-01
Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-16
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-01-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
NASA Astrophysics Data System (ADS)
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
...: April 4, 2011. d. Submitted by: Free Flow Power Qualified Hydro 14 LLC (Qualified Power 14 LLC), a subsidiary of Free Flow Power Corporation. e. Name of Project: Saylorville Dam Water Power Project. f... County, Iowa. The project would occupy 1.5 acres of United States lands administered by Corps' Rock...
NASA Astrophysics Data System (ADS)
Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.
2014-07-01
Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.
Thermal Performance Benchmarking: Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui
In FY16, the thermal performance of the 2014 Honda Accord Hybrid power electronics thermal management systems were benchmarked. Both experiments and numerical simulation were utilized to thoroughly study the thermal resistances and temperature distribution in the power module. Experimental results obtained from the water-ethylene glycol tests provided the junction-to-liquid thermal resistance. The finite element analysis (FEA) and computational fluid dynamics (CFD) models were found to yield a good match with experimental results. Both experimental and modeling results demonstrate that the passive stack is the dominant thermal resistance for both the motor and power electronics systems. The 2014 Accord power electronicsmore » systems yield steady-state thermal resistance values around 42- 50 mm to the 2nd power K/W, depending on the flow rates. At a typical flow rate of 10 liters per minute, the thermal resistance of the Accord system was found to be about 44 percent lower than that of the 2012 Nissan LEAF system that was benchmarked in FY15. The main reason for the difference is that the Accord power module used a metalized-ceramic substrate and eliminated the thermal interface material layers. FEA models were developed to study the transient performance of 2012 Nissan LEAF, 2014 Accord, and two other systems that feature conventional power module designs. The simulation results indicate that the 2012 LEAF power module has lowest thermal impedance at a time scale less than one second. This is probably due to moving low thermally conductive materials further away from the heat source and enhancing the heat spreading effect from the copper-molybdenum plate close to the insulated gate bipolar transistors. When approaching steady state, the Honda system shows lower thermal impedance. Measurement results of the thermal resistance of the 2015 BMW i3 power electronic system indicate that the i3 insulated gate bipolar transistor module has significantly lower junction-to-liquid thermal resistance as compared to the other systems. At a flow rate of 12 liters per minute, the thermal resistance of the i3 systems is only 30 percent of the Accord system and 15 percent of the LEAF system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Borkowski, C.A.; Huang, C.
1998-01-01
AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less
Analysis of counter flow of corona wind for heat transfer enhancement
NASA Astrophysics Data System (ADS)
Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo
2018-03-01
A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.
NASA Astrophysics Data System (ADS)
Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.
2017-07-01
The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.
Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Xiong, Binyu; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria; Lim, Tuti Mariana; Zhang, Yu
2013-11-01
Vanadium redox flow batteries (VRBs) are very competitive for large-capacity energy storage in power grids and in smart buildings due to low maintenance costs, high design flexibility, and long cycle life. Thermal hydraulic modeling of VRB energy storage systems is an important issue and temperature has remarkable impacts on the battery efficiency, the lifetime of material and the stability of the electrolytes. In this paper, a lumped model including auxiliary pump effect is developed to investigate the VRB temperature responses under different operating and surrounding environmental conditions. The impact of electrolyte flow rate and temperature on the battery electrical characteristics and efficiencies are also investigated. A one kilowatt VRB system is selected to conduct numerical simulations. The thermal hydraulic model is benchmarked with experimental data and good agreement is found. Simulation results show that pump power is sensitive to hydraulic design and flow rates. The temperature in the stack and tanks rises up about 10 °C under normal operating conditions for the stack design and electrolyte volume selected. An optimal flow rate of around 90 cm3 s-1 is obtained for the proposed battery configuration to maximize battery efficiency. The models developed in this paper can also be used for the development of a battery control strategy to achieve satisfactory thermal hydraulic performance and maximize energy efficiency.
Flow tests of a single fuel element coolant channel for a compact fast reactor for space power
NASA Technical Reports Server (NTRS)
Springborn, R. H.
1971-01-01
Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.
Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams
NASA Astrophysics Data System (ADS)
Kern, J.; Characklis, G. W.
2012-12-01
Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.
CFD analysis of a twin scroll radial turbine
NASA Astrophysics Data System (ADS)
Fürst, Jiří; Žák, Zdenĕk
2018-06-01
The contribution deals with the application of coupled implicit solver for compressible flows to CFD analysis of a twin scroll radial turbine. The solver is based on the finite volume method, convective terms are approximated using AUSM+up scheme, viscous terms use central approximation and the time evolution is achieved with lower-upper symmetric Gauss-Seidel (LU-SGS) method. The solver allows steady simulation with the so called frozen rotor approach as well as the fully unsteady solution. Both approaches are at first validated for the case of ERCOFTAC pump [1]. Then the CFD analysis of the flow through a twin scroll radial turbine and the predictions of the efficiency and turbine power is performed and the results are compared to experimental data obtained in the framework of Josef Božek - Competence Centre for Automotive Industry.
Experimental clean combustor program; noise measurement addendum, Phase 2
NASA Technical Reports Server (NTRS)
Emmerling, J. J.; Bekofske, K. L.
1976-01-01
Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.
Power dependence of reflectivity of metallic films.
Yeh, Y C; Stafsudd, O M
1976-01-01
The reflectivity of vacuum-deposited gold films on quartz glass substrates was studied as a function of 10.6-microm radiation power density. A simple linear model of the temperature dependence of the absorptivity of the gold film is developed. This temperature dependence is coupled with a three-dimensional heat flow analysis and fits the experimental data well. The absorptivity alpha is written as alpha(0)(1 + betaT) and the values of alpha(0) and beta are determined, respectively, as (0.88 +/- 0.01) x 10(-2) and 12 x 10(-4)/ degrees C.
Publications | Grid Modernization | NREL
Photovoltaics: Trajectories and Challenges Cover of Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow publication Efficient Relaxations for Joint Chance Constrained AC Optimal Power Flow
Complete energetic description of hydrokinetic turbine impact on flow channel dynamics
NASA Astrophysics Data System (ADS)
Brasseale, E.; Kawase, M.
2016-02-01
Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the environmental impacts of marine renewables.
Chemical preconcentrator with integral thermal flow sensor
Manginell, Ronald P.; Frye-Mason, Gregory C.
2003-01-01
A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.
Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.